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1 Facultad de Informática y Matemática, Universidad de Holguı́n, Holguı́n 80100, Cuba
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Quaternionic analysis is regarded as a broadly accepted branch of classical analysis referring to many different
types of extensions of the Cauchy-Riemann equations to the quaternion skew field H. It relies heavily on results
on functions defined on domains in R

4
(
or R

3
)

with values in H. This theory is centred around the concept
of ψ-hyperholomorphic functions related to a so-called structural set ψ of H

4
(
or H

3
)

respectively. The main
goal of this paper is to develop the nucleus of the (ϕ, ψ)-hyperholomorphic function theory, i.e., simultaneous
null solutions of two Cauchy-Riemann operators associated to a pair ϕ, ψ of structural sets of H

4. Following a
matrix approach, a generalized Borel-Pompeiu formula and the corresponding Plemelj-Sokhotzki formulae are
established.
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1 Introduction

Quaternionic analysis is a an extension of classic complex analysis to the four-dimensional skew-field of quater-
nions. In the classic approach the complex Cauchy-Riemann operator is replaced by the generalized Cauchy-
Riemann operator. Based on this operator since the 1930’th this theory was widely developed and applied (see,
e.g., [4], [5]). Later on a modification of the generalized Cauchy-Riemann operator by using a general orthonormal
basis in R

4 (called structural sets) instead of the standard basis was proposed independently by Naser, Nôno,
Shapiro and Vasilevsky, see [13]–[15], [21], [22]. This theory called ψ-hyperholomorphic quaternion valued func-
tions by itself is not much of a novelty since it can be reduced by an orthogonal transformation to the standard case.

In 1998 Gürlebeck, et al. [8] showed that the class of ψ-hyperholomorphic functions is more than what we get by
orthogonal transformation, when the picture changed completely in the study of a �-operator which involve a pair
of different orthonormal basis. First of all there is no more a single orthogonal transformation which reduces it to
the standard case. Second we have that for two different structural sets they factorize a second order operator which
is not anymore a scalar operator. As it turns out several important questions are linked with and uniformized when
two different structural sets take part. For instance, the question of so-called monogenic constants which is raised
in the study of the conjugate Cauchy-Riemann operator as derivative for monogenic functions is a special case
of the question of studying the intersection between the kernels of two generalized Cauchy-Riemann operators,
denoted by ψ D and ϕ D or the question of two-monogenic functions as a special case of the study of the kernel of
the second order operator ψ Dψ D. The former is crucial for the study of quasiconformal monogenic mappings.

Furthermore, this problem is also closely connected to practical problems where the application of different
frames are required by either the material or the vector fields themselves. Other links include the Cimmino system
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and the study of the ψ,ϕ�-operator as a generalization of the Ahlfors-Beurling transform from Complex Analysis
with its importance in the study of quaternionic Beltrami equations and quaternionic quasiconformal mappings [3],
[8]. In the later case we have to point out that a quaternionic Beltrami equation in the simplest case has the form
ψ Du = qϕ Du where ϕ does not have to correspond to ψ̄ , see, e.g., [19]. Since the intersection of the kernels
of ψ D and ϕ D is non-trivial it is necessary to study functions in this intersection, which are sometimes called
monogenic constants, particularly in the case of ϕ = ψ̄ .

Here, we want closely investigate the question of the kernel kerψD ∩ kerϕD. To this end we embed our operators
into a higher-dimensional space by means of a matrix embedding and construct the basic tools of a function theory
in this higher-dimensional space. Unfortunately, a direct embedding for all possible transformations which map
ϕ into ψ is not possible since they can be of a quite different nature. Essentially, we have either a rotation or a
reflection each of which requires a different type of embedding. In the first case we will use the embedding into
the ring of quaternionic 2 × 2 circular matrices while in the latter case we will use the algebra generated by the

identity matrix and the complex structure J =
(

0 1
−1 0

)
as well as the algebra generated by the parabolic element

J̃ =
(

0 1
0 0

)
.

In each case we study under which conditions the corresponding Cauchy-Riemann operator factorizes the
matrix Laplacian and construct the corresponding fundamental solution. Afterwards we establish the necessary
integral formulae for a function theory.

2 Elements of quaternionic analysis

In this section we present brievely the basic definitions and results of quaternionic analysis which are necessary
for our purpose. We mention in particular, without claim of completeness the works [4]–[8], [10]–[12], [14]–[16],
[18]–[21] and the literature therein.

Let H be the set of real quaternions generated by a real unit (denoted by 1) and the standard quaternionic units
{i, j, k}. This means that any element x from H is of the form x = x0 + x1i + x2 j + x3k, where xm ∈ R, m ∈
N3 ∪ {0}; N3 := {1, 2, 3}. Sometimes we will write x0 as Re{x} and x − x0 as V ec{x}.

In this paper we denote the generators by 1 =: e0, i =: e1, j =: e2, and k =: e3 subject to the multiplication
rules

e2
m = −1, m ∈ N3,

e1 e2 = −e2 e1 = e3; e2 e3 = −e3 e2 = e1; e3 e1 = −e3 e1 = e2,

more suited for a future extension.
Embeddings of reals and complex numbers into quaternions are realized by:

x0 ∈ R −→ x01 + 0e1 + 0e2 + 0e3 ∈ H,

x0 + x1e1 ∈ C −→ x01 + x1e1 + 0e2 + 0e3 ∈ H.

If x =∑3
m=0 xm em is a quaternion then

�x :=

⎛
⎜⎜⎝

x0

x1

x2

x3

⎞
⎟⎟⎠ = (x0, x1, x2, x3)T ∈ R

4.

With natural operations of addition and multiplication H is a non-commutative, associative skew-field. There
is the quaternionic conjugation, which plays an important role and is defined as follows:

em := −em, m ∈ N3.

This involution extends onto the whole H as an R-linear mapping: If x ∈ H then

x := x0 − x1e1 − x2e2 − x3e3.

For {x, y} ∈ H we note the formula for the multiplication:

(x · y)0 = x0 y0 − x1 y1 − x2 y2 − x3 y3,

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com



Math. Nachr. 288, No. 13 (2015) / www.mn-journal.com 1453

(x · y)1 = x0 y1 + x1 y0 + x2 y3 − x3 y2,

(x · y)2 = x0 y2 + x2 y0 + x3 y1 − x1 y3

(x · y)3 = x0 y3 + x3 y0 + x1 y2 − x2 y1.

In a more compact form we have

x · y = Re{x}Re{y} − 〈V ec{x}, V ec{y}〉R3 + Re{x}V ec{y} + Re{y}V ec{x} + V ec{x} × V ec{y}
where 〈·, ·〉R3 and × denote the standard scalar and cross product in R

3, respectively.
The quaternion x · y, coincides with the result of multiplying �y by the left regular matrix representation of x

given by: ⎛
⎜⎜⎝

x0 −x1 −x2 −x3

x1 x0 −x3 x2

x2 x3 x0 −x1

x3 −x2 x1 x0

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

y0

y1

y2

y3

⎞
⎟⎟⎠ =: Bl(x) · �y.

Quite analogously, considering y · x we get⎛
⎜⎜⎝

x0 −x1 −x2 −x3

x1 x0 x3 −x2

x2 −x3 x0 x1

x3 x2 −x1 x0

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

y0

y1

y2

y3

⎞
⎟⎟⎠ =: Br (x) · �y.

It is easy to see (and a well-known fact) that the action of both left and right regular matrix representations of
x correspond to a rotation in four-dimensional Euclidean space. In fact, the first, generated by Bl , corresponds
to a left-isoclinic rotation while the second, generated by Br , represents a right-isoclinic rotation. We would like
to remark that a general rotation in four dimensions can always be split into a left-isoclinic rotation Bl and a
right-isoclinic rotation Br , i.e. Van Elfrinkhof’s or Cayley’s formula.

We should also mention the very important property of the quaternionic conjugation x · y = y · x and

x · x = x · x = |x |2 ∈ R.

This norm of a quaternion coincides with the usual Euclidean norm in R
4. It follows, that any x ∈ H \ {0} has a

multiplicative inverse

x−1 := x

|x |2 .

Let us also remark that for x, y ∈ H we still have |xy| = |x ||y|. This is a rather unique property of the
quaternions which is not shared by higher-dimensional Clifford algebras.

We consider functions f defined in a domain � ⊂ R
4 (whose boundary, denoted by �, is assumed to be

sufficiently smooth) and taking values in H. Such a function may be written as f = f0 + f1e1 + f2e2 + f3e3 and
each time we ascribe a property such as continuity, differentiability, integrability, and so on, to f it is meant that
all R-components fm have to fulfill this property. This means that notations as f ∈ Ck(�, H), k ∈ N ∪ {0}, or
f ∈ L p(�, H), p ≥ 1, may be understood component-wise or directly. For instance, f ∈ Ck(�, H) means that
either fk ∈ Ck(�, R) or

‖ f ‖Ck :=
k∑

l=0

∑
|ν|=l

sup
x∈�

|∂ν f (x)| < ∞,

with ν = (ν0, . . . , ν3), |ν| = ν0 + . . . + ν3 denoting a multi-index.
With the above norm Ck(�, H) becomes either a right-quaternionic Banach module or a left-quaternionic

Banach module. Analogously, L p(�, H), p ≥ 1, with the norm

‖ f ‖L p :=
(∫

�

| f (x)|pdx

)1/p
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can also be considered as a right-quaternionic Banach module or a left-quaternionic Banach module. Since in this
paper our operators act in general from the left we will work with right-quaternionic Banach modules (unless
explicitly stated otherwise). We remark that all these spaces can also be considered as real-linear Banach spaces.

In the same way we can introduce S as the corresponding Schwartz space of rapidly decaying functions. Its
dual space S ′ is given by the continuous linear functionals is the space of tempered distributions. Again, this can
be either defined component-wise or via the sesquilinear form

( f, g) :=
∫

R4
f (x)g(x) dx,

but the space S′ is again considered as a right-linear quaternionic module. Let us remark that strictly speaking if
we consider S as a right-quaternionic Banach module its algebraic dual S ′ is the space of all left-quaternionic
linear functionals over S, but it can be identified with elements of a right-linear quaternionic module in the above
mentioned way.

For more details we refer to [6], [20] and, in particular, the classic book [2].
Standard notations, which we will use are:

� For a quaternion c we will write the constant function as

c� : x ∈ � −→ c ∈ H,

� B(x, ε) is the ball of the radius ε centered in x ,
� �x,ε := � \ B(x, ε).

Let ψ := {ψ0, ψ1, ψ2, ψ3
} ∈ H

4 be a system of quaternions such that the conditions

ψm · ψ̄n + ψn · ψ̄m = 2
〈

�ψm, �ψn
〉
R4

= 2δn,m, n, m ∈ N3 ∪ {0}, (2.1)

be fulfilled, where δn,m is the Kronecker’s symbol and 〈·, ·〉R4 denotes the scalar product. Observe that 〈�x, �y〉R4 =
Re{x · ȳ} for every x, y ∈ H.

By abuse of notation, �ψ := { �ψ0, �ψ1, �ψ2, �ψ3
}

can be thought of as an orthonormal (in the usual Euclidean
sense) basis in R

4. In this way we obtain what will be referred to as structural set. The following is an elementary
property of this concept.

Proposition 2.1 Let ψ = {ψ0, ψ1, ψ2, ψ3
}

be a structural set. Then,

ψ0 · ψ1 · ψ2 · ψ3 = ±1.

The proof is a direct computation and will be omitted.
It is evident that ψ and ψ̄ := {ψ̄0, ψ̄1, ψ̄2, ψ̄3

}
are structural simultaneously only.

If ϕ,ψ are two structural sets, then the coordinates of �ψn with respect to the basis �ϕ are given by

�ψn =
3∑

r=0

αrn �ϕr = α0n
�ϕ0 + α1n

�ϕ1 + α2n
�ϕ2 + α3n

�ϕ3, n ∈ N3 ∪ {0}. (2.2)

The matrix

Mϕ,ψ :=

⎛
⎜⎜⎝

α00 α01 α02 α03

α10 α11 α12 α13

α20 α21 α22 α23

α30 α31 α32 α33

⎞
⎟⎟⎠ (2.3)

which feature in formulae (2.2) is called the transition matrix from the basis �ϕ to the basis �ψ . Note that

M−1
ϕ,ψ = MT

ϕ,ψ .
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Since the entries of Mϕ,ψ are real we have

〈
�ψn, �ϕm

〉
R4

=
〈

3∑
r=0

αrn �ϕr , �ϕm

〉
R4

=
3∑

r=0

αrn
〈 �ϕr , �ϕm

〉
R4 = αmn, m, n ∈ N3 ∪ {0}. (2.4)

By a well-known geometric reason both left and right multiplication of a structural set ψ by a unitary quaternion
h, defines structural sets also. Let us now introduce the usual definition of equivalent structural sets.

Definition 2.2 Two structural sets ϕ,ψ are said to be left equivalent (resp. right) if there exists h ∈ H, |h| = 1
such that

ψ = hϕ (resp. ψ = ϕh).

This name is shortened if misunderstanding is excluded.

Remark 2.3 In geometric terms the above definition means that there exists a rotation which maps the
orthonormal basis ϕ into the orthonormal basis ψ .

Proposition 2.4 Two different structural sets ϕ,ψ are left and right equivalent simultaneously if and only if
ψ = −ϕ.

P r o o f . Under our assumptions, there exist h, h′ ∈ H with |h| = |h′| = 1 such that

hϕm = ϕmh′, m ∈ N3 ∪ {0}.
This is equivalent to

Bl(h) �ϕm = Br (h′) �ϕm =⇒ [Bl(h) − Br (h′)] �ϕm = 0, m ∈ N3 ∪ {0}.
But since �ϕ = { �ϕ0, �ϕ1, �ϕ2, �ϕ3

}
is an orthonormal basis of R

4 we have

[Bl(h) − Br (h′)] �x = 0 ∀ �x ∈ R
4.

Then, for this to happen, we must have Bl(h) − Br (h′) = 0. Writing h = h0 + h1e1 + h2e2 + h3e3 and h′ =
h′

0 + h′
1e1 + h′

2e2 + h′
3e3 we have⎛

⎜⎜⎝
h0 −h1 −h2 −h3

h1 h0 −h3 h2

h2 h3 h0 −h1

h3 −h2 h1 h0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

h′
0 −h′

1 −h′
2 −h′

3
h′

1 h′
0 h′

3 −h′
2

h′
2 −h′

3 h′
0 h′

1
h′

3 h′
2 −h′

1 h′
0

⎞
⎟⎟⎠ .

We thus get h0 = h′
0, h1 = h′

1 = −h′
1, h2 = h′

2 = −h′
2 y h3 = h′

3 = −h′
3. Then, h1 = h′

1 = 0, h2 = h′
2 = 0 and

h3 = h′
3 = 0. This gives h = h′ ∈ R ⇒ h = h′ = ±1.

Since ψ and ϕ are different we have h = h′ = −1 ⇒ ψ = −ϕ. �
Taking into the account the non-commutativity of H, every structural set ψ generates Cauchy-Riemann

operators (left or right), which are defined in C1(�, H) by the following equalities:

ψ D[ f ] :=
3∑

n=0

ψn · ∂xn [ f ]; Dψ [ f ] :=
3∑

n=0

∂xn [ f ] · ψn, (2.5)

where ∂xn := ∂
∂xn

. Let us remark that since C1(�, H) is a right-quaternionic Banach module we have that ψ D is

a quaternionic linear operator from C1(�, H) into C(�, H) while Dψ is only a real-linear operator.
Let �H[ f ] =∑3

n=0 �R4 [ fn]en , where �R4 =∑3
n=0 ∂2

x2
n
. Then in C2(�, H) the following equalities

ψ D · ψ̄ D = ψ̄ D · ψ D = Dψ · Dψ̄ = Dψ̄ · Dψ = �H (2.6)

hold.
For any structural set ψ , the following formulas establish a direct connection between the left and right

Cauchy-Riemann operators

ψ D[ f ] = Dψ [ f̄ ] and Dψ [ f ] = ψ D[ f̄ ]. (2.7)
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It means that given a formula for the left (or right) Cauchy-Riemann operator, no need to repeat its proof for the
right (or left) case. It is enough to substitute the relation into the given formula.

Let us remark that the standard Cauchy-Riemann operator

D[ f ] =
3∑

n=0

en · ∂xn [ f ]

is invariant under rotations (see, e.g. [3]), i.e.

D[ f ](hx) = h D[ f ](x), h ∈ H,

or with other words if f ∈ ker D then f (h· ) ∈ ker D. We remark that this property it is not preserved in terms of
arbitrary structural sets, for instance, in case of

D̄[ f ] =
3∑

n=0

ēn · ∂xn [ f ]

we have D̄[ f ](hx) = D̄[h f ](x) and, therefore, no preservation of D̄[ f ] = 0 under rotations.
For fixed ψ and � we introduce the set of the so-called ψ-hyperholomorphic functions (left or right respec-

tively), which are given by
ψM(�; H) := ker ψ D = { f ∈ C1(�; H) : ψ D[ f ] = 0�

}
,

Mψ(�; H) := ker Dψ = { f ∈ C1(�; H) : Dψ [ f ] = 0�

}
.

Let us also introduce the notation ψMψ(�, H) for the class of all two-sided ψ-hyperholomorphic functions. Thus
ψMψ(�, H) := ψM(�, H) ∩ Mψ(�, H).

Let us remake that we consider ψM, Mψ , and ψMψ as right-quaternionic Banach modules, although they are also
real linear spaces (from both sides). This has the disvantagem that Dψ acts on them only as a real linear operator,
not a quaternionic linear operator, but in our context that will be good enough since the principal operator under
consideration is ψ D.

Unless otherwise stated we only use left ψ-hyperholomorphic functions, henceforth called ψ-
hyperholomorphic functions. Our results for left ψ-hyperholomorphic functions can be adapted to the right
case with the corresponding modifications, i.e. considering left-quaternionic Banach modules.

Due to (2.6), a ψ-hyperholomorphic functions in � is harmonic in �, in all its components.
The following notation xψ :=∑3

n=0 xn · ψn will also prove useful.
Let us introduce the quaternionic Cauchy kernel

Kψ(x) := ψ D[θ4](x) = 1

2π2|x |4
3∑

n=0

ψ̄n · xn = 1

2π2|x |4
3∑

n=0

xn · ψ̄n =: Dψ [θ4](x), (2.8)

where

θ4(x) := − 1

4π2

1

|x |2 (2.9)

is the fundamental solution of the Laplace operator, i.e. θ4 ∈ S ′ with �Hθ4 = δ in distributional sense, δ being the
Dirac distribution. This means that Kψ represents a fundamental solution to both operators ψ D and Dψ . Since
the Laplace operator as well as ψ D is elliptic we can identify θ4 and Kψ with an infinitely many differentiable
function outside the origin. Therefore, it is easily shown that Kψ is a two-sided ψ-hyperholomorphic in R

4 \ {0}.
One of the most crucial facts of quaternionic analysis is the existence of a quaternionic Stokes formula which can
be written in the form: For f, g ∈ C1(� ∪ �, H)∫

�

g(ξ) · nψ(ξ) · f (ξ) d Sξ =
∫

�

(
Dψ [g](ξ) · f (ξ) + g(ξ) · ψ D[ f ](ξ)

)
dξ, (2.10)

where nψ(ξ) denotes the outward unit normal on � at the point ξ ∈ �, writing it as a quaternion and d Sξ stands
for the surface area element.
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This formula leads immediately to three important consequences, which are widely known and can be found
in many sources, see for instance [6], [10], [11].

Theorem 2.5 (Borel-Pompeiu (Cauchy-Green) formula) Let f ∈ C1(� ∪ �, H). Then∫
�

Kψ(ξ − x) · nψ(ξ) · f (ξ) d Sξ −
∫

�

Kψ(ξ − x) · ψ D[ f ](ξ)dξ =
{

f (x) if x ∈ �,

0 if x ∈ R
4 \ (� ∪ �).

Theorem 2.6 (Cauchy integral formula) Let f ∈ C0(� ∪ �, H) ∩ ψM(�, H). Then∫
�

Kψ(ξ − x) · nψ(ξ) · f (ξ) d Sξ =
{

f (x) if x ∈ �,

0 if x ∈ R
4 \ (� ∪ �). (2.11)

Theorem 2.7 (Cauchy integral theorem) Let f ∈ ψM(� ∪ �, H) and g ∈ Mψ(� ∪ �, H). Then∫
�

g(ξ) · nψ(ξ) · f (ξ) d Sξ = 0. (2.12)

From the above we can see that the quaternionic Cauchy kernel generates several important integrals. Especially,
the following two are important for us:

ψ T [ f ](x) := −
∫

�

Kψ(ξ − x) · f (ξ) dξ, x ∈ R
4,

ϕ,ψ K [ f ](x) :=
∫

�

Kϕ(ξ − x) · nψ(ξ) · f (ξ) d Sξ , x /∈ �,

where ϕ,ψ are two structural sets.
While the first is a generalization of the usual Teodorescu transform the second represents an operator related

to ψ and ϕ. It is clear that when ϕ = ψ , the “exotic” operator ϕ,ψ K [ f ] reduces to the usual Cauchy transform (in
the ψ setting)

ψ K [ f ](x) :=
∫

�

Kψ(ξ − x) · nψ(ξ) · f (ξ) d Sξ .

The integral ϕ,ψ K [ f ] has the following important properties, similar to those of ψ K [ f ]:

� ϕ,ψ K [ f ] ∈ ϕM(R4 \ �, H),
� ϕ,ψ K [ f ] ∈ C∞(R4 \ �, H).

We can now derive an essential integral formula, to be called generalized Borel-Pompeiu formula, which
expresses a very profound relation between ϕ D, ψ T and ϕ,ψ K .

Theorem 2.8 (Generalized Borel-Pompeiu formula) Let f ∈ C1(� ∪ �, H). Then:∫
�

Kϕ̄(ξ − x) · nψ̄(ξ) · f (ξ) d Sξ −
∫

�

Kϕ̄(ξ − x) · ψ̄ D[ f ](ξ) dξ = ϕ,ψ�[ f ](x), x /∈ �, (2.13)

where

ϕ,ψ� := ϕ Dψ T .

Remark 2.9 The operator ϕ,ψ�, called quaternionic �-operator, goes back as far as [8].
Using the above notations we can write the generalized Borel-Pompeiu formula in a shorter way as:

ϕ̄,ψ̄ K [ f ](x) + ϕ̄T ψ̄ D[ f ](x) = ϕ,ψ�[ f ](x), x /∈ �.

P r o o f . Let x ∈ �. Using the Stokes formula (2.10) in �x,ε , for the structural set ψ̄ , and replacing g(ξ) by
θ4(ξ − x) we have the equality∫

�

θ4(ξ − x) · nψ̄(ξ) · f (ξ) d Sξ −
∫

∂ B(x,ε)
θ4(ξ − x) · nψ̄(ξ) · f (ξ) d Sξ
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=
∫

�x,ε

Dψ̄

ξ [θ4(ξ − x)] · f (ξ) dξ +
∫

�x,ε

θ4(ξ − x) · ψ̄ D[ f ](ξ) dξ

=
∫

�x,ε

Kψ(ξ − x) · f (ξ) dξ +
∫

�x,ε

θ4(ξ − x) · ψ̄ D[ f ](ξ) dξ. (2.14)

Further, for every ξ ∈ ∂ B(x, ε) we have

∣∣θ4(ξ − x) · nψ̄(ξ) · f (ξ)
∣∣ = | f (ξ)|

4π2ε2
.

By hypothesis f is a continuous function in the compact set � ∪ � and then, there exists M > 0 such that
| f (ξ)| < M , ∀ ξ ∈ � ∪ �. Consequently,∣∣∣∣

∫
∂ B(x,ε)

θ4(ξ − x) · nψ̄(ξ) · f (ξ) d Sξ

∣∣∣∣ < M

4π2ε2

∫
∂ B(x,ε)

d Sξ .

It is easily seen that the right-hand side of the above inequality tends to zero as ε → 0. Thus

lim
ε→0

∫
∂ B(x,ε)

θ4(ξ − x) · nψ̄(ξ) · f (ξ) d Sξ = 0, (2.15)

−ψ T [ f ](x) =
∫

�

Kψ(ξ − x) · f (ξ) dξ := lim
ε→0

∫
�x,ε

Kψ(ξ − x) · f (ξ) dξ, (2.16)

and ∫
�

θ4(ξ − x) · ψ̄ D[ f ](ξ) dξ := lim
ε→0

∫
�x,ε

θ4(ξ − x) · ψ̄ D[ f ](ξ) dξ. (2.17)

Letting ε → 0 in (2.14) and using (2.15), (2.16) and (2.17) we see that

ψ T [ f ](x) =
∫

�

θ4(ξ − x) · ψ̄ D[ f ](ξ) dξ −
∫

�

θ4(ξ − x) · nψ̄(ξ) · f (ξ) d Sξ .

Applying the operator ϕ D in both side of the above equality we obtain:

ϕ Dψ T [ f ](x) =
∫

�

ϕ Dx [θ4(ξ − x)] · ψ̄ D[ f ](ξ) dξ −
∫

�

ϕ Dx [θ4(ξ − x)] · nψ̄(ξ) · f (ξ) d Sξ

=
∫

�

Kϕ̄(ξ − x) · nψ̄(ξ) · f (ξ) d Sξ −
∫

�

Kϕ̄(ξ − x) · ψ̄ D[ f ](ξ) dξ,

and (2.13) is proved.
The proof for the case x ∈ R

4 \ (� ∪ �), is similar to the previous one. First, we use again formula (2.10) but
now in � and then the task is only to apply the operator ϕ D in both side of the resulting equality. �

Corollary 2.10 Let f ∈ ψ̄M(�, H) ∩ C0(� ∪ �, H). Then ϕ,ψ�[ f ] ∈ ϕ̄M(�, H) and∫
�

Kϕ̄(ξ − x) · nψ̄(ξ) · f (ξ) d Sξ = ϕ,ψ�[ f ](x), x /∈ �. (2.18)

3 Holomorphic maps and classes of hyperholomorphy

In order to deal with the classical theory of holomorphic C-valued functions of two complex variables, we
will identify the space C

2 with the set H by means of the mapping that associates the pair (z1, z2) := (x0 +
x1e1, x2 + x3e1) with the quaternion x = x0 + x1e1 + (x2 + x3e1)e2. Then a quaternionic function f : � → H

can be expressed as f = u + ve2, where u, v are C-valued functions defined on �. We will refer to the functions
u, v as the complex components of f .
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Let us consider the following spaces of holomorphic maps:

Hol(�, C) := {w ∈ C1(�, C) : ∂z̄1w = ∂z̄2w = 0 on �
}
,

where ∂z̄1 , ∂z̄2 are the usual complex differential operators. More generally, we can consider

Hol(�, C
2) := {w = (w1, w2) : w1, w2 ∈ Hol(�, C)}.

We are interested in finding conditions on ψ for the inclusion

Hol(�, C
2) ⊂ ψM(�, H) (3.1)

to be true. It is shown in [12], [16], [19] that (3.1) is true if and only if the structural set ψ is left equivalent to

ψθ = {1, e1, e1ee1θ · e2, ee1θ · e2
}
,

for 0 ≤ θ < 2π .

Remark 3.1 If f : � → H has u : � → C and v : � → C as complex components then the ψ-
hyperholomorphicity of f can be interpreted as the following system of equations

ψθ D[ f ] = 0 ⇔
{
∂z̄1 u − e1ee1θ · ∂z2 v̄ = 0,

e1e−e1θ · ∂z̄2 u − ∂z1 v̄ = 0.
(3.2)

The system above may be interpreted as a generalization of that study by the distinguished Italian mathematician
Gianfranco Cimmino (12 Marzo 1908–30 Mayo 1989), which can be recovered from (3.2) if we take θ = π

2 . In
[1] an in-depth study of Cimmino system using quaternionic analysis has been presented.

As the basic for the development of our theory, we need to point out that the class of all equivalent structural
sets defines the same hyperholomorphicity, then we should in fact further restrict our analysis to consider only
structural sets not to be equivalent from the same side of hyperholomorphicity we are assumed.

First of all, a proof of the fact that equivalence of two structural sets ψ and ϕ yields

ψM(�, H) = ϕM(�, H) (3.3)

is obtained in [18]. Moreover, the following result offers the necessity of the condition and then provides a criterion
on two structural sets under which (3.3) holds.

Proposition 3.2 Let ϕ,ψ be two arbitrary structural sets in H
4. If (3.3) holds, then ϕ,ψ are left equivalent.

P r o o f . Assume that ψM(�, H) = ϕM(�, H), ψ = {ψ0, ψ1, ψ2, ψ3
}

and ϕ = {ϕ0, ϕ1, ϕ2, ϕ3
}
. Let

h0, h1, h2, h3 ∈ H such that ϕm = hm · ψm , m ∈ N3 ∪ {0}, hence |hm | = 1. Direct calculation yields that

fm(x) = ψm−1xm−1 − ψm xm, m ∈ N3,

are left ψ-hyperholomorphic functions. We thus get fm ∈ ϕM(�, H), m ∈ N3. Then

0 = ϕ D[ fm ] =
3∑

n=0

ϕn∂xn [ fm ]

= hm−1 · ψm−1 · ψm−1 − hm · ψm · ψm = hm−1 − hm, m ∈ N3.

This clearly forces h0 = h1 = h2 = h3 =: h, which complete the proof. �

We summarize the above reasoning in the following theorem.

Theorem 3.3 ψM(�, H) = ϕM(�, H) if and only if ϕ,ψ are left equivalent.

Remark. Note that we have used, in the proof of Proposition 3.2, only the fact that ψM(�, H) ⊂ ϕM(�, H).
We have thus proved

Corollary 3.4 Let ϕ,ψ be two structural sets. Then ψM(�, H) ⊂ ϕM(�, H) if and only if

ψM(�, H) = ϕM(�, H).
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The following result asserts that the quaternionic constants are the only ψ-hyperholomorphic functions for all
structural set ψ .

Theorem 3.5⋂
ψ∈E

ψM(�, H) = { f = c� : c ∈ H},

where E := {ψ ∈ H
4 : ψ is a structural set}.

P r o o f . Consider the standard structural set

ψst := {1, e1, e2, e3},
as well as the associated ones {1,−e1, e2, e3}, {1, e1,−e2, e3} and {1, e1, e2,−e3}. This choice involves no loss
of generality.

Let f ∈⋂ψ∈E
ψM(�, H), then we have⎧⎪⎪⎨

⎪⎪⎩
∂x0 f + e1∂x1 f + e2∂x2 f + e3∂x3 f = 0,

∂x0 f − e1∂x1 f + e2∂x2 f + e3∂x3 f = 0,

∂x0 f + e1∂x1 f − e2∂x2 f + e3∂x3 f = 0,

∂x0 f + e1∂x1 f + e2∂x2 f − e3∂x3 f = 0.

(3.4)

Note that to solve (3.4) is equivalent to solving the four real systems with a non-zero determinant and
consequently

∂x0 f = e1∂x1 f = e2∂x2 f = e3∂x3 f = 0� =⇒ ∂x0 f = ∂x1 f = ∂x2 f = ∂x3 f = 0�.

Since f ∈ C1(�, H) it follows the differentiability on � of all the real components of f and hence f = c�,
where c ∈ H is a constant. �

Remark 3.6 The most successful notion extending holomorphy to the quaternionic setting is the one of
regularity in the sense of Cauchy-Fueter, which is established directly by the ψst -hyperholomophy. The best
modern reference here, in their general form, is [20].

Observe that

ψst /∈ Eθ := {ψθ : θ ∈ [0, 2π)}.
Our next theorem, which is given in [12] although without all the details, is an analogue of the latter if we

restrict the class E to the special case Eθ . It ensures that the only ψθ -hyperholomorphic functions for all θ ∈ [0, 2π)
are those whose complex components are holomorphic.

Theorem 3.7⋂
ψθ∈Eθ

ψθ M(�, H) = Hol
(
�, C

2
)
.

P r o o f . On account of the fact that

Hol
(
�, C

2
) ⊂ ψθ M(�, H), for all θ ∈ [0, 2π),

we shall have established the theorem if we prove the following proposition. �
Proposition 3.8 Let θ, ϑ ∈ [0, 2π), θ �= ϑ . Then

ψθ M(�, H) ∩ ψϑ M(�, H) = Hol
(
�, C

2
)
.

P r o o f . Assume that f = u + ve2 ∈ ψθ M(�, H) ∩ ψϑ M(�, H). From (3.2) it follows that{
∂z̄1 u − e1ee1θ · ∂z2 v̄ = 0,

e1e−e1θ · ∂z̄2 u − ∂z1 v̄ = 0,
and

{
∂z̄1 u − e1ee1ϑ · ∂z2 v̄ = 0,

e1e−e1ϑ · ∂z̄2 u − ∂z1 v̄ = 0.

Therefore

e1ee1θ · ∂z2 v̄ = e1ee1ϑ · ∂z2 v̄
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and
e1e−e1θ · ∂z̄2 u = e1e−e1ϑ · ∂z̄2 u.

Since ee1θ �= ee1ϑ we conclude that ∂z2 v̄ = ∂z̄2 u = 0, hence that ∂z̄1 u = ∂z1 v̄ = 0. Then,

u, v ∈ Hol(�, C) ⇒ f ∈ Hol
(
�, C

2) ,
and the proof is complete. �

Now we state and proof a remainder result.

Proposition 3.9 Let ϕ,ψ be two non-equivalent structural sets, then there exists a non-constant function
f : � → H such that f ∈ ψM(�, H) ∩ ϕM(�, H). Thus

ψM(�, H) ∩ ϕM(�, H) �= { f = c� : c ∈ H}.
P r o o f . Writing ϕm = hm · ψm , m ∈ N3 ∪ {0}, give hm �= hn for at least one pair m, n ∈ N3 ∪ {0}. Without

restriction of generality we can assume h0 �= h1, then directly we may see that the function

f (x) = ψ0
{[

(h1 − h0)−1(h2 − h0) − 1
]
ψ2 + [(h1 − h0)−1(h3 − h0) − 1

]
ψ3
}

x0

−ψ1(h1 − h0)−1 [(h2 − h0)ψ2 + (h3 − h0)ψ3] x1 + x2 + x3

is both ϕ- and ψ-hyperholomorphic. Combining this example with Teorema 3.3 the assertion follows. �

4 Notion of (ϕ,ψ)-hyperholomorphic function. Matrix approach -
rotational case

The above preliminaries now allow for defining the notion of (ϕ,ψ)-hyperholomorphy.

Definition 4.1 A function f : � → H, is said to be (ϕ,ψ)-hyperholomorphic in � if f ∈ C1(�; H) and
moreover satisfies the equations

ϕ D[ f ] = 0 and ψ D[ f ] = 0.

In order to develop the crucial facts of this proper theory, a matrix approach will be followed, leading to the
concept of left or right (ϕ,ψ)-hyperholomorphic functions, introduced as circulant 2 × 2 matrix functions, which
are left or right null solutions of a 2 × 2 circulant matrix Cauchy-Riemann operator, having those ϕ D and ψ D as
its entries.

Let CM2×2
H

be the ring of circulant (2 × 2)-matrices over H.

CM2×2
H

=
{(

x y
y x

)
: x, y ∈ H

}
.

It is easily checked that for A, B ∈ CM2×2
H

, A + C and AB both belong to CM2×2
H

. Moreover, defining for

A =
(

x y
y x

)
∈ CM2×2

H

its conjugate Ā in the classical way by

A =
(

x̄ ȳ
ȳ x̄

)
,

then clearly A = A; Aλ = λ̄A for λ ∈ H; A + B = A + B and AB = BA. In other words, CM2×2
H

is a right linear
quaternionic space which is also a real algebra with involution.

Notice that H may be embedded into CM2×2
H

by identifying x ∈ H with(
x 0
0 x

)
∈ CM2×2

H
.
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On CM2×2
H

let us define the non-negative function

‖A‖ = max{|x |, |y|}, A =
(

x y
y x

)
.

It can be easily seen that this function fulfills the axioms of a norm. Together with this norm CM2×2
H

becomes a
right-linear quaternionic normed space, in fact a right-linear quaternionic Banach module.

Spaces of functions defined over a domain � ⊂ H with values in CM2×2
H

will be introduced in the usual way
via its entries. In particular, Ck

(
�, CM2×2

H

)
is a right-linear quaternionic space equipped with the norm

‖F‖Ck =
k∑

l=0

∑
|ν|=l

sup
x∈�

‖∂νF(x)‖.

Let ϕ,ψ ID and IDϕ,ψ be the circulant (left and right) (2 × 2)-matrix Cauchy-Riemann operators given by

ϕ,ψ ID =
(

ϕ D ψ D
ψ D ϕ D

)
and IDϕ,ψ =

(
Dϕ Dψ

Dψ Dϕ

)
. (4.1)

Extending Definition 4.1 onto the CM2×2
H

-valued continuously differentiable functions we arrive to what will be
called here (ϕ,ψ)-hyperholomorphy.

Definition 4.2 A CM2×2
H

-valued continuously differentiable function

F =
(

f1 f2

f2 f1

)

in � ⊂ R
4 is said to be left (resp. right) (ϕ,ψ)-hyperholomorphic in � if

ϕ,ψ ID[F] = 0
(
resp. IDϕ,ψ [F] = 0

)
in �.

Denote by

�,�M
(
�, CM2×2

H

)
:= ker ϕ,ψ ID(�) = {F ∈ C1

(
�, CM2×2

H

)
: ϕ,ψ ID[F] = 0 in �

}
,

M�,�
(
�, CM2×2

H

)
:= ker IDϕ,ψ(�) = {F ∈ C1

(
�, CM2×2

H

)
: IDϕ,ψ [F] = 0 in �

}
,

the set of left (resp. right) (ϕ,ψ)-hyperholomorphic functions in �. As before, these spaces will be considered as
right-linear quaternionic normed spaces.

This again makes ϕ,ψ ID a right-linear quaternionic operator while IDϕ,ψ is only a real-linear operator.
Invoking (4.1) we have

ϕ,ψ ID[F] = IDϕ̄,ψ̄ [F] and IDϕ,ψ [F] = ϕ̄,ψ̄ ID[F]. (4.2)

Denote �,�M�,�
(
�, CM2×2

H

)
:= �,�M

(
�, CM2×2

H

) ∩ M�,�
(
�, CM2×2

H

)
.

Remark 4.3

� The (ϕ,ψ)–hyperholomorphy of the matrix function F does not imply that its entry functions f1 and f2

are both ϕ- and ψ-hyperholomorphic. However, choosing f1 = f and f2 = 0, the (ϕ,ψ)-hyperholomorphy

of the corresponding diagonal matrix, denoted as F0 =
(

f 0
0 f

)
, is equivalent to the f being both ϕ- and

ψ-hyperholomorphic.
� Direct calculation yields

F ∈ ker ϕ,ψ ID ⇐⇒ F ∈ ker ψ,ϕID,

for F ∈ C1
(
�, CM2×2

H

)
.

� Notions of continuity (in particular Hölder continuity), differentiability of F are introduced by means
of the corresponding notions for its entries. In particular, the notations C0,β

(
�, CM2×2

H

)
, 0 < β ≤ 1 and

C p
(
�, CM2×2

H

)
, p ∈ N ∪ {0} will be used.
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Defining the matrix Laplacian by

� =
(

�H 0
0 �H

)
we may call the matrix function F harmonic in the domain � if and only if it satisfies the equation �F = 0 in �.
Actually the (ϕ,ψ)-hyperholomorphic functions are harmonic for every structural sets ϕ, ψ with the additional
conditions

ϕ Dψ̄ D + ψ Dϕ̄ D = 0, ϕ̄ Dψ D + ψ̄ Dϕ D = 0, (4.3)

or, equivalently,

〈 �ϕn, �ψm〉R4 + 〈 �ϕm, �ψn〉R4 = Re
{
ϕn · ψm + ϕm · ψn

} = 0, n, m ∈ N3 ∪ {0}. (4.4)

It is easy to see that given a structural set ϕ, then a ψ ones which satisfy the relations (4.4) always exists. So
the class of pair of structural sets connected by the relations (4.4) is wide enough.

Theorem 4.4 On C2
(
�, CM2×2

H

)
the equalities

ϕ,ψ ID · ϕ̄,ψ̄ ID = ϕ̄,ψ̄ ID · ϕ,ψ ID = IDϕ,ψ · IDϕ̄,ψ̄ = IDϕ̄,ψ̄ · IDϕ,ψ = 2� (4.5)

hold if and only if the structural sets ϕ, ψ satisfy the relations (4.4).

P r o o f . Note that

ϕ,ψ ID · ϕ̄,ψ̄ ID =
(

ϕ D ψ D
ψ D ϕ D

)
·
(

ϕ̄ D ψ̄ D
ψ̄ D ϕ̄ D

)
=
(

2� ϕ Dψ̄ D + ψ Dϕ̄ D
ψ Dϕ̄ D + ϕ Dψ̄ D 2�

)
.

Then,

ϕ,ψ ID · ϕ̄,ψ̄ ID = 2� ⇐⇒ ϕ Dψ̄ D + ψ Dϕ̄ D = 0 ⇐⇒ Re
{

ϕ Dψ̄ D
}

= 0. (4.6)

Similarly, one can see that

ϕ̄,ψ̄ ID · ϕ,ψ ID = 2� ⇐⇒ ϕ̄ Dψ D + ψ̄ Dϕ D = 0 ⇐⇒ Re
{

ϕ Dψ̄ D
}

= 0.

Thus, the relations (4.3) completely determines (4.5).
Observe that:

Re
{

ϕ Dψ̄ D
}

= Re

{
3∑

n=0

ϕn · ψn · ∂2
x2

n
+

∑
0≤n<m≤3

(ϕn · ψm + ϕm · ψn) · ∂2
xn xm

}

=
3∑

n=0

Re{ϕn · ψn} · ∂2
x2

n
+

∑
0≤n<m≤3

Re{ϕn · ψm + ϕm · ψn} · ∂2
xn xm

.

Because the equality in (4.6) means that ϕ Dψ̄ D is a pure vectorial operator, then for all f ∈ C2(�, R) we have

0 = Re
{

ϕ Dψ̄ D[ f ]
}

=
3∑

n=0

Re{ϕn · ψn} · ∂2
x2

n
[ f ] +

∑
0≤n<m≤3

Re{ϕn · ψm + ϕm · ψn} · ∂2
xn xm

[ f ].

Considering in particular the real-valued functions

fn,m(x) = xn xm ∈ C2 (�, H) , n, m ∈ N3 ∪ {0},
we have

0 = Re
{

ϕ Dψ̄ D[ fn,m ]
}

=
⎧⎨
⎩

Re
{
ϕn · ψn

}
, n = m,

Re
{
ϕn · ψm + ϕm · ψn

}
, n �= m.
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Then, (4.5) gives (4.4) and the necessity follows. The sufficiency of the conditions is easy to check.
We have proved that (4.4) are necessary and sufficient conditions for

ϕ,ψ ID · ϕ̄,ψ̄ ID = ϕ̄,ψ̄ ID · ϕ,ψ ID = 2�.

In the same manner we can see that

IDϕ,ψ · IDϕ̄,ψ̄ = 2� ⇐⇒ Dϕ Dψ̄ + Dψ Dϕ̄ = 0 ⇐⇒ Re
{

Dϕ Dψ̄
}

= 0,

and

IDϕ̄,ψ̄ · IDϕ,ψ = 2� ⇐⇒ Dϕ̄ Dψ + Dψ̄ Dϕ = 0 ⇐⇒ Re
{

Dϕ Dψ̄
}

= 0.

But

Re
{

Dϕ Dψ̄
}

=
3∑

n=0

Re
{
ψn · ϕn

} · ∂2
x2

n
+

∑
0≤n<m≤3

Re
{
ψm · ϕn + ψn · ϕm

} · ∂2
xn xm

=
3∑

n=0

Re
{
ϕn · ψn

} · ∂2
x2

n
+

∑
0≤n<m≤3

Re
{
ϕn · ψm + ϕm · ψn

} · ∂2
xn xm

.

The rest of the proof runs as before. �
Denote by � ∈ S ′ the fundamental solution of the matrix Laplace operator � given by

� :=
(

θ4 0
0 θ4

)
,

i.e., �[�] =
(

δ 0
0 δ

)
in distributional sense, where δ denotes the Dirac delta distribution.

This leads again to the Cauchy kernel Kϕ,ψ via

Kϕ,ψ :=
(

Kϕ Kψ

Kψ Kϕ

)

=
(

ϕ̄ D ψ̄ D
ψ̄ D ϕ̄ D

)
·
(

θ4 0
0 θ4

)

=
(

ϕ̄ D[θ4] ψ̄ D[θ4]
ψ̄ D[θ4] ϕ̄ D[θ4]

)
= ϕ̄,ψ̄ ID[�]

as the fundamental solution of ϕ,ψ ID, i.e.

ϕ,ψ IDKϕ,ψ = ϕ,ψ ID ϕ̄,ψ̄ ID[�] = 2� ·
(

θ4 0
0 θ4

)
=
(

�H[θ4] 0
0 �H[θ4]

)
=
(

δ 0
0 δ

)

in distributional sense. Furthermore, since the involved operators are elliptic we can identify Kϕ,ψ with a function
which belongs to the kernel of both ϕ,ψ D and Dϕ,ψ in R

4 \ {0}, i.e. outside the origin.

5 On the admissible structural sets

As we have shown above it seems to be natural to consider structural sets with the relation (4.4), but firstly they
are assumed to be non-equivalent. Then it is necessary to look more closely at this class of admissible structural
sets, which makes our new theory allowable. To describe such class is the goal of this section.

We begin by introducing the notion of compatible structural sets.

Definition 5.1 Two structural sets ϕ,ψ satisfying the relation (4.4) are said to be compatible.

Proposition 5.2 [Compatibility of two equivalent structural sets] Two equivalent structural sets ϕ,ψ , either
ϕ = hψ or ϕ = ψh, h ∈ H, |h| = 1, are compatible if and only if Re{h} = 0.
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P r o o f . Let us assume that ϕ,ψ are left equivalent. Applying (2.1), we can assert that ϕ,ψ are compatible
if and only if

0 = Re
{
ϕn · ψm + ϕm · ψn

}
= Re

{
h(ψn · ψm + ψm · ψn)

} = 2δn,m Re{h} =
{

2Re{h} if n = m,

0 if n �= m,

and the proposition follows. The same proof works for the right equivalence case. �
Proposition 5.3 [Matrix characterization of compatibility] Two structural sets ϕ,ψ are compatible if and only

if the transition matrix Mϕ,ψ is either of the form

M1
ϕ,ψ :=

⎛
⎜⎜⎝

0 −a −b −c
a 0 −c b
b c 0 −a
c −b a 0

⎞
⎟⎟⎠ or M2

ϕ,ψ :=

⎛
⎜⎜⎝

0 −a −b −c
a 0 c −b
b −c 0 a
c b −a 0

⎞
⎟⎟⎠ , (5.1)

where a, b, c ∈ R such that a2 + b2 + c2 = 11.

P r o o f . Combining (2.4) and (4.4), the structural sets ϕ,ψ are compatible if and only if

αmn + αnm = 0, m, n ∈ N3 ∪ {0}. (5.2)

That is,

Mϕ,ψ =

⎛
⎜⎜⎝

0 −α10 −α20 −α30

α10 0 −α21 −α31

α20 α21 0 −α32

α30 α31 α32 0

⎞
⎟⎟⎠ . (5.3)

With the notations a := α10, b := α20, c := α30, c := α21, b := α31 and a := α32, the compatibility of ϕ,ψ is
described by⎛

⎜⎜⎝
0 −a −b −c
a 0 −c −b

b c 0 −a

c b a 0

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

0 a b c
−a 0 c b

−b −c 0 a

−c −b −a 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

what means that

a2 + b2 + c2 = 1, (5.4)

a2 + c2 + b2 = 1, (5.5)

b2 + c2 + a2 = 1, (5.6)

c2 + b2 + a2 = 1, (5.7)

bc + cb = 0, (5.8)

bc + cb = 0, (5.9)

−ac + ca = 0, (5.10)

ac − ca = 0, (5.11)

ab + ba = 0, (5.12)

1Note that the determinant of both matrix appeared in (5.1) is equal to (a2 + b2 + c2)2 = 1.
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ab + ba = 0. (5.13)

Combining (5.4) and (5.5) gives

b2 + c2 = c2 + b2, (5.14)

and from (5.6) and (5.7)

b2 + c2 = c2 + b2. (5.15)

Then substracting, both hand-side of (5.14) and (5.15) yields

c2 − c2 = c2 − c2 =⇒ c2 = c2. (5.16)

Substituting (5.16) into (5.14) we get

b2 = b2. (5.17)

Moreover, by (5.16), (5.4) and (5.6) we have

a2 = a2. (5.18)

It follows directly from (5.4) that at least one of the numbers a, b or c is non-zero. Without loss of generality we
can assume a �= 0, then two cases appear:

� If a = a, then (5.12) ⇒ b = −b and from (5.10) we get c = c. It suffices to prove that

(a, b, c, c, b, a) = (a, b, c, c,−b, a) (5.19)

is a solution of (5.4)–(5.13).
� If a = −a, then (5.12) ⇒ b = b and from (5.10) we have c = −c. It remains to prove that

(a, b, c, c, b, a) = (a, b, c,−c, b,−a) (5.20)

is a solution of (5.4)–(5.13),

and this is precisely the assertion of the proposition. �

Remark 5.4 We have thus proved that for every compatible structural sets ϕ,ψ the following equalities hold:

Mψ,ϕ = MT
ϕ,ψ = −Mϕ,ψ .

Consequently, if Mϕ,ψ is of the form M1
ϕ,ψ (resp. M2

ϕ,ψ ) then Mψ,ϕ is also of the form M1
ϕ,ψ (resp. M2

ϕ,ψ ). It makes
sense to introduce the following definition.

Definition 5.5 Call two structural sets ϕ,ψ compatible of first type (resp. second type) if they are compatible
and the transition matrix Mϕ,ψ is of the form M1

ϕ,ψ

(
resp. M2

ϕ,ψ

)
.

Let us mention two important consequences of the Proposition 5.3, which may be proved following a direct
computations.

Proposition 5.6 Let ϕ, ψ be two structural sets. Then, the following conditions are equivalent:

(i) ψ0 · ψ1 · ψ2 · ψ3 = −1.
(ii) ϕ,ψ are compatible of first type only if they are also left equivalent.

(iii) ϕ,ψ are compatible of secound type only if they are also right equivalent.

Proposition 5.7 Let ϕ, ψ be two structural sets. Then, the following conditions are equivalent:

(i) ψ0 · ψ1 · ψ2 · ψ3 = 1.
(ii) ϕ,ψ are compatible of first type only if they are also right equivalent.

(iii) ϕ,ψ are compatible of secound type only if they are also left equivalent.
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Remark 5.8 These propositions insinuate that both left and right equivalence with a structural set ψ keep
unalterable the product ψ0 · ψ1 · ψ2 · ψ3. Indeed, for example if ϕ,ψ are left equivalent we have

ϕ0 · ϕ1 · ϕ2 · ϕ3 = hψ0 · ψ1h̄ · hψ2 · ψ3h̄ = h(ψ0 · ψ1 · ψ2 · ψ3)h̄ = ψ0 · ψ1 · ψ2 · ψ3.

Likewise, if ϕ = ψh gives

ϕ0 · ϕ1 · ϕ2 · ϕ3 = ψ0h · h̄ψ1 · ψ2h · h̄ψ3 = ψ0 · ψ1 · ψ2 · ψ3.

From what has been already disposed, and making use of Proposition 5.2, we set the following

Theorem 5.9 Two structural sets ϕ,ψ are compatible if and only if there exists h ∈ H with |h| = 1 and
Re{h} = 0, such that either ϕ = hψ or ϕ = ψh.

We conclude this section with the explicit description of the desired conditions for a pair of structural sets to
be used mainly in our work. To this aim, we define the concept of admissible pair of structural sets.

Definition 5.10 Two structural sets ϕ,ψ are called admissible if ϕ = ψh, h ∈ H, |h| = 1, such that Re{h} = 0.

6 Integral formulas for (ϕ,ψ)-hyperholomorphic functions

This section focusses on integral representation formulas for (ϕ,ψ)-hyperholomorphic functions. The only tools
needed are Stokes formula and the fundamental solution to the Cauchy-Riemann operator ϕ,ψ ID, for every
admissible structural sets ϕ, ψ .

With the notations

Nϕ,ψ :=
(

nϕ nψ

nψ nϕ

)
and dSξ :=

(
d Sξ 0

0 d Sξ

)
we have

Theorem 6.1 (Stokes formula) Let F, G ∈ C1
(
� ∪ �, CM2×2

H

)
. Then∫

�

G(ξ) · Nϕ,ψ(ξ) · F(ξ) dSξ =
∫

�

[
IDϕ,ψ [G](ξ) · F(ξ) + G(ξ) · ϕ,ψ ID[F](ξ)

]
dξ.

P r o o f . Let

F =
(

f1 f2

f2 f1

)
, G =

(
g1 g2

g2 g1

)
,

where f1, f2, g1, g2 ∈ C1(� ∪ �, H). Hence,

G · Nϕ,ψ · F =
⎛
⎝(g1nϕ f1 + g2nψ f1) + (g1nψ f2 + g2nϕ f2) (g1nϕ f2 + g2nψ f2) + (g1nψ f1 + g2nϕ f1)

(g2nϕ f1 + g1nψ f1) + (g2nψ f2 + g1nϕ f2) (g2nϕ f2 + g1nψ f2) + (g2nψ f1 + g1nϕ f1)

⎞
⎠ .

Moreover,

IDϕ,ψ [G] · F =
⎛
⎝(Dϕ [g1] f1 + Dψ [g2] f1) + (Dϕ [g2] f2 + Dψ [g1] f2) (Dϕ [g1] f2 + Dψ [g2] f2) + (Dϕ [g2] f1 + Dψ [g1] f1)

(Dψ [g1] f1 + Dϕ [g2] f1) + (Dψ [g2] f2 + Dϕ [g1] f2) (Dψ [g1] f2 + Dϕ [g2] f2) + (Dψ [g2] f1 + Dϕ [g1] f1)

⎞
⎠ ,

and

G · ϕ,ψ ID[F] =
⎛
⎝(g1

ϕ D[ f1] + g1
ψ D[ f2]) + (g2

ψ D[ f1] + g2
ϕ D[ f2]) (g1

ϕ D[ f2] + g1
ψ D[ f1]) + (g2

ψ D[ f2] + g2
ϕ D[ f1])

(g2
ϕ D[ f1] + g2

ψ D[ f2]) + (g1
ψ D[ f1] + g1

ϕ D[ f2]) (g2
ϕ D[ f2] + g2

ψ D[ f1]) + (g1
ψ D[ f2] + g1

ϕ D[ f1])

⎞
⎠ .

Thus, it suffices to show that in every entries of the matrices G · Nϕ,ψ · F and IDϕ,ψ [G] · F + G · ϕ,ψ ID[F] we can
use the quaternionic Stokes formula (2.10) and the proof is complete. �

The following version of the Cauchy integral theorem follows
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Theorem 6.2 (Cauchy integral theorem) Let F ∈ �,�M
(
�, CM2×2

H

)
and G ∈ M�,�

(
�, CM2×2

H

)
. Then∫

�

G(ξ) · Nϕ,ψ(ξ) · F(ξ) dSξ = 0.

Introducing the fundamental solution Kϕ,ψ gives the Borel-Pompeiu formula.

Theorem 6.3 (Borel-Pompeiu formula) Let F ∈ C1
(
� ∪ �, CM2×2

H

)
. Then∫

�

Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ −
∫

�

Kϕ,ψ(ξ − x) · ϕ,ψ ID[F](ξ) dξ

=
{

2F(x) if x ∈ �,

0 if x ∈ R
4 \ (� ∪ �).

P r o o f . We first assume x ∈ R
4 \ (� ∪ �). Then

Kϕ,ψ(ξ − x) ∈ M�,�
(
�, CM2×2

H

) ∩ C0
(
� ∪ �, CM2×2

H

)
.

Applying Theorem 6.1, yields∫
�

Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ

=
∫

�

[(
IDϕ,ψKϕ,ψ(ξ − x)

) · F(ξ) + Kϕ,ψ(ξ − x) · ϕ,ψ ID[F](ξ)
]

dξ

⇒
∫

�

Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ −
∫

�

Kϕ,ψ(ξ − x) · ϕ,ψ ID[F](ξ) dξ = 0.

Suppose now that x ∈ �. For ε small, let B(x, ε) ⊂ �. Applying Theorem 6.1 to the region �x,ε , we see that∫
∂�x,ε

Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ

=
∫

�x,ε

[(
IDϕ,ψKϕ,ψ(ξ − x)

) · F(ξ) + Kϕ,ψ(ξ − x) · ϕ,ψ ID[F](ξ)
]

dξ

=
∫

�x,ε

Kϕ,ψ(ξ − x) · ϕ,ψ ID[F](ξ) dξ. (6.1)

Letting ε → 0, we get

lim
ε→0

∫
�x,ε

Kϕ,ψ(ξ − x) · ϕ,ψ ID[F](ξ) dξ =
∫

�

Kϕ,ψ(ξ − x) · ϕ,ψ ID[F](ξ) dξ. (6.2)

On the other hand, we can write∫
∂�x,ε

Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ

=
∫

�

Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ −
∫

∂ B(x,ε)
Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ .

The task is now to calculate the last integral in the above expression. For all ξ ∈ ∂ B(x, ε)

Kϕ,ψ(ξ − x) = 1

2π2ε4
Gϕ,ψ(ξ − x),

where

Gϕ,ψ(ξ − x) :=
(

(ξ − x)ϕ̄ (ξ − x)ψ̄

(ξ − x)ψ̄ (ξ − x)ϕ̄

)
.
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Hence, ∫
∂ B(x,ε)

Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ

= 1

2π2ε4

∫
∂ B(x,ε)

Gϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ .

Since Gϕ,ψ(ξ − x) ∈ C∞ (
R

4, CM2×2
H

)
, repeated application of Stokes formula enables us to write

∫
∂ B(x,ε)

Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ

= 1

2π2ε4

[∫
B(x,ε)

(
IDϕ,ψGϕ,ψ(ξ − x)

) · F(ξ) dξ +
∫

B(x,ε)
Gϕ,ψ(ξ − x) · ϕ,ψ ID[F](ξ) dξ

]
.

Taking F ∈ C1
(
�, CM2×2

H

)⇒ ϕ,ψ ID[F] ∈ C0
(
�, CM2×2

H

)
, then there exists M > 0 such that

∥∥ϕ,ψ ID[F](ξ)
∥∥ ≤ M, ∀ξ ∈ B(x, ε).

Note that ∥∥∥∥ 1

2π2ε4

∫
B(x,ε)

Gϕ,ψ(ξ − x) · ϕ,ψ ID[F](ξ) dξ

∥∥∥∥ ≤ M

2π2ε4
sup

ξ∈B(x,ε)

∥∥Gϕ,ψ(ξ − x)
∥∥ π2

2
ε4

= M

4
sup

ξ∈B(x,ε)

∥∥Gϕ,ψ(ξ − x)
∥∥ .

Since Gϕ,ψ is a continuous function in R
4 we get supξ∈B(x,ε)

∥∥Gϕ,ψ(ξ − x)
∥∥→ 0 as ε → 0.

It is important that M still satisfies the above inequality as ε → 0, then we conclude that,

lim
ε→0

1

2π2ε4

∫
B(x,ε)

Gϕ,ψ(ξ − x) · ϕ,ψ ID[F](ξ) dξ = 0.

We continue this fashion to claim

lim
ε→0

1

2π2ε4

∫
B(x,ε)

(
IDϕ,ψGϕ,ψ(ξ − x)

) · F(ξ) dξ = 2F(x). (6.3)

Indeed,

IDϕ,ψGϕ,ψ(ξ − x) =
(

Dϕ Dψ

Dψ Dϕ

)
·
(

(ξ − x)ϕ̄ (ξ − x)ψ̄

(ξ − x)ψ̄ (ξ − x)ϕ̄

)

=
(

Dϕ
ξ [(ξ − x)ϕ̄ ] + Dψ

ξ

[
(ξ − x)ψ̄

]
Dϕ

ξ

[
(ξ − x)ψ̄

]+ Dψ

ξ [(ξ − x)ϕ̄ ]

Dψ

ξ [(ξ − x)ϕ̄ ] + Dϕ
ξ

[
(ξ − x)ψ̄

]
Dψ

ξ

[
(ξ − x)ψ̄

]+ Dϕ
ξ [(ξ − x)ϕ̄ ]

)
.

But (ξ − x)ψ̄ =∑3
n=0(ξn − xn)ψn , then ∂ξn

[
(ξ − x)ψ̄

] = ψn , n ∈ N3 ∪ {0}, we have

Dψ

ξ

[
(ξ − x)ψ̄

] =
3∑

n=0

∂ξn

[
(ξ − x)ψ̄

] · ψn =
3∑

n=0

ψn · ψn = 4.
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Likewise, Dϕ
ξ [(ξ − x)ϕ̄ ] = 4. On the other hand,

Dϕ
ξ

[
(ξ − x)ψ̄

]+ Dψ

ξ [(ξ − x)ϕ̄ ] =
3∑

n=0

[
∂ξn

[
(ξ − x)ψ̄

] · ϕn + ∂ξn [(ξ − x)ϕ̄ ] · ψn
]

=
3∑

n=0

(
ψn · ϕn + ϕn · ψn

) =
3∑

n=0

Re{ψn · ϕn} = 0.

Therefore,

IDϕ,ψGϕ,ψ(ξ − x) =
(

8 0
0 8

)
,

and then, ∥∥∥∥ 1

2π2ε4

∫
B(x,ε)

(
IDϕ,ψGϕ,ψ(ξ − x)

) · F(ξ) dξ − 2F(x)
∥∥∥∥

=
∥∥∥∥ 4

π2ε4

∫
B(x,ε)

F(ξ) dξ − 2F(x)
∥∥∥∥

=
∥∥∥∥ 4

π2ε4

∫
B(x,ε)

F(ξ) dξ − 4

π2ε4

∫
B(x,ε)

F(x) dξ

∥∥∥∥
= 4

π2ε4

∥∥∥∥
∫

B(x,ε)
[F(ξ) − F(x)] dξ

∥∥∥∥ ≤ 2 · ∥∥F − F(x)
∥∥

B(x,ε) ,

where ∥∥F − F(x)
∥∥

B(x,ε) := sup
ξ∈B(x,ε)

∥∥F(ξ) − F(x)
∥∥ .

But
∥∥F − F(x)

∥∥
B(x,ε) → 0 when ε → 0 since F is continuous at x ∈ �.

Therefore, (6.3) is true and then

lim
ε→0

∫
∂�x,ε

Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ

=
∫

�

Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ − lim
ε→0

∫
∂ B(x,ε)

Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ

=
∫

�

Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ − 2F(x). (6.4)

Substituting (6.2) and (6.4) into (6.1) we conclude the proof. �

The Borel-Pompeiu formula immediately implies the following analogue of the Cauchy integral formula.

Theorem 6.4 (Cauchy integral formula) Let F ∈ C0
(
� ∪ �, CM2×2

H

) ∩ �,�M
(
�, CM2×2

H

)
. Then∫

�

Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ =
{

2F(x) if x ∈ �,

0 if x ∈ R
4 \ (� ∪ �).

The Cauchy integral formula leads to the notion of the Cauchy type integral∫
�

Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ , (6.5)

which, for F ∈ C0,β
(
�, CM2×2

H

)
, 0 < β ≤ 1, represents a (ϕ,ψ)-hyperholomorphic function in R

4 \ �. Intro-
ducing now the temporary notation �+ = � and �− = R

4 \ (� ∪ �), the boundary behaviour on � of (6.5), also
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known as the Plemelj-Sokhotzki formulae:

lim
x→x0,x∈�±,x0∈�

∫
�

Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ

=
(

±F(x0) +
∫

�

Kϕ,ψ(ξ − x0) · Nϕ,ψ(ξ) · F(ξ) dSξ

)
are true. As usual, the Cauchy singular integral∫

�

Kϕ,ψ(ξ − x0) · Nϕ,ψ(ξ) · F(ξ) dSξ , x0 ∈ �.

exists in the sense of the principal value and defines a linear bounded operator on C0,β
(
�, CM2×2

H

)
.

Theorem 6.5 Let F ∈ C0,β
(
�, CM2×2

H

)
, 0 < β ≤ 1. Then we have

� In order that F being a boundary value of a function belonging to �,�M
(
�, CM2×2

H

)
, it is necessary and

sufficient that

F(x0) =
∫

�

Kϕ,ψ(ξ − x0) · Nϕ,ψ(ξ) · F(ξ) dSξ , x0 ∈ �.

� In order that F being a boundary value of a function belonging to �,�M
(
R

4 \ (� ∪ �), CM2×2
H

)
which

vanishes at infinity, it is necessary and sufficient that

−F(x0) =
∫

�

Kϕ,ψ(ξ − x0) · Nϕ,ψ(ξ) · F(ξ) dSξ , x0 ∈ �.

The last theorem may be obtained by standard proof (see, c.f. [18], [19], [21]). We just remark that

Kϕnψ + Kψnϕ = −hKψnψ + hKϕnϕ

under our condition ϕ = ψh.

7 Matrix approach of reflection type

In the Section 4 we introduced the notion of (ϕ,ψ)-hyperholomorphic function in terms of a Cauchy-Riemann
operator based on 2 × 2 circulant matrices. Since in this case the factorization of the Laplacian in terms of the
operator ϕ,ψ ID is equivalent to the condition ϕ = hψ or ϕ = ψh with Re{h} = 0 we called it the rotational case.
But there are examples like ϕ = ψ or ϕ = ψ (the latter including the case where functions are at the same time
belonging to the kernel of D and of D, i.e. functions which are sometimes called hyperholomorphic constants
in the literature) for which the condition is not fulfilled, i.e. there is no quaternion h with Re{h} = 0, such that
ϕ = hϕ or ϕ = hϕ.

We now outline shortly how to treat these cases which we call the reflection case. The fundamental point is
that circulant matrices are not the only subalgebra of two-dimensional quaternionic matrices. This allows us to
overcome the above problem by modify our operator using other embeddings into two-dimensional matrices with
quaternionic entries.

The principal problem hereby is to find embeddings which allow the corresponding second-order operator to
be scalar, which in the previous section lead us to condition (4.4). Having in mind the above mentioned examples
one can consider the matrix operators

ϕ,ψ ID =
(

ϕ D ψ D
−ψ D ϕ D

)
and ϕ,ψ D =

(
Dϕ Dψ

0 Dϕ

)
. (7.1)

In the first case we have an embedding into orthogonal matrices while in the second we have the upper-triangular
matrices. Naturally, 2-matrices of the form

A =
(

x y
−y x

)
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generate a ring over H, denoted by JM2×2
H

. In fact this ring is isomorphic to the algebra of complex quaternions.
This can easily be observed from the fact that

A = x I + y J, x, y ∈ H,

with

I =
(

1 0
0 1

)
and J =

(
0 1

−1 0

)
.

Hereby, J 2 = −I . In the second case we have the algebra J̃M
2×2
H

generated by

I =
(

1 0
0 1

)
and J̃ =

(
0 1
0 0

)
.

Hereby, J̃ 2 = 0. This algebra corresponds to the algebra of upper triangular matrices with quaternionic scalars
and is isomorphic to the algebra of parabolic numbers with quaternionic scalars.

In the first case using the usual conjugation (transposition of the matrix plus conjugation of the elements)

A =
(

x y
−y x

)
=
(

x −y
y x

)

we have Aλ = λ A, λ ∈ H as well as AB = B A. It is easy to check that in this case we have

ϕ,ψ IDϕ,ψ ID =
(

ϕ D ψ D
−ψ D ϕ D

)(
ϕ D −ψ D
ψ D ϕ D

)

=
(

2�H −ϕ Dψ D + ψ Dϕ D
−ψ Dϕ D + ϕ Dψ D 2�H

)

from which we obtain the condition

−ψ Dϕ D + ϕ Dψ D = 0 (7.2)

for a factorization of the Laplacian. This is equivalent to

ϕ Dψ D − ϕ Dψ D = 0

or, with other words,

V ec
{

ϕ Dψ D
}

= 0.

The last formula means that ϕ Dψ D is a scalar operator. In the second case we have

ϕ,ψ IDϕ,−ψ ID =
(

ϕ D ψ D
0 ϕ D

)(
ϕ D −ψ D
0 ϕ D

)
=
(

ϕ Dϕ D −ϕ Dψ D + ψ Dϕ D
0 ϕ Dϕ D

)

which leads to the condition

−ψ Dϕ D + ϕ Dψ D = 0. (7.3)

Let us remark that while in the first case we have ϕ = ψ as an example in the second case ψ = ϕ is a possible
choice.

As in the proof of Theorem 6.3, the Stokes’ formula gives∫
�

[
( f1 I + f2 J )(Dϕ I + Dψ J )

]
(g1 I + g2 J ) + ( f1 I + f2 J )

[
(ϕ DI + ψ D J )(g1 I + g2 J )

]
dξ

=
∫

�

( f1 I + f2 J )(nϕ I + nψ J )(g1 I + g2 J )d Sξ
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as well as ∫
�

[(
f1 I + f2 J̃

)(
Dϕ I + Dψ J̃

)] (
g1 I + g2 J̃

)+ ( f1 I + f2 J̃
) [(

ϕ DI + ψ D J̃
)
(g1 I + g2 J )

]
dξ

=
∫

�

(
f1 I + f2 J̃

)(
nϕ I + nψ J̃

)(
g1 I + g2 J̃

)
d Sξ

and we get the corresponding Borel-Pompeiu and the Cauchy formulae for the reflection case.
By abuse of notation, we use the same letters Nϕ,ψ andKϕ,ψ for the associated normal vector and Cauchy kernel

matrices in the reflection case. That means Nϕ,ψ(ξ) = (nϕ(ξ)I + nψ(ξ)J ) and Kϕ,ψ(ξ) = (Kϕ(ξ)I − Kψ(ξ)J )
in the first case and Nϕ,ψ(ξ) = (nϕ(ξ)I + nψ(ξ) J̃

)
and Kϕ,ψ(ξ) = (Kϕ(ξ)I − K ∗

ψ(ξ) J̃
)

with

K ∗
ψ = x0ϕ̄

0ψ0 + xϕψ0

|x |4 − 4x2
0 xϕψ0

|x |6 + x0
∑3

k=1 ϕkψk

|x |4 − 4x0xϕ

∑3
k=1 ψk xk

|x |6
in the second case.

In the case of JM2×2
H

we get the following theorems.

Theorem 7.1 Let F ∈ C1
(
�, JM2×2

H

) ∩ C0
(
� ∪ �, JM2×2

H

)
. Then∫

�

Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ −
∫

�

Kϕ,ψ(ξ − x) · ϕ,ψ ID[F](ξ) dξ

=
{

2F(x) if x ∈ �,

0 if x ∈ R
4 \ (� ∪ �).

The proof is just an extension of the scalar Borel-Pompeiu and Cauchy formulae for ψ-hyperholomorphic
functions. Since our condition (7.2) implies that ϕ Dψ D is a scalar operator we immediately get(

ϕ DI + ψ D J
) ∫

�

Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ = 0, x /∈ �,

for all functions F ∈ C0,β
(
�, JM2×2

H

)
, 0 < β ≤ 1, since ϕ DKψ = ψ DKϕ .

This represents the corresponding Cauchy type integral∫
�

Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ , (7.4)

which is bounded if F ∈ C0,β
(
�, JM2×2

H

)
, 0 < β ≤ 1. For the kernel we have Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) = (Kϕ(ξ −

x)nϕ(ξ) − Kψ(ξ − x)nψ(ξ))I + (Kϕ(ξ − x)nψ(ξ) + Kψ(ξ − x)nϕ(ξ))J . Using the classic Plemelj-Sokhotzki
formulae and the fact that V ec{xϕxψ } = 0 we get the matrix Plemelj-Sokhotzki formulae:

lim
x→x0,x∈�±,x0∈�

∫
�

Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ

=
(

±F(x0)J +
∫

�

Kϕ,ψ(ξ − x0) · Nϕ,ψ(ξ) · F(ξ) dSξ

)
.

This allows us to obtain by standard proofs the following theorem.

Theorem 7.2 Let F ∈ C0,β
(
�, JM2×2

H

)
, 0 < β ≤ 1. Then we have

� In order that F being a boundary value of a function belonging to �,�M
(
�, JM2×2

H

)
, it is necessary and

sufficient that

F(x0) = 1

2
(I + J )

∫
�

Kϕ,ψ(ξ − x0) · Nϕ,ψ(ξ) · F(ξ) dSξ , x0 ∈ �.

� In order that F being a boundary value of a function belonging to �,�M
(
R

4 \ (� ∪ �), JM2×2
H

)
which

vanishes at infinity, it is necessary and sufficient that

F(x0) = 1

2
(I − J )

∫
�

Kϕ,ψ(ξ − x0) · Nϕ,ψ(ξ) · F(ξ) dSξ , x0 ∈ �.
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Using the same arguments and taking into account condition (7.3) one can easily prove the corresponding

theorem for the case of J̃M
2×2
H

.

Theorem 7.3 Let F ∈ C1
(
�, J̃M

2×2
H

)
∩ C0

(
� ∪ �, J̃M

2×2
H

)
. Then∫

�

Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ −
∫

�

Kϕ,ψ(ξ − x) · ϕ,ψ ID[F](ξ) dξ

=
{

F(x) if x ∈ �,

0 if x ∈ R
4 \ (� ∪ �).

Now, keeping in mind condition (7.3) we have

(
ϕ DI + ψ D J̃

) ∫
�

Kϕ,ψ(ξ − x) · Nϕ,ψ(ξ) · F(ξ) dSξ = 0, x /∈ �.

Remark 7.4 We would like to point out that CM2×2
H

, JM2×2
H

, and J̃M
2×2
H

are the only interesting two-
dimensional algebraic embeddings into two-by-two quaternionic matrices such that the resulting matrices form
an algebra over the quaternions with quaternionic dimension 2 generated by I and J with I being the identity
element. From a true linear algebra point of view the only two-dimensional real-linear subspaces (or either left-or
right-linear quaternionic modules) which contain the identity and are closed under multiplication are the subspaces
given by the diagonal matrices

(
x 0
0 y

)

as well as by the matrices of the type

(
x y
λy x

)

with fixed λ, as well as the subspace given by their transposes (to include the case of λ = 0). From the point of
view of the authors the only interesting matrices (in the sense that they are isomorphic to an embedding into a
higher dimensional Clifford-type algebra) are the cases where λ = 0, 1,−1.

This means that we add a basis element J which commutes with quaternions (seen as scalar) and its square is
either ±I or 0. The corresponding construction for the case of real numbers can be found in [9], but also in many
other places. There it leads to the three choices of complex, hyperbolic, and parabolic numbers. Here, it can also
seen as a “complexification” of the quaternions, although a true complexified algebra (complex quaternions or
biquaternions) are only obtained with J 2 = −I .

8 Concluding remark

We have laid the foundations of a function theory centered around the notion of (ϕ,ψ)-hyperholomorphic
functions. Basic results such as Borel-Pompeiu and Cauchy integral representation formulae were established
using the fundamental solution of an associated matrix Cauchy Riemann operator, explicitly obtained through the
usage of three alternative matrix approaches. The present work offers a building block for a deep study of this
function theory, which the authors will continue in forthcoming papers.
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[14] K. Nôno, On the quaternion linearization of Laplacian �, Bull. Fukuoka Univ. Ed. III 35, 5–10 (1986).
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