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Abstract. In this paper we present the building blocks for a function theory

based on fractional Cauchy-Riemann operators. We are going to construct
basic monogenic powers and Fueter series. With these tools we are going
to study Gleason’s problem and reproducing kernel spaces, like the Drury-
Arveson space and de Branges-Rovnyak spaces. We end with a statement on
Schur multipliers in this setting.

1. Introduction

The concept of a monogenic function as a null solution of a Dirac operator not
only allows for a generalization of complex analysis to higher dimensions but it
is also incredibly useful in a variety of situations. First, there is Dirac’s original
equation describing an electron. There is also the concept of monogenic signal as
a higher dimensional equivalent to the concept of analytic signal with its appli-
cations to image processing [7]. Furthermore, its close relation with reproducing
kernel Hilbert spaces leads to many applications in interpolation, sampling, and
systems theory, some of which has only recently been explored. But there exist
circumstances in which null-solutions of the classical Dirac operator are not good
enough. For instance, monogenic functions as null-solutions of the Dirac operator
do not allow for a description of higher symmetries than SU(2) which would re-
quire a Dirac operator which provides a n-fold factorization of the Laplacian [13].
Furthermore, many applications in mathematical optics require a fractional Fourier
transform which is in general only indirectly related to the Dirac operator [11, 18].
To say it more directly, the introduction of fractional derivatives allows for a more
accurate description of physical processes by introducing a memory mechanism in
the process [6].

Working with fractional derivatives has a major disadvantage. Most of the tools
which we are used to in the case of classic derivatives are not available in the
fractional case. This includes such important tools like Leibniz formula, chain rule,
translation invariance, or spherical coordinates [21]. From our point of view the
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most difficult one to overcome is the lack of a Leibniz formula which in the classic
case gives rise to a Heisenberg algebra over the space of polynomials generated by
the derivative and the multiplication operator. Yet, as we are going to show one
can construct a similar approach on the space of suitably defined homogeneous
polynomials. Later this can be extended to the whole space by introducing the so-
called CK-extension and CK-product. The CK-extension provides an isomorphism
between the space of fractional monogenics of a given degree and the corresponding
space of homogeneous polynomials of higher codimension. The later provides a
suitable product between series expansions which still preserves homogeneity. This
construction will allow us to follow ideas from [3,4] to construct reproducing kernel
Hilbert spaces of monogenic functions, in particular, the Drury-Arveson space and
de Branges-Rovnyak spaces associated to Schur multipliers. Furthermore, we are
going to consider Gleason’s problem in this context and its link with Leibenson’s
shift operators.

There exists quite a zoo of fractional derivatives, like Riemann-Liouville, Weyl,
Caputo, and Riesz-Feller. To avoid studying each case individually, we opt here
to work with the so-called Gelfond-Leontiev (or G-L-) derivatives [10, 17]. These
derivatives are based on a representation of fractional derivatives via its action on
power series and contain the above mentioned derivatives as special cases.

2. Preliminaries

2.1. Clifford analysis. Let {e1, . . . , en} be the standard basis of the Euclidean
vector space in Rn. The associated Clifford algebra R0,n is the free algebra gen-
erated by R

n modulo x2 = −|x|2. The defining relation induces the multiplication
rules

eiej + ejei = −2δi,j , i, j = 1, . . . , n,

where δi,j denotes the Kronecker symbol. In particular, as we have e2i = −1, the
standard basis vectors operate as imaginary units.

A vector space basis for R0,n is given by the set

{e0 = 1, eA = el1el2 . . . elr : A = {l1, l2, . . . , lr} , 1 ≤ l1 < · · · < lr ≤ n}.

Each a ∈ R0,n can be written in the form a =
∑

A aA eA, with aA ∈ R. Now, we
introduce the complexified Clifford algebra Cn as the tensor product

C⊗ R0,n =

{
w =

∑
A

wAeA, wA ∈ C, A ⊆ M = {1, . . . , n}
}
,

where the imaginary unit i of C commutes with the basis elements, i.e., iej = eji
for all j = 1, . . . , n.

The conjugation in the Clifford algebra Cn is defined as the automorphism

w �→ w =
∑
A

wA eA,

where wA denotes the usual complex conjugation and eA = elr elr−1
. . . el1 , where

e∅ = 1 and ej = −ej for j = 1, . . . , n. For a vector w =
∑n

j=1 wjej we have

ww = |w|2 :=
∑n

j=1 |wj |2. Hence, each non-zero vector w =
∑n

j=1 wjej has a

unique multiplicative inverse given by w−1 = w
|w|2 .
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A Cn-valued function f over a non-empty domain Ω ⊂ Rn is written as f =∑
A fAeA, with components fA : Ω → C. Properties such as continuity are un-

derstood componentwisely. For example, f =
∑

A fAeA is continuous if and only
if all components fA are continuous. Next, we recall the Euclidean-Dirac opera-
tor D =

∑n
j=1 ej ∂xj

, which factorizes the n-dimensional Euclidean-Laplacian, i.e.,

D2 = −Δ = −
∑n

j=1 ∂
2
xj
. A Cn-valued function f is said to be left-monogenic if it

satisfies Df = 0 on Ω (resp. right-monogenic if it satisfies fD = 0 on Ω).
A left (unitary) module over Cn (left Cn-module for short) is a vector space V

together with an algebra morphism L : Cn �→ End(V ), or to say it more explicitly,
there exists a linear transformation (also called left multiplication) L(a) of V such
that

L(ab+ c) = L(a)L(b) + L(c)

for all a ∈ Cn, and L(1) is the identity operator. In the same way we have a right
(unitary) module if there is a so-called right multiplication R(a) ∈ End(V ) such
that

R(ab+ c) = R(b)R(a) +R(c).

Given either a left or a right multiplication we can always construct a right or a
left multiplication by using any anti-automorphism of the algebra, for instance,

R(a) = L(a).

A bi-module is a module which is both a left- and a right-module, or in other words,
a module where left and right multiplication commute, i.e.,

L(a)R(b) = R(b)L(a), for all a, b ∈ Cn.

If V is a vector space of a Cn-valued function we consider the left (right) multipli-
cation defined by pointwise multiplication

(L(a)f)(x) = a(f(x)) and (R(a)f)(x) = a(f(x)).

Also a mapping K between two right modules V and W is called a Cn-linear
mapping if

K(fa+ g) = K(f)a+K(g).

We should also mention that in this paper we understand by a (left or right) Clifford-
Banach module (see [20] for example). We say that X is a left Banach Cn-module
if X is a left Cn-module and X is also a real Banach space such that for any a ∈ Cn

and x ∈ X,

(2.1) ‖ax‖X ≤ C |a|‖x‖X ,

for some C > 0. In particular, equality occurs in (2.1) if a ∈ C. Similarly, one can
define a right Banach Cn-module. These considerations give rise to the adequate
right modules of Cn-valued functions defined over any suitable subset E of Rn.

Now, considerH to be a complex Hilbert space. Then V := H⊗Cn defines a right
Clifford-Hilbert module (right Hilbert module for short in this paper). Furthermore,
the inner product 〈·, ·〉 in H gives rise to two inner products in V :

(x, y) :=
∑
A

〈xA, yA〉,

〈x, y〉 :=
∑
A,B

〈xA, yB〉eAeB .
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While the first inner product gives rise to a norm the second provides a general-
ization of Riesz’s representation theorem in the sense that a linear functional φ is
continuous if and only if it can be represented by an element fφ ∈ V such that

φ(g) = 〈fφ, g〉.

Many facts from classic Hilbert spaces carry over to the notion of a Hilbert module.
For more details we refer to [12].

2.2. Generalized fractional derivatives. In this section we recall some basic
facts about generalized fractional calculus. We start by presenting the following
definition of generalized differentiation and integration operators.

Let the function

(2.2) ϕ(λ) =
∞∑
k=0

ϕk λk,

be an entire function with order ρ > 0 and degree σ > 0, that is, such that

limk→∞ k
1
ρ k
√
|ϕk| = (σeρ)

1
ρ .

Definition 2.1. Let ϕ(λ) be as in (2.2). We define the Gelfond-Leontiev (G-
L) operator of generalized differentiation with respect to the function ϕ, and its
corresponding G-L integration operator, as acting on an analytic function f(z) =∑∞

k=0 akz
k, |z| < 1, as

(2.3) f �→ Dϕf(z) =

∞∑
k=1

ak
ϕk−1

ϕk
zk−1, f �→ Iϕf(z) =

∞∑
k=0

ak
ϕk+1

ϕk
zk+1.

Hence, under the condition on ϕ that lim supk→∞
k

√∣∣∣ϕk−1

ϕk

∣∣∣ = 1 by the Cauchy-

Hadamard formula, we have that both series in (2.3) inherit the same radius of
convergence R > 0 of the original series f.

More important, we remark that the function ϕ acts as the exponential function
for the Gelfond-Leontiev operator of generalized differentiation since it holds that

Dϕϕ(z) = ϕ(z).

Example 2.1. Let ϕ be the Mittag-Leffler function

(2.4) E 1
ρ ,μ

(λ) =
∞∑
k=0

λk

Γ
(
μ+ k

ρ

) , ρ > 0, μ ∈ C,Re(μ) > 0.

Now one has ϕk=
1

Γ(μ+ k
ρ )

and the operators (2.3) turn into the so-called Dzrbashjan-

Gelfond-Leontiev (D-G-L) operators (a particular case of (2.3)) of differentiation
and integration:

Dρ,μf(z) =

∞∑
k=1

ak
Γ
(
μ+ k

ρ

)
Γ
(
μ+ k−1

ρ

) zk−1, Iρ,μf(z) =

∞∑
k=0

ak
Γ
(
μ+ k

ρ

)
Γ
(
μ+ k+1

ρ

) zk+1.
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We now establish the fractional variable xα ∈ C, which is a fractional complex
power of a real variable to be understood as

(2.5) xα :=

⎧⎨
⎩

exp(α ln |x|), x > 0,
0, x = 0,
exp(α ln |x|+ iαπ), x < 0,

with 0 < α < 1. The authors remark that in the present manuscript they restrict
themselves to the case of α ∈]0, 1[. Indeed, for values of α outside this range one
can always reduce it to the previous case via α = [α] + α̃, where [α] denotes its
integer part and α̃ ∈]0, 1[.

We now consider x =
∑n

i=1 xiei ∈ Cn, where each component xi = xα
i is a

fractional power defined as in (2.5). These variables depend on α ∈]0, 1[ but the
index will be omitted to avoid overloading notation in the text. Based on the above
statements we introduce the fractional Cauchy-Riemann operator

(2.6) D =

n∑
j=0

ej∂
α
j = ∂α

0 + e1∂
α
1 + · · ·+ en∂

α
n ,

where ∂α
j represents the G-L generalized derivative (2.3) with respect to the j-

coordinate and the Mittag-Leffler function with α = 1/ρ and μ = 1. This choice
corresponds to the most important case equivalent to the Caputo derivative, but
does not affect the generality of the results. Again, for simplifying the notation
we omit the dependence on α since it is always a fixed parameter. Analogous to
the Euclidean case a Cn-valued function u is called fractional left-monogenic if it
satisfies Du = 0 on Ω (resp. fractional right-monogenic if it satisfies uD = 0 on Ω).
Moreover, we have

(2.7) (∂α
j )

s(xk)
m =

{
ϕ(m,m− s)(xk)

m−sδj,k, s ≤ m,
0, otherwise

where m, s ∈ N, δj,k denotes the Kronecker delta and ϕ(a, b) := ϕa

ϕb
= Γ(aα+1)

Γ(bα+1) . This

last term can be viewed as a (non-constant) deformation factor of the standard
derivative.

3. Fractional monogenic functions

We now address the problem of construction of a basis for the space of homo-
geneous monogenic fractional polynomials. Following the ideas in [19], we consider
the vector variable zj = xj −ejx0, j = 1, . . . , n. It is easy to check that these vector
variables are building blocks for a future construction of monogenic functions, i.e.,

Dzj =
n∑

k=0

ek∂
α
k (xj − ejx0) = (ej − ej)ϕ(1, 0) = 0.

Obviously, the choice of these variables is not unique. For instance, let z̃1 = e2x1−
e1x2, z̃2 = e3x1 − e1x3. Then 1

2 (z̃1z̃2 + z̃2z̃1) is also a homogeneous monogenic
fractional polynomial. This can be easily checked by straightforward calculations.
However, the deformation mentioned in (2.7) now has an important crippling role.
In order to construct homogeneous monogenic fractional polynomials it is required
to compute for each basis element a correction factor. Although this can be done it
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is a troublesome and clumsy procedure, thus an indicator that such powers (or their
modifications) are not convenient building blocks. Therefore, we turn our attention
to the Cauchy-Kovalevskaya (CK-) extension (see [3, 9, 22]).

Lemma 3.1. Given a homogeneous product Pν(x1, . . . ,xn) := xν1
1 · · ·xνn

n , ν =
(ν1, . . . , νn) ∈ Nn

0 , its Cauchy-Kovalevskaya extension

(3.1) CKα[Pν ](x0,x1, . . . ,xn) := [Eα,1 (−x0D)]x
ν1
1 · · ·xνn

n ,

is a monogenic polynomial homogeneous of degree |ν| := ν1+ · · ·+νn. Hereby, Eα,1

denotes the Mittag-Leffler function and D :=
∑n

j=1 ej∂
α
j .

Proof. Indeed, we have D = ∂α
0 + D so that

DCKα[Pν ](x0,x1, . . . ,xn) = D [Eα,1 (−x0D)]x
ν1
1 · · ·xνn

n

= (∂α
0 + D)

∞∑
k=0

(−1)k(x0)
k

Γ(kα+ 1)
D

k(xν1
1 · · ·xνn

n )

=

∞∑
k=1

(−1)kϕ(k, k − 1)(x0)
k−1

Γ(kα+ 1)
D

k(xν1
1 · · ·xνn

n )

+

∞∑
k=0

(−1)k(x0)
k

Γ(kα+ 1)
D

k+1(xν1
1 · · ·xνn

n )

=

∞∑
k=0

(−1)k+1ϕ(k + 1, k)(x0)
k

Γ((k + 1)α+ 1)
D

k+1(xν1
1 · · ·xνn

n )

+

∞∑
k=0

(−1)k(x0)
k

Γ(kα+ 1)
D

k+1(xν1
1 · · ·xνn

n )

=
∞∑
k=0

⎡
⎢⎢⎣− ϕ(k + 1, k)

Γ((k + 1)α+ 1)
+

1

Γ(kα+ 1)︸ ︷︷ ︸
=0

⎤
⎥⎥⎦ (−1)k(x0)

k
D

k+1(xν1
1 · · ·xνn

n ) = 0. �

The importance of the CK-extension lies in the fact that it provides an isomor-
phism between the space of fractional monogenics generated by (x0,x1, . . . ,xn)
with coefficients in the Clifford algebra and the space of homogeneous polynomials
in the variables (x1, . . . ,xn) with Clifford-valued coefficients.

First, we consider the monogenic powers

(3.2) ζν(x) = CKα[Pν ](x0,x1, . . . ,xn) :=

|ν|∑
j=0

(−1)j(x0)
j

Γ(jα+ 1)
D

j(xν1
1 · · ·xνn

n ),

where |ν| = ν1 + · · ·+ νn.

Example 3.1. We have ζ0(x) = 1, while

ζj(x) := ζej (x) = CKα[xj ](x0,x1, . . . ,xn) =
xj

Γ(1)
− x0

Γ(α+ 1)
Dxj

= xj −
x0

Γ(α+ 1)
ϕ(1, 0)ej = xj − x0ej = zj , j = 1, . . . , n.

Second, we consider the right Clifford module of power series.
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Definition 3.1. We define the right Clifford module M as the space of monogenic
powers

(3.3) f(x) =

∞∑
k=0

∑
|ν|=k

ζν(x)fν =

∞∑
k=0

∑
|ν|=k

CKα[Pν ](x0,x1, . . . ,xn)fν ,

where
∑

ν |fν |2 < ∞.

The series in (3.3) is called Fueter series since for α = 1 it corresponds to the
classical Fueter series.

From the construction it is clear that Df = 0 for all f ∈ M. Furthermore, it is
easy to see that for (∂α)μ := (∂α

1 )
μ1 · · · (∂α

n )
μn we get

(∂α)μf(x) =

∞∑
k=0

∑
|ν|=k

(∂α)μζν(x)fν

:=
∞∑
k=0

∑
|ν|=k

|ν|∑
l=0

(−x0D)
l

Γ(αl+ 1)
(∂α

1 )
μ1 · · · (∂α

n )
μn(xν1

1 · · ·xνn
n )fν

=
∞∑
k=0

∑
|ν|=k

Πk
j=1ϕ(νj , νj − μj)

|ν|∑
l=0

(−x0D)
l

Γ(αl + 1)
(xν1

1 · · ·xνn
n )fν

=

∞∑
l=0

∑
|ν|=l

ϕ(ν,ν − μ)ζν−μ(x)fν .

Hereby, we set ϕ(ν,ν − μ) = Πk
j=1ϕ(νj , νj − μj).

Here, to obtain the Clifford-valued coefficients fν we take (up to a constant)
(∂α)νf(x)|x=0 . This leads us to the formula

fν :=
1

ϕ(ν, 0)
(∂α)νf(x)|x=0 .

Here, we have to emphasize that we deal with G-L derivatives in which case the
ground state, that is to say, the function [1] which is annihilated via ∂α[1](x) = 0,
is [1](x) = 1. However, and in general, the ground state is not a constant but an
analytic function with inverse in a neighborhood of zero. Thus, to overcome this
problem it is required to first multiply with the inverse of the ground state function
[1](x)−1.

Finally, we define a product between monogenic power series. Let f, g ∈ M have
the series expansion

f(x) =

∞∑
k=0

∑
|ν|=k

ζν(x)fν , g(x) =

∞∑
k=0

∑
|μ|=k

ζμ(x)gμ.

Then we consider the following Cauchy product between both series:

(f ⊗ g)(x) :=
∞∑
k=0

∑
|ν|=k

ζν(x)

⎛
⎝ ∑

0≤|μ|≤|ν|
fμgν−μ

⎞
⎠ .

The above considerations about our series expansion allow us to study our prob-
lems in the setting of the ring of monogenic power series (cf. [3] for the case of
α = 1).
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4. A Gleason-type problem

We now aim to express a radial difference f(x)−f(0) as a sum of linear monogenic
powers (our building blocks) times certain fixed bounded operators. Since the
corresponding term in the fractional case is f(x) − [1](x)f0, or in our particular
case f(x) − f0, we are going to express it in terms of reproducing kernels. To
this end we are going to need some basic concepts on reproducing kernel Hilbert
modules in the case of Clifford-valued functions.

We address the question of reproducing kernel the right-Hilbert module (RKHS)
arising from our monogenic formal powers. We begin by fixing the weights. Given
a sequence c = (cν), cν ≥ 0, for all ν ∈ Nn, we define its support as

(4.1) supp(c) := {ν ∈ N
n : cν �= 0}.

We can define the kernel

(4.2) kc(x,y) =
∞∑
k=0

∑
ν∈supp(c),|ν|=k

cνζ
ν(x)ζν(y)

associated to the domain
(4.3)

Ωc =

⎧⎨
⎩x0 + x1e1 + · · ·+ xnen ∈ R

n+1 :
∞∑
k=0

∑
ν∈supp(c),|ν|=k

cν |ζν(x)|2 < ∞

⎫⎬
⎭ .

To simplify our notation we shall write x ∈ Ωc whenever x0+x1e1+ · · ·+xnen ∈
Ωc.

We denote by H(c) the associated reproducing kernel right-Hilbert module. Here
f(x) =

∑
ν∈supp(c) ζ

ν(x)fν belongs to H(c) iff

‖f‖2c :=
∑

ν∈supp(c)

|fν |2
cν

< ∞

and we have the reproducing formula

f(x) =

∫
Ωc

kc(x,y)f(y)dy

which preserves right-linearity with respect to Clifford-valued constants.
We can introduce the Leibenson’s shift operator

Rjf =
∞∑
k=0

∑
|ν|=k

ζν−ej
ϕ(νj , νj − 1)∑n
r=0 ϕ(νr, νr − 1)

fν .

This operator is bounded in H(c) iff the set supp(c) is lower inclusive and it
holds that

(4.4) sup
j

(
ϕ(νj , νj − 1)∑n

k=0 ϕ(νk, νk − 1)

)2
cν

cν−ej

.

In particular, we can easily see that these operators commute

RjRlf =
∞∑
k=0

∑
|ν|=k

ζν−ej−el
ϕ(νj , νj − 1)∑n
r=0 ϕ(νr, νr − 1)

ϕ(νl, νl − 1)∑n
r=0 ϕ(νr, νr − 1)

fν = RlRjf.
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This leads us to the following version of Gleason’s problem:
Let M be a set of functions which are fractional monogenic in a neighborhood

of the origin. Given f ∈ M we want to find functions p1, . . . , pn ∈ M such that

f(x)− f(0) =

n∑
j=1

(ζj ⊗ pj)(x).

Theorem 4.1. Gleason’s problem is solvable in the reproducing kernel right-Hilbert
module H(c) where the weights c satisfy (4.4) and our Leibenson’s shift operators
provide the only commutative solution to the problem.

The proof of solvability is straightforward:
n∑

j=1

ζj ⊗Rjf =

∞∑
k=0

∑
|ν|=k

n∑
j=1

ζj ⊗ ζν−ej
ϕ(νj , νj − 1)∑n
l=0 ϕ(νl, νl − 1)

fν

=
∞∑
k=0

∑
|ν|=k

ζν
n∑

j=1

ϕ(νj , νj − 1)∑n
l=0 ϕ(νl, νl − 1)

fν = f − f0.

Hereby, we use that
∑n

j=1
ϕ(νj ,νj−1)∑n
l=0 ϕ(νl,νl−1) = 1.

Let us now assume that T1, . . . , Tn are commuting bounded operators on H(c)
which solve Gleason’s problem. Then we have for f ∈ H(c),

f(x) = f0 +
n∑

j=1

(ζj ⊗ Tjf)(x)

= f0 +

n∑
j=1

ζj(x)Tjf +

n∑
j,l=1

(ζj ⊗ ζl ⊗ TlTjf)(x).

Comparison with the power series expansion of f leads to

f(x) =

∞∑
k=0

∑
|ν|=k

∑n
l1=0 ϕ(νl1 , νl1 − 1)

ϕ(ν, 0)

×
∑n

l2=0 ϕ(νl2 − 1, νl2 − 2) . . .
∑n

lk=0 ϕ(νlk − k + 1, νlk − k)

ϕ(ν, 0)
ζν(x)(T νf),

where ϕ(ν, 0) = Πn
l=1ϕ(νl, 0). This means that we have

T νf =

∑n
l1=0 ϕ(νl1 , νl1 − 1)

ϕ(ν, 0)

×
∑n

l2=0 ϕ(νl2 − 1, νl2 − 2) . . .
∑n

lk=0 ϕ(νlk − k + 1, νlk − k)

ϕ(ν, 0)
fν

since the coefficients are complex-valued and commute with the basic polynomial
powers ζν .

5. Fractional monogenic operator-valued functions

Let us considerH as a right Clifford-Banach module. Under the sesquilinear form
〈f, g〉 =

∫
Rn+1 f(x)g(x)dx its dual space H∗ is also a right-linear Clifford Banach

module. Let Ω ⊂ Rn+1 be a domain containing the origin and f : Ω �→ H∗ be a
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mapping such that for all h ∈ H we have f(·)h being a (left-)monogenic function
in Ω. Such a mapping is called an H∗-valued (left-)monogenic function in Ω.

As in the classical case [3] we can state the following theorem.

Theorem 5.1. Let f be an H∗-valued monogenic function in a ball B(0, R) centered
at the origin with radius R. Then f has a representation via

f(x) =
∞∑
k=0

∑
|ν|=k

ζν(x)fν

where fν ∈ H∗ are linear functionals over H. Hereby, the series converges normally
in B(0, R).

Proof. Let us start with the remark that the set of functionals f(x) : |x| ≤ R′ is
uniformly bounded for each R′ < R, i.e., sup|x|≤R′ |f(x)| < ∞. We choose h ∈ H
arbitrarily and we consider

f(x)h =

∞∑
k=0

Pk(x, h)

as the expansion of f(x)h into a series of fractional homogeneous polynomials of x.
For the terms Pk(x, h) we have |Pk(x, h)| ≤ C‖h‖ sup|x|≤R′ ‖f(x)‖. Furthermore,

we have that Pk(x, h) is linear in h, i.e., Pk(x, h) = Pk(x)h with Pk(x) ∈ H∗ and
the series

∑
k Pk(x) converges normally in B(0, R) with respect to the operator

norm. Since Pk(x)h is fractional monogenic in x we can write it as Pk(x)h =∑
|ν|=k ζ

ν(x)fν(h) with fν(h) being linear and bounded in h. This leads to our
statement. �

The following corollary is a straightforward consequence of the previous theorem.

Corollary 5.1.1. A reproducing kernel k(x,y) can be represented as

k(x,y) = g(x)g(y)∗,

where g(x) is an H(k)∗-valued monogenic function and H(k)∗ denotes the dual of
the RKHS associated to k = k(·, ·).

Since k(x,y) is a reproducing kernel we have k(x,y) = 〈k(·,y), k(·,x)〉. In-
troducing the operator g(x) such that g(x)∗1 = k(·,x) is the operator of point
evaluation we get, immediately, the above corollary.

6. Reproducing kernel spaces

Let us call the RKHS with the reproducing kernel kc(x,y) where the coefficients
are given by

cν=

∑n
l1=0 ϕ(νl1 , νl1 − 1)

∑n
l2=0 ϕ(νl2 − 1, νl2 − 2) . . .

∑n
lk=0 ϕ(νlk − k+1, νlk − k)

ϕ(ν, 0)
,

where k = |ν|, the fractional Drury-Arveson space (or module) A. For this kernel
we can state directly the following theorem.

Theorem 6.1. Consider

cν=

∑n
l1=0 ϕ(νl1 , νl1 − 1)

∑n
l2=0 ϕ(νl2 − 1, νl2 − 2) . . .

∑n
lk=0 ϕ(νlk − k+1, νlk − k)

ϕ(ν, 0)
,
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where k = |ν|. Then Ωc is the ellipsoid

Ωc = {x0 + x1e1 + · · ·+ xnen ∈ R
n+1 : n|x0|2α + |x1|2α + · · ·+ |xn|2α < 1}

and (recall x = xα
0 + xα

1 e1 + · · ·+ xα
nen, y = yα0 + yα1 e1 + · · ·+ yαnen)

kA(x,y) := (1− 〈ζ(x), ζ(y)〉)−⊗
.

Hereby, we have

(1− 〈ζ(x), ζ(y)〉)−⊗ =
∞∑
k=0

〈ζ(x), ζ(y)〉⊗k,

where the products are taken in the sense of the CK-product ⊗. The ellipsoid
comes from the fact that |ζ1|2 + |ζ2|2 + · · ·+ |ζn|2 = n|x0|2α + |x1|2α + · · ·+ |xn|2α.

Theorem 6.2. Let us denote by C the operator of evaluation at the origin, i.e.,

Cf :=
1

ϕ(ν, 0)
((∂α)νf(x))|x=0

and by Mζj the multiplication operator Mζjf = f ⊗ ζj. Then we have

(6.1) (I −
n∑

j=1

MζjM
∗
ζj ) = C∗C

if and only if cν =
∑n

l1=0 ϕ(νl1
,νl1

−1)
∑n

l2=0 ϕ(νl2
−1,νl2

−2)...
∑n

lk=0 ϕ(νlk
−k+1,νlk

−k)

ϕ(ν,0) , i.e.,

if and only if f belongs to the fractional Drury-Arveson space A.

The proof of this theorem is immediate if we apply the operator identity (6.1)
to the kernel kc and solve the resulting system.

As in the classical case we have the following corollary.

Corollary 6.2.1. The multiplication operator Mζj is a continuous operator in the
fractional Drury-Arveson space and its adjoint is given by the Leibenson’s shift
operator Rj.

Now, we can consider a function s such that the kernel

ks(x,y) =
∞∑
k=0

∑
|ν|=k

cν

(
ζν(x)ζν(y)− (ζν ⊗ s)(x)(ζν ⊗ s)(y)

)
is positive. Such a function will be called a Schur multiplier. The reason is that
such a function defines an operator Ms acting on a function f associated to the
sequence (fν)ν as

Msf =
∑
ν

ζν

⎛
⎝ ∑

|μ|≤|ν|
sμfν−μ

⎞
⎠

and this operator is a contraction from 
2 into the fractional Drury-Arveson space
A. Please, note that Ms is a CK-multiplication of f with s from the left. This
allows us write ks(·, y) = (I −MsM

∗
s )kA and the right module operator range

H(s) := (I −MsM
∗
s )

1
2A

is the reproducing kernel module which is the counterpart to the de Branges-
Rovnyak space in our setting. This operator range definition is one of the charac-
terizations of de Brange-Rovnyak spaces [2, 8].
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Let 
2(Cn) denote the space Cn-valued sequences {(fν)ν : ν ∈ Nn and fν ∈ Cn}
such that

∑
cν |fν |2 < ∞.

Theorem 6.3. Given a H∗-valued Schur multiplier s, then there exists a co-
isometry

V =

⎛
⎜⎜⎜⎜⎜⎝

T1 F1

T2 F2

...
...

Tn Fn

G H

⎞
⎟⎟⎟⎟⎟⎠ :

(
H(s)
H

)
�→

(
H(s)n

H

)

such that

f(x)− f(0) =

n∑
j=1

(ζj ⊗ Tj)(x),

(s(x)− s(0))h =

n∑
j=1

(ζj ⊗ Fj)(x),

Gf = f(0),

Hf = s(0)h.

Furthermore, s(x) admits the representation

s(x)h = Hh+

n∑
k=1

∑
ν∈Nn

cν(ζj ⊗ ζν)(x)GT νFkh, x ∈ Ω, h ∈ H,

where T ν := T ν1
1 × · · · × T νn

n .

Proof. We denote by H(s)n the closure in H(s)n of the linear span of the elements
of the form

wy =

⎛
⎜⎝ R1ks(·,y)

...
Rnks(·,y)

⎞
⎟⎠ =

⎛
⎜⎝ (I −MsM

∗
s )R1kA(·,y)
...

(I −MsM
∗
s )RnkA(·,y)

⎞
⎟⎠ , y ∈ Ω.

We define

(T̂wyq)(x) = (ks(x,y)− ks(x, 0))q, (F̂wyq)(x) = (s(y)∗ − s(0)∗)q,

(Ĝq)(x) = ks(x, 0)q, Ĥq = s(0)∗q,

keeping in mind the isometry〈(
T̂wy1

q1 + Ĝp1
F̂wy1

q1 + Ĥp1

)
,

(
T̂wy2

q2 + Ĝp2
F̂wy2

q2 + Ĥp2

)〉
=

〈(
wy1

q1
p1

)
,

(
wy2

q2
p2

)〉
,

for any y1,y2 ∈ Ω and p1, p2, q1, q2 ∈ Cn. The latter isometry is important for the
definition of the operators since a priori a linear combination of wyi

could be zero
and correspond to a non-zero image. The isometry formula overcomes that problem
since a densely defined isometric relation between Hilbert modules extends to the

graph of an isometry. Hence, the operator matrix V̂ =
(

T̂ Ĝ
F̂ Ĥ

)
can be extended

as an isometry from
(H(s)

H
)
into

(H(s)n

H
)
. Let us set V = ( T G

F H ) = V̂ ∗. Then

the previous relations imply f(x) − f(0) =
∑n

j=1(ζj ⊗ Tj)(x), (s(x)− s(0))h =∑n
j=1(ζj ⊗ Fj)(x), Gf = f(0) and Hf = s(0)h. Now, iterating f(x) − f(0) =∑n
j=1(ζj ⊗ Tj)(x) as before leads to the representation for s(x)h. �
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Theorem 6.4. Let G,H be right Cn-valued Hilbert modules and let

V =

⎛
⎜⎜⎜⎝

T1 F1

...
...

Tn Fn

G H

⎞
⎟⎟⎟⎠ :

(
G
H

)
�→

(
Gn

Cn

)

be a co-isometry. Then

sV (x) = H +

n∑
k=1

∑
ν∈Nn

cν(ζj ⊗ ζν)(x)GT νFk, x ∈ Ω,

is an H∗-valued Schur multiplier.

Proof. We define

Aμ(x) =
∑
ν∈Nn

cν
(
Πn

j=1(ζj ⊗ ζν+μ)(x)GT ν
)
,

Bμ(x) =
∑
ν∈Nn

cν ζν+μ(x)GT ν , C(x) =
∑
ν∈Nn

cν ζν(x)GT ν .

We get

Aμ(x)Aμ(y)
∗ + ζν(x)ζν(y) = (Aμ(x)ζ

ν(x))V V ∗ (Aμ(y)ζ
ν(y))

∗

= [Bμ(x)(ζ
ν ⊗ sV )(x)] [Bμ(y)(ζ

ν ⊗ sV )(y)]
∗

= Bμ(x)Bμ(y)
∗ + (ζν ⊗ sV )(x) [(ζ

ν ⊗ sV )(y)]
∗
.

Hence,

ksV (x,y) =
∑
μ∈Nn

cμ

(
ζμ(x)ζμ(y)− (ζν ⊗ sV )(x)(ζ

ν ⊗ sV )(y)
∗
)

=
∑
μ∈Nn

cμ (Bμ(x)Bμ(y)
∗ −Aμ(x)Aμ(y)

∗) .

Furthermore,

∑
μ∈Nn

cμ

⎛
⎝ n∑

j=1

(ζν+μ ⊗ ζj)(x)GT ν(Tη)∗G∗ζν+μ ⊗ ζj)(y)

⎞
⎠

=
n∑

j=1

∑
μ:μn>0

μn

|μ| cμ ζν+μ(x)GT ν(Tη)∗G∗ζη+μ(y)

=
∑

μ:|μ|>0

ζν+μ(x)GT ν(Tη)∗G∗ζη+μ(y),

so that ksV (x,y) = C(x)C(y)∗. �

As a concluding remark we would like to point out that with the machinery which
was just developed in this paper one can go further and define Blaschke factors and
products, define rational functions and introduce the counterpart of Schur-Agler
classes in this setting [1, 5]. These should have applications to fractional linear
systems [14, 15].
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