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(Communicated by Michael T. Lacey)

Abstract. In this paper we construct the main ingredients of a discrete func-
tion theory in higher dimensions by means of a new “skew” type of Weyl re-
lations. We will show that this new type overcomes the difficulties of working
with standard Weyl relations in the discrete case. A Fischer decomposition,
Euler operator, monogenic projection, and basic homogeneous powers will be
constructed.

1. Introduction

Currently, there seems to be much interest in finding discrete counterparts of
various structures in classical (continuous, smooth) mathematics. An important
issue is the construction of a discrete function theory, not only as a counterpart of
the theory of holomorphic functions in the complex plane, which is nowadays well
established, but also of its higher-dimensional version(s). Essentially these higher-
dimensional analogues were developed in two major directions, the first one being
several complex variables analysis and the second one being Clifford analysis, i.e.
the theory of null solutions of a Dirac operator, called monogenic functions, [1, 6].
In the present paper, we are investigating a discrete counterpart of the latter. For
a discrete version of the case of several complex variables we refer to the literature,
e.g. [4].

While there already are a lot of contributions regarding the construction of dis-
crete Dirac operators, see e.g. [19, 12, 16, 9, 11, 15], there still is much less devel-
opment on the actual discrete function theory in higher dimensions. The existing
approaches are either based on potential-theoretical arguments, e.g. [14, 13, 2, 3],
or on direct calculations using only one type of difference operator, e.g. [10], but
neither one leads to truly satisfactory results. Potential-theoretical arguments allow
us to obtain a discrete Cauchy kernel and hence a discrete Cauchy integral formula,
involving in the cited papers also the discrete Fourier transform, but do not lead to
any results concerning basic polynomials, a Fischer decomposition, Taylor series,
etc. The approach of using only one type of difference operator, i.e. either forward
or backward differences, on the other hand, allows the construction of basic poly-
nomials and a Fischer decomposition, but it does not cover the case of a Dirac
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operator factorizing the classic star Laplacian. For such a factorization, both types
of difference operators are necessary.

The picture becomes more clear when we take another look at the continuous
case, from an abstract point of view. From such a point of view the construction
of a function theory follows a similar philosophy as, for instance, umbral calculus:
one needs so-called raising and lowering operators, i.e. operators which turn a poly-
nomial of degree k into one of a higher or lower degree. The lowering operator is
usually given as a differential operator, while the raising operator takes the form of
a multiplication operator. If the lowering operators are given, the raising operators
are usually defined by means of so-called “Weyl relations”, which for the classical
partial derivatives take the form

∂jxj − xj∂j = 1

or, applied to a function f ,

∂j(xjf(x))− xj∂jf(x) = f(x).

Afterwards, the corresponding theory is constructed based on a duality argument
between both types of operators, the so-called Fischer duality.

In the discrete case, however, a major obstacle to this approach arises. While
forward and backward differences are mutually commuting with each other, this
is no longer true for the corresponding vector variables, whence a direct approach
using standard Weyl relations will not enable us to use duality arguments between
difference operators and vector variables, since the resulting algebraic structures will
be different. To overcome this obstacle, we propose a modified approach. Instead
of the standard ones we introduce a type of “skew” Weyl relations, the underlying
idea being that, using the standard Weyl relations, forward and backward difference
operators and their corresponding vector variables are treated as being completely
independent and, in this way, we accept having to deal with the same (difficult)
problems which appear in the case of several Dirac operators. But, while this
is tacitly accepted in the stated papers, it is by no means necessary; i.e. in the
resulting discrete function theory there is no real independence. We will show that
our modified approach will allow us to construct all necessary elements for a higher-
dimensional function theory. In Section 3 we construct the Euler operator in this
setting, in order to define homogeneous polynomials, and we show that the result
of the action of the new vector variable on a classical homogeneous power can be
given in terms of Euler polynomials of even degree. In Section 4 we establish a
Fischer decomposition, the related monogenic projection, as well as the dimension
of the spaces of discrete monogenic, homogeneous polynomials.

2. Preliminaries

For simplicity we restrict ourselves to the grid Z
m with orthogonal basis ek,

k = 1, . . . ,m. The forward and backward differences Δ±
j are traditionally given by

Δ±
j u = ∓(I − σ±j

h )u,

where I denotes the identity operator and σ±j
h u = u(· ± hej) denotes the shift

operator on the grid Z
m, which, in the standard case considered here, will be

applied with h = 1.
As already mentioned there are several ways to construct discrete Dirac opera-

tors; see [19, 12, 16, 11]. For our purpose we will use the so-called Hermitian setting



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

DISCRETE FUNCTION THEORY BASED ON SKEW WEYL RELATIONS 3243

to construct a Dirac operator factorizing the star Laplacian. To this end we split
each basis element ek into two basis elements e+k and e−k , cf. [11], and we consider

the free algebra over {e+k , e
−
k }, satisfying the following relations:

e−j e
−
k + e−k e

−
j = 0,

e+j e
+
k + e+k e

+
j = 0,

e+j e
−
k + e−k e

+
j = δjk.

With this basis we construct a discrete Dirac operator as

(1) D =

m∑
j=1

(e+j Δ
+
j + e−j Δ

−
j )

for which it is directly seen that D2 = Δ, the star Laplacian.

3. S-Weyl relations and vector variable calculus

The vector variable corresponding to the Dirac operator (1) is given by

X =

m∑
j=1

(e+j X
−
j + e−j X

+
j ).

Observe that, while the differences Δ+
j and Δ−

j mutually commute, and they also

commute with X±
k (j �= k), the same will no longer be true for their interaction

with X+
j and X−

j . To overcome this problem we propose the following “skew” Weyl
relations, or S-Weyl relations for short, replacing the classical ones:

Δ+
j X

+
j −X−

j Δ−
j = 1,(2)

Δ−
j X

−
j −X+

j Δ+
j = 1.(3)

In order to construct the appropriate Euler operator E, we postulate the inter-
twining relation

(4) DX +XD = 2E +m

which holds for the Dirac operator and the vector variable in the continuous case.
Thus, we need to calculate the same anticommutator DX + XD in the present
discrete framework. Since Δ±

j commutes with X±
k and e+j anticommutes with e−k

(j �= k), we only have to consider the part where j = k. Hence, we get

DX +XD =

m∑
j=1

(e+j e
−
j Δ

+
j X

+
j + e−j e

+
j Δ

−
j X

−
j + e+j e

−
j X

−
j Δ−

j + e−j e
+
j X

+
j Δ+

j )

while all terms with either (e+j )
2 or (e−j )

2 are vanishing. Now, using the S-Weyl

relations (2)–(3) we obtain

DX +XD =

m∑
j=1

[e+j e
−
j (1 + 2X−

j Δ−
j ) + e−j e

+
j (1 + 2X+

j Δ+
j )]

=

m∑
j=1

(e+j e
−
j + e−j e

+
j ) + 2

m∑
j=1

(e+j e
−
j X

−
j Δ−

j + e−j e
+
j X

+
j Δ+

j )

= m+ 2
m∑
j=1

(e+j e
−
j X

−
j Δ−

j + e−j e
+
j X

+
j Δ+

j ),
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which suggests defining the Euler operator as

(5) E =

m∑
j=1

(e+j e
−
j X

−
j Δ−

j + e−j e
+
j X

+
j Δ+

j ).

Note that, although unlike the classical case, the Euler operator is no longer a
scalar operator, it will reduce to a scalar one in the case of spinor-valued functions.
Furthermore, it is well defined, as we may conclude by considering the commutator
[D,E]. Similarly as above we only have to consider the terms where k = j, which
yields

DE − ED =

m∑
j=1

[
(e+j Δ

+
j )(e

+
j e

−
j X

−
j Δ−

j ) + (e+j Δ
+
j )(e

−
j e

+
j X

+
j Δ+

j )

+(e−j Δ
−
j )(e

+
j e

−
j X

−
j Δ−

j ) + (e−j Δ
−
j )(e

−
j e

+
j X

+
j Δ+

j )

]

−
m∑
j=1

[
(e+j e

−
j X

−
j Δ−

j )(e
+
j Δ

+
j ) + (e−j e

+
j X

+
j Δ+

j )(e
+
j Δ

+
j )

+(e+j e
−
j X

−
j Δ−

j )(e
−
j Δ

−
j ) + (e−j e

+
j X

+
j Δ+

j )(e
−
j Δ

−
j )

]
.

Again invoking (e+j )
2 = (e−j )

2 = 0 we obtain

DE − ED =
m∑
j=1

[(e+j Δ
+
j )(e

−
j e

+
j X

+
j Δ+

j ) + (e−j Δ
−
j )(e

+
j e

−
j X

−
j Δ−

j )]

−
m∑
j=1

[(e+j e
−
j X

−
j Δ−

j )(e
+
j Δ

+
j ) + (e−j e

+
j X

+
j Δ+

j )(e
−
j Δ

−
j )]

=

m∑
j=1

(e+j Δ
+
j X

+
j Δ+

j + e−j Δ
−
j X

−
j Δ−

j )

−
m∑
j=1

(e+j X
−
j Δ−

j Δ
+
j + e−j X

+
j Δ+

j Δ
−
j )

=
m∑
j=1

[e+j (X
−
j Δ−

j Δ
+
j +Δ+

j ) + e−j (X
+
j Δ+

j Δ
−
j +Δ−

j )]

−
m∑
j=1

(e+j X
−
j Δ−

j Δ
+
j + e−j X

+
j Δ+

j Δ
−
j )

=

m∑
j=1

(e+j Δ
+
j + e−j Δ

−
j ) = D.

In other words, the Euler operator E (5) still satisfies the intertwining relation with
the Dirac operator

DE = ED +D,

which holds in the continuous setting. In the same way we can show the correspond-
ing formula for the intertwining of the vector variable X and the Euler operator E,
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viz.

(6) EX = XE +X.

Remark 3.1. Note that (6) also allows us to introduce the Gamma operator, which
is given in the continuous case by [X,D] = 2Γ −m; see [1]. Thus, in the present
framework, we define

Γ =
XD −DX +m

2
,

whence we obtain, on the level of coordinate operators, that

Γ =
∑
j<k

[
e+j e

−
k (X

−
k Δ−

j −X−
j Δ−

k ) + e−j e
+
k (X

+
k Δ+

j −X+
j Δ+

k )
]
.

Now it is easy to check that, as in the continuous case, [E,Γ] = 0. Indeed, since
XD = E+Γ and XDE = X(ED+D) = EXD−XD+XD = EXD, the desired
relation follows.

The above relations now allow us to define discrete homogeneity of a polynomial
by means of the Euler operator.

Definition 3.1. A discrete polynomial P is called homogeneous of degree k if and
only if EP = kP .

In combination with (6), this definition also implies that X applied to a dis-
crete homogeneous polynomial will result in a discrete homogeneous polynomial of
degree k+1, and thus may be seen as a raising operator. Moreover, the S-Weyl rela-
tions (2)-(3) will now enable us to construct homogeneous polynomials recursively.
Indeed, we have

Δ+
j X

+
j [Pk]−X−

j Δ−
j [Pk] = Pk,

Δ−
j X

−
j [Pk]−X+

j Δ+
j [Pk] = Pk,

showing that, if Pk is given, via a simple polynomial ansatz one can determine
X±

j [Pk], and thus also X[Pk] from Pk.
As a first step towards this desired construction of homogeneous polynomials,

we will start by calculating the action of X±
j on the classical homogeneous powers

xk
j . Denoting (P j

k+1)
± ≡ X±

j [xk
j ] we get

Δ+
j [(P

j
k+1)

+] = xk
j +X−

j Δ−
j [x

k
j ],

Δ−
j [(P

j
k+1)

−] = xk
j +X+

j Δ+
j [x

k
j ].

Now, denoting by ckl the lth coefficient in X−
j [xk

j ] and by dkl the lth coefficient in

X+
j [xk

j ], i.e. putting

(P j
k+1)

+ = dkk+1x
k+1
j + dkkx

k
j + . . .+ dk1xj ,

(P j
k+1)

− = ckk+1x
k+1
j + ckkx

k
j + . . .+ ck1xj ,
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we are led to the following linear system for the polynomial coefficients of (P j
k+1)

−:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
k+1
1

)
0 0 . . . 0

−
(
k+1
2

) (
k
1

)
0 . . . 0(

k+1
3

)
−
(
k
2

) (
k−1
1

)
0

...
...

...
. . .

...

(−1)k
(
k+1
k+1

)
(−1)k−1

(
k
k

)
(−1)k

(
k−1
k−1

)
. . .

(
1
1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ckk+1

ckk

ckk−1

...

ck1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dk−1
k 0 0 . . . 0

dk−1
k−1 dk−2

k−1 0 . . . 0

...
...

...
. . .

...

dk−1
1 dk−2

1 . . . d11 0

0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
k
1

)
(
k
2

)
...(
k
k

)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

...

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

while a similar system holds for the coefficients of (P j
k+1)

+:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
k+1
1

)
0 0 . . . 0(

k+1
2

) (
k
1

)
0 . . . 0(

k+1
3

) (
k
2

) (
k−1
1

)
0

...
...

...
. . .

...(
k+1
k+1

) (
k
k

) (
k−1
k−1

)
. . .

(
1
1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dkk+1

dkk

dkk−1

...

dk1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ck−1
k 0 0 . . . 0

ck−1
k−1 ck−2

k−1 0 . . . 0

...
...

...
. . .

...

ck−1
1 ck−2

1 . . . c11 0

0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
k
1

)
−
(
k
2

)
...

(−1)k
(
k
k

)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

...

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

From these systems the following results are obtained for low degrees:

(P j
1 )

+ ≡ X+
j [1] = xj ,

(P j
1 )

− ≡ X−
j [1] = xj ,

(P j
2 )

+ ≡ X+
j [xj ] = x2

j − xj ,

(P j
2 )

− ≡ X−
j [xj ] = x2

j + xj ,

(P j
3 )

+ ≡ X+
j [x2

j ] = x3
j − x2

j ,

(P j
3 )

− ≡ X−
j [x2

j ] = x3
j + x2

j .
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While, as expected, the action of our vector variable is not as simple as in the
standard Weyl case where we would have a Rodrigues’ formula for X+

j and X−
j

independently, our polynomials are still of the form

X±
j [xk

j ] = xk+1
j + lower order terms.

In particular, the coefficients of the first 11 polynomials are given in the matri-
ces below, where the ith column contains the coefficients of X±

j [x11−i
j ], while the

jth row provides the respective coefficients of (xj)
12−i, the last row indeed corre-

sponding to xj since the constant term always is zero. For the action of X+
j this

yields

M+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0

−5 1 0 0 0 0 0 0 0 0 0

0 −5 1 0 0 0 0 0 0 0 0

30 0 −4 1 0 0 0 0 0 0 0

0 30 0 −4 1 0 0 0 0 0 0

−126 0 14 0 −3 1 0 0 0 0 0

0 −126 0 14 0 −3 1 0 0 0 0

255 0 −28 0 5 0 −2 1 0 0 0

0 255 0 −28 0 5 0 −2 1 0 0

−155 0 17 0 −3 0 1 0 −1 1 0

0 −155 0 17 0 −3 0 1 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

while for the action of X−
j we have

M− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0

5 1 0 0 0 0 0 0 0 0 0

0 5 1 0 0 0 0 0 0 0 0

−30 0 4 1 0 0 0 0 0 0 0

0 −30 0 4 1 0 0 0 0 0 0

126 0 −14 0 3 1 0 0 0 0 0

0 126 0 −14 0 3 1 0 0 0 0

−255 0 28 0 −5 0 2 1 0 0 0

0 −255 0 28 0 −5 0 2 1 0 0

155 0 −17 0 3 0 −1 0 1 1 0

0 155 0 −17 0 3 0 −1 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

These lists of coefficients now allow for two direct observations. First, as could be
expected, the coefficients of X+

j and those of X−
j only differ in a change of signs

of all but the leading terms, and secondly, the transition from an even to an odd
degree polynomial just consists in a forward shift of the coefficients. However, there
is more.

In the structure of the above matrix entries one may recognize the Euler poly-
nomials of even degree. Indeed, these polynomials, which we will denote by En(x),
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show the following property:

(7) En(x)− (−1)n+1En(−x) = 2xn,

which, for n even, exactly corresponds to the observed similarity between the
columns of M+ and M−. In order to formulate and verify our observation, we
will need an auxiliary result, as formulated in the following lemma.

Lemma 3.1. Let En(x) be the Euler polynomial of degree n, n ∈ N. Denoting by
en� the �th coefficient in En(x), i.e. putting

(8) En(x) =

n∑
�=0

en� x
�,

the following relation holds for � = 0, . . . , n− 1:

n∑
j=�

(
n

j

)
ej� = −en�

while enn = 1.

Proof. Combine the well-known recurrence relations En(x+1) = 2xn −En(x) and

�(9) En(x+ 1) =
n∑

j=0

(
n

j

)
Ej(x).

The above observation is then formulated in the following theorem.

Theorem 3.1. The polynomials (P j
k+1)

±, resulting from the action of X±
j on the

classical homogeneous powers xk
j , k ∈ N, can be written in terms of the Euler

polynomials of even degree. More precisely, for k odd, one has

(P j
k+1)

+ = X+
j (xk

j ) = Ek+1(xj),(10)

(P j
k+1)

− = X−
j (xk

j ) = Ek+1(−xj),(11)

while for k even, one has

(P j
k+1)

+ = X+
j (xk

j ) = xEk(xj),(12)

(P j
k+1)

− = X−
j (xk

j ) = xEk(−xj).(13)

Proof. The proof of (10) is given below by induction; (11)–(13) can be proven along
similar lines. So take k odd, and denote for simplicity X+

j (xk
j ) as X+(xk). Since

X+(xk) is completely determined by the S-Weyl relation (2), it suffices to prove
that

Δ+Ek+1(x)−X−Δ−(xk) = xk.

Using (9) we directly obtain

Δ+Ek+1(x)−X−Δ−(xk) =
k∑

r=0

(
k + 1

r

)
Er(x) +

k−1∑
�=0

(−1)k−�

(
k

�

)
X−(x�).
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Since � < k, we may now apply the induction hypothesis, which yields

Δ+Ek+1(x)−X−Δ−(xk)

=
k∑

r=0

(
k + 1

r

)
Er(x)−

k−1∑
�=0
ODD

(
k

�

)
E�+1(x) +

k−1∑
�=0

EVEN

(
k

�

)
xE�(x)

+ 2

k−1∑
�=0

(−1)k−�

(
k

�

)
x�+1,

where we have also invoked (7). Rewriting the Euler polynomials explicitly as in
(8), we arrive at

Δ+Ek+1(x)−X−Δ−(xk)

=

k∑
r=0

(
k + 1

r

)(
xr +

r−1∑
�=0

er�x
�

)
−

k−1∑
�=0
ODD

(
k

�

)⎛
⎜⎝x�+1 +

�∑
p=0
ODD

e�+1
p xp

⎞
⎟⎠

+

k−1∑
�=0

EVEN

(
k

�

)⎛
⎜⎝x�+1 +

�−1∑
p=0
ODD

e�px
p+1

⎞
⎟⎠+ 2

k−1∑
�=0

(−1)k−�

(
k

�

)
x�+1.

Since k is odd, the coefficient of xk in the previous expression equals
(
k+1
k

)
−
(

k
k−1

)
=

1. It thus remains to prove that the coefficients of all lower order terms are zero.
For s odd, the coefficient of xs is(

k + 1

s

)
+

k∑
�=s+1

(
k + 1

�

)
e�s −

k−1∑
�=s
ODD

(
k

�

)
e�+1
s +

(
k

s− 1

)
− 2

(
k

s− 1

)

=

(
k

s

)
+

k∑
�=s+1
EVEN

(
k

�

)
e�s,

where we have used the fact that e�s = 0 whenever s and � both are odd. From
Lemma 3.1 it then follows that

k∑
�=s+1

(
k

�

)
e�s = −eks −

(
k

s

)
= −

(
k

s

)

since also eks = 0 as both k and s are odd. Thus we have obtained that the coefficient
of xs indeed equals zero, for s odd. Proceeding similarly, one proves the same for
s even. �

4. Fischer decomposition

One of the basic tools in constructing a discrete function theory is the Fischer de-
composition for homogeneous polynomials. The traditional Fischer decomposition
in harmonic analysis yields an orthogonal decomposition of the space Pk of homo-
geneous polynomials on R

m of given homogeneity k in terms of spaces of harmonic
homogeneous polynomials. In classical continuous Clifford analysis, a refinement
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was obtained, yielding an orthogonal decomposition with respect to the so-called
Fischer inner product of homogeneous polynomials, given by

〈P (x), Q(x)〉 = Sc
[
P (∂x)Q(x)

]
in terms of spaces of monogenic polynomials, i.e. null solutions of the considered
Dirac operator; see e.g. [6]. Here, the notation Sc[·] stands for taking the scalar

part of a Clifford algebra-valued expression, while P (∂x) is a differential operator
obtained by replacing in the polynomial P each variable xj by the corresponding
partial derivative ∂xj

and applying Clifford conjugation. This Fischer inner product
results from a duality argument, called Fischer duality, between the algebra of
vector variables and the algebra of operators. Generalizations as well as refinements
of the Fischer decomposition in other Clifford analysis frameworks can be found
e.g. in [5, 8, 10, 17].

Formally, in the present discrete context, a Fischer inner product of two homo-
geneous polynomials P and Q could be expected to be of the following form:

Sc[P (Δ±
j )

†Q(X±
j )][1]

where † now denotes the Hermitian conjugation, accounting for the chosen Hermit-
ian framework, and sending the basis vector e+j into e−j (and vice versa). However,

a fundamental problem arises. Since Δ+
j commutes with Δ−

j , but X+
j does not

commute with X−
j , a direct duality argument sending X±

j into Δ±
j is no longer

available, whence we need to define the Fischer inner product in another way.
To overcome this problem we propose to work directly on the level of the co-

ordinate variable

ξj = X+
j e−j +X−

j e+j ,

enabling us to work simultaneously on the considered graph and its dual. Similarly,
we also consider the coordinate difference operator

δj = e+j Δ
+
j + e−j Δ

−
j .

In this way, we have in fact decomposed the discrete Dirac operator and the vector
variable respectively as

D =
m∑
j=1

δj , X =
m∑
j=1

ξj .

On account of the skew Weyl relations (2)-(3) for X±
j and Δ±

j , it is easily seen that
ξj and δj satisfy the Weyl relations

δjξj − ξjδj = 1,(14)

δkξj + ξjδk = 0, k �= j.

Moreover, using the intertwining relation EX = X(E + 1), it directly follows that

Eξj = ξj(E + 1).

Observe that, while

ξ2j = e+j e
−
j X

−
j X+

j + e−j e
+
j X

+
j X−

j

is not a scalar, it does form a one-dimensional subspace. Moreover, while the δj ’s
are not scalar operators one still gets

ξj [x
k
j ] = (e+j + e−j )x

k+1
j + (e+j − e−j )x

k
j + lower order terms.
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In particular, we get for the action of natural powers of ξj on the ground state 1,

ξ2kj [1] = x2k
j + c(e+j e

−
j − e−j e

+
j )x

2k−1
j + lower order terms,

ξ2k+1
j [1] = (e+j + e−j )x

2k+1
j + lower order terms,

in which c denotes a constant and the absolute term (corresponding to x0
j) always

is zero. For the sake of completeness, we mention some explicit results for low
degrees:

ξj [1] = (e+j + e−j )xj ,

ξ2j [1] = x2
j + (e+j e

−
j − e−j e

+
j )xj ,

ξ3j [1] = (e+j + e−j )x
3
j − (e+j + e−j )xj ,

ξ4j [1] = x4
j + 2(e+j e

−
j − e−j e

+
j )x

3
j − x2

j − 2(e+j e
−
j − e−j e

+
j )xj ,

ξ5j [1] = (e+j + e−j )x
5
j − 5(e+j + e−j )x

3
j + 4(e+j + e−j )xj .

By means of the above coordinate operators, we may now introduce in a correct
way the Fischer inner product of homogeneous polynomials in the present context.

Definition 4.1. The Fischer inner product of two polynomials P and Q, being
homogeneous of the respective degrees k and m, is given by

(15) 〈P,Q〉 = Sc
[
P (δ)† Q(ξ)[1](0)

]
,

where Q(ξ) denotes the operator obtained by substituting in the polynomial Q the
variable xj by ξj , and P (δ) denotes the difference operator obtained by substituting
in the polynomial P the variable xj by δj . Both P and Q are then acting as
operators on the ground state 1, the result of which is evaluated at the point zero.

Clearly, the name Fischer inner product is, at this moment, not justified. To
further study this Fischer inner product, and in particular, to show that it indeed
represents an inner product on the space of homogeneous polynomials of given
homogeneity, we first need some auxiliary results.

Lemma 4.1. For all n ∈ N we have

δi(ξi)
n[1] = n(ξi)

n−1[1].

Moreover,

(δi)
n(ξi)

n[1] = n!

Proof. Observe that the Weyl relation (14) yields

δi(ξi)
n[1] = (ξn−1

i + ξiδi(ξi)
n−1)[1].

The desired result then follows from a recursive application of this formula. �

Lemma 4.2. For any two multi-indices α = (α1, . . . , αn) and β = (β1, . . . , βn),
with |α| = |β|, it follows that

(δ)α(ξ)β[1] =

{
α! if α = β,
0 if α �= β,

where we have put α! = α1!α2! . . . αn!.

Proof. This follows from Lemma 4.1. �
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The above results eventually lead to the following important property.

Proposition 4.1. For polynomials Pk =
∑

|α|=k

(ξα[1]) pα and Qk =
∑

|α|=k

(ξα[1]) qα,

both homogeneous of degree k, we obtain

〈Pk, Qk〉 =
∑
|α|=k

α! Sc
[
pα

† qα
]
,

where, again, † stands for the Hermitian conjugate.

This property obviously implies that, on the space of homogeneous polynomials
of given homogeneity k, the Fischer inner product is positive definite; i.e. it indeed
represents an inner product. Furthermore, we have the following corollary.

Corollary 4.1. For any polynomial Pk−1 of homogeneity k−1 and any polynomial
Qk of homogeneity k, we have

〈XPk−1, Qk〉 = 〈Pk−1, DQk〉.

This property allows us to prove the following theorem.

Theorem 4.1. For each k ∈ N we have

Πk = Mk +X Πk−1,

where Πk denotes the space of discrete homogeneous polynomials of degree k and
Mk denotes the space of discrete monogenic homogeneous polynomials of degree
k. Furthermore, the subspaces Mk and X Πk−1 are orthogonal with respect to the
Fischer inner product (15).

Proof. Since

Πk = X Πk−1 + (X Πk−1)
⊥,

it suffices to prove that (X Πk−1)
⊥ = Mk−1. To this end, assume that, for some

Pk ∈ Πk we have

〈XPk−1, Pk〉 = 0, for all Pk−1 ∈ Πk−1.

On account of Corollary 4.1 we then have that

〈Pk−1, DPk〉 = 0, for all Pk−1 ∈ Πk−1.

As DPk ∈ Πk−1 we obtain that DPk = 0, or that Pk ∈ Mk. This means that
(X Πk−1)

⊥ ⊂ Mk−1. Conversely, take Pk ∈ Mk. Then we have, for any Pk−1 ∈
Πk−1, that

〈X Pk−1, Pk〉 = 〈Pk−1, DPk〉 = 〈Pk−1, 0〉 = 0,

from which it follows that Mk−1 ⊂ (X Πk−1)
⊥, and therefore Mk−1 = (X Πk−1)

⊥.
�

As a result we obtain the Fischer decomposition with respect to the discrete Dirac
operator D.

Theorem 4.2 (Fischer decomposition). Let Pk be a discrete homogeneous polyno-
mial of degree k. Then

(16) Pk = Mk +XMk−1 +X2Mk−2 + . . .+XkM0,

where each Mj denotes a homogeneous discrete monogenic polynomial of degree j.
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The spaces represented in the above sum still are orthogonal to each other with
respect to the Fischer inner product (15). This is a consequence of the construction
of the Euler operator E, and in particular of (4).

5. Discrete monogenic projection

Finally, we want to obtain an explicit formula for the projection projMPk of a
given homogeneous polynomial Pk on the space of homogeneous discrete monogenic
polynomials.

To this end we observe the following property.

Lemma 5.1. We have that, for any n ∈ N,

DX2n+1 = 2nX2n + 2X2nE +mX2n −X2n+1D,

DX2n = 2nX2n−1 +X2nD.

Proof. This follows by a direct calculation, using the intertwining relations DX +
XD = 2E +m and EX = XE +X. �

Applying the above lemma to a given homogeneous polynomial Pk, we obtain

DX2n+1Pk = (2n+ 2k +m)X2nPk −X2n+1DPk,(17)

DX2nPk = 2nX2n−1Pk +X2nDPk.(18)

Following a well-known strategy developed in [7] for the harmonic projection of
a given homogeneous polynomial, and successfully applied in the Clifford analysis
context in [18], we postulate the following structure for the discrete monogenic
projection r of Pk:

(19) r = Pk + a1XDPk + a2X
2D2Pk + . . .+ akX

kDkPk,

whence it only remains to express that r ∈ Mk by requesting that Dr = 0. This
strategy then will lead to explicit expressions for the coefficients a1, . . . , ak in (19).
For k = 2� this yields

0 = DPk + a1 (2(k − 1) +m)DPk − a1 XD2Pk + 2a2 XD2Pk + a2 X
2D3Pk

+a3 (2 + 2(k − 3) +m)X2D3Pk − a3 X
3D4Pk + . . .

+ak−1 (k +m)Xk−2Dk−1Pk − ak−1X
k−1DkPk + ak kX

k−1DkPk,

while for k = 2�+ 1 we obtain

0 = DPk + a1 (2(k − 1) +m)DPk − a1 XD2Pk + 2a2 XD2Pk + a2 X
2D3Pk

+a3 (2 + 2(k − 3) +m)X2D3Pk − a3 X
3D4Pk + . . .

+ak−1 (k − 1)Xk−2Dk−1Pk + ak−1X
k−1DkPk

+ak (k +m− 1)Xk−1DkPk.

In both cases this leads to the conditions

a1(2k − 2 +m) + 1 = 0,

2a2 − a1 = 0,

a3(2k − 4 +m) + a2 = 0,

...
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ending with

kak − ak−1 = 0 if k = 2�,

ak(k +m− 1) + ak−1 = 0 if k = 2�+ 1.

These calculations result in the following theorem.

Theorem 5.1. The monogenic projection of a homogeneous polynomial Pk of de-
gree k, i.e. projM : Πk 	→ Mk, is given by

projMPk = Pk + a1 XDPk + a2 X
2D2Pk + . . .+ ak X

kDkPk

with

a1 = − 1

2k − 2 +m
, a2 =

a1
2
, a3 = − a2

2k − 4 +m
, . . .

and

ak =
ak−1

k
if k = 2� or ak = − ak−1

k − 1 +m
if k = 2�+ 1.

Repeating a similar procedure for the respective summands in the decomposition
(16), we arrive at the final result.

Theorem 5.2. Each discrete homogeneous polynomial Pk ∈ Πk can be written in
a unique way as

Pk =
k∑

j=0

XjMk−j ,

where Mk−j ≡ Mk−j(Pk) ∈ Mk−j is given by

Mk−j(Pk) =
1

cj

k−j∑
i=0

aiX
iDiDjPk,

where

a2i =
a2i−1

2i
, a2i+1 = − a2i

2k − i− 1 +m
and

cj =

{
(2n)!! 2n(k − 2n+ m

2 )n−1 j = 2n,
(2n)!! 2n+1(k − 2n− 1 + m

2 )n j = 2n+ 1.

Here, (k)n stands for the Pochhammer symbol, viz. (k)n = k(k + 1) . . . (k + n).

Proof. From the (unique) Fischer decomposition

Pk = Mk +XMk−1 + . . .+Xk−1M1 +XkM0,

we obtain that

DjPk = DjXjMk−j + . . .+DjXk−1M1 +DjXkM0,

whence DjXjMk−j is the discrete monogenic projection of the polynomial DjPk.
Furthermore, applying (17)–(18) we obtain

DjXjMk−jj = cjMk−j

with

cj =

{
(2n)!! 2n(k − 2n+ m

2 )n−1 j = 2n,
(2n)!! 2n+1(k − 2n− 1 + m

2 )n j = 2n+ 1,

which concludes the proof. �
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As a consequence, we obtain the dimension of the space of discrete homogeneous
monogenic polynomials of degree k. Indeed, from the Fischer decomposition (16)
we obtain

dimMk = dimΠk − dimΠk−1

while

dimΠk =
(k +m− 1)!

k!(m− 1)!
.

This leads to the following theorem.

Theorem 5.3. The space of discrete homogeneous monogenic polynomials of degree
k has dimension

dimMk =
(k +m− 1)!− k(k +m− 2)!

k!(m− 1)!
=

(k +m− 2)!

k!(m− 2)!
.
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