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Abstract. In this paper we construct a continuous wavelet transform (CWT)
on the sphere Sn−1 based on the conformal group of the sphere, the Lorentz
group Spin(1, n). For this purpose, we present a short survey on the existing
techniques of continuous wavelet transform and of conformal transformations
on the unit sphere. We decompose the conformal group into the maximal
compact subgroup of rotations Spin(n) and the set of Möbius transformations
of the form ϕa(x) = (x − a)(1 + ax)−1, where a ∈ Bn and Bn denotes the
unit ball in R

n. Based on a study of the influence of the parameter a arising
in the definition of dilations/contractions on the sphere we define a class of
local conformal dilation operators and consequently a family of continuous
wavelet transforms for the Hilbert space of square integrable functions on the
sphere L2(Sn−1) and the Hardy space H2. In the end we construct Banach
frames for our wavelets and prove Jackson-type theorems for the best n-point
approximation.

1. Introduction. In recent years the research in Fourier Analysis and Approxima-
tion Theory has been extended from the classical setting, i.e., from the investigation
in Rn and T, respectively, to the investigation of manifolds. One of the most im-
portant examples is the case of the unit sphere. Here, spherical harmonics and
its derivates, in particular inner spherical monogenics, present a clear advantage.
But while in a purely analytic setting it is not so easy to imagine situations where
spherical harmonics - as polynomials - are not the best choice for approximation,
this is not the same in cases where the approximation should lead to a numeri-
cal algorithm. In fact there are several problems arising for spherical monogenics,
among others the fast increasing of the number of spherical monogenics of the same
degree, the stability of the numerical algorithms for the orthonormalization process
and the badly conditioned matrices for the best approximation.

On the other hand all these problems do not exist (or are easily solvable) in
classical wavelet theory (c.f. [27], [17]), therefore, it seems only natural to construct
wavelets on the sphere. A number of attempts have been made to extend wavelets
to the sphere, mainly via stereographic projection or using reproducing kernel ap-
proximations based on spherical harmonics (c.f. [20] and references therein). The
first satisfactory approach is that of Holschneider ([22]), introducing an abstract
parameter that plays the role of dilations but has to fulfill a number of assump-
tions and is therefore difficult to compute. But, it is possible to introduce local
dilations in a quite natural way on the sphere if one uses the conformal group, that
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is, the Lorentz group SO0(1, n). In [3], the authors use, for the 2-sphere, the Iwa-
sawa decomposition of SO0(1, 3) (or KAN -decomposition, where K is the maximal
compact subgroup, A = SO0(1, 1) ∼= R ∼= R+

∗ is the subgroup of Lorentz boosts
in the z−direction and N ∼= C is a two dimensional abelian subgroup). They use
the parameter space X ∼= SO0(1, 3)/N ∼= SO(3) · R+

∗ , i.e., the product of SO(3)
for motions and R+

∗ for dilations on S2. Here we want to remark that using this
decomposition some information is lost. A generalization of this approach for the
n-sphere is presented in [4]. For a more complete treatment of the spherical wavelet
transform in this framework and the correspondence between spherical and Eu-
clidean wavelets we refer to [32]. More recently, in [28], the authors extend the case
of isotropic dilations on the 2-sphere to the case of anisotropic dilations defined on
the 2-sphere in two orthogonal directions, obtaining a generalization of the CWT
defined by Antoine and Vandergheynst [3]. They develop also fast algorithms for
performing the directional continuous wavelet analysis.

Nevertheless, this approach has two main drawbacks. First, due to the Iwasawa
decomposition it is limited to dilations centered at the north pole and second it does
not have a nice geometric description. But this nice geometric description exists in
the language of Clifford analysis.

Therefore, we want to define a CWT on the unit sphere which makes use of the
conformal group of the sphere without restricting to the Iwasawa decomposition.
In this way we will generalize the dilation operator defined in [4]. Our confor-
mal dilation operator is clearly different from the dilation operator defined in the
anisotropic case, which is no longer conformal (see [28]). Our approach will use
some well known facts in Clifford Analysis and from wavelet theory. Therefore, we
will omit some of the proofs which can be found in the literature.

In this area the study of the invariance group of null solutions of the Euclidean
Dirac operator is of major importance (see [5], [18]). In the case of the sphere
this group coincides with the group of Möbius transformations leaving the unit
ball invariant. One possible description of this group is in terms of a projective
identification of the points in the Euclidean space Rn with the rays in the null cone
in R

1,n+1 (see [23], [12], [10]), [11]). Hence, the Möbius group is identified with the
group Spin(1, n+ 1). This identification has been the main theme of several works
on Clifford Analysis (see [12], [19]). Also related with this approach is the study of
Clifford Analysis on hyperbolic spaces, due to the fact that the subgroup Spin(1, n)
of Möbius transformations leaving the unit sphere invariant is the isometry group
of these non-Euclidean geometries. For an overview of the function theory in the
hyperbolic unit ball we refer the work of D. Eelbode ([19]). Furthermore, for the
connection between wavelet theory and Clifford Analysis we also would like to refer
to [6], [7], [13], [14], and [24].

In the end we aim to establish frames for our continuous wavelet transform as
an alternative to the use of spherical harmonics as approximating functions on the
unit sphere Sn−1. We will construct such frames based on the abstract approach
by Dahlke, Steidl, and Teschke [15] via convenient representations of the conformal
group and we establish a Jackson-type theorem for nonlinear approximations, which
also includes the case of best approximation in the L2-space.

2. Preliminaries. We denote by R
p,q the n−dimensional vectorial space over R

(n = p+ q) endowed with an orthonormal basis ei, i = 1, . . . , n, and with signature
(p, q) induced by the non-degenerate bilinear form B(x, y) such that B(ei, ei) = −1
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for 1 ≤ i ≤ p and B(ei, ei) = 1 for p < i ≤ n. We define Rp,q as the universal
real algebra generated by Rp,q which preserves the bilinear form B(x, y). Hence
we have e2i = −B(ei, ei), i = 1, . . . , n and eiej + ejei = 0, i 6= j. For a vector x
we have that x2 = −B(x, x) is real valued. A vector is said to be invertible if
and only if it is non-isotropic. In R0,n we have that each non-zero vector y is
invertible. From now on we consider e1, . . . , en as the canonical basis in Rn for
a more simple geometrical interpretation. In this framework the Euclidean Dirac
operator ∂x =

∑n
i=1 ei∂xi

arises as a natural Clifford-valued first-order operator.
Functions, which are annihilated by the Dirac operator ∂x, i.e. ∂xf = 0, are called
left-monogenic functions.

We define the Clifford conjugation a 7→ a by ab = ba, ei = −ei, and 1 = 1. As a
consequence, the inverse of a vector y is given by y−1 = y/|y|2. We remark that due
to the non-commutative character of Clifford algebras, the inverse at left is in general
different from the inverse at right. Usually we denote by x

y the product xy−1, there

is, by means of the right-hand side inverse. The particular linear combination of
basic elements ei1 . . . eik , (1 ≤ i1 < . . . < ik ≤ n), with equal length k is designated
a k−vector and we shall denote by [x]k the k-vector part of x ∈ Rp,q. The linear
subspace over R spanned by the elements of equal length k is to be called the space
of k−vectors Rkp,q.

We introduce the Spin group Spin(p, q) of all even finite products of invertible
vectors s such that ss = ±1. For each s ∈ Spin(p, q) we have that the mapping
χ(s) : x 7→ χ(s)x = sxs−1 is a special orthogonal transformation, thus setting
Spin(p, q) as a double covering of SO(p, q).

3. Conformal group of the unit sphere. Let us now take a look at the special
case of the conformal group over the sphere. In [25] the group of conformal mappings
of the open unit sphere Sn−1 is represented by Vahlen matrices and is denoted by
M(Bn).

We can parameterize this group in the form M(Bn) ∼ SO(n)×Bn where SO(n)
is the maximal compact subgroup of M(Bn) and Bn is identified with the left cosets
M(Bn)\SO(n), which gives rise to the set of Möbius transformations

ϕa(x) = (x− a)(1 + ax)−1, a ∈ R
n : |a| < 1. (1)

This set of Möbius transformations map the unit ball onto itself and also the unit
sphere onto itself.

The composition of two Möbius transformations of type (1) is (up to a rota-
tion) again a Möbius transformation of type (1). In fact we have ϕa ◦ ϕb(x) =
qϕ(1−ab)−1(a+b)(x)q, where q = 1−ab

|1−ab| . We denote by a × b = (1 − ab)−1(a + b)

the symbol of the new Möbius transformation. The symbol satisfies the relation
(1 − ab)−1(a + b) = (a + b)(1 − ba)−1. We notice that the neutral element under
this operation is ϕ0 ≡ Id while the inverse is given by ϕ−1

a (x) = ϕ−a(x). It is well-
known that G = (M(Bn), ◦) is a (non-abelian) locally compact group [1], [29]. We
can make an isomorphism between the subset of Möbius transformations of type
(1) mapping the unit ball onto itself and the set of points G∗ = (Bn,×) by means
of an identification of each ϕa ↔ a ∈ Bn and ϕa ◦ ϕb ↔ a× b = (1 + ab)−1(a+ b).
Moreover, for each a ∈ Bn the points a/|a| and −a/|a| are the fixed points of ϕa.

Of special importance for this paper are the following two types of subgroups of
M(Bn).
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I) Subgroups of dimension n−1: Let ω ∈ Sn−1. We consider the hyperplane
defined by < ω, x >= 0 and we define the ball Bn−1 as the intersection of the unit
ball with this hyperplane. Then we have:

Proposition 1. The set of Möbius tranformations ϕa with a ∈ Bn−1 forms (up to
rotations) a subgroup of M(Bn).

II) Subgroups of dimension one: Let L be the segment resulting from the
intersection of the unit ball with the straight line passing through the origin and
spanned by ω. Then we have:

Proposition 2. The set of Möbius transformations ϕa with a ∈ L forms an abelian
subgroup of M(Bn) of dimension one.

4. Hyperbolic model. For the construction of a theory of wavelets the study of
dilations is of foremost importance. In the case of the sphere these dilations are not
given by simple Euclidean dilations through inverse stereographic projection, but
by hyperbolic rotations. We consider the Clifford Algebra R1,n, together with the
special identification ǫ := en+1, the vector that spans the time-axis.

A pure boost is viewed as a transformation B(ω) which belongs to the Lie algebra
generated by the bi-vectors of the form ǫω, with ω ∈ Sn−1. It has the general form

s = cosh
α

2
+ ǫω sinh

α

2
, α ∈ R, ω ∈ Sn−1, (2)

and it acts on space-time vectors according to the transformations rules X → X ′ =
sXs, and on functions via the (Spin-invariant) L or H−representations

F (X) → L(s)F (X) = sF (sXs)

F (X) → H(s)F (X) = sF (sXs)s.

Proposition 3. Let ξ =
∑n
i=1 ξiei be a point on the sphere and s of the form (2).

Then the boost’s action ξ′ = sξs yields the point on the sphere

ξ′ =

n∑

i=1

ξi + ((coshα− 1) < ξ, ω > − sinhα)ωi
coshα− sinhα < ξ, ω >

ei . (3)

As the fixed points of this transformation are ω and −ω, we can relate transfor-
mations (1) and (3) in the following way:

Proposition 4 (see [12]). We assume, in (1), a = tω, with −1 < t < 1 and
ω ∈ Sn−1. Then transformations (1) and (3) are related by

coshα =
1 + t2

1 − t2
and sinhα =

2t

1 − t2

α = ln

(
1 + t

1 − t

)

and t =
eα − 1

eα + 1
= tanh

(α

2

)

.

Thus we obtain an isomorphism between the subgroup of Lorentz boosts in a fixed
direction ω ∈ Sn−1 and the subgroup of Möbius transformations of dimension one
mentioned in Proposition 2. Moreover, a pure boost B(ω) can always be described
via the composition R(en, ω)◦B(en)◦R(ω, en), where R(ω, ξ) stands for the rotation
mapping ω ∈ Sn−1 into ξ ∈ Sn−1. Therefore, it is sufficient to consider pure boosts
in the en-direction, that is to say, B(en). We will identify the subgroup Spin(1, 1)
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with the subgroup of Lorentz boosts in the en-direction. Its action on a given point
(in spherical coordinates) ω = {θj , φ}n−2

j=1 of Sn−1 is fully determined by

ω 7→ ωα = {(θj)α, φα}
n−2
j=1 , (4)

where

(θj)α = θj , j = 1, . . . , n− 2, and tan
(φ)α

2
= eα tan

φ

2
. (5)

This action corresponds to a pure dilation on the sphere and it is exactly the usual
Euclidean dilation lifted on Sn−1 by inverse stereographic projection (see [4]). We
will show in the next section that a local dilation around the North Pole depends
on two parameters (not one as in [4]) if we use the whole conformal group of the
sphere.

It is well known that the group SO(1, n) admits two different decompositions,
the so-called Iwasawa decomposition (or KAN -decomposition) and the Cartan de-
composition (or KAK-decomposition) (see [26] and [30]). We now show how to
obtain the KAK-decomposition starting from the Spin(1, n) group. We consider
the following elements of Spin(n)

si = cos
θi
2

+ e1ei+1 sin
θi
2
,

sn−1 = cos
φ

2
+ ene1 sin

φ

2
, (6)

with 0 ≤ θ1 < 2π, 0 ≤ θi < π, i = 2, . . . , n − 2, and 0 ≤ φ ≤ π. We iden-
tify the element s = s1 . . . sn−1 with the element ξ(θ1, . . . , θn−2, φ) in Sn−1 =
Spin(n)/Spin(n− 1). Then we obtain the following polar decomposition.

Lemma 4.1. We have ϕa(x) = ϕsrens(x) = sϕren
(sxs)s, where r = |a| ∈ [0, 1[.

Thus a Möbius transformation can be described in terms of a point a belonging to
the intersection of the unit ball with the positive xn−axis and a convenient rotation
induced by s. We have also the decomposition ϕa(x) = ϕ−srens = sϕ−ren

(sxs)s
where the point a belongs to the intersection of the unit ball with the negative
xn−axis. If we apply to the right-hand side of this identity the rotation present in
the usual Spin(1, n) decomposition (see [12]) we derive the KAK-decomposition for
an arbitrary element of the Spin(1, n) group.

The centralizer C of A = Spin(1, 1) in K = Spin(n), i.e., the set C of all s ∈
Spin(n) such that sϕren

(x)s = ϕren
(sxs), corresponds to the particular subgroup

of rotations around the xn-axis. Thus, in the polar decomposition of ϕ(a) only the

rotation sn−1 = cos(φ2 ) + ene1 sin(φ2 ) affects ϕren
(x). In the next section we study

how the parameters r and φ do influence local dilations around the North Pole of
the unit sphere.

5. Influence of the parameter a on spherical caps. In this section we describe
the influence of the parameter a ∈ Bn on the new spherical cap ϕa(Uh), obtained by
the application of a Möbius transformation ϕa to a given cap Uh. Without loss of
generality we consider a spherical cap Uh centered at the North Pole, with support
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in the hyperplane xn = h given by






x1 = cos(θ′1) cos(θ′2) · · · cos(θ′n−2) sin(φ′)
x2 = sin(θ′1) cos(θ′2) · · · cos(θ′n−2) sin(φ′)
x3 = sin(θ′2) cos(θ′3) · · · cos(θ′n−2) sin(φ′)

...
xn−1 = sin(θ′n−2) sin(φ′)
xn = cos(φ′)

with θ′1 ∈ [0, 2π[, θ′i ∈ [−π/2, π/2], i ∈ {2, ..., n − 2} and φ′ ∈ [0, φ0], for a fixed
φ0 ∈]0, π[ such that h = cos(φ0).

Consider now the (n− 2)-dimensional sphere S in the hyperplane xn = h
{
x2

1 + x2
2 + ...+ x2

n−1 = 1 − h2

xn = h
.

We will consider this sphere as the support of the spherical cap Uh. Obviously ϕa(S)
is a new sphere (say, S∗) and it stands for the support of the new spherical cap.

A point y of the sphere S is given by






y1 =
√

1 − h2 cos(θ′′1 ) cos(θ′′2 ) · · · cos(θ′′n−2)

y2 =
√

1 − h2 sin(θ′′1 ) cos(θ′′2 ) · · · cos(θ′′n−2)

y3 =
√

1 − h2 sin(θ′′2 ) cos(θ′′3 ) · · · cos(θ′′n−2)
...

yn−1 =
√

1 − h2 sin(θ′′n−2)
yn = h

(7)

where θ′′1 ∈ [0, 2π[ and θ′′i ∈ [−π/2, π/2], i ∈ {2, ..., n− 2}. The support sphere S∗ of
the new spherical cap has the following parametrization:

gi(θ
′′
1 , θ

′′
2 , · · · , θ′′n−2) =

(1 − |a|2)yi + 2(< a, y > −1)ai
1 + |a|2 − 2 < a, y >

, i = 1, 2, ..., n

and it has its center in the point:


















2a1(an − h)(h(|a|2 + 1) − 2an)

k

2a2(an − h)(h(|a|2 + 1) − 2an)

k
...

2an−1(an − h)(h(|a|2 + 1) − 2an)

k

(2an − h(|a|2 + 1))(|a|2 − 1 − 2an(an − h))

k



















(8)

where k = 4(an − h)2(a2
1 + a2

2 + · · · + a2
n−1) + (1 − |a|2 + 2an(an − h))2. It is easy

to see that k > 0. If an − h = 0 then k = (1 − |a|2)2 > 0 because |a| < 1; while
if a1 = a2 = · · · = an−1 = 0 we would have k = (a2

n − 2han + 1)2 > 0 and due to
|a| < 1, we have an 6= 1. Hence, k can never assume the zero value.

The sphere S∗ is in the hyperplane with equation:

2a1(an − h)x1 + 2a2(an − h)x2 + · · · + 2an−1(an − h)xn−1 +

(1 − |a|2 + 2an(an − h))xn = (1 + |a|2)h− 2an (9)
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and has radius τ given by:

τ =
(1 − h2)1/2(1 − |a|2)

k1/2
. (10)

Moreover, the projection of the center of the new spherical cap (in the unit
sphere) is given by:

(
2a1(an − h)

k1/2
, · · · , 2an−1(an − h)

k1/2
,
1 − |a|2 + 2an(an − h)

k1/2

)

. (11)

We can easily see that this point belongs to the unit sphere. The distance between
the points (8) and (11) is

dist =
(2an − h(1 + |a|2))√

k
+ 1 . (12)

Indeed, we can rewrite k as k = 4(an − h)(an − h|a|2) + (1 − |a|2)2. Then a simple
calculation shows that

dist2 =
n−1∑

i=1

(
2ai(an − h)(h(1 + |a|2) − 2an)

k
− 2ai(an − h)

k1/2

)2

+

+

(
(2an − h(1+|a|2))(|a|2−1−2an(an − h))

k
− 1−|a|2+2an(an − h)

k1/2

)2

=
(
4(a2

1 + . . .+ a2
n−1)(an − h)2 + (1 − |a|2 + 2an(an − h))2

)

· ((2an − h(1 + |a|2))
√
k + k)2

k3

=
((2an − h(1 + |a|2))

√
k + k)2

k2
, by definition of k

=

(
2an − h(1 + |a|2)√

k
+ 1

)2

.

For each h ∈ [−1, 1] we can prove that −1 ≤ 2an−h(1+|a|2)√
k

≤ 1. Finally we obtain

that dist = 2an−h(1+|a|2)√
k

+ 1. Thus, 0 ≤ dist ≤ 2, as it was expected.

We consider now the point a ∈ Bn described in spherical coordinates






a1 = r cos θ1 cos θ2 · · · cos θn−2 sinφ
a2 = r sin θ1 cos θ2 · · · cos θn−2 sinφ
a3 = r sin θ2 cos θ3 · · · cos θn−2 sinφ

...
an−1 = r sin θn−2 sinφ
an = r cosφ

(13)

with r ∈ [0, 1[, θ1 ∈ [0, 2π[ and θ2, . . . θn−2 ∈ [−π/2, π/2], φ ∈ [0, π]. We can rewrite
the expressions (10) and (12) in the following way:

τ =
(1 − h2)1/2(1 − r2)√

k1

, dist =
2r cosφ− h(1 + r2)√

k1

+ 1 (14)

where k1 = 4r2(r cosφ−h)2 sin2 φ+(1−r2 +2r cosφ(r cosφ−h))2. We can observe
that these expressions are independent of the parameters θ1, θ2, · · · θn−2. We will
return to this fact later.
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Definition 5.1. The image of the North Pole under the action of ϕa will be called
attractor point and it will be denoted by A. It is given by

A =

(
2a1(an − 1)

1 + |a|2 − 2an
, · · · , 2an−1(an − 1)

1 + |a|2 − 2an
,
1 − |a|2 + 2an(an − 1)

1 + |a|2 − 2an

)

. (15)

Given an initial spherical cap Uh, its image ϕa(Uh) is a new spherical cap, say
Uh,a, centered, in general, in a point of the sphere different of the North Pole.
Moreover it represents a dilation or a contraction of the initial cap Uh. Applying
a convenient rotation to each Uh,a we can center all spherical caps in an arbi-
trary desired point of the sphere. In this way we obtain a family of neighborhoods

{Uθ1,··· , θn−2

h,r,φ : r ∈ [0, 1[, θ1 ∈ [0, 2π[, θ2, . . . θn−2 ∈ [−π/2, π/2], φ ∈ [0, π]} that will
generate our local analysis on a given point of the sphere. For instance, in case of
n = 3 (the sphere S2), if we consider sa = cosβ/2 + w sinβ/2 ∈ Spin(3) with

w =

(

− a2

(a2
1 + a2

2)
1/2

,
a1

(a2
1 + a2

2)
1/2

, 0

)

and cosβ =
1 − |a|2 + 2a3(a3 − h)

k1/2
,

where w is the axis of the rotation and β is the angle of the rotation, then the set
{saUh,asa : a ∈ Bn} stands for a family of neighborhoods centered at the North
Pole. We remark that the axis of the rotation is only defined when the parameter a
does not belong to the x3-axis. If a belongs to the x3-axis then the North Pole is a
fixed point and the cap remains centered at the North Pole. This is what happens
in the case presented in [3] and [4].

These caps will constitute the basis for our local analysis on the sphere. A dilation
(in our sense) around an arbitrary point ω ∈ Sn−1 can be obtained by combining the
dilation around the North Pole just described above with an appropriate rotation.

We illustrate the facts above with some examples in R
3 (see figure 1):

1 2 3

Figure 1. Spherical caps for h = cos(π/6) =
√

3/2 and different
values of a = (r cos θ sinφ, r sin θ sinφ, r cosφ): 1 - a = (0, 0, 0)
(U√

3/2), 2 - r = 1/2, θ = 5π/3, φ = π/6, 3 - r = 3/10, θ =

5π/3, φ = 7π/9.

The cap 2 is a dilation of U√
3/2, whereas the cap 3 is a contraction of U√

3/2.

It is possible to define for each fixed h ∈] − 1, 1[ two different regions on the unit
ball that will be called dilation region and contraction region respectively. The
two regions are separated by a surface of revolution obtained by considering the
revolution around the xn−axis of the arc defined by

−→γ (r) = (r (1 − (hr)2)1/2, 0, . . . , 0, r2 h), r ∈ [0, 1[. (16)
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In fact if we substitute cosφ = hr and sinφ = (1 − (hr)2)1/2 (from 16) in the
expression (14) of the distance we obtain:

dist =
2r cosφ− h(1 + r2)

√

4r2(r cosφ− h)2 sin2 φ+ (1 − r2 + 2r cosφ(r cosφ− h))2
+ 1

=
h(r2 − 1)

1 − r2
+ 1

= 1 − h, ∀r ∈ [0, 1[,

which shows that the dist remains the same. We remark that the spherical cap Uh
has support on the hyperplane xn = h, and therefore its distance to the North Pole
is 1 − h.

Then we obtain the following parametrization for the surface of revolution:

Sh :







s1 = r cos θ1 cos θ2 · · · cos θn−2(1 − (hr)2)1/2

s2 = r sin θ1 cos θ2 · · · cos θn−2(1 − (hr)2)1/2

s3 = r sin θ2 cos θ3 · · · cos θn−2(1 − (hr)2)1/2

...
sn−1 = r sin θn−2(1 − (hr)2)1/2

sn = r2 h

(17)

where r ∈ [0, 1[, θ1 ∈ [0, 2π[, θ2, . . . , θn−2 ∈ [−π/2, π/2].
For example, in R3, with respectively h = 1/2 and h = −1/2, we can observe a

projection of Sh in the xz-plane.

Figure 2. Projection of Sh in the xz-plane: S1/2 (left) and S−1/2 (right).

The dilation region is the region in the unit ball above the surface Sh and the
contraction region is the region in the unit ball bellow the surface Sh.

The fact that the Sh is a surface of revolution is related with the result obtained
in (14). In fact, the distance considered there is independent on the parameters
θ1, . . . , θn−2. All the spherical caps obtained by the application of ϕa, where a ∈ Sh,
have then the same area. However they differ in the localization of the attractor
point on the spherical cap.

Proposition 5. Consider a ∈ Sh with h fixed. For each r, the corresponding
attractor point lies in the intersection of the sphere of equation A2

1+A
2
2+. . .+A

2
n−1 =

4r2 (1−(hr)2)(r2h−1)2

(1+r2−2r2h)2 with the hyperplane of equation An = 1−r2+2r2h(r2h−1)
1+r2−2r2h .

We remark that, with h and r fixed, the point a belongs to the intersection of
the sphere described by s21 + s22 + . . . + s2n−1 = r2(1 − (hr)2) with the hyperplane

sn = r2h.
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Hence, we can conclude that only the parameters r and φ induce a local dilation
on the sphere. We are interested in the study of the distance (14) as a function
of these parameters, and this independent of the dimension considered. As an
example, for h = 1/2 we obtain the following picture:

Figure 3. Variation of the distance considered in (14).

From now on, we assume the parameter a as d = (r sinφ, 0, . . . , 0, r cosφ) =
sn−1rensn−1 (cf. Lemma 4.1). As we approach the boundary of the unit ball we
obtain a discontinuous jump, corresponding to dist = 2 if φ ≤ arccos(h) or dist = 0
if φ > arccos(h). We denote this limit angle as φlim = arccos(h), the critical angle.
It is related with the separation between the dilation and contraction regions near
the boundary of the unit ball (see fig. 2)

The particular case of [3] and [4] is obtained assuming the values φ = 0 (inter-
section of Bn with the positive xn−axis - dilation region) and φ = π (intersection
of Bn with the negative xn−axis - contraction region). In the first case we have

dist = (1−h)(r+1)2

1+r2−2rh and in the second case we have dist = (1−h)(r−1)2

1+r2+2rh . These two

half axes can be used to generate/construct a sequence of approximation spaces.
However, it is possible to choose other domains for the parameter’s variation and
thus we would obtain different approximation spaces.

6. Characterization of the local dilation. In the case of the subgroup Spin(1, 1)
it is possible to describe its action on each point of the sphere in terms of (5). We can
describe the action of the set of Möbius transformations ϕd on Uh by the relation:

ϕd(Uh) = ϕsn−1rensn−1
(Uh) = sn−1ϕren

(sn−1Uhsn−1)sn−1. (18)

We shall restrict our attention to the most interesting case, the one of the sphere
S2. We would like to remark that the following results can easily be generalized to
higher dimensions.

The mapping of a point x = (x1, x2, x3) ≡ (θ, φ) ∈ Uh onto the point xr,φ,θ =
(θφ,φ, φr,φ,θ) via the action of ϕre3(s2xs2), where s2 = s2(φ) denotes the rotation

(c.f. (6) with sn−1 = s2), is given by

tan
φ
r,φ,θ

2
=

1 + r

1 − r

√

1 − (cosφx3 − sinφx1)

1 + cosφx3 − sinφx1

=
1 + r

1 − r

√

1 − (cosφ cosφ− sinφ cos θ sinφ)

1 + cosφ cosφ− sinφ cos θ sinφ
(19)
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and

tan θφ,φ =
x2

cosφx1 + sinφx3
=

sin θ sinφ

cosφ cos θ sinφ+ sinφ cosφ
. (20)

By comparing these relations with the relations obtained in the anisotropic
case [28], we observe that the parameters involved are different and, therefore, they
produce different neighborhoods. Our case is conformal whereas the anisotropic
case [28] corresponds to a deformation of spherical caps to “elliptic” caps.

We have the advantage of being able to choose a preferable contraction inside
the cap conveniently choosing the position of the attractor point. The parameters
θ1, . . . , θn−2 contribute to the localization of the attractor point inside the spherical
cap.

We will require the following formula:
- the arc-length between the attractor point and the center of the cap:

d2 := arccos

(
4r2 cosφ2 − 2r(1 + r2)(h+ 1) cosφ+ 1 + r4 + 2(2h− 1)r2√

k1(1 + r2 − 2r cosφ))

)

(21)

The importance of this formula is that it provides information about the geometry
of the caps (compact support of our future wavelets) under the action of a Möbius
transformation and in particular about the dilation/contraction effects inside that
same cap.

7. Continuous wavelet transform on the unit sphere. We will consider two
different Hilbert spaces. The first is the Hilbert module L2(S

n−1) of square in-
tegrable functions on the sphere, and the second is the monogenic Hardy space
H2 ⊂ L2(S

n−1), that is, the space of all functions which can be considered as
boundary values of monogenic functions on the unit ball.

We use the standard inner product and norm

< f, g >L2
=

∫

Sn−1

f(x)g(x)dS(x), (22)

and

||f ||2 = 2n
∫

Sn−1

[f(x)f(x)]0dS(x) (23)

where [λ]0 denotes the real part of the Clifford number λ and dS(x) is the normalized
Spin(n)− invariant measure on Sn−1.

We consider the following unitary operators:
- the Spin invariant rotation operator

R1(s)f(x) = sf(sxs), s ∈ Spin(n) (24)

- and the dilation operator

D1(d)f(x) =

(
1 − |d|2
|1 − dx|2

)n−1

2

f(ϕ−d(x)), (25)

with d = (r sinφ, 0, · · · , 0, r cosφ) a bi-dimensional parameter, where r ∈ [0, 1[ and
φ ∈ [0, π]. The motivation for the definition of the dilation operator comes from
the results of section 5 and Lemma 4.1. The parameters θ1, . . . , θn−2 only give us
information about the localization of the attractor point, which can also be obtained
by the analysis of the Spin group.
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We remark that in the cases where φ = 0 and φ = π, (i.e., where we have d = ten,
with t ∈] − 1, 1[ ), if we perform the change of variables t = u−1

u+1 , with u > 0, we

obtain the following description for the operator (25),

D1(u)f(ω) = λ1(u, φ)f(ω1/u), ω = ω(θ1, . . . , θn−2, φ) (26)

where

λ1(u, φ) =

(
4u2

((u2 − 1) cosφ+ (u2 + 1))2

)n−1

4

,

and ω1/u is the notation used in (5) with α = ln(1/u) and 0 ≤ φ ≤ π. This operator
is the same used in [4].

Based on the two operators defined above we consider the representation

π1(s, d)f(x) = R1(s) ◦ (D1(d)f(x)) = s

(
1 − |d|2

|1 − dsxs|2
)n−1

2

f(ϕ−d(sxs)), (27)

The representation π1 is unitary. It only remains to check whether it is square
integrable, i.e. to find a nonzero function ψ in the Hilbert space under consideration
such that

∫

Spin(n)

∫ 1

0

∫ π

0

| < π1(s, d)ψ, ψ >L2
|20 dµ(d)dµ(s) <∞,

where dµ(d) = r
(1−r2)n dr dφ is the restriction to the bidimensional parameter d of

the invariant measure for the group of Möbius transformations (see [8]), and dµ(s) is
the invariant measure in Spin(n). This is also known as the admissibility condition
for a wavelet (see [21]).

We follow the ideas of [4]. We denote by N(n, k) the dimension of the subspace
Hk of all linearly independent homogeneous harmonic polynomials of degree k in
n variables (see [5]). We consider an orthonormal basis of spherical harmonics

{H(i)
k , i = 1, . . . , N(n, k)}∞k=0 with the property < H

(i)
k , H

(j)
l >L2

= δk,lδi,j . Thus, a
function f ∈ L2(S

n−1) has a Fourier expansion

f =

∞∑

k=0

N(n,k)
∑

i=1

H
(i)
k a

(i)
k . (28)

where we denote formally a
(i)
k =< H

(i)
k , f >L2

as the Fourier coefficients of f .

Theorem 7.1. A non-zero function ψ ∈ L2(S
n−1,R0,n) is admissible if there exists

a finite constant c > 0 such that for all k it holds

N(n,k)
∑

m=1

∫ π

0

∫ 1

0

|a(m)
k (d)|20

r

(1 − r2)n
dr dφ < c (29)

where a
(m)
k (d) =< H

(m)
k , D1(d)ψ >L2

are the Fourier coefficients of D1(d)ψ.

Proof. Let us write

π1(s, d)ψ(x) =

∞∑

k=0

∑

i

H
(i)
k (x)b

(i)
k (s, d)

with b
(i)
k (s, d) =< H

(i)
k , R1(s) ◦ (D1(d)ψ) >L2

and

ψ(x) =
∞∑

l=0

∑

j

H
(j)
l (x)c

(j)
l
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with c
(j)
l =< H

(j)
l , ψ >. Then, by the orthogonality property of spherical harmonics

we have

< π1(s, d)ψ, ψ >L2
=

∞∑

k,l=0

∑

i, j

b
(j)
k (s, d)

∫

Sn−1

H
(i)
k (x)H

(j)
l (x)dS(x) c

(j)
l

=

∞∑

k=0

∑

i

b
(i)
k (s, d)c

(i)
k

Now, for each k and i fixed we have

b
(i)
k (s, d) = < H

(i)
k , R1(s) ◦ (D1(d)ψ) >L2

= < R1(s) ◦H(i)
k , D1(d)ψ >L2

= <
∑

m

H
(m)
k g

(m)
k (s), D1(d)ψ >L2

=
∑

m

g
(m)
k (s) < H

(m)
k , D1(d)ψ >L2

=
∑

m

g
(m)
k (s)a

(m)
k (d)

Thus,

I =

∫

Spin(n)

∫ π

0

∫ 1

0

| < π1(s, d)ψ, ψ >L2
|20

r

(1 − r2)n
dr dφ dµ(s)

=

∫

Spin(n)

∫ π

0

∫ 1

0

|
∞∑

k=0

∑

i

∑

m

g
(m)
k (s)a

(m)
k (d)c

(i)
k |20

r

(1 − r2)n
dr dφ dµ(s)

≤
∫

Spin(n)

∫ π

0

∫ 1

0

∞∑

k=0

∑

i

∑

m

|a(m)
k (d)|20 |g(m)

k (s)|20 |c(i)k |20
r

(1 − r2)n
dr dφ dµ(s)

= C

∞∑

k=0

∑

i

∑

m

|c(i)k |20
∫ π

0

∫ 1

0

|a(m)
k (d)|20

r

(1 − r2)n
dr dφ

Putting

Sk =

N(n,k)
∑

i=1

|c(i)k |20, and Tk =

N(n,k)
∑

m=1

∫ π

0

∫ 1

0

|a(m)
k (d)|20

r

(1 − r2)n
dr dφ

we see that (Sk)k∈N ∈ l1, since
∑∞
k=0 Sk = ||ψ||2. Then the admissibility condition

becomes
∞∑

k=0

SkTk <∞.

Finally, this series converges absolutely if and only if (Tk)k∈N ∈ l∞. Thus, the
function ψ is admissible if and only if

N(n,k)
∑

m=1

∫ π

0

∫ 1

0

|a(m)
k (d)|20

r

(1 − r2)n
dr dφ < c, uniformly in k,

with c being a finite constant.
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Now, this condition is complicated to use in practice since it requires the evalu-
ation of nontrivial Fourier coefficients. However it is possible to derive a necessary
condition which turns out be a generalization of the necessary condition obtained
in [4].

Proposition 6. Let ψ ∈ L2(S
n−1) be a function with support on a given spherical

cap Uh. If ψ is an admissible function then it necessarily satisfies the condition
∫

Uh

ψ(y)

(1 + sn−1ensn−1y)
n−1

2

dSy = 0, ∀φ ∈] arccos(h), π]. (30)

Proof. We have to compute
∫ π

0

∫ 1

0

| < H
(m)
k , D1(d)ψ >L2

|20
r

(1 − r2)n
dr dφ. (31)

Since ψ is a function with support on the spherical cap Uh, we have

ψ(x) ≡ ψ(x1, . . . , xn) = 0 for xn < h.

Then,

< H
(m)
k , D1(d)ψ >L2

=

∫

ϕd(Uh)

H
(m)
k (x)

(
1 − |d|2
|1 − dx|2

)n−1

2

ψ(ϕ−d(x)) dSx. (32)

We split the integral (31) in four parts, where parts (I) and (II) are connected
to the large scales - dilations, and parts (III) and (IV) represent the small scales -
contractions (cf. fig. 3), that is

∫ π

0

∫ 1

0

. . . dr dφ=

∫ φlim

0

∫ 1−ǫ

0

. . .

︸ ︷︷ ︸

(I)

+

∫ φlim

0

∫ 1

1−ǫ
. . .

︸ ︷︷ ︸

(II)

+

∫ π

φlim

∫ 1−ǫ

0

. . .

︸ ︷︷ ︸

(III)

+

∫ π

φlim

∫ 1

1−ǫ
. . .

︸ ︷︷ ︸

(IV )

where φlim = arccos(h) and 0 < ǫ < 1.
The integrals (I) and (III) can be easily handled because D1(d) is a strongly

continuous operator and thus, by continuity of the scalar product, the integrals are
bounded continuous functions on the respective domains.

Let us study the integral (II). If ǫ is small enough such that |d| = r ≈ 1 then
ψ(ϕd(x)) ≈ ψ(−en). Then the large scale divergence in (II) will never be reached
because of the support property of ψ and this ensures the convergence of the integral
(II).

For the integral (IV) we consider in (32) the change of variables y = ϕ−d(x).
Then we have for the Fourier coefficients that

∫

Uh

H
(m)
k (ϕd(y))

(
1 − |d|2

|1 − dϕd(y)|2
)n−1

2

ψ(y)

(
1 − |d|2
|1 + dy|2

)n−1

dSy.

Using

1 − ϕd(y) = (1 − |d|2)(1 + dy)−1

we simplify the above expression to become

∫

Uh

H
(m)
k (ϕd(y))

(
1 − |d|2
|1 + dy|2

)n−1

2

ψ(y) dSy .
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Passing to the variables r and φ we find

∫

Uh

H
(m)
k (ϕr,φ(y))

(
1 − r2

|1 + sn−1rensn−1y|2
)n−1

2

ψ(y) dSy.

Finally, the integral (IV) becomes:

∫ π

φlim

∫ 1

1−ǫ
|
∫

Uh

H
(m)
k (ϕr,φ(y))

(
1 − r2

|1 + sn−1rensn−1y|2
)n−1

2

ψ(y) dSy|20
r

(1−r2)n dr dφ

=

∫ π

φlim

∫ 1

1−ǫ
|
∫

Uh

H
(m)
k (ϕr,φ(y))

(
1

|1+sn−1rensn−1y|2
)n−1

2

ψ(y) dSy|20
r

(1−r2)dr dφ

If ǫ ≈ 0 then r ≈ 1. In the limit case

H
(m)
k (ϕr,φ(y)) ≈ H

(m)
k (en).

which assumes the value zero for m 6= 1.
Therefore, the integral (IV) over small scales converges if and only if we impose

the condition
∫

Uh

ψ(y)

(|1 + sn−1ensn−1y|)n−1 dSy = 0, ∀φ ∈] arccos(h), π] (33)

or, equivalently,
∫

sn−1Uhsn−1

ψ(sn−1ysn−1)

(1 − yn)
n−1 dSy =

∫

Sn−1

ψ(sn−1ysn−1)

(1 − yn)
n−1 dSy = 0, (34)

for all φ ∈] arccos(h), π].

Let us remark that this necessary condition depends strongly on the support Uh
of the admissible function ψ.

Moreover, if we restrict to the case of [4] we obtain a similar necessary condition:
∫

Sn−1

ψ(y)

(1 + yn)
n−1 dSy = 0. (35)

We remark that it is also possible to use inner and outer spherical monogenics for
the series expansion but these functions are essentially a refinement of the spherical
harmonics.

We now turn ourselves to the problem of existence of admissible wavelets. It is
difficult to prove their existence if we consider the full bi-dimensional parameter
d. A solution to this problem is to restrict the parameter d by fixing an angle
φ and considering the one dimensional subgroup generated by the element ω =
(sinφ, 0, . . . , 0, cosφ); hence, we use from now on the parameter dφ = (t sinφ, 0, . . . ,
0, t cosφ) for fixed φ and −1 < t < 1. Then we obtain a family of conformal dilation
operators, which depends on the considered cap Uh.
Proposition 7. Consider a cap Uh. When 0 ≤ h < 1, the operators ϕdφ

, with φ ∈
[0, arccos(h)[, constitute a family of local conformal dilation/contraction operators.
When −1 < h < 0 the operators ϕdφ

, with φ ∈ [0, π− arccos(h)[ constitute a family
of local conformal dilation/contraction operators (cf. fig. 4).

As a consequence the parameter h acts as a freedom-degree on the choice of the
local dilation/contraction operator on the sphere.

As we can see in fig. 4, for a fixed 0 ≤ h < 1 the operators ϕdφ
, with φ ∈

[arccos(h), π/2[, do not provide a complete scale of dilations/contractions, although
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Figure 4. Variation of the distance (14): h = 1/2 (left) and h =
−1/2 (right).

they can show themselves useful, according on the application’s needs. The same is
true for the operators dφ, with −1 < h < 0 and φ ∈ [π− arccos(h), π/2[. Therefore,
we reformulate our admissibility condition (29) for the representation π1 based on
the parameter dφ.

Theorem 7.2. A function ψ ∈ L2(S
n−1,R0,n) is admissible if there exists a finite

constant c > 0 such that
∑

m

∫ 1

−1

|a(m)
k (dφ)|20

dt

(1 − t2)n
< c , (36)

where a
(m)
k (dφ) =< H

(m)
k , D1(dφ)ψ >L2

are the Fourier coefficients of D1(dφ)ψ.

Let us now study the existence of wavelets for the representation based on the
operator D1(dφ).

Theorem 7.3. Consider the operator D1(dφ) in the representation π1. Depending
on the cap Uh we have:

1. If cos(φ) ≤ h < 1 then for the convergence of (36) we have two necessary
conditions:

∫

Uh

ψ(y)

(|1 + ωy|)n−1
dSy = 0 and

∫

Uh

ψ(y)

(|1 − ωy|)n−1
dSy = 0, (37)

with ω = (sin(φ), . . . , cos(φ)). In this case the operator is almost a contraction
operator.

2. If − cos(φ) < h < cos(φ) then for the convergence of (36) we have the neces-
sary condition:

∫

Uh

ψ(y)

(|1 − ωy|)n−1
dSy = 0 (38)

In this case the operator is a conformal contraction/dilation operator as de-
fined in Proposition 7.

We remark that the case −1 < h ≤ − cos(φ) appears to be not interesting because
we loose the localization property. This is due to the fact that this operator is then
almost a dilation operator and therefore no localization is possible.

Of course, here arises an interesting question: what happens in the case where
we do not have a full scale for the dilation operator? What will be the space of
functions/signals which can be reconstructed? However, this question is not easily



CONTINUOUS WAVELET TRANSFORM ON THE SPHERE 635

answered and it will be studied in the future. In this paper we will restrict ourselves
to the case where a complete scale exists.

The proof of this theorem is analogous to the proof of Proposition 6. In this way
we obtain a complete classification depending on the operators ϕdφ

. The case of [4]
can be derived once again considering φ = 0. In this case the following proposition
allows us to construct wavelets:

Proposition 8. Let f ∈ L2(S
n−1). Consider the operator D1(ten) with t ∈]−1, 1[.

Then
∫

Sn−1

D1(ten)f(x)

(1 + xn)n−1
dSx =

(
1 + t

1 − t

)n−1

2
∫

Sn−1

f(x)

(1 + xn)n−1
dSx. (39)

It is possible to build a class of admissible functions for the operator D1(ten).
Given a square integrable function ψ, we define

η
(t)
ψ (x) = ψ(x) −

(
1 − t

1 + t

)n−1

2

D1(ten)ψ(x). (40)

Then it is easily seen that η satisfies the (almost) admissibility condition (35).
In [3] the authors present for the sphere S2 a difference wavelet (40) by choosing

ψ(θ, φ) = exp
(
− tan2(φ/2)

)

which is the inverse stereographic projection of a Gaussian in the tangent plane.
Recently, in [32] it was proved a correspondence principle between spherical

wavelets and Euclidean wavelets stating that the inverse stereographic projection
of a wavelet on the plane leads to the definition of a wavelet in the sphere for the
operator D1(ten). Therefore, a lot of examples can be carried to the 2-sphere such
as the

- 2D Mexican hat or Marr wavelet

ψH(x) = (2 − |x|2) exp(−1/2|x|2), (x ∈ R
2) (41)

- the Gabor function

ψG(x) = exp(i ~K0 · x) exp(−1/2|x|2). (42)

Other examples of 2D wavelets include the Morlet wavelet, the DOM filter, the
optical wavelet, conical or Cauchy wavelets, multidirectional wavelets (see [2]).

It can easily be seen that these examples also provide wavelets for our case of
ϕdφ

, where φ is fixed.

For each dilation operator and an admissible function ψ ∈ L2(Sn−1) we define
the CWT on the sphere as

Vψf(s, dφ) := < π1(s, dφ)ψ, f >L2

=

∫

Sn−1

s

(
1 − |d|2

|1 − dsxs|2
)n−1

2

ψ(ϕ−d(sxs))f(x) dS(x),

and thus we can generate a family of conformal spherical wavelets.

7.1. The Hardy space H2. In the case of the Hardy space H2, with the usual
inner product on the unit sphere, we can consider operators that preserve the mono-
genicity of the function, namely

R2(s)f(x) = sf(sxs), s ∈ Spin(n) (43)
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and

D2(dφ)f(x) = (1 − |dφ|2)
n−1

2

1 − xdφ
|1 − dφx|n

f(ϕ−dφ
(x)). (44)

With these operators we define the representation

π2(s, dφ)f(x) = R2(s) ◦ (D2(dφ)f(x))

= (1 − |dφ|2)
n−1

2 s
1 − sxsdφ

|1 − dφsxs|n
f(ϕ−dφ

(sxs)) (45)

For the Hardy space H2 we consider an orthonormal basis of inner spherical

monogenics {P (i)
k , i = 1, . . . , N(n, k)}k∈N. Then we have:

Theorem 7.4. A function ψ ∈ H2 is admissible if there exists a finite constant
c > 0 such that

∑

m

∫ 1

−1

|a(m)
k (dφ)|20

dt

(1 − t2)n
< c (46)

where a
(m)
k (dφ) =< P

(m)
k , D2(dφ)ψ >L2

are the Fourier coefficients of D2(dφ)ψ.

Hence, if ψ ∈ H2 is an admissible function we define the corresponding CWT on
the sphere as

Wψf(s, dφ) := < π2(s, dφ)ψ, f >L2

=

∫

Sn−1

(1 − |dφ|2)
n−1

2 s
1 − sxsdφ

|1 − dφsxs|n
ψ(ϕ−dφ

(sxs))f(x) dS(x).

We stress here that although ψ ≡ 1 is not an admissible function if we use it
in the CWT we recover the Cauchy integral formula in Clifford Analysis up to a
constant factor (see [25]).

To finalize our approach to CWT on the sphere we would like to emphasize other
possible choices in our parameter space. We could consider an elliptic choice for
dc = (c sinφ, 0, . . . , 0, cosφ) with c ∈ [0, 1[ fixed and φ ∈]0, π[. Then dc could also
be seen as a conformal dilation/contraction operator in the sphere. However, this
choice of parameter do not provide a subgroup of Möbius transformations, although
it corresponds to a section on our parameter space and it can be also used for the
definition of approximating spaces on the sphere.

8. Frames for the continuous spherical wavelet transform. In this section
we would like to construct frames for our spherical wavelet transform. For the sake
of simplicity let us restrict ourselves in this section to the three-dimensional case
and to real-valued functions. The case of the Hardy space is completely analogous.

Let us assume that ψ is a strictly admissible function, i.e. a mother wavelet.
Additionally, we will consider the spaces

Mp = {F ∈ Lp(B
n) :< F,R(g, ·) >= F (g)},

where R(g, l) is the reproducing kernel, e.g. in the case of the Hardy space the
Bergman kernel. For this kernel we have to infer

∫

Bn

|R(g, l)|dµ(l) ≤ Cψ (47)

for a constant Cψ < ∞ independent of g ∈ Bn. In the case of the Hardy-space we
have as reproducing kernel spaces the classic monogenic Bergman spaces.
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Now, the next step is to derive some atomic decomposition for these spaces, i.e.,
we want to construct suitable Banach frames. From [15] we have the following
approach.

Given some neighborhood U of the identity in a separable Lie group G, a family
X = (hi)i∈I in G is called U-dense if ∪i∈IUhi = G. A family X = (hi)i∈I in G is
called relatively separated, if for any compact set Q ⊂ G there exists a finite partition
of the index set I, say I = ∪r0r=1Ir, such that Qhi ∩ Qhj = ∅ for all i, j ∈ Ir with
i 6= j.

Let U be an arbitrary compact neighborhood of the identity in G. By [15],
there exists a bounded uniform partition of the unity (of size U), i.e., a family of
continuous functions (ϕi)i∈I on G such that

• 0 ≤ ϕi(g) ≤ 1 for all g ∈ G;
• there is an U-dense, relatively separated family (hi)i∈I in G such that suppϕi ⊆
Uhi;

• ∑i∈I ϕi(g) ≡ 1 for all g ∈ G.

Furthermore, we define the U-oscillation with respect to the analyzing wavelet
ψ as

oscU(l, h) := sup
u∈U

∣
∣〈ψ, π(lh−1)ψ − π(u−1lh−1)ψ〉H

∣
∣ .

This setting allows us to use Theorem 4.1 from [15] as well as Theorem 2 from [16].
To this end we can use the decomposition of our group into Spin(3) × [0, 1] ×

Spin(3), where [0, 1] represents the Möbius transformations ϕte3 (x) with t ∈ [0, 1]
along the e3-axis. Therefore, we have only to consider the cases Spin(3) and t ∈
[0, 1].

Let us first consider the part of Spin(3).
It is well-known that Spin(3) ≃ SU(2), thereby, we can choose quaternionic

coordinates for the group SU(2), defined as q = cos(θ/2) + ~ω sin(θ/2) with θ ∈
[−π, π], ~ω ∈ S2.

Let the neighborhood U be given by U = (−α,+α)×S2 with α ∈ (0, π). Writing
u = u(θ, ω) = u0 + u1e1 + u2e2 + u3e3 ∈ U we get from [9] as a sufficient condition
for

I :=

∫

S3

oscU(s, t)dµ(s) < 1.

the following estimate

I ≤ Kψ
4
√

2π

3
sup
u∈U

√

1 − u2
0 + sup

u∈U

√
2 − 2u0 < 1. (48)

Passing to quaternionic coordinates we obtain sufficient estimates for the angle
θ such that u0 = cos(θ/2). Let us remark that we assumed that our admissible
wavelet is normalized.

For the part of the hyperbolic rotations given by ϕte3 (x) along the e3-axis, with
t ∈ [0, 1] we obtain as a sufficient condition

sup
t∈[ǫ,1]

||ψ(·) − ψ(ϕte3 (·))|| << 1. (49)

This leads us to the following theorem.

Theorem 8.1. Let U = USpin(3) × [0, ǫ] where USpin(3) is a compact neighbour-
hood of the identity of Spin(3) which satisfies (48) and [0, ǫ] is a sufficiently small
neighbourhood of the origin such that (49) is valid. Moreover, let ψ be a strictly
admissible function.
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We suppose that X := (hi)i∈I is a U-dense and relatively separated family of
G = M(Bn) such that for any compact neighborhood Q of the identity in the group
G our wavelet function ψ fulfills the following inequality

∫

Bn

sup
u∈Q

∣
∣〈π(h)ψ, π(lu)ψ〉L2(S2)

∣
∣ dµ(l) ≤ C

with a constant C < ∞ independent of h ∈ Bn. Then every f ∈ Mp, 1 ≤ p ≤ ∞
admits the following atomic decomposition

f =
∑

i∈I
π(hi)ψ ci,

where the sequence of coefficients (ci)I ∈ lp depends linearly on f and satisfies

||(ci)I ||lp ≤ 1

A
||f ||Mp

.

Moreover, if (ci)I ∈ lp, then f =
∑

i∈I π(hi)ψ ci is in Mp and

1

B
||f ||Mp

≤ ||(ci)I ||lp .

Furthermore, in analogy to Theorem 4.2 from [16], we have

Theorem 8.2. Under the same assumptions as in Theorem 8.1 with
∫

Bn

oscU (l, h)dµ(l) <
1

Cψ
and

∫

Bn

oscU (l, h)dµ(l) <
1

Cψ
(50)

instead of (48), where Cψ is defined by (47). Then the set

{ψi = π(hi)ψ, i ∈ I} (51)

is a Banach frame for Mp.
This implies that
(i) there exist two constants 0 < A ≤ B <∞ such that

1

B
||f ||Mp

≤ ||(〈f, ψi〉)i∈I ||lp ≤ 1

A
||f ||Mp

; (52)

(ii) there exists a bounded, linear reconstruction operator F ∗ from lp to Mp such
that
F ∗((< f, ψi >)i∈I) = f ;

Let {ψi = π(hi)ψ : i ∈ I} denote the Banach frame constructed in Theorem 8.2,
i.e., we have for any f ∈Mp that

f =
∑

i∈I
ψi < f, ψ̃i >, (53)

where {ψ̃i, i ∈ I} denotes the dual frame. In case of a tight frame, i.e. A = B we

have ψ̃i = ψi.
We are now interested in the best n-point approximation, i.e., we want to approx-

imate our function f ∈ Mp by elements from the nonlinear manifold Σn, n ∈ N ,
which consist of all functions S ∈ Mp whose expansions with respect to our frame
have at most n nonzero coefficients, i.e.

Σn :=

{

S ∈Mp : S =
∑

i∈J
ψi ai, J ⊆ I,#J ≤ n

}

.
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Of course, we are interested in the asymptotic behavior of the error

En(f)Mp
:= inf

S∈Σn

||f − S||Mp
.

To this end we can state the following Jackson-type theorem:

Theorem 8.3. Let {ψi : i ∈ I} be a Banach frame for Mp, 1 ≤ p ≤ ∞, given by
Theorem 8.2. If 1 ≤ p < q, α := 1

p − 1
q and f ∈ Lp then

( ∞∑

n=1

1

n

(
nα En(f)Mq

)p

) 1

p

≤ C||f ||Mp

for a constant C <∞.

We would like to observe that there is no condition on the regularity on f , i.e.
we do not assume f to be in any Sobolev space Hs(S2), s > 0, as it is usually
the case for the best approximation by spherical harmonics, c.f. [31]. In fact, using
Sobolev embedding theorem one can easily see that this case is enclosed in the above
theorem.

Proof. Without any loss of generality we can assume that the sequence (| < f, ψ̃i >
|)i∈I in (53) is given in a decreasing order, i.e.,

| < f, ψ̃1 > | ≥ | < f, ψ̃2 > | ≥ . . . .

Then we obtain that

En(f)Mq
≤
∥
∥
∥
∥
∥

∞∑

i=n+1

〈

f, ψ̃i

〉

ψi

∥
∥
∥
∥
∥
Mq

due to (52) further that

En(f)Mq
≤ C

( ∞∑

i=n+1

|〈f, ψ̃i〉|q
) 1

q

=: CEn+1,q(|〈f, ψ̃i〉|) ≤ CEn,q(|〈f, ψ̃i〉|).

Then we can say that

( ∞∑

n=1

1

n

(
nαEn(f)Mq

)p

) 1

p

≤
( ∞∑

n=1

1

n
(nαCEn,q)

p

) 1

p

≤C
∣
∣
∣

∣
∣
∣

(∣
∣
∣〈f, ψ̃i〉

∣
∣
∣

)∣
∣
∣

∣
∣
∣
lp
≤C ||f ||Mp

.

9. Approximation by sequences of spaces of fixed dilation. In the previous
sections we established a CWT on the sphere for the cases where the admissible
function ψ was either in the L2-space or in the Hardy space. Again we stress that
the support of the admissible function ψ - mother wavelet - must be chosen in such a
way that the parameter dφ defines a local conformal dilation/contraction operator.

For each dφ = (t sinφ, 0, · · · , 0, t cosφ), (t ∈] − 1,+1[), we choose appropriately
t = t0 fix and we perform a covering of the sphere by means of the correspondent
cap Ucosφ,dφ

. In such a way we obtain a discretization of the rotation parameter s.
Also, it is possible to choose different kinds of curves in the domain [0, 1]× [0, π].

For example, we can also consider the curve Γ = (c sinφ, 0, · · · , 0, cosφ) (for a fixed
c ∈ [0, 1[ and φ ∈ [0, π]). Upon fixing a parameter a is this curve we again obtain
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a correspondent cap that will be used for covering the whole of the sphere. For
instance, we can rewrite our representation π1 in the form

π1(s, a)f(x) = s

(
1 − |a|2

|1 − asxs|2
)n−1

2

f(sϕ−a(x)s). (54)

with a = (c sinφ, 0, . . . , 0, cosφ) (c.f. Lemma 9.1). Although the set of such param-
eters a do not form a group, it is still possible to apply the previous results.

Lemma 9.1. Suppose we choose the parameter a in the form a = (c sinφ, 0, · · · , 0,
cosφ) where c ∈ [0, 1[ is fixed and φ ∈]0, π[. Then we obtain a decreasing sequence
of spherical caps in relation to the distance d considered in (12).

Therefore, we derive an approximation space Va for which Theorem 8.2 still holds
(restricted to the Spin-group parameters). Letting φ go to π we obtain a sequence of
spaces Va with Va ⊂ Va1

with a1 = (c sinφ1, 0, . . . , 0, cosφ1), φ ≤ φ1, approximating
the space L2(S

n−1).
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