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PERTURBATION OF NORMAL QUATERNIONIC OPERATORS

PAULA CEREJEIRAS, FABRIZIO COLOMBO, UWE KÄHLER, AND IRENE SABADINI

Abstract. The theory of quaternionic operators has applications in several
different fields, such as quantum mechanics, fractional evolution problems, Q1
and quaternionic Schur analysis, just to name a few. The main difference
between complex and quaternionic operator theory is based on the definition
of a spectrum. In fact, in quaternionic operator theory the classical notion
of a resolvent operator and the one of a spectrum need to be replaced by
the two S-resolvent operators and the S-spectrum. This is a consequence of Q2
the noncommutativity of the quaternionic setting. Indeed, the S-spectrum of
a quaternionic linear operator T is given by the noninvertibility of a second
order operator. This presents new challenges which make our approach to
perturbation theory of quaternionic operators different from the classical case.
In this paper we study the problem of perturbation of a quaternionic normal
operator in a Hilbert space by making use of the concepts of S-spectrum
and of slice hyperholomorphicity of the S-resolvent operators. For this new
setting we prove results on the perturbation of quaternionic normal operators
by operators belonging to a Schatten class and give conditions which guarantee
the existence of a nontrivial hyperinvariant subspace of a quaternionic linear
operator.

1. Introduction

The spectral theory for quaternionic linear operators and, as a particular case,
for vector operators, has been an open problem for a long time because the notion
of a spectrum of a quaternionic linear operator was unclear. Indeed, the notions of
left or right spectrum of a quaternionic linear operator are not suitable to develop
a full theory. This situation changed a decade ago when the new notion of an
S-spectrum was introduced; see the book [16].

There are several reasons to study quaternionic spectral theory, and below we
mention some of them. First of all there is interest coming from the study of Q4
partial differential equations (PDEs) (or more generally of pseudo-differential op-
erators) over noncommutative structures. Much attention has been given to the
case of nilpotent Lie groups, which has been studied since the 1970s (see [22, 38]).
This is due to the fact that the corresponding Baker–Campbell–Hausdorff for-
mula is then finite (that is to say, the higher order commutators are 0 after a
finite order), which allows for an easier theory. Even more challenging are PDEs
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and pseudo-differential operators over other structures like quaternions, where the
Baker–Campbell–Hausdorff formula exhibits only a periodic nature (higher order
commutators are equal to lower order commutators after a finite order), are being
considered since these cases are obviously more complicated. The case of quater-
nions is even more important since they are closely linked to symmetries in the
phase space and, therefore, the corresponding PDEs also have close connections
with both time-frequency analysis and quantum mechanics. In a celebrated pa-
per [9] Birkhoff and von Neumann showed that quantum mechanics can be written
only in the real, complex, or quaternionic setting. This fact stimulated a number
of works, among which we mention [1, 20, 21, 29]. Recently (see [4, 7]), the spectral
theorem based on the S-spectrum for quaternionic normal operators was proved.
This provides the grounds to study quantum mechanics in the quaternionic set-
ting. Recently, the equivalence of complex and quaternionic quantum mechanics
has been treated in [24].

Another question which was recently solved was to find a quaternionic analogue
of the Riesz–Dunford functional calculus of the complex setting. This calculus
can be naturally extended to quaternionic operators using the theory of slice hy-
perholomorphic functions, the S-spectrum, and the S-resolvent operators, which
are crucial objects to properly defining the quaternionic functional calculus, also
called S-functional calculus; see the books [16, 17] and [3, 23]. This calculus allows
one to study the theory of quaternionic evolution operators, which was developed
in [2,6,14]. We also point out that the S-resolvent operators naturally appear in the
realization of quaternionic Schur functions, which has allowed a rapid development
of Schur analysis in the slice hyperholomorphic setting; see the book [5].

More recently, it turned out that quaternionic spectral theory is also a useful tool
to study new classes of fractional evolution problems. In fact, using the quaternionic
version of the H∞ functional calculus, one can define fractional powers of vector
operators and obtain a new approach to fractional diffusion processes; see [8,11,12]
for more details.

The above facts provide sound motivations to consider the perturbation theory
of quaternionic linear operators, whose investigation is alive even in the classic
complex, e.g., in [33–35].

To understand the additional difficulties compared to the classical case which
arise in a noncommutative setting, we now discuss some of the main differences
between classical spectral theory and the spectral theory based on the S-spectrum.
Let us begin by recalling that, given a bounded complex linear operator A acting
on a complex Banach space X, its spectrum is defined by

σ(A) = {λ ∈ C : λI −A is not invertible}.
For λ in the resolvent set ρ(A) := C \ σ(A) the resolvent operator (λI −A)−1 is a
holomorphic function with values in the Banach space B(X) of all bounded linear
operators on X endowed with the natural norm. Now let us consider a bounded
linear operator defined on a two sided quaternionic Banach space V ; given a quater-
nionic operator T , one has to specify on which side the linearity is considered. In
this paper we consider right linearity, but, for the sake of simplicity, in this intro-
duction we will simply write “quaternionic linear operator” without specifying the
type of linearity where it is not needed. The operator sI − T acts on a vector
v ∈ V as sv − Tv, while Is − T acts on a vector v ∈ V as vs − Tv. The first
operator is right linear over H, while the second is not. We note also that the first
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operator, though linear, does not seem to have any physical meaning, while the
second gives the notion of right eigenvalues, which is widely used in physics and in
linear algebra over noncommutative structures. Moreover, the inverse of both the
operators above is not associated with any notion of hyperholomorphy. For these
reasons, in the quaternionic setting the appropriate notion of spectrum is the one
of the S-spectrum, which is defined by a second order operator. Specifically, the
S-spectrum of a quaternionic linear operator T is defined as

σS(T ) = {s ∈ H : T 2 − 2Re(s)T + |s|2I is not invertible},
where H denotes the algebra of quaternions, Re(s) is the real part of the quaternion
s, and |s|2 is the square of its Euclidean norm. It is important to note that the
point S-spectrum coincides with the set of right eigenvalues (see [15,25]); thus the
operator Qs(T ) := (T 2 − 2Re(s)T + |s|2I)−1, called the pseudo-resolvent operator,
is the linear operator associated with the notion of right eigenvalues. The operator
(T 2−2Re(s)T+|s|2I)−1 is defined on the S-resolvent set ρS(T ) := H\σS(T ), and it
is a continuous function with values in the space B(V ) of all bounded quaternionic
linear operators, but it is not hyperholomorphic with respect to any known notion
of hyperholomorphicity. To define the analogue of the resolvent operator (λI−A)−1

with some analyticity properties, denote by s the conjugate of the quaternion s.
We define the S-resolvent operators as

S−1
L (s, T ) := −Qs(T )(T − sI)

and
S−1
R (s, T ) := −(T − sI)Qs(T ).

These operators defined on ρS(T ) are right- and left-slice hyperholomorphic operator-
valued functions, respectively, where the notions of left- and right-slice hyperholo-
morphic functions will be defined in the sequel. Thus in the quaternionic setting
there are two resolvent operators, S−1

L (s, T ) and S−1
R (s, T ), and, moreover, the

S-resolvent equation involves both of the S-resolvent operators; see Section 2 for
more details. Using the notion of slice hyperholomorphic functions we can define
the analogue of the Riesz–Dunford functional calculus for quaternionic operators,
and in a natural way we can define the Riesz-projectors; see [3].

We also want to point out that there exist other approaches to functional calculi
in higher dimensions. In a series of papers—see, for example, [30–32,37]—McIntosh
and coauthors introduced and studied the functional calculus for n-tuples of oper-
ators using the more classical theory of monogenic functions. In this theory one
introduces a different notion of spectrum based on the Cauchy integral formula
for monogenic functions. This theory, however, lacks the appropriate tools for the
study of perturbations of normal operators such as the lack of a spectral theorem.

The literature contains a great amount of works on invariant subspaces of op-
erators in a Hilbert space; without claiming completeness, we mention as exam-
ples the works of Livsic [36], Brodskii [10], Sz.-Nagy et al. [41], and Gohberg and
Krein [27, 28] and the references therein. In this paper we consider the problem
of the perturbation of normal operators in a Hilbert space and the existence of
(hyper)invariant subspaces for quaternionic normal operators. The classic results
in the complex case can be found in the book [39] by Radjavi and Rosenthal. The
knowledge of invariant subspaces gives information on the structure of operators;
however, they do not always exist: there exist bounded linear operators on a com-
plex inner-product space without a nontrivial invariant subspace. We are going to
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study compact perturbations of normal operators on a quaternionic Hilbert space
whose spectrum lies on a smooth Jordan arc for specific two-dimensional subspaces,
later called slices. From these perturbation results one can deduce, under suitable Q5
assumptions, the existence of invariant subspaces. We also discuss the existence of
hyperinvariant subspaces, which are related to the structure of the so-called com-
mutant of T , namely the set of operators commuting with T . We work in a class of
vector-valued slice hyperholomorphic functions that have a slice hyperholomorphic
continuation across arcs contained in the S-spectrum of the operators intersected
with a complex plane. As we shall see, this is not reductive, provided the symmetry
properties on the S-spectrum.

It is necessary to point out that the noncommutative setting of quaternions
involves several challenges from the technical side. If one looks at the classic proofs
in [39], one can easily see that they are heavily dependent on the commutativity
of the underlying complex field. For example, in the complex case, given a linear
operator A, any linear operator B commuting with A also commutes with the
resolvent (λI−A)−1. In the quaternionic case, a right linear operator B commuting
with a given right linear operator T does not commute, in general, with the S-
resolvent operators because it does not commute with the quaternionic variable. It
does commute with the pseudo resolvent since it has only real coefficients, but as we
have discussed, this operator does not have any analyticity property. Additionally,
in the quaternionic setting one has to face the fact that the algebraic inverse of the
(nonlinear) operator T − Is, the operator which gives the spectrum (the pseudo
resolvent Qs(T )) and the two S-resolvent operators correspond to four different
operators. As a matter of fact, the algebraic inverse plays no role. The pseudo
resolvent and the two S-resolvent operators are all required for the proofs of the
various results. Furthermore, the two S-resolvent operators cannot simply be used
in an arbitrary order. This also allows us to demonstrate the properties which are
really required in the quaternionic setting.

The plan of the paper is as follows. In Section 2 we introduce the splitting of the
S-spectrum in an approximate point S-spectrum and compression S-spectrum, and
we show some related results; moreover, we give a quick overview of the S-functional
calculus. Section 3 contains some results related with quaternionic normal opera-
tors. In Section 4 we show some results on the Schatten class of quaternionic normal
operators. In Section 5 we state and prove our main results on the perturbation of
normal operators and some consequences. More specifically, we prove results which
guarantee the existence of a nontrivial (hyper)invariant subspace of a quaternionic
linear operator T , and we discuss some consequences.

2. Preliminary results on quaternionic bounded operators

This section contains, besides some preliminaries, new results on the properties
of the splitting of the S-spectrum of a quaternionic linear operator of T in terms of
the approximate point S-spectrum ΠS(T ) and the compression S-spectrum ΓS(T )
of T . Finally, we recall the S-functional calculus.

We denote byH the algebra of quaternions. The imaginary units inH are denoted
by e1, e2, e3 , they satisfy the relations e21 = e22 = e23 = −1, e1e2 = −e2e1 = e3 ,
e2e3 = −e3 e2 = e1, e3 e1 = −e1e3 = e2, and an element in H is of the form
q = x0 + e1x1 + e2x2 + e3 x3 for xℓ ∈ R . The real part, the imaginary part, and the
modulus of a quaternion are defined as Re(q) = x0, Im(q) = e1x1 + e2x2 + e3 x3 ,
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and |q|2 = x2
0 + x2

1 + x2
2 + x2

3 , respectively. The conjugate of the quaternion q =
x0 + e1x1 + e2x2 + e3 x3 is defined by

q̄ = Re(q)− Im(q) = x0 − e1x1 − e2x2 − e3 x3 .

Let us denote by S the unit sphere of purely imaginary S quaternions, i.e.,

S = {q = e1x1 + e2x2 + e3 x3 such that x2
1 + x2

2 + x2
3 = 1}.

Given a nonreal quaternion q = x0 +Im(q) = x0+ J|Im(q)|, J = Im(q)/|Im(q)| ∈ S,
we can associate with it the two-dimensional sphere defined by

[q] = {x0 + J|Im(q)| : J ∈ S}.

We also need the notion of slice hyperholomorphicity, which will replace the
notion of analyticity in the functional calculus. Let us start with the notion of
axially symmetric domains.

Definition 2.1. Let U ⊆ H be an open set. We say that U is axially symmetric
if, for all u+ Jv ∈ U , the whole 2-sphere [u+ Jv] is contained in U .

The above notion allows us to introduce the notion of slice hyperholomorphicity
for functions defined over axially symmetric domains.

Definition 2.2 (Slice hyperholomorphic functions). Let U ⊆ H be an axially
symmetric open set, and let U ⊆ R × R be such that q = u + Jv ∈ U for all
(u, v) ∈ U . We say that a function on U of the form

f(q) = α(u, v) + Jβ(u, v)

is left-slice hyperholomorphic if α, β are H-valued differentiable functions such that

α(u, v) = α(u,−v), β(u, v) = −β(u,−v) for all (u, v) ∈ U ,

and if α and β satisfy the Cauchy–Riemann system

∂uα− ∂vβ = 0, ∂vα+ ∂uβ = 0.

When f is of the form

f(q) = α(u, v) + β(u, v)J
with the above properties for α and β, we say that f is a right-slice hyperholomor-
phic function on U . The set of left- (resp., right-) slice hyperholomorphic functions
on U will be denoted by SHL(U) (resp., SHR(U)). Slice hyperholomorphic func-
tions on U such that α(u, v) and β(u, v) are real valued are called intrinsic, and the
corresponding set is denoted by N (U).

Definition 2.3. Let U ⊆ H be an axially symmetric open set, and let f, g : U → H
be left-slice hyperholomorphic functions. Let f(x + Jy) = α(x, y) + Jβ(x, y), and
let g(x+ Jy) = γ(x, y) + Jδ(x, y). Then we define a ⋆l-product as

(2.1) (f ⋆l g)(x+ Jy) := (αγ − βδ)(x, y) + J(αδ + βγ)(x, y).

It can be easily verified that, by its construction, the function f ⋆l g is left-slice
hyperholomorphic. A similar multiplication can be defined in the case of right-slice
hyperholomorphic functions, and it is denoted by ⋆r, according to the position of
J. When it is not needed to distinguish the two cases, we will simply write ⋆.
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Remark 2.4. The above notions of slice hyperholomorphicity and ⋆-multiplication
can be extended to operator-valued functions; see [5]. We can also define a notion
of the inverse of a function with respect to the ⋆-product (see, e.g., [5]), but since
we do not need it in its full generality, we introduce it just for the case we will
need, namely the ⋆-inverse of the function f(q) = q−s, which is both left and right
hyperholomorphic in q. We have

(q − s)−⋆l = (q2 − 2Re(s)q + |s|2)−1(q − s̄),

(q − s)−⋆r = (q − s̄)(q2 − 2Re(s)q + |s|2)−1.

We note that g(s) = q−s is left- and right-slice hyperholomorphic in s, and we can
construct its left and right ⋆-inverses in the variable s. These inverses are related to
the inverses f−⋆l , f−⋆r computed in q as follows since (see, e.g., [16]) the following
identities hold:

f−⋆l(q) = (q2 − 2Re(s)q + |s|2)−1(q − s̄)

= −(s− q̄)(s2 − 2Re(q)s+ |q|2)−1 = −g−⋆r(s),

f−⋆r (q) = (q − s̄)(q2 − 2Re(s)q + |s|2)−1

= −(s2 − 2Re(q)s+ |q|2)−1(s− q̄) = −g−⋆l(s).

Slice hyperholomorphic functions are those functions for which the S-functional
calculus can be defined, as we will see in the sequel.

Now let V be a right vector space on H. In the sequel we will consider right
linear operators on V , and we will denote by B(V ) the quaternionic Banach space
of all right linear bounded operators endowed with the natural norm. Furthermore,
a vector space V which is a quaternionic Hilbert space will be denoted by H.

Since the standard generalization of the notion of spectrum as well as the question
of solvability of the equation Tv − vs = 0 leads to discussions of invertibility of
a nonlinear operator, we are going to use the following notion of the S-spectrum,
which reduces the question to the invertibility of a second order scalar (with respect
to the underlying algebra) operator.

Definition 2.5. Let T ∈ B(V ). We define the S-spectrum of T as

σS(T ) = {s ∈ H : T 2 − 2Re(s)T + |s|2I is not invertible},
and we define the S-resolvent set of T as

ρS(T ) = H \ σS(T ).

Hereby, the second order operator

Qs(T ) := (T 2 − 2Re(s)T + |s|2I)−1, s ∈ ρS(T ),

will be called the pseudo-resolvent operator.
While we have the natural notion of the pseudo-resolvent Qs(T ), this does not

give a good replacement of the classic resolvent operator (A− λI)−1 alone since it
originates from a second order operator. In fact, for the actual study of the operator
T we also need the notion of the S-resolvent operator which can be defined in a
left- and a right-form. As will be clear in the sequel, only the interplay of all three
operators will provide an adequate replacement of the classic resolvent operator.

Definition 2.6. Let T ∈ B(V ). For s ∈ ρS(T ) we define the left S-resolvent
operator as

S−1
L (s, T ) = −(T 2 − 2Re(s)T + |s|2I)−1(T − s I),
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and the right S-resolvent operator as

S−1
R (s, T ) = −(T − sI)(T 2 − 2Re(s)T + |s|2I)−1.

It is easy to show that the S-resolvent operators are slice hyperholomorphic
operator-valued functions.

Theorem 2.7 ([5]). Let T ∈ B(V ).

(i) The left S-resolvent operator S−1
L (s, T ) is a B(V )-valued right-slice hyper-

holomorphic function of the variable s on ρS(T ).
(ii) The right S-resolvent operator S−1

R (s, T ) is a B(V )-valued left-slice hyper-
holomorphic function of the variable s on ρS(T ).

Furthermore, they also give rise to a resolvent equation involving both resolvent
operators. Hereby, one has to be careful that due to the noncommutativity the
resolvent operators can be used only in a fixed order.

Theorem 2.8 ([3]). Let T ∈ B(V ), and let s, p ∈ ρS(T ). Then the equalities

S−1
R (s, T )S−1

L (p, T ) =
[(
S−1
R (s, T )− S−1

L (p, T )
)
p− s

(
S−1
R (s, T )− S−1

L (p, T )
)]

· (p2 − 2Re(s)p+ |s|2)−1

= (s2 − 2Re[p]s+ |p|2)−1

·
[(
S−1
L (p, T )− S−1

R (s, T )
)
p− s

(
S−1
L (p, T )− S−1

R (s, T )
)]

hold true.

As in the complex case, it is possible to define some splitting of the S-spectrum,
and to this end we recall the following well-known theorem, whose proof is the same
as in the complex case.

Theorem 2.9. A quaternionic linear operator A that satisfies the two conditions

(i) there exists K > 0 such that ∥Av∥ ≥ K∥v∥ for v ∈ D(A) (A is bounded
from below), and

(ii) the range of A is dense

is invertible.

The following definition for the splitting of the spectrum is based on the previous
theorem on the invertibility of linear operators.

Definition 2.10. The point S-spectrum of T , denoted by Π0,S(T ), is defined as

Π0,S(T ) = {s ∈ H : T 2 − 2Re(s)T + |s|2I is not one-to-one}.
The approximate point S-spectrum of T , denoted by ΠS(T ), is defined as

ΠS(T ) = {s ∈ H : T 2 − 2Re(s)T + |s|2I is not bounded from below}.
The compression S-spectrum of T , denoted by ΓS(T ), is defined as

ΓS(T ) = {s ∈ H : the range of T 2 − 2Re(s)T + |s|2I is not dense}.

From the definition it follows that

Π0,S(T ) ⊂ ΠS(T ).

There are several basic statements about the S-spectrum which are the analogues
of the corresponding well-known facts in the classic case. While the main ideas to
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prove the results below follow those of the complex case, the proofs contain some
suitable substantial changes as they involve the pseudo-resolvent.

We start by proving a result generalizing the Fredholm alternative theorem.

Theorem 2.11. Let T be a compact operator acting on a quaternionic Hilbert space
H, and let s ̸= 0. If ker(T 2 − 2Re(s)T + |s|2I) = {0}, then T 2 − 2Re(s)T + |s|2I
is invertible.

Proof. We divide the proof in three steps.

Step 1. We set As(T ) = T 2−2Re(s)T+ |s|2I, and we prove that if ran(As(T )) = H
then ker(T 2 − 2Re(s)T + |s|2I) = {0}.

First of all we note that when T is compact, T 2 − 2s0T is also compact.
Then we define Qn,s := ker(T 2 − 2Re(s)T + |s|2I)n, n = 1, 2, . . . , and, by Q6

absurdity, we assume that Q1,s ̸= {0} and 0 ̸= v1 ∈ Q1,s: since ran(As(T )) =
H, we can find v2 such that As(T )v2 = v1 and that As(T )2v2 = As(T )v1 = 0,
i.e., v2 ∈ Q2,s. Iterating the procedure, we can find vn+1 ∈ Qn+1,s such that
As(T )vn+1 = vn, n = 1, 2, . . . . In conclusion, vn ∈ Qn,s for all n = 1, 2, . . . , and the
smallest power that annihilates vn is the nth power. Thus Qn,s ⊂ Qn+1,s, and the
sequence {Qn,s} is strictly increasing. We can form a sequence ϵ1, ϵ2, . . . such that
ϵn ∈ Qn,s(T ) for all n, and the elements of the sequence are orthonormal. Since
As(T )ϵn+1 ∈ Qn,s, As(T )ϵn+1 is orthogonal to ϵn+1, so

∥(T 2 − 2s0T )ϵn+1∥2 = ∥As(T )ϵn+1 − |s|2ϵn+1∥2

= ∥As(T )ϵn+1∥2 + |s|2∥ϵn+1∥2 ≥ |s|2 ̸= 0.

Since ϵn → 0 weakly, this contradicts the fact that T 2 − 2s0T is compact.

Step 2. We prove that As(T ) is bounded from below on ker(As(T ))⊥.
By absurdity, we assume that the assertion does not hold, so there exist unit Q7

vectors ϵn ∈ ker(As(T ))⊥ such that As(T )ϵn → 0.
Since T 2 − 2s0T is compact, we can assume, with no loss of generality, that the

sequence (T 2 − 2s0T )ϵn is (strongly) convergent to an element ϵ. Thus we have

|s|2ϵn = As(T )ϵn − (T 2 − 2s0T )ϵn → −ϵ,

so ϵ ∈ ker(As(T ))⊥ and it is a unit vector. However, As(T )ϵn = As(T )ϵ, so
As(T )ϵ = 0. This fact yields ϵ ∈ ker(As(T )), and hence ϵ = 0. This contradicts the
fact that ϵ has norm 1, and the assertion follows.

Step 3. We show that Steps 1 and 2 apply when we consider T ∗, As(T )∗ instead of
T , As(T ).

We note that if Steps 1 and 2 hold, then since ran(As(T ))=As(T )
(
ker(As(T ))⊥

)
=

H and As(T ) is bounded from below, ran(As(T )) is closed and ran(As(T )∗ is also
closed. Assume that ker(As(T )) = {0}. Then ran(As(T ))∗ is dense in H, and since
it is closed, it follows that ran(As(T )∗) = H, so Step 1 applies to (As(T )∗. We then
conclude that ker(As(T )∗) = {0}, and also that ker(As(T )∗)⊥ = H. Then Step 2
can be applied to As(T )∗, leading to the conclusion that As(T )∗ is bounded from
below. Theorem 2.9 yields the result that As(T )∗ is invertible, so As(T ) is also
invertible, and this concludes the proof. !

Theorem 2.12. Let T ∈ B(H). Then σS(T ) = ΠS(T ) ∪ ΓS(T ).
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Proof. We have to show that if s ̸∈ ΠS(T ) and s ̸∈ ΓS(T ), then s ̸∈ σS(T ). But
s ̸∈ ΠS(T ) implies that the range of T 2−2Re(s)T+|s|2I is closed. Since s ̸∈ ΓS(T ),
the range of T 2 − 2Re(s)T + |s|2I is dense, so we have T 2 − 2Re(s)T + |s|2I being
one-to-one and onto; thus it is invertible. !

Theorem 2.13 (Weyl’s theorem). If A ∈ B(H) and K is a compact operator, then

σS(A+K) ⊂ σS(A) ∪Π0,S(A+K).

Proof. Assume that s ∈ σS(A + K) \ σS(A). Then, since A2 − 2s0A + |s|2I is
invertible by assumption and AK +KA is compact since K is compact, we have

(A+K)2 − 2s0(A+K) + |s|2I = A2 − 2s0A+ |s|2I + (K2 +AK +KA− 2s0K)

= (A2 − 2s0A+ |s|2I)(I + (A2 − 2s0A+ |s|2I)−1(K2 +AK +KA− 2s0K)).

We conclude, by the invertibility of A2 − 2s0A + |s|2I, that I + (A2 − 2s0A +
|s|2I)−1(K2+AK+KA−2s0K) cannot be invertible. It follows from Theorem 2.11
that −1 is an eigenvalue of the compact operator (A2−2s0A+ |s|2I)−1(K2+AK+
KA−2s0K). Hence, there exists a nonzero v such that (A2−2s0A+ |s|2I)−1(K2+
AK +KA− 2s0K)v = −v, which implies that

(K2 +AK +KA− 2s0K)v + (A2 − 2s0A+ |s|2I)v = 0,

i.e.,

((A+K)2 − 2s0(A+K) + |s|2I)v = 0.

Thus ((A+K)2−2s0(A+K)+ |s|2I) has a nontrivial null-space and s ∈ Π0,S(A+
K). !

We also need a result on the boundary of the S-spectrum, which will be important
for the study of invariant subspaces. Let U be a subset in H. We define the point-set
boundary of U as ∂U = U ∩ (H \ U).

Theorem 2.14. Let T ∈ B(H). Then we have ∂σS(T ) ⊂ ΠS(T ).

Proof. First observe that ∂σS(T ) = σS(T ) ∩ ρS(T ). Now assume that s ∈ ∂σS(T )
and s ̸∈ ΠS(T ). We can take a sequence sn in the set ρS(T ) such that sn → s.

Step 1. We show that there exists K > 0 and a positive integer N such that n ≥ N
implies that

∥(T 2 − 2Re(sn)T + |sn|2I)v∥ ≥ K∥v∥ for all v ∈ H.

Suppose that this does not hold. Then for all positive integers m and N there
would exists an n ≥ N and a vector vm with ∥vm∥ = 1 such that

∥(T 2 − 2Re(sn)T + |sn|2I)vm∥ ≤ 1/m.

But observe that

(T 2 − 2Re(s)T + |s|2I)vm
= (T 2 − 2Re(sn)T + |sn|2I)vm + 2(Re(sn)− Re(s))Tvm + (|s|2 − |sn|2)vm.
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Taking the norm, we have

∥(T 2 − 2Re(s)T + |s|2I)vm∥
≤ ∥(T 2 − 2Re(sn)T + |sn|2I)vm∥+ 2|Re(sn)− Re(s)|∥T∥∥vm∥
+ ||s|2 − |sn|2| ∥vm∥

≤ 1

m
+ 2|Re(sn)− Re(s)|∥T∥+ ||s|2 − |sn|2|,

and this implies that s ∈ ΠS(T ). So such K and N do not exist.

Step 2. We can show now that s ̸∈ ΓS(T ), for if v ∈ H, then for each n there is a
wn with

(T 2 − 2Re(sn)T + |sn|2I)wn = v,

but since
∥(T 2 − 2Re(sn)T + |sn|2I)wn∥ ≥ K∥wn∥,

we have

∥wn∥ ≤ 1

K
∥v∥ for n ≥ N.

Now observe that

∥(T 2 − 2Re(s)T + |s|2I)wn − v∥
= ∥(T 2 − 2Re(sn)T + |sn|2I − 2Re(s)T + |s|2I

− (−2Re(sn)T + |sn|2I))wn − v∥
≤ ∥(T 2 − 2Re(sn)T + |sn|2I)wn − v∥+ 2|Re(sn)− Re(s)|∥T∥∥wn∥
+ ||s|2 − |sn|2| ∥wn∥

≤ 0 + 2|Re(sn)− Re(s)|∥T∥∥wn∥+ ||s|2 − |sn|2|∥wn∥

≤ (2|Re(sn)− Re(s)|∥T∥+ ||s|2 − |sn|2|)
1

K
∥v∥.

If n is large, the term (2|Re(sn) − Re(s)|∥T∥ + ||s|2 − |sn|2|) 1
K ∥v∥ is arbitrarily

small, and it follows that s ̸∈ ΓS(T ). Hence, s ∈ ∂σS(T ) and s ̸∈ ΓS(T ), which
implies that s ̸∈ σS(T ). But this contradicts Theorem 2.12. !

The above theorem gives information about the spectra of the restrictions to
invariant subspaces.

Definition 2.15. Let T ∈ B(H). The full S-spectrum of T , denoted by η(σS(T )),
is the union of σS(T ) and all bounded components of ρS(T ).

This means that η(σS(T )) is the S-spectrum together with the holes in σS(T ).
We now recall some basic facts useful to defining the S-functional calculus.

Definition 2.16 (T -admissible slice domain). Let T ∈ B(H). A bounded axially
symmetric domain U ⊂ H is called T -admissible if σS(T ) ⊂ U and ∂(U ∩CI) is the
union of a finite number of piecewise continuously differentiable Jordan curves for
any I ∈ S.

Definition 2.17. Let T ∈ B(H).

(i) A function f is called locally left- (resp., right-) slice hyperholomorphic
on σS(T ) if there exists a T -admissible slice domain U ⊂ H such that
f ∈ SHL(U) (resp., f ∈ SHR(U)). We denote the set of all locally left-
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(resp., right-) slice hyperholomorphic functions on σS(T ) by SHL(σS(T ))
(resp., SHR(σS(T ))).

(ii) By N (σS(T )) we denote the set of all functions f ∈ SHL(σS(T )) such that
there exists a T -admissible slice domain U with f(U ∩ CI) ⊂ CI for all
I ∈ S.

Definition 2.18 (S-functional calculus). Let T ∈ B(H). For any f ∈ SHL(σS(T )),
we define

(2.2) f(T ) =
1

2π

∫

∂(U∩CI)
S−1
L (s, T ) dsI f(s),

where I is an arbitrary imaginary unit and U is an arbitrary T -admissible slice
domain such that f is left-slice hyperholomorphic on U . For any f ∈ SHR(σS(T )),
we define in a similar way

(2.3) f(T ) =
1

2π

∫

∂(U∩CI)
f(s) dsI S

−1
R (s, T ).

For more details, and for the Banach space setting, see [3, 5, 16].

3. Quaternionic operators on a Hilbert space

Let H be a right Hilbert (separable) space over H. Moreover, we assume that
B(H) has identity I. For the time being we often omit the identity operator from
the formulations, its presence being clear from context. Let us first define the notion
of an invariant subspace.

Definition 3.1. The subspace M ⊂ H is invariant under the operator T ∈ B(H)
if Tx ∈ M for every x ∈ M. The collection of all subspaces of H invariant under
T is denoted as Lat(T ); if B′ ⊂ B(H) then Lat(B′) := ∩T∈B′Lat(T ).

Here, we have immediately the following property.

Theorem 3.2. Let M ∈ Lat(T ). Then σS(T |M ) ⊂ η(σS(T )), where η(σS(T )) is
the full S-spectrum of T .

Proof. Observe that s ∈ ΠS(T |M ) implies that there exists a sequence vn, with
∥vn∥ = 1, such that (T 2−2Re(s)T + |s|2I)vn converges to 0, so ΠS(T |M ) ⊂ ΠS(T ).
By Theorem 2.14 we also have

∂σS(T |M ) ⊂ ΠS(T |M ) ⊂ σS(T ).

If σS(T |M ) contained points of the unbounded component of ρS(T ), then ∂σS(T |M )
would have to meet the unbounded component of ρS(T ) too, and the above shows
that this is impossible. !

Additionally, we have the following notion of hyperinvariant subspaces.

Definition 3.3. The subspace M is hyperinvariant under the operator T if M ∈
Lat(B) for every B which commutes with T.

Hyperinvariant subspaces of T give information about the commutants of T, that
is, the set of all operators B such that [T,B] = TB −BT = 0.

For the S-spectrum we also need a statement about the spectral radius; see [16].
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Definition 3.4. Let T ∈ B(H). Then the S-spectral radius of T is defined to be
the nonnegative real number

rS(T ) = sup{|s| : s ∈ σS(T )}.

Theorem 3.5. For T ∈ B(H), we have

rS(T ) = lim
n→∞

∥Tn∥ 1
n .

Observe that, for normal operators on a Hilbert space, the above theorem means
that the spectral radius is given by

rS(T ) = ∥T∥
since ∥Tn∥ = ∥T∥n, n ∈ N , as in the complex case.

In the following we are in need of a spectral mapping theorem for the pseudo-
resolvent operator QS(T ) = (T 2 − 2Re(s)T + |s|2I)−1. Unfortunately, as we have
already observed in the introduction, the function s -→ (p2 − 2Re(s)p + |s|2)−1

defined for p ̸∈ [s] is neither left- nor right-slice hyperholomorphic, so we cannot
use the S-functional calculus to prove the spectral mapping theorem in the case
of a quaternionic Banach space. But since we are working in a Hilbert space and
the operator T is normal, we can use the continuous functional calculus for normal
operators to deduce the spectral mapping theorem that we need.

In the sequel we also need to define a left multiplication in a right quaternionic
Hilbert space. We assume thatH is separable. This is always possible once a Hilbert
basis (en)n∈N has been fixed (see [25,42]), and it is defined by sv =

∑
n∈N ens⟨en, v⟩,

where v =
∑

n∈N en⟨en, v⟩.

Theorem 3.6. Let T ∈ B(H) be normal, and let H be a quaternionic Hilbert space.
Then there exist uniquely determined operators A and B which both belong to B(H),
and an operator J ∈ B(H) which is uniquely determined on {Ker(T −T ∗)}⊥ so that
the following properties hold:

T = A+ JB,

where A is self-adjoint, B is positive, J is anti-self-adjoint and unitary, and A, B,
and J mutually commute. Moreover, for any fixed J ∈ S, there exists an orthonor-
mal basis NJ of H with the property that J = LJ, where LJ is the left multiplication
operator by J ∈ S.

The decomposition T = A+ JB, where J is a partial isometry, was first estab-
lished by Teichmüller [43]. The continuous functional calculus for normal operators
on a quaternionic Hilbert space is defined for the following class of continuous
quaternionic-valued functions.

Definition 3.7. Let Ω ⊆ H be an axially symmetric set, and let D ⊆ R 2 be such
that

D = {(u, v) ∈ R 2 : u+ Jv ∈ Ω for some J ∈ S}.
Let S(Ω,H) denote the quaternionic linear space of slice continuous functions, i.e.,
S(Ω,H) consists of functions f : Ω → H of the form

f(u+ Jv) = f0(u, v) + Jf1(u, v) for (u, v) ∈ D and for J ∈ S,
where f0 and f1 are continuous H-valued functions on D such that

f0(u, v) = f0(u,−v)
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and
f1(u, v) = −f1(u,−v).

If f0 and f1 are real valued, then we say that the continuous slice function f
is intrinsic. The subspace of intrinsic continuous slice functions is denoted by
SR (Ω,H).

The following functional calculus will be useful for proving a spectral theorem
for a normal operator T ∈ B(H).

Theorem 3.8 ([25, Theorem 7.4]). Let T ∈ B(H) be a normal operator. There
exists a unique continuous *-homomorphism

ΨR ,T : f ∈ SR (σS(T ),H) -→ f(T ) ∈ B(H)

of real-Banach unital C∗-algebras such that (spectral mapping theorem)

(3.1) σS(f(T )) = f(σS(T )).

We are now in a position to prove an important estimate on the pseudo-resolvent Q8
operator that will be used in the sequel to prove one of the main results of this paper.

Lemma 3.9. Let T be a bounded normal linear operator on a quaternionic Hilbert
space H, and let s ∈ H. Then we have

∥(T 2 − 2Re(s)T + |s|2)−1∥ ≤ 1

dist(σS(T ), [s])2
,

where we have set

dist(σS(T ), [s]) := inf{|w − p|, w ∈ σS(T ), p ∈ [s]}.

Proof. Since T is a normal operator, (T 2 − 2Re(s)T + |s|2)−1 is also a normal
operator, so the S-spectral radius gives

∥(T 2 − 2Re(s)T + |s|2)−1∥ = sup{|w| : w ∈ σS((T
2 − 2Re(s)T + |s|2)−1)}.

From the spectral mapping theorem (Theorem 3.8) we obtain

sup{|w| :w ∈ σS((T
2−2Re(s)T+|s|2)−1)}= 1

inf{|w| :w ∈ σS(T 2− 2Re(s)T + |s|2)} ,

and again using Theorem 3.8, we get

1

{inf |w| :w ∈ σS(T 2−2Re(s)T + |s|2) =
1

inf{|w2−2Re(s)w + |s|2| :w ∈ σS(T )}
.

From the above equalities we obtain

∥(T 2 − 2Re(s)T + |s|2)−1∥ =
1

inf{|w2 − 2Re(s)w + |s|2| : w ∈ σS(T )}
.

Furthermore, we have

inf{|w2−2Re(s)w + |s|2| :w ∈ σS(T )} = inf{|(w−p) ∗ (w−p̄)| : w ∈ σS(T ), p ∈ [s]}
= inf{|(w − p)(w̃ − p̄)| : w ∈ σS(T ), w̃ ∈ [w], p ∈ [s]}
≥ inf{|w − p| : w ∈ σS(T ), w̃ ∈ [w], p ∈ [s]}
× inf{|w̃ − p̄| : w ∈ σS(T ), w̃ ∈ [w], p ∈ [s]}

= dist(σS(T ), [s])
2,

which leads to the statement. !
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4. Some results on the Schatten class of quaternionic operators

Since we shall discuss compact perturbations of normal operators, let us recall
some basic statements on Schatten classes of quaternionic operators. These classes
have been recently introduced in the paper [13].

We denote by B0(H) the set of all compact quaternionic right linear operators
on H. For an anti-self-adjoint unitary operator J , we define the set

BJ(H) := {T ∈ B(H) : [T, J ] = 0}.
Consider now an arbitrary compact operator T . We can find a Hilbert basis

(en)n∈N and an orthonormal set (σn)n∈N in H such that

(4.1) Tx =
∑

n∈N
σnλn⟨en, x⟩ ∀x ∈ H,

where the λn ∈ R + are the singular values of T , i.e., the eigenvalues of the operator
|T | :=

√
T ∗T in nonincreasing order, and where the vectors (en)n∈N form an eigen-

basis of |T | and σn = Wen, with W unitary on kerW⊥, and such that T = W |T |.
See [19], [13, Remark 3.4].

Definition 4.1. Let J ∈ B(H) be an anti-self-adjoint and unitary operator. For
p ∈ (0,+∞], we define the (J, p)-Schatten class of operators Sp(J) as

Sp(J) := {T ∈ B0(H) : [T, J ] = 0 and (λn(T ))n∈N ∈ ℓp},
where (λn(T ))n∈N denotes the sequence of singular values of T , and ℓp and ℓ∞

denote the space of p-summable and bounded sequences, respectively. For T ∈
Sp(J) we introduce the following norms:

(4.2) ∥T∥p =

(
∑

n∈N
|λn(T )|p

) 1
p

, p ∈ [1,+∞), ∥T∥∞ = sup
n∈N

λn(T ) = ∥T∥.

Using these norms, we can give the following statements, whose proofs are
straightforward modifications of the classic proofs.

Lemma 4.2. Let T ∈ Sp(J). Then there exists a sequence of finite rank operators
{Tn}n∈N such that

∥T − Tn∥ → 0 and ∥T − Tn∥p → 0 as n → ∞.

Proof. The proof follows as in the classical case; see [19, Lemma 11, p. 1095]. !
Lemma 4.3. Let T ∈ Sp(J). Then for every operator A ∈ B(H) the operators AT
and TA belong to Sp(J) and

∥AT∥p ≤ ∥A∥∥T∥p
and

∥TA∥p ≤ ∥A∥∥T∥p
Proof. From [13, Lemma 3.7] it has been established that if T is a positive compact
operator, the singular values λn+1 are given by

λn+1 = min
y1,...,yn

max
⟨xi,yi⟩,i=1,...,n

∥Tx∥
∥x∥ ,

so using this formula, we can define singular values also for operators which are not
compact. Furthermore, with a similar proof to the complex case we can state that



PERTURBATION OF NORMAL QUATERNIONIC OPERATORS 15

for compact or noncompact bounded operators, we can extend [13, Corollary 3.9].
More precisely we have

λn+m+1(T1 + T2) ≤ λn+1(T1) + λm+1(T2),

λn+m+1(T1T2) ≤ λn+1(T1)λm+1(T2).
(4.3)

As a particular case, we have

λn(TA) ≤ λn(T )∥A∥p, λn(AT ) ≤ λ(T )∥A∥pλ(T ),

so we get the statement. !

For the following definition we have to stress the fact that the Schatten classes
under consideration are restricted to k ∈ N .

Definition 4.4. Let I ∈ S be any arbitrary, but fixed, element in S. Let T ∈ Sk(J)
with k ∈ N , and let {s1, s2, . . .} be an enumeration of the nonzero elements in
Π0,S(T ) ∩ CI repeated according to their multiplicity. We define

δk,I(T ) = Π∞
l=1

[
(1 + sl) exp

(
−sl +

s2l
2

+ · · ·+ (−1)k−1 sk−1
l

k − 1

)]
.

In the case in which Π0,S(T ) ∩ CI = {0} we define δk,I = 1.

For this function we have the following result.

Lemma 4.5. Let T ∈ Sk(J) with k ∈ N . Then

(i) δk,I(T ) is an absolutely convergent infinite product,
(ii) there exists a constant Γk depending only on k ∈ N such that

|δk,I(T )| ≤ exp(Γk∥T∥kk),

(iii) δk,I(T ) is a continuous function in the topology of Sk(J), and
(iv) there exists a constant Mk depending only on k ∈ N such that

∥δk,I(T )(I + T )−1∥ ≤ exp(Mk∥T∥kk) when − 1 ̸∈ σS(T ).

Proof. Since the function δk,I(T ) has values in CI, the proof of (i) is the same proof
as given for [19, Lemma 22(a), p. 1106]. Point (ii) is [19, Lemma 22(b), p. 1106]
since we consider restrictions to the complex plane CI point (iii) to be [19, Lemma
22(c), p. 1106]. Finally, point (iv) is [19, Theorem 24, p. 1112]. !

Remark, moreover, that δk,I does not depend on the chosen element I ∈ S.

5. Perturbation of quaternionic normal operators

Take I ∈ S and consider the slice CI. Let C be an exposed arc in σS(T ) ∩ CI for
all I ∈ S, that is to say, there exists an open disk DI such that DI ∩ σS(T ) = C and
C is a smooth Jordan arc in CI, I ∈ S. Furthermore, for a curve C we will denote
by C̃ its axially symmetric completion.

Definition 5.1. The distance between equivalence classes [s], [t] is defined as

|[s]− [t]| = inf
s∈[s],t∈[t]

|s− t|.
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Theorem 5.2. Let T ∈ B(H) be such that σS(T ) contains the axially symmetric
completion C̃ of an exposed arc C, and let k ∈ N . If for each [s0] ∈ C̃ and each
axially symmetric completion L̃ of a closed line segment L not tangent to C and
satisfying L̃ ∩ σS(T ) = {[s0]}, there exists a constant K > 0 such that if

∥S−1
L (s, T )∥ ≤ exp(K|[s]− [s0]|−k)

for all s ∈ L̃ \ {[s0]}, then T has a nontrivial hyperinvariant subspace.

Proof. Let I ∈ S be arbitrary but fixed. We can assume that CI = C̃ ∩ CI has a
representation (as a smooth Jordan arc in a given slice) s = q(t), t ∈ (0, 1), with
q one-to-one, |q′(t)| < tan(π/5k), t ∈ (0, 1), and where q′′(t) exists everywhere in
(0, 1).

If DI is an open disk in CI such that DI ∩ σS(T ) = C and that C is a smooth
Jordan arc, then DI is the union of disjoint Jordan regions D1,I,D2,I lying above
and below C, respectively.

Consider subarcs J such that J ⊂ C̃ ∩ CI, and with endpoints s1 and s2 (with
Res1 < Res2.) Construct a simple closed Jordan polygon Γ1(J ) ∈ DI enclosing J
and intersecting C at s1 and s2 only. Assume in the construction of Γ1(J ) ∈ DI that
the angles at s1 have arguments ±π/5k, while the angles at s2 have arguments π±
π/5k. Then these lines generate a hexagon lying in DI. Moreover, by interchanging
the angles at s1 and s2 one obtains a second polygon Γ′

1(J ) ∈ DI. Let Γ2(J ) ∈ DI
be the union of Γ′

1(J ) and any fixed circle containing DI ∩ σS(T ) in its interior.
Fix an open subarc J0 of C such that J 0 ⊂ C. Let S−1

L (s, T ) denote the slice hy-
perholomorphic quaternionic-valued function taking the resolvent set ρS(T ) into H.

We recall that, due to the noncommutativity of the quaternions, when we con-
sider the S-resolvent operator S−1

L (s, T ), which is right-slice hyperholomorphic, the
function S−1

L (s, T )x cannot be right-slice hyperholomorphic. To avoid this problem,
we consider the subset HR of H defined as

HR := {x ∈ H : xp = px ∀p ∈ H},

where we are using both the left and right multiplication in H, and thus we have
fixed a Hilbert basis.

Note that H =
∑3

i=0 HR ei, where we set e0 = 1. In fact, given any x ∈ H, we can

define the element Re(x) = 1
4 (
∑3

i=0 ēixei) ∈ HR , and we have x =
∑3

i=0 Re(ēix)ei.

If two right linear operators T and T̃ agree on HR , then they agree on the entire
H; see [5, p. 176].

Let us define the sets
(5.1)
NR,R={x∈ HR :S−1

R (s, T )x has a left-slice hyperholomorphic extension to (J 0)
c},

NL,R ={x ∈ HR : S−1
L (s, T )x has a right-slice hyperholomorphic extension to

(5.2)

(J 0)
c},

where (J 0)c denotes the complement set of J 0. Then NL,R = NR,R . Indeed, we
have for x ∈ NL,R that there exists a slice hyperholomorphic continuation

f(s) = S−1
L (s, T )x
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to (J 0)c. In a similar way, for x ∈ NR,R there exists a slice hyperholomorphic
continuation to (J 0)c,

f̃(s) = S−1
R (s, T )x.

Let us prove that NL,R ⊆ NR,R : consider x ∈ NL,R . Then

x = (s− T ) ⋆r S
−1
L (s, T )x = (s− T ) ⋆r f(s),

so
S−1
R (s, T )x = S−1

R (s, T )(s− T ) ⋆r f(s) := f̃(s)

is a slice hyperholomorphic continuation and x ∈ NR,R . In a similar way, NR,R ⊆
NL,R ; note that these sets are real subspaces of H.

In order to construct a subspace of H as a quaternionic linear space, we recall
that each x ∈ H can be uniquely decomposed as x =

∑3
i=0 xiei, and if we set

NR =
3∑

i=0

NR,R ei, NL =
3∑

i=0

NL,R ei,

and e0 = 1, we deduce from the previous discussion that NR = NL. From now on,
we will denote these sets as N .

We point out that in the case of NR one could have introduced it directly:
(5.3)
NR = {x ∈ H : S−1

R (s, T )x has a left-slice hyperholomorphic extension to (J 0)
c}

since there are no issues of loosing the left hyperholomorphy of S−1
R (s, T ) by letting

it act on x ∈ H; however, to show the equality NR = NL, it is more convenient to
proceed as above. We now note that it is not immediate to prove the hyperinvari-
ance of N ; in fact, in general, A does not commute with the operator s̄I. Thus we
consider

(5.4) M = {x ∈ H : Qs(T )x ∈ H for all s ∈ (J 0)
c}.

Obviously, as AT = TA, one gets

(T 2 − 2sRe(s)T + |s|2)−1(Ax) = A(T 2 − 2Re(s)T + |s|2)−1x.

Hence, M is invariant under every operator A which commutes with T. We now
show that N = M . Every x ∈ M is such that Qs(T )x ∈ H for all s ∈ (J 0)c; thus

−(T − s̄)Qs(T )x = S−1
R (s, T )x ∈ H for all s ∈ (J 0)

c,

so x ∈ N .
Conversely, consider x ∈ N = NR. Then −(T − s̄)Qs(T )x admits left-slice

hyperholomorphic extension to (J 0)c, so −(T − s̄)Qs(T )x ∈ H and Qs(T )x belongs
to the domain of T , which is H and thus Qs(T )x ∈ H for s ∈ (J 0)c. Thus N = M
and the hyperinvariance of N is proved.

We define the functions mr, ml as

m(s) :=

{
exp⋆

[
−(s− s1)⋆(−2k) − (s− s2)⋆(−2k)

]
, s ̸= s1, s2,

0, s = s1, s2,
(5.5)

with

exp⋆

[
−(s−s1)

⋆(−2k)−(s−s2)
⋆(−2k)

]
:=

∞∑

n=0

1

n!

[
−(s−s1)

⋆(−2k)−(s− s2)
⋆(−2k)

]⋆n
,

where mr and ml correspond to the appropriate ⋆r or ⋆l multiplication.
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Let G be an open annuluslike region whose boundary is Γ2(J ). After a judicious
choice for Γ1(J ) at s1, s2 it follows that both mr and ml are slice hyperholomorphic

on G̃ and continuous on G̃. Take now a sequence (xn)n∈N in N such that xn → x ∈
H. Moreover, denote by S−1

L,n(s, T )(xn) the slice hyperholomorphic continuation of

S−1
L (s, T )(xn) to the complement of J 0. Then

∥S−1
L,n(s, T ) ⋆r mr(s)− S−1

L,k(s, T ) ⋆r mr(s)∥

≤ sup
w∈Γ2(J )

∥∥∥
(
S−1
L,n(w, T )− S−1

L,k(w, T )
)
⋆r mr(w)

∥∥∥

by the maximum modulus principle. By the hypothesis on the growth of the pseudo-
resolvent of T , given a line L ⊂ Γ2(J ) with an endpoint on s1, we have, for
w ∈ L \ {s1},
∥∥∥
(
S−1
L,n(w, T )− S−1

L,k(w, T )
)
⋆r mr(w)

∥∥∥

=
∥∥(S−1

L (w, T )− S−1
L (w, T )

)
⋆r mr(w)(xn − xk)

∥∥

≤ ∥xn − xk∥
∥∥∥exp⋆r

[
−(w − s1)

⋆r(−2k) − (w − s2)
⋆r(−2k)

]∥∥∥ exp(K|w − s1|−k)

≤ N∥xn − xk∥ exp⋆r

[
Sc
(
−(w − s1)

⋆r(−2k)
)]

exp(K|w − s1|−k),

where

N := sup
w∈L

∣∣∣exp⋆r

[
−(w − s2)

⋆r(−2k)
]∣∣∣ .

As w, s1 ∈ L, we have w − s1 = |w − s1|eIθ in the slice CI for a certain angle θ
(either π/5k or −π/5k). Then the term

exp⋆r

[
Sc
(
−(w − s1)

⋆r(−2k)
)]

exp(K|w − s1|−k)

is bounded on L, and there exists an M1 > 0 such that

∥S−1
L,n(s, T ) ⋆r mr(s)− S−1

L,k(s, T ) ⋆r mr(s)∥ ≤ M1∥xn − xk∥ for all w ∈ L.

In exactly the same manner, it can be shown that there exists a constant M2 > 0
such that

∥S−1
L,n(s, T ) ⋆r mr(s)− S−1

L,k(s, T ) ⋆r mr(s)∥ ≤ M2∥xn − xk∥

holds for all w on the lines of Γ2(J ) passing trough s2.
Since a similar statement holds for w on the remaining lines of Γ2(J ), we obtain

that
(
S−1
L,n(s, T ) ⋆r mr(s)

)

n∈N
is a uniform Cauchy sequence on G̃, and it converges

uniformly to a function g(s) right-slice hyperholomorphic on G̃ and continuous on

G̃. Let us consider x ∈ HR , and let us set

y =

∫

∂(Γ(J0)∩CI)
S−1
L (z, T ) ⋆r m(z)dzIx.
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Take an arbitrary w ∈ ρS(T ) outside Γ1(J0). We get, with all of the
⋆r-multiplications computed in the variable z,

S−1
R (w, T )y =

∫

∂(Γ1(J0)∩CI)
S−1
R (w, T )S−1

L (z, T ) ⋆r mr(z)dzIx

=

∫

∂(Γ1(J0)∩CI)
(z − w)−⋆r ⋆r [S

−1
L (z, T )− S−1

R (w, T )] ⋆r mr(z)dzIx

=

∫

∂(Γ1(J0)∩CI)
(z − w)−⋆r ⋆r S

−1
L (z, T ) ⋆r mr(z)dzIx

−
∫

∂(Γ1(J0)∩CI)
(z − w)−⋆r ⋆r S

−1
R (w, T ) ⋆r mr(z)dzIx

︸ ︷︷ ︸
=0

=

∫

∂(Γ1(J0)∩CI)
(z − w)−⋆r ⋆r S

−1
L (z, T ) ⋆r mr(z)dzIx.

Now the integrand has a slice hyperholomorphic continuation to the exterior of
the curve Γ1(J0) such that it has a slice hyperholomorphic continuation to the
complement of J0, and such that y ∈ NR,R .

Now let x ∈ HR so that, recalling that NR,R = NL,R , we have

y =

∫

∂(Γ(J0)∩CI)
S−1
L (s, T ) ⋆r mr(s)xdsI

corresponding one-to-one to

ỹ =

∫

∂(Γ(J0)∩CI)
dsI ml(s) ⋆r S

−1
R (s, T )x,

that is to say, y = 0 if and only if ỹ = 0.
Now let s0 ∈ J0. Thus s0 ∈ ΠS(T ), so for all ϵ > 0 there exists a unit vector

xϵ ∈ HR such that

(T 2 − 2Re(s0)T + |s0|2I)xϵ = −(T − s0)hϵ

with ∥hϵ∥ < ϵ. Hence,

ỹ =

∫

∂(Γ(J0)∩CI)
dsI ml(s) ⋆l S

−1
R (s, T )xϵ

=

∫

∂(Γ(J0)∩CI)
dsI ml(s) ⋆l S

−1
R (s, T )S−1

L (s0, T )hϵ

=

∫

∂(Γ(J0)∩CI)
dsI ml(s) ⋆l

[
S−1
L (s0, T )− S−1

R (s, T )
]
⋆l (s0 − s)−⋆lhϵ

=

∫

∂(Γ(J0)∩CI)
dsI ml(s) ⋆l S

−1
L (s0, T ) ⋆l (s0 − s)−⋆lhϵ

−
∫

∂(Γ(J0)∩CI)
dsI ml(s) ⋆l S

−1
R (s, T ) ⋆l (s0 − s)−⋆lhϵ.

Since

S−1
L (s0, T ) ⋆l (s0 − s)−⋆l = (s0 − s)−⋆r ⋆r S

−1
L (s0, T ),
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where the ⋆-multiplication is taken with respect to s on the right-hand side and is
taken with respect to s0 on the left-hand side (see Remark 2.4), we have

ỹ =

∫

∂(Γ(J0)∩CI)
dsI ml(s) ⋆l [(s0 − s)−⋆r ]xϵ

−
∫

∂(Γ(J0)∩CI)
dsI ml(s) ⋆l S

−1
R (s, T ) ⋆l (s0 − s)−⋆lhϵ

= 2πi ml(s0)xϵ −
∫

∂(Γ(J0)∩CI)
dsI ml(s) ⋆l S

−1
R (s, T ) ⋆l (s0 − s)−⋆lhϵ,

by the Cauchy integral formula on slices. The function ml(s) ⋆l S
−1
R (s, T ) is a

continuous operator-valued function on Γ(J0)∩CI), while (s0− s)−⋆l is continuous
on Γ(J0) ∩ CI). Hence, we have for the last integral

∥∥∥∥∥

∫

∂(Γ(J0)∩CI)
dsI ml(s) ⋆l S

−1
R (s, T ) ⋆l (s0 − s)−⋆lhϵ

∥∥∥∥∥→ 0

as ϵ → 0. Since ∥ml(s0)xϵ∥ = |ml(s0)| ̸= 0, we obtain that the vector

ỹ =

∫

∂(Γ(J0)∩CI)
dsI ml(s) ⋆l S

−1
R (s, T )xϵ

is nonzero for all ϵ > 0, and hence NL,R , and thus N , are nontrivial. !
Lemma 5.3. Let T = A+B, where A is normal and B is in the Schatten class for
some integer k > 1. Assume that Π0,S(T ) = ∅, and assume that σS(A) contains
the axially symmetric completion for an exposed arc J . Let s0 ∈ J̃ ∩ CI and L be
any closed bounded line segment starting from s0 and not being tangent to J̃ ∩ CI.
Moreover, assume that L∩σS(A) = {s0}. Then there exists a constant K such that
for all s ∈ L \ {s0} we have

∥Qs(T )∥ ≤ exp(K|[s]− [s0]|−2k−2).

Proof. By Weyl’s theorem 2.13 we know that Π0,S(T ) = ∅ means that σS(T ) ⊂
σS(A). Consider the slice CI where I ∈ S is arbitrary but fixed. Take an open disk
D ⊂ CI such that D ∩ σS(A) = J̃ ∩ CI. Here J ∩ CI divides D into two simply
connected domains whose boundaries are simple closed Jordan curves. Let L be a
closed bounded line segment starting from s0, not being tangent to J , and such
that L∩σ(A) = {s0}. Consider D′ an auxiliary disk in the slice CI which is tangent Q9
to J̃ ∩CI at s0 and is contained in the subdomain of D which meets L. Denote by
C′ the boundary of D′.

We now define the function δ on ρ(A) via

δ(s) := δk,I(QS(A){A+ (1− s0)I, B}),
where {A,B} denotes the anticommutator of A and B, i.e., {A,B} = AB + BA,
and δk,I is as in Definition 4.4. Then δ is continuous in s on ρ(A), and the operator
QS(A){A + (1 − s0)I, B} belongs to the same Schatten class as B. Furthermore,
we have

QS(T ) = QS(A)(1 +QS(A){A+ (1− s0)I, B})−1.

In particular, this means that Q10

−1 /∈ σS(QS(A))({A+ (1− s0)I, B}),
and the absolute convergence of δk,I (Lemma 4.5(i)) implies that δ(s) ̸= 0.
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Therefore, we have

QS(T ) = (δ(s)−1)QS(A)δ(s) (1 +QS(A){A+ (1− s0)I, B})−1 .

Since we have to estimate ∥QS(T )∥, we proceed with the estimates for each term
in the above equation individually. Because A is normal, we have

∥QS(A)∥ ≤ 1

dist([s],σS(A))2
≤ 1

dist([s], C′)2
.

Furthermore, we have

|δ(s)| ≤ exp(K1∥QS(A){A+ (1− s0)I, B}∥kk) ≤ exp(K2∥B∥kk∥QS(A)∥k),

with

K2 = 2K1∥A+ (1− s0)I, B∥.

This leads to

δ(s) ≤
(

K2

dist([s], C′)2k

)
.

Now since |δ(s)| is continuous and strictly positive, there exists an analytic function
α with |δ(s)| = exp(Reα(s)) and Reα(s) ≤ K2/d(s, C ′)2k. Therefore, there exists
a constant K3 such that

|α(s)| ≤ K3 |s− z0|−2k−2

for s ∈ D′ ∩ L. Hence,

Reα(s) ≥ −K3 |s− z0|−2k−2,

and, consequently, we obtain
∣∣δ(s)−1

∣∣ ≤ exp(K3 |s− z0|−2k−2).

Furthermore, from Lemma 4.5(iv) we get Q11

∥δ(s)(1 +QS(A){A+ (1− s0)I, B})−1∥ ≤ exp(K4∥QS(A){A+ (1− s0)I, B})∥kk)

≤ exp

(
K5

∥B∥kk
dist([s],σS(A))2k

)
,

which leads to

∥QS(T )∥ = |(δ(s)−1)|∥QS(A)∥∥δ(s)(1 +QS(A){A+ (1− s0)I, B})−1∥

≤ exp(K3 |s− s0|−2k−2)
1

dist([s],σS(A))2

(
K5

∥B∥kk
dist([s],σS(A))2k

)
.

Now since L is not tangent to J̃ ∩CI, the term |s− s0|/dist([s],σS(A)) is bounded
for s ∈ L. Consequently, there exists a constant K such that

∥QS(T )∥ ≤ exp(K|s− s0|−2k−2)

for s ∈ L ∩D′. !

Theorem 5.4. If T = A+ B, where A is normal and B ∈ Sp(J) for some p ≥ 1,
and if σS(A) ∩ CI contains an exposed arc for all I ∈ S, then T has a nontrivial
hyperinvariant subspace.
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Proof. Let J̃ ∩ CI be the exposed arc for I ∈ S. By Weyl’s theorem 2.13

σS(A) ⊂ σS(T ) ∪Π0,S(A).

Due to the fact that A is normal on a separable space, we have Π0,S(A) being
countable, and thus a dense subset of J̃ is contained in σS(T ); that is to say,
J̃ ⊂ σS(T ). This further implies that T is not a multiple of the identity operator.
Hence, if Π0,S(T ) ̸= ∅, then T has nontrivial hyperinvariant subspaces.

Suppose now that Π0,S(T ) = ∅. Again by Weyl’s theorem 2.13 σS(T ) ⊂ σS(A),
and J̃ ∩ CI is an exposed arc of σS(T ) ∩ CI for all I ∈ S. Now by Lemma 5.3 the
S-resolvent set of T satisfies the growth condition in Theorem 5.2 with k = ⌈p⌉.
From this the result follows. !

Corollary 5.5. If T = A + B, where A is normal, B ∈ Sp(J) for some p ≥ 1,
σS(T ) contains more than one point, and for all I ∈ S we have σS(A)∩CI contained
in a smooth Jordan arc, then T has a nontrivial hyperinvariant subspace.

Proof. Let J̃ be such that J̃ ∩ CI is a smooth arc and such that σS(A) ⊂ J̃ .
As in the above, one can assume that Π0,S(T ) ̸= ∅, so σS(T ) ⊂ J̃ . If σS(T ) is
disconnected, the result follows from the Riesz decomposition theorem. Hence, we
can assume that σS(T ) = J̃ ′, where J̃ ′ ∩CI is a nontrivial subarc of J̃ ∩CI for all
I ∈ S. Again by Weyl’s theorem 2.13 this result is a consequence of Theorem 5.4. !

Corollary 5.6. If T = A+B, where A is normal, B ∈ Sp(J) for some p ≥ 1, and
for all I ∈ S we have σS(A) ∩ CI being contained in a smooth Jordan arc, then T
has a nontrivial hyperinvariant subspace.

Proof. By Corollary 5.5 we can assume that σS(T ) contains only one point. By
an appropriated translation we can assume that σS(T ) = {0}, in which case T is
a compact operator. By Weyl’s theorem 2.13 we have σS(A) ⊂ {0} ∪ Π0,S(A). If
A is not compact, then either A has a nonzero eigenvalue of infinite multiplicity or
the eigenvalues of A have an accumulation point at some nonzero value. In either
case there exits an s ̸= 0 and an orthonormal set {xn} such that sn → s and
(A2 − 2Re(sn)A+ |sn|2)xn = 0 for all n ∈ N . Since B is compact, Bxn → 0, and it
follows that

∥∥((A+B)2 − 2Re(s)(A+B) + |s|2
)
xn

∥∥

=
∥∥(A2 − 2Re(s)A+ |s|2

)
xn + ({A,B}+B2 − 2Re(s)B)xn

∥∥→ 0,

so s ∈ ΠS(T ). This contradicts the condition that σS(T ) = {0}, and thus A is
compact as well as T = A + B. Hence, since the operator T is compact, it has a
nontrivial invariant subspace. !

Corollary 5.7. If T−T ∗ ∈ Sp(J) for some p ≥ 1, then T has a nontrivial invariant
subspace.

Proof. The result follows from Corollary 5.6 since

2T = (T + T ∗) + (T − T ∗)

and T + T ∗ is a Hermitian operator, so its S-spectrum is real valued. !

Corollary 5.8. If σS(T ) contains more than one point and I − T ∗T ∈ Sp(J) for
some p ≥ 1, then T has a nontrivial hyperinvariant subspace.
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Proof. If either T or T ∗ has a nonempty point S-spectrum, then the result is triv-
ially true. Assume now that both Π0,S(T ) and Π0,S(T ∗) are empty. Now recall
that the polar decomposition T = UP for quaternionic operators holds. The par-
tial isometry arising from the polar decomposition of T is unitary; that is to say,
T = UP , where U is unitary and P is positive. So we have P 2 = T+T , but I −P 2 Q12
is a compact Hermitian operator, so P is diagonal. We suppose that for some
orthonormal basis {vn}n∈N Pvv = vnpn, the right eigenvalues are also the point
S-spectrum and we have ∑

n∈N
|1− p2n|p < ∞,

but we also have
∑

n∈N
|1− p2n|p =

∑

n∈N
|1− pn|p|1 + pn|p ≥

∑

n∈N
|1− pn|p.

This means that I − P ∈ Sp(J) and that

T = UP = U(I − (I − P )) = U − U(I − P ).

Since the S-spectrum of a unitary operator is contained in the unit sphere of the
quaternions and U(I − P ) ∈ Sp(J), the result follows from Corollary 5.6. !

We finally have the following immediate consequence of the above results.

Corollary 5.9. Let I − T ∗T ∈ Sp(J) for some p ≥ 1. Then T has a nontrivial
invariant subspace.
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