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Abstract

We are concerned with the construction and numerical implementation of a wavelet
based Galerkin scheme for solving non-linear elliptic partial differential equations. We
proceed as follows: we choose a nested sequence of finite dimensional approxima-
tion spaces building a bi-orthogonal multi-resolution analysis (MRA). Applying the
Galerkin discretization results in a finite dimensional non-linear system. In order to
treat the non-linear term somehow reasonable we construct a knot oriented quadrature
rule based on interpolating wavelets. Finally, we apply Newton’s method to approxi-
mate the solution in the given ansatz space. Choosing iteratively finer resolution levels
we obtain approximations of the solution with high efficiency.

Starting from a general theory we can show in particular the convergence of the
constructed Wavelet-Galerkin-Newton scheme. Moreover, to keep the resulting system
stable, we apply a wavelet preconditioner. In order to show the applicability of our
method a series of numerical examples for different bi-orthogonal systems is presented.

Key Words: Non-linear elliptic PDE, Galerkin method, multi-resolution analysis, in-
terpolating wavelets, interpolation projector, quadrature rule

1 Introduction

In recent years, wavelet analysis has become a very powerful tool in applied mathematics.
While the first applications of wavelets were concerned with problems in image/signal
analysis/compression, quite recently also the applications of wavelets to the numerical
treatment of partial differential equations have become more and more the center of at-
traction. Indeed, it has turned out that the strong analytical properties of wavelets can
be used to derive powerful numerical schemes including very efficient adaptive algorithms.
We refer, e.g., to [Dah97, Dah01] for an overview concerning the current state of the
art. The success of wavelet-based numerical scheme relies on the following fundamental
properties of wavelets:
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- Weighted sequence norms of wavelet expansion coefficients are equivalent in a certain
range to Sobolev norms;

- for a wide class of operators their representation in the wavelet basis is nearly diag-
onal;

- the vanishing moments of wavelets remove the smooth part of a function.

So far, the most far-reaching results were obtained for linear, boundedly invertible oper-
ator equations; see, e.g. [CDD01, CDD00, DDHS97, DDU01]. (This list is clearly not
complete). Once these problems are well–understood and almost completely solved, the
next challenging task is the numerical treatment of non-linear problems. This paper can
be viewed as one small step in this direction. Quite recently, a first strategy to attack
this problem was suggested in [CDD]. After transforming the equation to a well–posed
!2–problem, a locally convergent iterative scheme is applied to the (infinite dimensional)
problem. The involved operators are adaptively evaluated within suitable updated error
tolerances. However, in this paper, we proceed, in some sense, the other way around. By
using a classical Galerkin approach, we project our problem onto an increasing sequence
of approximation spaces which are spanned by wavelets. Then the computation of the
actual Galerkin approximation requires the solution of non-linear equations in a (finite-
dimensional) space. Although the first approach seems to be more powerful, at least in
the long run, our method has the advantage that it is easier to analyze and, most of all,
much easier to implement.
The basic approach can be described as follows. For simplicity, we consider semi-linear
equations. This setting has the advantage that all the usual assumptions which guaran-
tee the existence and uniqueness of solutions and the convergence of Galerkin schemes
can easily be verified; see Section 2.1 and Section 4.3. Since the non-linear part can be
interpreted as a perturbation of a well–defined linear equation all the wavelet precondi-
tioning results as derived, e.g. in [DK92] carry over without any serious difficulty; see
Section 5.2. After projecting our problem onto the (finite dimensional) wavelet spaces,
we are faced with two basic problems, namely how to solve the resulting non-linear equa-
tion and how to evaluate the non-linear functionals of wavelet expansions induced by the
non-linear perturbation. The first problem is treated by a version of Newton’s method
which is adapted to our problem (cf. Section 4.2). The second problem is attacked by a
wavelet variant of the classical “knot oriented quadrature rules”; see, e.g. [KA00]. In the
wavelet setting, an analogue can be easily derived by using interpolating scaling functions.
Fortunately, quite recently a whole variety of interpolating refinable functions including
the case of general scaling matrices and bi-orthogonal systems has been constructed; see,
e.g. [Der99, DD87, DGM99, DM97, DMT03, JRS99, RS97]. It is therefore natural to try
to employ these new functions now for numerical purposes. In Section 3.3, we explain the
construction of the associated quadrature rules and estimate their performance. The use
of interpolating scaling functions and wavelets has another important advantage. In the
wavelet setting, it is by now possible to construct bi-orthogonal interpolating pairs with
very high regularity; see Section 6.2. Consequently, using these functions in a Galerkin
approach produces a numerical scheme with a high order of convergence, at least if the
solution is smooth enough. This observations is indeed confirmed by our numerical exper-
iments; see Section 5.3.
This paper is organized as follows. In Section 2 we describe the class of problems to
which our method will be applied and collect some preliminaries. Section 3 contains a
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brief review of the basic results on multi-resolution analysis and interpolating wavelets.
In Section 4 we describe and analyze the proposed Wavelet-Galerkin scheme. Section 5
is devoted to the detailed analysis of a specific model problem and to the presentation of
some numerical results. Finally, in the Appendix, we collect some results on interpolation
projectors and on regularity of the wavelet bases.
We finish this section with some remarks concerning the philosophy of this paper.

Remark 1.1 i) The aim of this paper is to present a first approach concerning the
numerical treatment of non-linear equations by means of wavelet methods. Espe-
cially, we want to show that many of the different building blocks derived so far fit
together quite nicely. One specific intention is to analyze to what extent the setting of
interpolating scaling functions and wavelets can be exploited for numerical purposes.

ii) All numerical experiments were performed for a periodic setting. This might sound
artificial at first sight. However, one of our aims is to apply our scheme to problems
in image processing where the use of periodic boundary conditions is preferable.

iii) In this paper, our basic approach is tested for some simple univariate examples at
first. Indeed, all the building blocks have a natural generalization to the multivariate
case, and therefore the results of this paper are formulated for the multivariate set-
ting and substantiated by 2D examples. Since the investigation of numerical wavelet
methods involving general scaling matrices became of special interest, e.g. for com-
putational efficiency, we give whenever possible results for general scaling matrices.
This could be done in most cases, but, there is still a lack of approximation results
for that matter of concern.

iv) Another challenging task which will be studied in the near future is the treatment
of problems where our perturbation arguments are no longer justified. Having these
problems in mind, one might wonder if the incorporation of very smooth interpo-
lating scaling functions is of any use at all for the following reasons. Firstly, the
estimation of the smoothness of the solutions to highly non-linear problems is a del-
icate problem, and secondly, the solutions might have serious singularities so that
the convergence order of the Galerkin scheme drops down, even for smooth ansatz
functions. However, in these cases, an adaptive scheme seems to be appropriate,
and quite recently, it has been shown that the convergence order of adaptive wavelet
schemes depends, among other things, on the smoothness of the wavelet basis.

2 Basic Setting

In this section, we describe the class of problems to which our method will be applied and
we briefly review the basic setting of Galerkin’s method. We also present some preliminary
results, taken from [CR97], which will be essential for establishing the convergence of the
proposed wavelet Galerkin method.

2.1 Galerkin’s Method

We shall be concerned with the numerical treatment of nonlinear partial differential equa-
tions of the type

F (u) = Lu + G(u) = 0, (2.1)
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on some bounded domain Ω ⊂ Rd, where L is an linear elliptic differential operator of
second order in divergence form and G is an operator of the form

G(u) = g(u) − f, (2.2)

with g(u) ∈ W n+1(L∞(Ω)) and f ∈ L2(Ω). We restrict ourselves to the periodic setting,
i.e. we take Ω to be the unit d-dimensional cube Ω := (0, 1)d and prescribe periodic
boundary conditions for u. For the moment, we assume that the given problem has a
unique solution, which we aim to approximate numerically. The conditions that guarantee
the existence of such a solution will be discussed later.
In order to solve the given equation (2.1), we first consider its associated weak formulation

a(u, v) +
∫

Ω
G(u)v dx = 0 , for all v ∈ H1

p , (2.3)

where a(·, ·) is the bilinear form induced by L and the prescribed boundary conditions.
Here, H1

p := H1
p (Ω) denotes the first order Sobolev space with periodic boundary condi-

tions on Ω. Throughout this paper we assume that the bilinear form a(·, ·) is symmetric,
continuous

|a(v,w)| ≤ c1‖v‖H1(Ω)‖w‖H1(Ω) for all v,w ∈ H1
p , (2.4)

and also H1
p -coercive, that is, there exists a positive constant c2 such that

a(v, v) ≥ c2‖v‖2
H1

for all v ∈ H1
p . (2.5)

To treat the above problem numerically, we will use a Galerkin approach. That is, we
consider a nested sequence of finite–dimensional approximation spaces {Vj}j≥0, Vj ⊂ H1

p ,
and project (2.3) onto these spaces. Hence, we are looking for an approximation uj ∈ Vj

to the solution u of problem (2.1) by solving

a(uj , vj) +
∫

Ω
G(uj)vj dx = 0 , for all vj ∈ Vj. (2.6)

After fixing a basis {ηj,k : k ∈ Λj} of Vj (Λj denotes a finite index set whose cardinality
depends on j), the solution uj of (2.6) will have a representation uj =

∑
k∈Λj

cj,kηj,k and
we end up with the problem of solving

∑

k∈Λj

cj,ka(ηj,k, ηj,l) +
∫

Ω
G(

∑

k∈Λj

cj,kηj,k)ηj,l dx = 0 , l ∈ Λj . (2.7)

This is a nonlinear system which can be shortly written as

Aj · cj + Gj(cj) = 0, (2.8)

with Aj the matrix whose elements are (Aj)kl = a(ηj,k, ηj,l) and where the l-th component
of the vector Gj(cj) is given by

(Gj(cj))l =
∫

Ω
G(

∑

k∈Λj

cj,kηj,k)ηj,l dx.
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2.2 Convergence Theorem

First of all, we have to ensure that the sequence of Galerkin approximations indeed con-
verges to the exact solution of our problem. In the linear case, this is an easy consequence
of Cea’s Lemma. In the nonlinear case, things are slightly more complicated. For the sake
of completeness, let us briefly recall the basic results as e.g. stated in [CR97].
In the sequel, let X be a Hilbert space, with norm ‖ · ‖X . Also, X ′ denotes the dual
space of X and 〈·, ·〉X′×X the duality pairing between X and X ′. Finally, if L(X,X ′)
is the set of all continuous linear operators from X into its dual space X ′, we denote by
‖T‖X;X′ := supx∈X,‖x‖X=1‖T (x)‖X′ the norm of T ∈ L(X,X ′). We then have the following
result.

Theorem 2.1 Let F : X → X ′ be a C1-mapping from X into its dual and u be a certain
point in X such that

F (u) = 0. (2.9)

Also, let {Xj} be a family of finite dimensional subspaces of X. Furthermore, assume that
the following conditions hold:

A1. The Fréchet derivative of F at u, DF (u), is an isomorphism from X onto X ′ and
DF is Lipschitzian in a neighborhood of u;

A2. The bilinear form b : X × X → R defined by

b(x, y) := 〈DF (u)x, y〉X′×X (2.10)

satisfies
inf

x∈Xj
||x||X=1

sup
y∈Xj

||y||X=1

b(x, y) ≥ βj , for all j,

for a certain number βj > 0;

A3.
lim

j→∞
inf

xj∈Xj

β−2
j ‖u − xj‖X = 0.

Then, there exist two constants j0 > 0 and δ0 > 0 such that, for all j ≥ j0, there exists a
unique solution uj ∈ Vj to the problem

〈F (uj), yj〉X′×X = 0 , for all yj ∈ Xj ,

in the closed ball Bδj (u) with δj = δ0βj . Moreover, the following estimates hold:

‖u − uj‖X ≤ Cβ−1
j inf

xj∈Xj

‖u − xj‖X , (2.11)

with the constant C independent of j, and

‖u − uj‖X ≤ 2 ‖DF (uj)−1‖X′×X‖F (uj)‖X′ . (2.12)
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3 Multi-resolution Analysis

Our goal is to derive an efficient Galerkin scheme for the approximate solution of (2.3).
However, in contrast to conventional finite element discretizations, we will work with trial
spaces that not only exhibit the usual approximation and good localization properties, but
in addition lead to expansions of any element in the underlying Hilbert spaces in terms of
multi-scale or wavelet bases with certain stability properties. Therefore, in this section we
briefly recall the basic properties and construction principles of wavelets.

3.1 Stable Multi-scale Bases

Let us first introduce some notation. Let M be an integer d×d matrix which is expanding,
that is, all its eigenvalues have modulus larger than one. A finite family of functions
{ψi : i ∈ I} is said to be a set of mother wavelets (with scaling matrix M) if the Zd

translates of M dilates of these functions form a Riesz basis of L2(Rd). Recall that a
Riesz basis is a set of functions {fλ : λ ∈ Λ, Λ a countable index set} in L2(Rd) which is
!2-stable, that is,

‖c‖#2(Λ) ∼ ‖
∑

λ∈Λ

cλfλ‖L2(Rd), (3.1)

for any sequence c = {cλ} ∈ !2(Λ), and its linear span is dense in L2(Rd).
Here and throughout the paper, a ∼ b means a ! b and b ! a, with the latter relation
expressing that b can be bounded by some constant times a uniformly in any parameters
on which a and b may depend.
More specifically, the members of the wavelet basis are the functions given by

ψi
j,k(x) := mj/2ψi(M jx − k), j ∈ Z, k ∈ Zd, i ∈ I,

where m = |det M |. It can also be shown that the minimum number of basic wavelets
associated with the scaling matrix M is m − 1.
A wavelet basis is usually constructed by means of a multi-resolution analysis. This is a
nested sequence {Vj}j∈Z of closed subspaces of L2(Rd) whose union is dense in L2(Rd),
while their intersection is zero. All the spaces are related by M -dilation i.e.

f ∈ Vj if and only if f(M ·) ∈ Vj+1. (3.2)

Finally, there is a function φ, the so-called generator of the multi-resolution analysis, whose
translates {φ(· − k) : k ∈ Zd} form a Riesz basis for V0.
Under the above assumptions, it can be shown that the generating function φ is (h,M)-
refinable, i.e. it satisfies a refinement equation

φ(x) =
∑

k∈Zd

hkφ(Mx − k) (3.3)

for a certain refinement mask h = {hk}k∈Zd ∈ !2(Zd). Any function φ ∈ L2(Rd) satisfying
a two-scale-relation (3.3) is called a scaling function.
The case where the scaling matrix is M = 2I is often referred to as a dyadic multi-
resolution analysis and is, by far, the most well studied case, with many available results.

Remark 3.1 In all practical applications, we will work with spaces Vj satisfying certain
approximation and suitable localization properties. These properties are, of course, de-
pendent on the generating function φ. Throughout the remainder of this paper, we shall
always assume that the scaling function φ ∈ L2(Rd) satisfies the following properties:
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(P1)
∫
φ(x)dx = 1 ;

(P2) φ ∈ Cc(Rd) ;

(P3) φ ∈ W n+1(L∞(Rd)), n ∈ N ;

Let Wj be a subspace complementing Vj in Vj+1, i.e., Wj is such that Vj+1 = Vj ⊕ Wj,
where ⊕ denotes a direct sum. From (3.2) and the further properties of the multi-resolution
analysis it can be checked that

⊕
j∈Z Wj = L2(Rd), where Wj is defined by

Wj = {f : f = g(M j ·), g ∈ W0}.

Hence, if we can find functions {ψi : i ∈ I} whose Zd translates form a stable basis of W0,
then the collection {ψi

j,k : i ∈ I, j ∈ Z, k ∈ Zd} will be a good candidate for a wavelet
basis. Of course, there is a continuum of possible choices of such complement spaces
Wj. Orthogonal decompositions would lead to orthonormal wavelet bases. However,
orthogonality often interferes with locality and the actual computation of orthonormal
bases might be too expensive. Moreover, in certain applications orthogonal decompositions
are actually not best possible [DPS94]. These limitations motivated the search for bi-
orthogonal wavelets. In this case, we look for two wavelet bases {ψi

j,k : i ∈ I, j ∈ Z, k ∈
Zd} and {ψ̃i

j,k : i ∈ I, j ∈ Z, k ∈ Zd} which satisfy
〈
ψi

j,k, ψ̃
i′
j′,k′

〉
= δi,i′δj,j′δk,k′ , for all j, j′ ∈ Z, k, k′ ∈ Zd and i, i′ ∈ I. (3.4)

These bi-orthogonal wavelet bases can be associated with two multi-resolution analysis
{Vj}j∈Z and {Ṽj}j∈Z which are ”connected” in the following manner:

〈
φ(· − k), φ̃(· − k′)

〉
= δk,k′ , for all k, k′ ∈ Zd, (3.5)

where φ and φ̃ are the generating functions of the sequences {Vj} and {Ṽj}, respectively.
Two such multi-resolution analysis are said to be dual or bi-orthogonal. In this case, we
can define the detail spaces Wj and W̃j by

Vj+1 = Vj ⊕ Wj, Wj ⊥ Ṽj and Ṽj+1 = Ṽj ⊕ W̃j, W̃j ⊥ Vj . (3.6)

For the univariate case and dyadic scaling there exist quite canonical approaches to con-
struct functions {ψi : i ∈ I} and {ψ̃i : i ∈ I} such that the sets of functions {ψi

j,k}
and {ψ̃i

j,k} are two Riesz bases of L2(Rd) satisfying the bi-orthogonality relations (3.4),
see e.g. [CDF92]. However, for the multivariate case things are much more complicated.
Nevertheless, for dyadic scalings in the multivariate setting a wavelet basis can always
be constructed by means of tensor products, see [CHR00, JRS99, RS92, Dah97, DDM96,
DM90, JM91, RS97] for further details. The relationship of the scaling functions φ and φ̃
to wavelets generated via the multi-resolution analysis paradigm is given by

ψi(x) =
∑

k∈Zd

gi
kφ(Mx − k) , ψ̃i(x) =

∑

k∈Zd

g̃i
kφ̃(Mx − k) , i ∈ I, (3.7)

where {gi
k}k∈Zd and {g̃i

k}k∈Zd are certain sequences in !2(Zd). These sequences, together
with the masks {hk} and {h̃k} of the scaling functions are the basis of fast decomposition
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and reconstruction algorithms for computing with wavelets. In many cases it is also
possible to choose finite sequences {hk} and {h̃k}, hence obtaining wavelet functions ψi

and ψ̃i of compact support.
Let Pj denote the bi-orthogonal projector of L2(Rd) onto Vj given by

Pjf =
∑

k∈Zd

〈
f, φ̃jk

〉
φj,k (3.8)

Also, let Qj := Pj+1 − Pj . Note that Qj is a projector onto Wj which can be written as

Qjf =
∑

i∈I

∑

k∈Zd

〈
f, ψ̃i

j,k

〉
ψi

j,k. (3.9)

Each function f ∈ L2(Rd) will thus have a multi-scale representation, as

f = Pj0f +
∑

j≥j0

Qjf =
∑

k

〈
f, φ̃j0,k

〉
φj0,k +

∑

i

∑

j≥j0

∑

k

〈
f, ψ̃i

j,k

〉
ψi

j,k, (3.10)

where j0 denotes a certain coarsest level. Sometimes, it will also be convenient to adopt
a simplified notation for the nodal and wavelet bases. We will set

Γj := {γ = (i, j, k) : i ∈ I, k ∈ Zd}, j ∈ N0, (3.11)

and
ψγ := ψi

j,k, for γ = (i, j, k) ∈ Γj.

We shall also write
Λj := {λ = (j, k) : k ∈ Zd}, j ∈ N0, (3.12)

and
φλ := φj,k, for λ = (j, k) ∈ Λj .

(Obviously, we will adopt similar notations for the duals). Then, the multi-scale represen-
tation for f can be written as

f =
∑

λ∈Λ0

〈
f, φ̃λ

〉
φλ +

∑

j≥0

∑

γ∈Γj

〈
f, ψ̃γ

〉
ψγ . (3.13)

If we further adopt the conventions Γ−1 := Λ0 and ψγ := φγ , if γ ∈ Γ−1, the above
representation reads as

f =
∑

j≥−1

∑

γ∈Γj

〈
f, ψ̃γ

〉
ψγ . (3.14)

With the above notations, Φj := {φλ : λ ∈ Λj} and Ψj := {ψγ : γ ∈ Γl,−1 ≤ l < j} are
the nodal and multi-scale basis of Vj, respectively.
For the numerical application we have in mind, it is essential to estimate the approximation
power of the bi-orthogonal multi-resolution analysis. Usually, the order of approximation
that can be achieved depends on the (Sobolev) smoothness of the approximated function
and of the generator. The following result is known for the case where (Vj , Ṽj) form a
pair of bi-orthogonal multi-resolution analyses obtained by dyadic scalings, with scaling
functions φ and φ̃ satisfying properties P1–P3 (with parameter ñ for the dual function);
see, e.g. [Coh00, Chapter 3].
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Theorem 3.1 Let 0 < s < t < ν and assume that φ ∈ Hν(Rd). Then, we have

‖f − Pjf‖Hs(Rd) ! 2−j(t−s)|f |Ht(Rd), (3.15)

where | · |Ht(Rd) denotes the usual semi-norm for the Sobolev space Ht(Rd).

The generalization of this result to other types of multi-scale decompositions (e.g, for the
case where M is a general expanding matrix) is currently under consideration, see [Lin03].
The results above were given for spaces defined on the whole Euclidean space. As already
mentioned, in this paper we are interested in the case where the domain Ω is the d-cube
(0, 1)d and we are looking for 1-periodic solutions of the differential equation (2.1), i.e.
for functions u such that u(x) = u(x + k) and ∂u

∂x = ∂u(·+k)
∂x for all k ∈ Zd. To deal with

this periodic setting, we can simply proceed as indicated, e.g., in [DPS94]. Let T d be
the d-dimensional torus T d = Rd/Zd, and identify all 1-periodic functions with functions
defined on T d. For any function g (compactly supported or rapidly decaying), let [g]
denote the function obtained from g by periodization, i.e.

[g](x) :=
∑

l∈Zd

g(x + l).

For a given pair of dual multi-resolution analyses of L2(Rd), with a dual pair of scaling
functions φ and φ̃, consider the periodized functions

[φj,k] = mj/2
∑

l∈Zd

φ(M j(· + l) − k),

[φ̃j,k] = mj/2
∑

l∈Zd

φ̃(M j(· + l) − k)

and define the spaces

Vj = [Vj ] := Span({[φj,k] : k ∈ Zd,j}),
Ṽj = [Ṽj ] := Span({[φ̃j,k] : k ∈ Zd,j}), respectively,

where
Zd,j := Zd/(M jZd).

Then, it can easily be shown that these finite dimensional spaces (with dimension mj) are
nested and dense in L2(T d). We will say that they constitute a periodic multi-resolution
analysis generated by φ and φ̃. It can be shown that the orthogonality relations (3.5) and
(3.4) carry over to the periodic setting in the usual way, i.e.

〈
[ψi

j,k], [ψ̃
i′
j′,k′]

〉
= δi,i′δj,j′δk,k′ , for all j, j′ ∈ N0, k ∈ Zd,j, k′ ∈ Zd,j′ and i, i′ ∈ I. (3.16)

Finally, it is important to observe that the direct estimate (3.15) for the dyadic case
remains valid in this periodic setting.
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3.2 Interpolating Scaling Functions and Duals

For our purpose, it will be convenient to work with interpolating refinable functions, i.e.,
one requires that φ is continuous and satisfies

φ(k) = δ0,k, k ∈ Zd. (3.17)

As already stated, we only consider compactly supported scaling functions. Furthermore,
we would like φ to have a certain smoothness property. In recent studies, several ex-
amples of refinable functions satisfying the above conditions have been constructed; see,
e.g., [DGM99, DM97, Der99, DDD91, DD87, Dub86, RS97]. In particular, in all our nu-
merical computations, we select the interpolating scaling functions from the family of the
so-called Deslauriers-Dubuc fundamental functions. These functions, which are obtained
as auto-correlation of the well-known compactly supported orthogonal Daubechies scaling
functions, have very attractive properties; see, e.g., [DD87, Dub86]. In fact, if we denote
by φ := φ2N the Deslauriers-Dubuc function of order 2N (obtained as autocorrelation of
the Daubechies function associated with the parameter N), then φ has compact support
and is interpolating; moreover the smoothness of φ2N increases with N and φ2N has poly-
nomial exactness 2N − 1.

Algorithms for constructing a dual scaling function φ̃ for a given interpolating scaling
function φ was developed in [JRS99]. A brief description of this algorithm can be seen in
the appendix.

3.3 Quadrature Rules via Interpolating Wavelets

Later on, we want to use wavelets as basis functions for a Galerkin scheme. Then, as
discussed subsequently in more detail, the problem of evaluating the nonlinear term applied
to a wavelet expansion arises, i.e. we have to compute

∫

Ω
G




∑

j≥−1

∑

γ∈Γj

dγ [ψγ ]



 [ψγ′ ] dx. (3.18)

Later on, we will see that due to the functional equation (3.7), it is sufficient for our setting
to treat expansions in terms of the nodal basis

∫

Ω
G




∑

λ∈Λj

cλ[φλ]



 [φλ′ ] dx. (3.19)

In this paper, we suggest to approximate the integral in (3.19) by a version of the so-called
knot oriented quadrature rules used in the finite element setting. The general approach
can be described as follows: given a function v, the integral

∫
Ω v(x)dx is approximated by∫

Ω(πv)(x)dx where π is a general interpolation operator. A widely adopted strategy is to
use, e.g. an interpolation operator based on polynomials or Lagrange finite elements. Here
we focus on an interpolation projector Πj induced by an interpolating scaling function φ.
For some 1-periodic v this projector is defined by

Πjv :=
∑

k∈Zd,j

v(M−j k)[φjk]. (3.20)
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Replacing
∫
Ω v by

∫
Ω Πjv we obtain

∫

Ω
(Πj v)(x)dx =

∑

k∈Zd,j

v(M−jk)
∫

Ω
[φjk](x)dx

=
∑

k∈Zd,j

v(M−jk)
∫

Ω

∑

l∈Zd

φ(M j(x − l) − k)dx (3.21)

=
∑

k∈Zd,j

v(M−jk)
∑

l∈Zd

∫

Ω
φ(M j(x − l) − k)dx (3.22)

=
∑

k∈Zd,j

v(M−jk)
∑

l∈Zd

∫

Ω+l
φ(M jx − k)dx (3.23)

=
∑

k∈Zd,j

v(M−jk)
∫

Rd
φ(M jx − k)dx (3.24)

= m−j
∑

k∈Zd,j

v(M−jk). (3.25)

We first state the following results concerning the interpolation operator Πj. For the proof,
the reader is referred to the appendix.

Theorem 3.2 Let Πj be the operator (3.20) associated with a (h,M)–refinable !2–stable
interpolating scaling function φ ∈ W n(L1(Rd)) for 0 < n ∈ N, φ ∈ Cc(Rd), where M is an
isotropic scaling matrix, that is, M is similar to a diagonal matrix diag{λ1, . . . , λd} with
|λ1| = . . . = |λd|. If v ∈ W n+1(L∞(T d)), then

‖v −Πjv‖L∞(T d) ! r(M)−j(n+1), (3.26)

where r(M) denotes the spectral radius of the scaling matrix M .

Remark 3.2 The assumption φ ∈ W n(L1(Rd)) is not an additional requirement on φ. It
follows directly from property P3.

Applying Theorem 3.2, we immediately obtain the following error estimate for the quadra-
ture rule (3.21).

Corollary 3.1 Under the conditions of Theorem 3.2, the following error estimate holds
∣∣∣∣

∫

Ω
v(x)dx −

∫

Ω
(Πjv)(x)dx

∣∣∣∣ ! r(M)−j(n+1) .

4 Wavelet-Galerkin Scheme

We are now ready to construct a Galerkin scheme based on wavelets where the quadrature
rule explained above allows an efficient treatment of the nonlinear part.

4.1 Wavelet Based Galerkin Ansatz

Again, we consider the Galerkin approach for solving our problem as described in Section
2.1 and choose as approximating spaces Vj, the finite-dimensional spaces of a periodic
multi-resolution analysis {[Vj ]}j≥0 associated with a certain interpolating scaling function
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φ. We will use the simplified notation introduced in Section 3.1 for the nodal and multi-
scale bases, i.e. we let Φj := {[φλ] : λ ∈ Λj} and Ψj := {[ψγ ] : γ ∈ Γl,−1 ≤ l < j}. In this
case, we obtain the following system for computing the coefficient vector cj := (cλ)λ∈Λj of
the approximate solution uj ∈ [Vj ] in the nodal basis Φj:

∑

λ∈Λj

cλa([φλ], [φλ′ ]) +
∫

Ω
g(

∑

λ∈Λj

cλ[φλ])[φλ′ ] dx −
∫

Ω
f [φλ′ ] dx = 0 , λ′ ∈ Λj ,

where we used the expression G(u) = g(u) − f for the operator G.
To deal with the nonlinear term, we can now use the quadrature rule (3.21) associated
with the operator πj . Setting

v = g




∑

λ∈Λj

cλ[φλ]



 [φλ′ ]

and using the interpolation property of φ yields to the following approximation

∫

Ω
g




∑

λ∈Λj

cλ[φλ]



 [φλ′ ] dx ≈ m−j/2g(mj/2cλ′).

This leads to a modified Galerkin system which can be written as

Aj · cj + G̃j(cj) = 0, (4.1)

where the λ′−th component of G̃j(cj) is given by

(
G̃j(cj)

)

λ′
= m−j/2g(mj/2cλ′) −

∫

Ω
f [φλ′ ] dx. (4.2)

¿From (4.1) we can also obtain a system for determining the coefficient vector dj of the
approximate solution in the multilevel basis Ψj. Let Lj denote the matrix that takes the
coefficients relative to Ψj into those relative to the nodal basis Φj. Then, we have

L−1
j AjLjL−1

j cj + L−1
j G̃j(cj) = 0,

or
Bjdj + L−1

j G̃j(Ljdj) = 0, (4.3)

where Bj = L−1
j AjLj is the stiffness matrix of the linear part with respect to the multilevel

basis and dj = L−1
j cj . Details of the construction of the matrix Lj can be found e.g. in

[DK94].

4.2 Iterative Newton Scheme

So far, we have seen that one fundamental step for solving our partial differential equation
(2.1) is the solution of the nonlinear system (4.3). Here, we propose to use Newton’s
method for solving this system. With J = #Zd,j = mj, let Fj : RJ → RJ be the mapping
defined by

Fj(ξ) := Bj ξ + L−1
j G̃j(Ljξ). (4.4)

12



Then, we apply the following iterative scheme, starting with an appropriate initial vector
d(0)

j : 



F ′

j(d
(n)
j ) ζ(n+1) = Fj(d

(n)
j )

d(n+1)
j = d(n)

j − ζ(n+1).
(4.5)

To obtain the starting vector of length mJ for the next finer level j + 1 one appends
mj(m − 1) zeros. The Jacobian matrix of Fj is naturally given by

F ′
j(ξ) = Bj + L−1

j Gj Lj (4.6)

with

Gj =




g′(mj/2(Ljξ)1) 0

. . .
0 g′(mj/2(Ljξ)J)



 . (4.7)

In every Newton step one has to solve a linear system of equations which has to be done
efficiently. Since all the matrices in (4.6) are sparse, iterative schemes such as the CG
algorithm suggest themselves. Therefore it is necessary to employ suitable precondition
strategies. This problem will be discussed in detail in Section 5.2.

4.3 Convergence Result

We now establish some results concerning the convergence of our wavelet-Galerkin ap-
proximation to the nonlinear partial differential equation (2.1).
Our aim is to estimate the error

‖u − ũj‖H1 , (4.8)

where ũj denotes an approximation obtained by a possible exact solution of the nonlinear
system (4.1). Hence, for the moment we do not take into account the error due to the
application of Newton’s method, i.e. we assume that the iteration scheme is applied up
to machine precision. As it is well known, the quadratic convergence of this method is
guaranteed provided the initial approximation is chosen sufficiently close to the solution.
To obtain an estimate for the error (4.8) we use Theorem 2.1 for the case X = H1

p(Ω) with
norm ‖.‖H1

p
= ‖.‖H1 , Xj = Vj, with Vj the spaces of the chosen multi-resolution analysis

and F : X → X ′ the function defined by

〈F (u), v〉X′×X = a(u, v) +
∫

Ω
G(u)v , for all u, v ∈ H1

p . (4.9)

We assume that the problem F (u) = 0 or equivalently

〈F (u), v〉X′×X = a(u, v) +
∫

Ω
G(u)v = 0 , for all v ∈ H1

p , (4.10)

has a unique solution u ∈ H1
p . Then, the function uj is the solution of the problem

〈F (uj), vj〉X′×X = 0 , for all vj ∈ Vj . (4.11)

Then, we have the following result:
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Theorem 4.1 Let u be the solution of the problem (4.10) and assume that the condi-
tions of Theorem 2.1 and 3.2 hold, so that there exists a unique solution uj of the wavelet
Galerkin system (4.11) in a sufficiently small neighborhood of u. Also, let ũj denote the
solution obtained from solving exactly the approximated nonlinear system (4.1). Further-
more, let us assume that

1. g(u), φ ∈ W n+1(L∞(Rd)) with 0 < n ∈ N

2. the function g induces a monotone operator in the following way
∫

Ω
(g(v) − g(w)) (v − w) dx ≥ 0, for all v,w ∈ H1

p . (4.12)

Then, we have the following error bound for the wavelet-Galerkin scheme

||u − ũj ||H1 ≤ C1β
−1
j ||u − Pju||H1 + C2(r(M))−j n+1

2 , (4.13)

where r(M) is the spectral radius of the scaling matrix M , βj is the constant referred to in
Assumptions A2–A3 of Theorem 2.1 and Pj is the oblique projector into the approximating
space Vj defined by (3.8).

Proof : In order to obtain the error bound (4.13), we will use the decomposition

‖u − ũj‖H1 ≤ ‖u − uj‖H1 + ‖uj − ũj‖H1 . (4.14)

A direct application of Theorem 2.1 immediately gives

‖u − uj‖H1 ≤ C1β
−1
j inf

xj∈Vj

||u − xj||H1 ≤ C1β
−1
j ||u − Pju||H1 .

Now we establish a bound for the second component of the error (4.14). Looking at the
initial problem

a(uj , v) +
∫

Ω
g(uj) v dx −

∫

Ω
fvdx = 0 , for all v ∈ Vj

and the perturbed problem arising by application of the quadrature rule

a(ũj , v) +
∫

Ω
Πj (g(ũj) v) −

∫

Ω
fvdx = 0 , for all v ∈ Vj ,

we obtain

a(uj − ũj , v) +
∫

Ω

(
g(uj) v −Πj (g(ũj) v)

)
dx = 0, for all v ∈ Vj ,

so that, in particular

a(uj − ũj , uj − ũj) +
∫

Ω

(
g(uj)(uj − ũj) −Πj (g(ũj)(uj − ũj))

)
dx = 0.

Hence, we have

a(uj − ũj , uj − ũj) +
∫

Ω
(g(uj) − g(ũj)) (uj − ũj) dx

14



=
∫

Ω

(
Πj (g(ũj)(uj − ũj)) − g(ũj)(uj − ũj)

)
dx.

By assumption 1. on g and φ, we can apply Theorem 3.2 to the function g(ũj)(uj − ũj).
Therefore, by use of the coercivity of the bilinear form a, we obtain

c2‖uj − ũj‖2
H1 +

∫

Ω
(g(uj) − g(ũj)) (uj − ũj)dx ≤ C ′(r(M))−j(n+1)

where c2 is the constant in (2.5). Hence, employing the property (4.12) of g, we get the
following convenient upper estimate for ‖uj − ũj‖H1 :

c2‖uj − ũj‖2
H1 ≤ C ′(r(M))−j(n+1)

or

‖uj − ũj‖H1 ≤
√

C ′

c2
[r(M)]−j n+1

2 = C3(r(M))−j n+1
2 . (4.15)

"
In the particular case of a dyadic multi-resolution analysis satisfying the assumptions of
Theorem 3.1, we obtain the following error bound:

Corollary 4.1 Under the conditions of Theorem 4.1, if the approximating wavelet spaces
correspond to the choice M = 2I and satisfy (3.15), we have the following error estimate

||u − ũj||H1 ≤ C1β
−1
j 2−j(t−1)|u|Ht + C22−j α

2 , (4.16)

for u ∈ Ht.

5 Special Model Problem

In this section, we discuss in detail the convergence of our numerical scheme for a specific
model problem and present several numerical tests. We consider the case

Lu = −∆u + u and G(u) = εu3 − f, (5.1)

for a given function f ∈ L2(Ω). As before, we take X = H1
p (Ω) with the norm ‖ · ‖H1

p(Ω) =
‖ · ‖H1 . Here, the bilinear form a(·, ·) associated with the operator L and the periodic
boundary conditions is given by

a(u, v) =
∫

Ω
∇u · ∇v dx +

∫

Ω
uv dx, (5.2)

and it is obvious that this bilinear form is continuous and H1
p -coercive. In this particular

case we obtain
a(v, v) = ||v||2H1 . (5.3)

Similarily as shown in [CR97] one can prove the following result.

Remark 5.1 The special model problem (5.1) has a unique solution u ∈ H1
p(Ω).

This existence result may deduced by applying the Leray-Schauder Theorem ([Zei86],
Chapter 6, p.245).
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5.1 Convergence for the model problem

The mapping F : H1
p → (H1

p )′ is now defined by

〈F (u), v〉X′×X = a(u, v) +
∫

Ω
(εu3 − f)vdx , for all u, v ∈ X = H1

p ,

with a(u, v) given by (5.2). We determine u ∈ H1
p such that, for all v ∈ H1

p

a(u, v) +
∫

Ω
(εu3 − f)v dx = 0. (5.4)

In order to establish the convergence of the method, we want to use Theorem 4.1. First, we
establish A2. Observe that DF (u) defines the bilinear form b(·, ·) : H1

p(Ω) × H1
p (Ω) → R

as
b(v,w) = 〈DF (u)v,w〉H−1

p (Ω)×H1
p (Ω) = a(v,w) + 3

∫

Ω
εu2 v wdx.

The first step is to show that the mapping b is continuous and H1
p -coercive. To this end,

we firstly show that u ∈ H2
p(Ω): For our special setting Ω = [0, 1]d, the solution u and f

might be expressed my means of Fourier series. This yiels for s = 2
∑

k

‖k‖2s|uk|2 ≤ {(2π)2 + 1}2‖f‖2
L2(Ω) ,

i.e. u ∈ H2
p(Ω) as long as f ∈ L2(Ω). Consequently, for d = 2 we obtain by Sobolev-

embedding that u ∈ C(Ω). Now we are able to prove that
(i) b is continuous. Indeed, by employing Hölder’s inequality we obtain

|b(v,w)| =
∣∣∣∣a(v,w) + 3

∫

Ω
εu2vwdx

∣∣∣∣

≤ ‖v‖H1‖w‖H1 + 3
∣∣∣∣

∫

Ω
εu2vwdx

∣∣∣∣

≤ ‖v‖H1‖w‖H1 + 3εmax |u|2
∣∣∣∣

∫

Ω
vwdx

∣∣∣∣

≤ ‖v‖H1‖w‖H1 + 3εmax |u|2‖v‖L2‖w‖L2

≤ (1 + 3 ε max |u|2)‖v‖H1‖w‖H1 .

(ii) b is coercive:

b(v, v) = a(v, v) + ε 3
∫

Ω
u2v2dx ≥ a(v, v) = ‖v‖2

H1 . (5.5)

By the Lax-Milgram Lemma, we conclude that DF (u) is an isomorphism from H1
P onto

its dual. In order to show that DF is Lipschitzian in a neighborhood of u we need to
bound ‖D2F (u + h)‖ for ‖h‖H1

P
≤ ε. First, we observe that D(D(u + h)w)v = 6uwv.

Moreover, u, h,w, v ∈ H1
P implies u, h,w, v ∈ Lp(Ω), for p < ∞, d = 2. Hence,

‖D2F (u + h)‖ ≤ sup
‖h‖H1

P
≤ε

sup
‖w‖H1

P
≤1

sup
‖v‖H1

P
≤1

‖6(u + h)wv‖(H1
P )′

= sup
‖h‖H1

P
≤ε

sup
‖w‖H1

P
≤1

sup
‖v‖H1

P
≤1

sup
‖g‖H1

P
=1

6 〈(u + h)wv, g〉

≤ 6‖z‖L8‖w‖L8{‖u‖L4(1 + 2ε) + ε‖h‖L4} < ∞ .
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From the H1
p -coerciveness (5.5) of the bilinear form b it follows that assumption A2 of

Theorem 2.1 is fulfilled with βj = 1. It remains to verify that g(v) = εv3 satisfies (4.12).
This follows by the observation

∫

Ω
ε
(
v3 − w3

)
(v − w)dx =

∫

Ω
ε

[
v2 + w2

2
+

(v + w)2

2

]
(v − w)2dx.

Hence, we can conclude that for this class of problems the method converges and the error
bound (4.13) holds with βj = 1.

5.2 Wavelet Preconditioning

Typically, the sparse stiffness matrices in the nodal basis exhibit a polynomial growth
rate of the spectral condition number proportional to their size. As already stated before,
to tap the full potential of the Newton method it is essential to precondition the system
(4.5). There is a whole theory concerning this problem, see e.g. [DK92]. Our system (4.5)
can be seen as a linear system with a nonlinear perturbation E. Regarding the spectral
condition number of the linear part we first recall the well known results from [DK92]:
If the elements of the wavelet basis satisfy a H1-stability condition, i.e. there exist some
constants 0 < γ ≤ Γ < ∞ and yλ such that

γ
∑

λ∈Λ

|yλdλ|2 ≤ ‖
∑

λ∈Λ

dλψλ‖2
H1(Ω) ≤ Γ

∑

λ∈Λ

|yλdλ|2 (5.6)

then, there exists a constant C depending only on the fact

a(·, ·) ∼ ‖ · ‖2
H1(Ω), (5.7)

such that
κ(D−1

j BjD−1
j ) ≤ C

Γ
γ

, (5.8)

where the matrix Dj is defined by Dj := 2jδj′,j′′δi′,i′′ for j′, j′′ = 0, . . . , j and i′, i′′ ∈ Λj .

Remark 5.2 Note that (5.6) and (5.7) ensure that all eigenvalues of D−1
j BjD−1

j are in
the range between Cγ and CΓ.

For the investigation of the perturbed system we use the following well known perturbation
result (see e.g. [GL96][page 58]). If A is nonsingular and

r := ‖A−1‖2‖E‖2 < 1, (5.9)

then A + E is nonsingular and

‖(A + E)−1‖2 ≤ ‖A−1‖2

1 − r
.

Setting A := Bj = D−1
j BjD−1

j and E := Ej = D−1
j L−1

j GjLjD−1
j , we obtain the following

estimate for the condition number of the perturbed system (4.5)

κ(Bj + Ej) ≤ (‖Bj‖2 + ‖Ej‖2)
‖B−1

j ‖2

1 − r
(5.10)

≤ κ(Bj)
1 − r

+
r

1 − r
, (5.11)
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where r = ‖B−1
j ‖2‖Ej‖2 ≤ γ−1κ(Lj)‖Gj‖2. We have to ensure r < 1, that is equivalent to

‖Gj‖2 <
γ

κ(Lj)
.

According to Theorem 2.1 we choose a level j. Let
(
ξlin
i

)
i

be the vector of wavelet co-
efficient of the solution ulin of the linear problem. Moreover, we denote by

(
ξexact
i

)
i

the
vector of wavelet coefficient of the exact solution u. We have that ulin ∈ Hs for a certain
s, see [Gri92]. Hence, by norm equivalence there exists a constant R > 0 such that

∑

i

|(Ljξ
lin)i|2 ≤ R .

Moreover, we get from the difference between the linear and the non-linear problem that

‖ulin − u‖H1 ≤ ε‖u‖1/3
L6

≤ εmax{1, ‖u‖L6} .

In the case ‖u‖L6 ≤ 1 we obtain

‖ulin − u‖H1 ≤ ε .

Using the embedding ‖u‖L6 ≤ C‖u‖H1 , see [Ada78] p.97, and the triangle inequality
‖u‖H1 ≤ ‖ulin − u‖H1 + ‖ulin‖H1 we have

‖ulin − u‖H1 ≤ 1
|λ|min

εC

1 − εC
‖f‖L2 ,

where |λ|min is the smallest eigenvalue of L. Consequently, we observe the following:

(i) For an arbitrary but fixed ε we have ‖ulin − u‖H1 ≤ δ(ε), and thus, there exists a
constant c1 > 0 such that

∑

i

|(Ljξ
exact)i|2 ≤ c1R .

(ii) In accordance with Theorem 2.1 we obtain for a fixed j the estimate ‖uj−u‖H1 ≤ δ1,
and thus, there exists a constant c2 > 0 such that

∑

i

|(Ljξ
j)i|2 ≤ c1c2R .

(iii) Exploiting (4.15) we have ‖uj − ũj‖H1 ≤ δ2, and thus, there exists a constant c3 > 0
such that ∑

i

|(Ljξ)i|2 ≤ c1c2c3R .

Finally, choosing ε such that

max
ξ∈Bc1c2c3R(0)

∑

i

|g′ε(mj/2(Ljξ)i|2 ≤
(

γ

κ(Ll)

)2

for a fixed scale j, we obtain a condition to ensure that r < 1.
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Figure 1: Condition numbers for the original system (line with slope) and wavelet precon-
ditioned system (constant line) on a logarithmic scale.

5.3 Numerical Examples

To confirm the applicability of our approach we present some test examples that describe,
e.g., a chemical inter-mixture process. The first example consists of a univariate problem
whereas the second one is concerned with a problem in two dimensions. Numerical results
were obtained by choosing the (periodized) Deslauriers-Dubuc interpolating scaling func-
tions φ2N ; N = 1, 2, 3, 4, with different duals φ̃2N,K ; K = 1, 2, 3, whose constructions will
be briefly described in Section 6.2.

Example 5.1 To test the numerical approximation we have to know the exact solution
u. Therefore, we assume that the function u is given by

u(x) = sin(2πωx) , (5.12)

which is a sufficiently smooth periodic function on Ω = [0, 1], ω ∈ N. Then, we design the
associated right–hand side f by insertion of u into (2.1)

f(x) = sin3(2πωx) + ((2πω)2 + 1) sin(2πωx) , (5.13)

see Figure 2. The numerical approximations are displayed in Figure 3.

Example 5.2 Similar examples for 2 dimensions can be obtained by a natural general-
ization by means of a tensor product approach (which corresponds to the scaling matrix
as M = 2I), see Figure 4.

In both examples ε is choosen to be one. It can be observed that the preconditioning
applies also in this case.
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Figure 3: Approximations on successive scales j = 5, . . . , 9 with functions φ2N (denoted
by dd2*N) of varying smoothness N = 2, 3, 4.

6 Appendix

6.1 Proof of Theorem 3.2

In order to establish approximation results for the interpolation projector Πj we introduce
the following mappings:
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Figure 4: Approximations on successive scales j = 3, . . . , 6 with functions φ2N (denoted
by dd2*N) of varying smoothness N = 1, 2, 3.

E : L∞(T d) → L∞(Rd), with f(·) 1→ f([·]) ;
R : L∞(Rd) → L∞([0, 1]d), with f 1→ 1[0,1]df ;

P : L∞([0, 1]d) → L∞(T d), with f 1→
∑

l

f(· + l) .
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Let πj denote the interpolation projector on L∞(Rd). We estimate the L∞-approximation
error of Πj:

‖f −Πjf‖L∞(T d) = ‖PREf − PRπjEf‖L∞(T d) ≤ ‖Ef − πjEf‖L∞(Rd)

≤ ‖Ef − g‖L∞(Rd) + ‖πjEf − g‖L∞(Rd)

≤ ‖Ef − g‖L∞(Rd) + ‖πjEf − πjg‖L∞(Rd)

≤ (1 + ‖πj‖)‖Ef − g‖L∞(Rd) ≤ (1 + ‖πj‖) inf
g∈Vj

‖Ef − g‖L∞(Rd)

≤ (1 + ‖πj‖)r(M)−j(n+1)|f |W n+1(L∞(Rd)) .

For the last estimate see [Lin03]. Consequently, the interpolation projector defined on
L∞(T d) has the following representation in [Vj ]

Πj = PRπjE, (6.1)

that is
Πjf(x) =

∑

k∈Zd/MjZd

f([M jk])[φjk](x) .

6.2 Construction of Smooth Duals

Here, we briefly recall an algorithm for constructing a dual scaling function φ̃ for a given
interpolating function φ, as developed in [JRS99].
The first step is to construct a second smoother interpolating function. Let us fix some
notation. As before, let m = |det M | and let R = {ρ0, . . . , ρm−1} , RT = {ρ̃0, . . . , ρ̃m−1}
denote complete sets of representatives of Z/MZd and Z/BZd, B = MT, respectively.
Without loss of generality, we shall always assume that ρ0 = ρ̃0 = 0. Also, let h(z) be the
symbol associated with the mask h = {hk}, i.e.

h(z) :=
1
m

∑

k∈Zd

hkz
k.

It can be shown that necessary conditions for φ to be interpolating is that its symbol
satisfies:

C1. h(1) = 1;

C2.
∑

ρ̃∈RT h(ζρ̃e−iB−1ω) = 1, where ζρ̃ := e−2πiB−1ρ̃.

The following condition, although not necessary, is easily established in many cases and
is required for the construction developed in [JRS99]:

C3. h(z) ≥ 0.

Moreover, C3 implies that the resulting scaling function is continuous. It can also be
shown that a necessary condition for h̃ to be the symbol of a dual scaling function φ̃ for
φ is that ∑

ρ̃

h(ζρ̃z)h̃(ζρ̃) = 1. (6.2)
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Defining
bρ̃ = h(ζρ̃z), ρ̃ ∈ RT , (6.3)

condition C2 may equivalently be written as

1 =
∑

ρ̃∈RT

bρ̃(z). (6.4)

Hence, for any integer K,



∑

ρ̃∈RT

bρ̃(z)




Km

=
∑

|γ|=mK



Cγ
mK

∏

ρ̂∈RT

b
γρ̂

ρ̂ (z)



 = 1. (6.5)

By using (6.5), the following theorem was established in [JRS99].

Theorem 6.1 Let h(z) be a symbol satisfying (6.4) for a dilation matrix M with m =
|det M |. Define

G0 :=
{
γ ∈ Nm

0 : |γ| = mK, γ0 > K and γ0 > γρ̂, ρ̂ ∈ RT\{0}
}

Gl :=
{
γ ∈ Nm

0 : |γ| = qmK, γ0 > K and γ0 ≥ γρ̂, ρ̂ ∈ RT\{0}, with exactly l equalities
}

,

l = 1, . . . ,m − 2,

and define

HK :=
m−2∑

j=0

1
j + 1




∑

γ∈Gj

Cγ
mKh(z)γ0−1

∏

ρ̂∈RT \{0}

b
γρ̂

ρ̂ (z)



 + C(K,...,K)
mK

∏

ρ̂∈RT

bK
ρ̂ (z),

where Cγ
qK are the multinomial coefficients. Then the symbol h(z)HK(z) also satisfies

(6.4).

It can be checked that the symbol HK can be factored as

HK(z) = h(z)KTK(z) (6.6)

for some suitable symbol TK(z). Consequently, the refinable function associated with
h(z)HK(z) is obtained by convolving the original function K−1–times with itself, followed
by a convolution by some distribution. Since h(z)HK(z) satisfies (6.4), it is a candidate
for a symbol corresponding to an interpolating scaling function. Indeed, the following
corollary was established in [JRS99].

Corollary 6.1 Let h(z) be the symbol of a continuous compactly supported interpolating
refinable function and assume that h(z) satisfies C3. If the refinable function correspond-
ing to h(z)HK(z) is continuous, then it is interpolating.

This approach can now be used to construct dual functions for the given interpolating
scaling function φ. Indeed, by recalling the necessary condition (6.4), we see that, by
Theorem 6.1

h̃(z) := HK(z) = h(z)KTK(z) (6.7)

is a natural candidate for a symbol associated with a dual function. The following corollary
is again taken from [JRS99].

Corollary 6.2 If the refinable function corresponding to the mask HK is in L2(Rd), then
it is stable and dual to φ.
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6.3 More About Regularity

In this subsection, we estimate the regularity of our constructed interpolating generator
functions φ2N and the related duals.

For simplicity we confine the considerations to the univariate case. The starting point
is the Daubechies scaling function ϕN . Thus, by convolution we obtain a interpolating
generator φ2N by

φ2N (x) =
∫

ϕN (y)ϕ̄N (y − x)dy ,

that is
φ2N (k) = δ0k .

This leads to the following refinement equation

φ̂2N (ω) = H(ω/2)φ̂2N (ω/2) =
∏

j≥1

H(2−jω) ,

where H(ω) = |HN (ω)|2 and HN are the Daubechies symbols. Finally, the regularity
of φ2N can be estimated by the application of known results of the Daubechies scaling
functions

|φ̂2N (ω)| = |
∏

j≥1

HN (2−jω)|2 ≤ CN (1 + |ω|)2(−1−αN−ε) = CN (1 + |ω|)−1−βN−ε′ ,

where αN are the known lower bounds for the Hölder exponents of ϕN and where βN =
2αN + 1. Hence, we obtain the following table, see [Dau92][p. 239].

N αN βN

1 1.0000
2 0.5500 2.1000
3 1.0878 3.1756
4 1.6179 4.2358

The symbol of the dual generator functions φ2N,K can be constructed by means of Theorem
6.1

HK,N(ω) = HK(ω)TK(ω) = |HN (ω)|2KTK(ω) ,

where TK(ω) is given for K = 1, 2, 3 by

T1(ω) = 1 + 2b1(ω) ,

T2(ω) = b0(ω) + 4b1(ω) + 6b2
1(ω) ,

T3(ω) = b2
0(ω) + 6b0(ω)b1(ω) + 15b2

1(ω) + 20b3
1(ω) ,

where b0(ω) = H(ω) and b1(ω) = H(ω + π), compare with 6.3. By 6.4 we have

H(ω) + H(ω + π) = 1

and thus,
b1(ω) = 1 − H(ω) .
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Figure 5: Estimated regularities of the duals.

To compute the regularity of the dual generators φ2N,K we have to estimate

|φ̂2N,K(ω)| =




∏

j≥1

|HN (2−jω)|




2K

∏

j≥1

|TK(2−jω)| .

Thus, we have to estimate the second term only. This can be performed by following the
standard technique in e.g. [Dau92] outlined. Defining

FK,L(ω) =
L−1∏

l=0

TK(2lω)

and
CK,L = max

ω∈[0,2π)
|FK,L(ω)|

we obtain for 2J−1 ≤ |ω| ≤ 2J

J∏

j=1

|TK(2−jω)| =
J/L∏

j=1

L−1∏

l=0

|TK(2−jL+lω)| =
J/L∏

j=1

|FK,L(2−jLω)|

≤ (CK,L)J/L ≤ C ′
K,L(1 + |ω|)γK ,

where γK = log CK,L/ log 2L. Finally, we have that

|φ̂2N,K(ω)| ≤ C(1 + |ω|)−1−αN,K−ε′ ,
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where C = C2K
N C ′

K,LeC′
K . The Hölder exponent is given by αN,K = 2K(αN + 1)− γK − 1.

We obtain the following table of numerical estimates of Hölder regularities, cp Figure 5:

φ2N ∈ CβN φ2N,K ∈ CαN,K

βN αN,1 αN,2 αN,3

N=1 1.0000 0.00005 0.968 1.801
N=2 2.1000 1.118 3.189 5.119
N=3 3.1756 2.205 5.355 8.388
N=4 4.2358 3.271 7.484 11.59
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