Gaps between consecutive primes



Introduction

The computation of the first occurrence of prime gaps of a given (even) size between consecutive primes has some theoretical interest [1, problem A8], [2]. Let p_k be the k-th prime number, i.e., p_1=2, p_2=3, p_3=5, ..., and let g_k=p_(k+1)-p_k be the gap between the consecutive primes p_k and p_(k+1). Harald Cramér [3] conjectured, based on probabilistic ideas, that the large values of g_k grow like (log p_k)^2. Our empirical data does not allow us to discriminate between this growth rate and, for example, (log pi(p_k))^2, where pi(x) is the usual prime counting function (note that pi(p_k)=k). Furthermore, the bounds presented below suggest yet another growth rate, namely, that of the square of the so-called Lambert W function. These growth rates differ by very slowly growing factors (like log log p_k). Much more data is needed to verify empirically which one is closer to the true growth rate.

Let P(g) be the least prime such that P(g)+g is the smallest prime larger than P(g). The values of P(g) are bounded, for our empirical data, by the functions

                         0.5                                     0.5
                  0.5   g                                 0.5   g
P_min(g) = 0.12  g     e        and    P_max(g) = 30.83  g     e     .

For large g, there bounds are in accord with a conjecture of Marek Wolf [4].

Computational results

Our prime gap computations are a by-product of our Goldbach conjecture verification effort [5]. We have computed the gaps between all prime numbers smaller than 4·10^18, and, so far, double-checked our results up to 4·10^17 (see the detailed status of this extensive computation). Our results agree with whose presented in [6], [7], [8], and [9]. In this table [14KiB, compressed with gzip] we present the values of P(g) we were able to compute, as well as counts of the number of times each gap occurred. The record-holders, i.e., numbers larger than all previous ones of the same kind, are clearly marked in the table. The following figure presents a graph with the available values of P(g). The black line represents the lower bound for P(g) suggested by Cramér's conjecture.

Graph of P(g)

The two kinds of record-holders marked in the table mentioned above correspond to the values of P(g) closer to one of the two bounds presented in the introduction. In this figure it can be seen that the first occurrence of a prime gap of 1132 is abnormally small.

Let D(x;g) be the relative frequency of occurrence of the gap g for all prime numbers not larger than x. The following figure presents a graph of this function, computed for our current verification limit of the Goldbach conjecture.

Graph of D(x;n)

The approximate exponential decay of D(x;g) is explained in [10]. It is visible in this figure that the values of D(x;g) when g is a multiple of 6=2·3 (white dots) are larger than those of their neighbors (yellow dots); those of the multiples of 30=2·3·5, and of 210=2·3·5·7, are even larger.

Hardy-Littlewood constants and jumping champions

If one assumes the truth of the prime k-tuple conjecture [11], it is possible to estimate the number of occurrences up to x of a prime gap of g, denoted here by N(x;g), for relatively small values of g [5][12]. With the help of Siegfried Herzog we managed to compute all relevant constants necessary to do this for all (even) g smaller than 214. (We double-checked each other's results in full up to g=190 and I checked some of Zig's results for larger values of g.) The constants, and minimal details about how they can be used to estimate N(x;g), can be found here [97KiB, compressed with gzip].

It was observed empirically that these estimates of N(x;g) appear to not deviate from their true values by more that

sqrt(2 N(x;g) log log N(x;g))
(law of the iterated logarithm). Using a tolerance 100 times larger than this, our data suggests that:
N(x;6) is larger  than N(x;30) for x <= 1.74274357320*10^35
N(x;6) is smaller than N(x;30) for x >= 1.74274357327*10^35

N(x;30) is larger  than N(x;210) for
  x <= 6.42869106260176003801404998376634178448636748209672
         30934734000364513469429976733667048809926190112851
         62815790254884411833280961248151172061805903500614
         28807728994628470520846144445274265143048582533167
         857*10^425
N(x;30) is smaller than N(x;210) for
  x >= 6.42869106260176003801404998376634178448636748209672
         30934734000364513469429976733667048809926190112851
         62815790254884411833280961248151172061805903500614
         28807728994628470520846144445274265143048582533167
         861*10^25
We expect a change of jumping champion [10] inside the intervals delimited by these bounds.

Top 50

The following table presents the 50 largest g (prime gaps) found so far, with P(g)<4·10^18, either by contributors to this project or by other discoverers (those have an * before the discoverer name). Repeated values of g were excluded from this list.

  Rank     g     P(g)     Discoverer  
  1     1476     1425 17282 44376 99411     Tomás Oliveira e Silva  
  2     1454     3219 10718 24928 71783     Silvio Pardi  
  3     1442     804 21283 06866 77669     Siegfried "Zig" Herzog  
  4     1418     3725 23553 35041 01511     Tomás Oliveira e Silva  
  5     1416     3750 99252 93399 78877     Tomás Oliveira e Silva  
  6     1410     2635 28193 24815 39903     Siegfried "Zig" Herzog  
  7     1400     3431 65779 58583 78003     Silvio Pardi  
  8     1398     2424 70872 97267 67749     Tomás Oliveira e Silva  
  9     1392     1480 03203 79396 34731     Tomás Oliveira e Silva  
  10     1390     3492 65766 10051 61107     Silvio Pardi  
  11     1388     2975 20552 41233 01149     Tomás Oliveira e Silva  
  12     1386     3449 34008 02746 51527     Silvio Pardi  
  13     1380     1031 50183 31302 43273     Siegfried "Zig" Herzog  
  14     1374     2812 81423 52816 09869     Silvio Pardi  
  15     1370     418 03264 59367 12127     * D. Knuth  
  16     1364     1051 14088 80512 30423     Siegfried "Zig" Herzog  
  17     1362     3937 45795 06462 69397     Tomás Oliveira e Silva  
  18     1360     1153 27764 73035 40597     Siegfried "Zig" Herzog  
  19     1358     523 25522 06146 45319     Siegfried "Zig" Herzog  
  20     1356     401 42992 59991 53707     * D. Knuth  
  21     1354     2805 56288 34484 62853     Silvio Pardi  
  22     1350     1180 35175 22041 37089     Tomás Oliveira e Silva  
  23     1348     3754 93042 77306 28273     Tomás Oliveira e Silva  
  24     1344     753 91763 53808 95597     Siegfried "Zig" Herzog  
  25     1342     1578 16910 61411 87727     Tomás Oliveira e Silva  
  26     1340     1954 31746 71273 10787     Tomás Oliveira e Silva  
  27     1338     2927 64805 72684 73633     Tomás Oliveira e Silva  
  28     1336     2221 89928 82387 68093     Siegfried "Zig" Herzog  
  29     1334     2722 01256 97476 81653     Silvio Pardi  
  30     1332     3103 25146 45367 97599     Silvio Pardi  
  31     1330     2918 47807 68491 34103     Tomás Oliveira e Silva  
  32     1328     352 52122 34513 64323     Tomás Oliveira e Silva  
  33     1326     2075 06944 41432 79153     Tomás Oliveira e Silva  
  34     1324     2937 02084 97138 56977     Tomás Oliveira e Silva  
  35     1322     1106 02843 61874 67937     Siegfried "Zig" Herzog  
  36     1320     605 04633 00290 26447     Siegfried "Zig" Herzog  
  37     1318     2216 27085 98031 42601     Siegfried "Zig" Herzog  
  38     1316     2187 39466 98657 44117     Siegfried "Zig" Herzog  
  39     1314     1214 11964 65476 13277     Tomás Oliveira e Silva  
  40     1312     1396 48771 92534 03577     Siegfried "Zig" Herzog  
  41     1310     1918 58679 96576 17591     Tomás Oliveira e Silva  
  42     1308     749 56545 75543 71299     Siegfried "Zig" Herzog  
  43     1306     3278 01806 91024 80227     Silvio Pardi  
  44     1304     1188 13437 93823 95323     Tomás Oliveira e Silva  
  45     1302     1731 08087 63942 28577     Tomás Oliveira e Silva  
  46     1300     1141 04186 63848 33123     Siegfried "Zig" Herzog  
  47     1298     1739 01802 68170 67239     Tomás Oliveira e Silva  
  48     1296     1799 23519 83799 03447     Christian Kern  
  49     1294     1868 32618 47640 55803     Siegfried "Zig" Herzog  
  50     1292     494 65339 43054 48051     Tomás Oliveira e Silva  

Contributors

The following table presents some details about the contribution of all (past and present) individuals or organizations which donated computing power to this project.

  Name     Location     Number of  
  tasks  
  Number of first (known) occurrences  
  Minimal Goldbach partitions     Prime gaps  
  Tomás Oliveira e Silva     All     2100920     325 (0)     70 (0)  
  DETUA     1510546     191 (0)     51 (0)  
  Home     440316     11 (0)     12 (0)  
  Kraken     109000     4 (0)     1 (0)  
  IEETA     41058     119 (0)     6 (0)  
  Siegfried "Zig" Herzog     PSU     1471605     80 (0)     52 (0)  
  Silvio Pardi     INFN     869080     15 (0)     9 (0)  
  Christian Kern     Germany     48999     3 (0)     2 (0)  
  John Fettig & Nahil Sobh     NCSA     33641     2 (0)     1 (0)  
  João Manuel Rodrigues     DETUA     16072     9 (0)     2 (0)  
  António Teixeira     IEETA     14995     0 (0)     1 (0)  
  Carlos Bastos     DETUA     8646     11 (0)     1 (0)  
  SIAS Group     IEETA     7752     2 (0)     0 (0)  
  Rui Arnaldo Costa     IEETA     3847     4 (0)     0 (0)  
  Armando Pinho     IEETA     3285     2 (0)     1 (0)  
  Miguel Oliveira e Silva     DETUA     2659     7 (0)     0 (0)  
  Laurent Desnoguès     France     200     0 (0)     0 (0)  
  All     All     4581701     460 (0)     139 (0)  

This work was partially supported by the National Center for Supercomputing Applications and utilized the NCSA Xeon cluster.

This research was partially supported by an allocation of advanced computing resources supported by the National Science Foundation. Part of the computations were performed on Kraken (a Cray XT5) at the National Institute for Computational Sciences.

References

[1] Richard K. Guy, Unsolved problems in number theory, third edition, Springer-Verlag, 2004.
[2] Hans Riesel, Prime numbers and computer methods for factorization, second edition, Birkhäuser, 1994.
[3] Harald Cramér, On the order of magnitude of the difference between consecutive prime numbers, Acta Arithmetica, vol. 2, pp. 23-46, 1936.
[4] Marek Wolf, First occurrence of a given gap between consecutive primes, preprint, April 1997.
[5] Tomás Oliveira e Silva, Siegfried Herzog, and Silvio Pardi, Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4·10^18, Mathematics of Computation, vol. 83, no. 288, pp. 2033-2060, July 2014 (published electronically on November 18, 2013).
[6] Jeff Young and Aaron Potler, First occurrence prime gaps, Mathematics of Computation, vol. 52, no. 185, pp. 221-224, January 1989.
[7] Thomas R. Nicely, New maximal prime gaps and first occurrences, Mathematics of Computation, vol. 68, no. 227, pp. 1311-1315, July 1999.
[8] Thomas R. Nicely and Bertil Nyman, First occurrence of a prime gap of 1000 or greater (unpublished).
[9] Bertil Nyman and Thomas R. Nicely, New prime gaps between 10^15 and 5·10^16, Journal of Integer Sequences, vol. 6, no. 3, article 03.3.1, August 2003 (published electronically).
[10] Andrew Odlyzko, Michael Rubinstein, and Marek Wolf, Jumping champions, Experimental Mathematics, vol. 8, no. 2, pp. 107-118, 1999. (For a layman explanation of the results of this paper, see Ian Stewart, Jumping champions, Scientific American, vol. 283, no. 6, pp. 80-81, December 2000.)
[11] G. H. Hardy and J. E. Littlewood, Some problems of `partitio numerorum'; III: on the expression of a number as a sum of primes, Acta Mathematica, vol. 44, pp. 1-70, 1922.
[12] Richard P. Brent, The distribution of small gaps between sucessive primes, Mathematics of Computation, vol. 28, no. 125, pp. 315-324, January 1974.

Additional links