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Clifford .A‘nalysis on Projective Hyperbolic Space

Paula Cerejeiras, Uwe Kahler
and

Frank Sommen

Abstract. In this paper we present a new model for Clifford analysis over
the hyperbolic unit ball, which is identified with the manifcld of rays within
the future null cone. By making use of the available Clifford algebra structure
there, we arrive at the definition of Dirac operators on sections of homoge-
neous line bundles.

1. Introduction

The starting basis for Clifford analysis is a Clifford algebra generated by an
orthonormal basis ey, , e, satisfying ee; +e;e; = —28y. In this framework,
Dirac operators in Euclidean spaces arises as natural Clifford-valued first order
operators. The book [BDS] dealing with the function theory of this operator can

be viewed as a first major monograph in this research field. A main problem in the

2000 Mathematics Subject Classification: Primary: 11E88; 15A66;
Secondary: 16W55; 83C63.
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development of this theory is the study of the invariance group of null solutions of
the Dirac operator. This invariance group is the group of Mébius transformations
which can be described by Vahlen matrices (see [V}, [A],[M]). Another description
of this group makes use of the identification of points in Buclidean space R™ with
rays in the null cone in R™tH! (see e.g. [LKH]). In this picture the Mébius group

corresponds to the group Spin(m + 1,1). This identification has been the main

theme of several works on Clifford analj}sis (see {Ca), [Hs], [M]). Strongly related to
these themes is the development of Clifford analysis on the hyperbolic unit ball or
the hyperbolic half plare and this is due to the fact that the subgroup Spin{m, 1)
of Mébius transformations leaving the unit sphere invariant is the isometry group

of these non-Fuclidean geometries.

Many attempts have been made to define a version of Clifferd analysis on

these spaces, in the first place by Heinz Leutwiler and his students (see [L], [EL],
[Hm]). This research field is usually called modified Clifford analysis and contains
a Clifford algebra de::cnptmn of the Riesz system which was later generahzed to a

Hodge system on the hyperbolic unit ball (see jccy, [Co)).

The above attempts do not really generalize the Dirac operator for Spin% fields,
in fact they correspond to Spinl fields. In this paper we are going to esta.blish
& true generalization of the Dirac operator for Spini flelds. Hereby, we ma.ke
use of 2 homogeneous description of the hyperbolic unit ball whereby points are
. identified with rays in the futuze null cone and the isometry group corresponds to
the Lorentz group Spin{m,1). Monogenic functions on the hyperbolic space are

defined as homogeneous solutions of the space-time Dirac operator.

The ideas presented in this paper follow closely the ones already established in
[SvL] and [vL]. ’
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2. The conformal embedding of R™

Let ® = {#1,... ,Tm) be an element of R™.

We introduce an embedding of R™ in R™ defined by
1-72 1472
2 0 2
(Xh R Xm: Xm+h Xm+2):

T X = (zla"':xms

where r = |z|.

Therefore, the above transformation takes the form

XJ' = T i=1,...,m

1-r
Kmp1 = B ' {1)
3 .
Xz = “;’”

and, with respect to the standard Fuclidean basis, it can be viewed as conic surface
(henceforward, nuil cone NC) in R™2, The elements X € NC satisfy the quadratic
equation X7+ ...+ X2 ;= X2,

We will proceed now with the homogenization of our space: let us consider the
equivalence relation X ~ AX, A # 0. Hence, the rays in NC
ray(X) = {¥ = AX|) # 0}

appesr as the equivalent classes of the above relation. We shall denote by ray(NC)
the set of all such equivalent classes, ie. ray(NC) = NC/ ~.

To come.back from each ray({X) in NC to its uniciue generator z € IR™ we
need to identify the special point in rey(X) which satisfy (1); thus, for every
Y € ray{X), we have X = 1Y = 1Y, Then we have v such that

K1 + Xv-n+2 = V(Ym-i-] + Ym.;.g) ﬁ 1,
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le. v= 1/(Ym+1 + Ym+g).

Obviously, we have exceptional points in the case of Yipy1 + Ymio =0, that Is,
Vimp1 = —Ymya. In this situation, the NC-equation

m+1l

2 Y«;2 = Y131+2 (2)

i=1
implies that 3, ¥;* = 0. Hence the correspondent variable in the homogeneous
space is Tay{0, —1,1), where 0 denotes the zero-vector in IR™. This particular ray

can be viewed as the point at infinity co in ™.

Null Cone

ray (X}

Fig. 1 - Null cone
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The remaining elements of R™ will be obtained, from the value A # 0, as

z;=X;,7=1,...,m; we then get, for r = |2[, that
m
2= 3
T =l
™
=

i=1
— 2 2
- Xr.vH-l - Xm+2

= (Xms1 = X2 (X1 + Xmis)

hence Xypi1 = ]”2"2 and Xpp9 == 1‘;’"2. Henceforward, the special elements X € NC

satisfying Xpmy1 -+ Xmea = 1 will be denoted as the ray generator.

Fig. 2 - Rays generators

Remark. The mapping © — ray(X) defines projective coordinates from R™ U
{co} = 5™ on rey(NC). Obviously, such embedding privileged radial forms in
the initial space IR™; moreover, the above imbedding arises as natural projective

coordinates for §™ on radial algebras {[SvL}).
Also, the transformation group leaving the ray(NC) invariant is the rotation
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group in R™*!, the so-called SO{m +1,1). It is well known that it stands for a

representation of the Mébins group acting on IR™. For a detailed proof, see ([Cal).

The next goal will be to find a correct generalization of functions on R™ to

functions on the projective space 7ayNC, in 2 snitable way, i.e. the generalization

will preserve a given homogeneity condition.

For that purpose, let us consider an arbitrary real-valued function f on a subset-

1 of R™. We will denote by F' the function acting on ray(NC) which corresponds
to f.

For a ray generator X we have Xmi + Xmya = 1, 50 we can set
F(X)=fl=z)=¢
whereby #; = X1,... ,Tm = Xnm-

For the extension to ray(X) we. consider the homogeneous line bundles over
ray(NC) = §™ = R™ U {oo}. For each X & NC and ¢ € IR, consider {(X,¢):¢€
R} the line over the base poinf X which is also the trivial line bundle-in NG x[R.

Construct the equivalence relation
(X,c)w(AX,)\“c),XENC+,)\>0 {3)

where NCy = {X & NC|Xns2 > 0}. The equivalent classes of this relation define
the line bundle L, over rays(NCy). In such way, each F(Y),Y € NC. corresponds

to a section of L, or, equivalently,
FOX)=¥FX)= X f(z), A > 0. (4)

Hence, we extend the previbus F{X) = flz}, with Xme1 + Xm+2 = 1, to a section

of L, by settj.ing

F(Y) = (Yms + Yo Flg—— b ¥ €ray(),
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which is always well defined; we complete the peint at oo by taking the limit to
that point, if such limit exists. Remark that relation {4) can be viewed as setting
F acting on ray{NC} through homogenization of degree & of the original values of
finR™

3. Cliffordization
In this Section we want to “Cliffordize” the above idea of a conformal embed-
ding, i.e. describe it in a Clifford algebra setting.

For this we conéider the Clifford algebra IR;p11,: generated as the free algebra

over the vector space B™! with signature m + 1,1 modulo the refation
X? = Q(X)eo

with X € R™"™, eg being the identity of the algebra, and Q(X) = S5 X2 —

- X2, (see {BDS]).

For the basis €1,... ,8m, @my1, @mys of the vectors of R,y it holds
ee; = —eje;, 1 7# 1
and
e? = +l,i=1,...,m+1

ey = —L.
Now, any Euclidean Clifford vector can be written as z = Z;’;l e;z; and
1- 'rlz i+72
' .-2(_‘*_*.@+em+1 (—“2—) +em+2( 5 ) .

Hereby, the NC-equation corresponds to X? = 0 in the Clifford sense. Moreover

X &€ NC. corresponds t0 Xr4a > 0 and we have the homogeneity condition as
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rﬁy( X)={Y. = AX, 2> (0} Agein, we come back te R™ by the mappings ' ’ We have to restrict oufselves to operators transforming homogeneous elements
1 . to homogeneous elements, for instance X, 8y, 8x — i, XOx = F+T with E =
.Z o Yma1 +Ymea ™ - : Zj’:{z X;0x; being the Buler operator and I'y = X A Jx the Gamma operator.
™
A = oz= Z ;X ' In case that F is a homogeneous polynomial of degree & we have the harmonic
= : Fischer decomposition ’ .
Now, starting from functions f : @ C R™ — Cfg,, we can consider functions F(X)=HX)+ X* R(X)
Y ‘ with 8% H(X) == 0. Hence, F(X)iNp = Hz}Ing. Next, we have for H the

= (Yores + Yoy 2) 2 F(X), with X = —————
FY) = (Y41 + Yory2) (_.,) Yot + Yonan decomposition H(X) = M, (X) + XMs(X) where each M; satisfies Oy M;(X) =0.

where F(X) = f(z),z = E;’;l X;e;. These functions are homogeneous of degree

& Theorem 4.1. On the null cone NC it holds

The spin group Spin(m+1, 1), which acts on homogeneous Clifford null vectors F(X) = M{FYX) + XM (F)(X).
by X — sX%,s € Spin(m+1,1}, and preserves the nuli cone, acts on homogeneous :

functions F{AX) = A*F(X) over NC.. by From this Theorem we get XF(X) = XM{F)(X) directly. Now, applying 8x we

. : have
L{s): F(X) — sF(sXs). : Ox XF(X) = (m + 2)F(X) + 2Ex F(X) - X0x F(X).
Trom this we can obtain seversl transformations of functions on IR™ -under the . The same halds for M(X) = M{F){X). For the Euler operator it holds By F{X) =

Mébius group. aF(X), therefore, we obtain

OxXF(X) = (2 +m +2)M(X)

4. Some special Clifford analysis observations o
| | : : ' M{X) = %—%X—”F@).
In IR™1 we have the algebra of Spin{m + 1, 1)-invariant operators generated % This leads o
by X(2a+mo+2 - B X)F(X) =0
FX) — XF(X) _ For M we use again X0y F(X) = (20 +m + 2 ~ 05 X)F(X):
F&) = OgF ) - XHEN = PO - 52 px,
- where 6;(_ = ET:? €;0x, — emt20x.0,,- Hereby, F(AX) = A F(X} is defined in an : - _ _ Zo4+m42- BxX F(X)
open region & C R™1 with the property of AQ = @, A > 0, ie. a section of a Kaic;&fgl%— 2
line bundle on a sphere. s ; dJa+m+2
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Therefore, we have
8 F(X)

2o+ m 42
Let us make some concluding remarks to these calculations. First, F(X) is defined

in & neighbourhood of the null cone NC and 83;_F = 0, otherwise it is not valid.

M(F)NX) =

Second, this is the theory of monogenic functions on NC. There is no further Dirac

operator on NC coming.

5. Clifford analysis on hypérbolic disk

The unit sphere 5™~} corresponds in ray(NC) to the equation X1 = 0. The
subgroup of Spin{m + 1, 1) leaving the subspace R™! invariant is Spin{m, 1). It

leaves also invariant the vector emq4 and the operator Jx,,,, corresponding to that.

The unit ball B(1) in IR™ corresponds to the region X1 > 0 and the group
Spin(m,1) is the subgroup of Mdbius transformations leaving B(l) invariant,
‘which i§ also the hyperbolic motion group or the Loreniz group acting on the

velocity ball. Now a function f on B(1l) may be extended to a section of Lg in

the previous sense denoted F(X1, ... , Xm, Xm+1, Xm42) and defined for Xpme1 >0

and X2 4.+ X2, = X2
We now extend it to the whole set
(X1, s Xmg2) : Xhpg = X2 = . = X5 >0
by assuming the Si:in(m, 1)-inva.ria.nt condition
| 8, PLX) =0
" and this function is determined by itsrrestriction 10 X1 = 0 given by
FlXy, .o Xy Xango) = F(Xq, X 0, Xopta).

Hence, there is » one to one correspondence between B.n (or Cr1-valued functions

on the hyperbolic space B(1) and homogeneous functions £ ((X) = »*F(X), &
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fixed and

X

il

Xiey + o Xl + XinsgBmaa
= Xer+...+ Xqe, +Te,

whereby T'> R =,/ ;’;l X2

Indeed; the direct embedding of B(1} is given by X; = 4,5 = 1,... ,m and
T2
T=4-r=%7 2
It is a paraboloid P with the equation 2T = 1— 377 X; and coordinates
Ty =XJ, _] = 1,... , .

Hence, for any function near P, i{ holds

2
Flp(zy, ... ,zm)=p($h__ ’xm’l-;r )

so that
Oz, Flp = {8y, F + 2;80 F)|p.

Now in the solid null cone T' > R we consider a-homogeneous Ry, ; (€1 )-valued

functions

F(AX,AT) = A"F(X,T)

which are equivalent to imposing the Euler equation
(Z X;0x, — a) F =T8F (5)
=1

Apart from this we may assume F to satisfy all kinds of Spin{m, 1)-invariant

equations, the algebra of which is generated by

1. Dirac operator

Oxver = —Ox +€8r,8x = ) e;0x, .

j=1
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2. Vector multiplication
Fs (X +eT)F

3. Pseudoscalar multiplication

Fire;...encl

and we have to restrict ourself to homogeneous operators such as
i
Oxrers (X + €0)0xrier Bxer + Xt

For each such operator we eliminate the time derivative using the Buler equation
{5) (which e.g. turns the hyperbolic Dirac operator Ox+er into an elliptic operator)

and then we use the change of coordinates formula on the paraboloid P

8z

3

-““ax, +Xj6T: j=1--,m
to arrive at the corresponding system in the hyperbolic space B(1).
We will work out the case of she Dirac equation

(—x +eB)F =0, (<X,8x >+T0r)F =aF.

First multiplying with e; and adding up, the transformation formulas &;, =

Ox, + X0, for X; =1, T = IL,;% lead to
8 F = F + X&F
and multiplying now with i = 1 we get
20, F = XOxF + 280 F.
As this holds for all functions, we may take the scalar part to obtain

EF ExF +7%0rF

(-T8, + 7287 F + aF
LRt
2

l

(o —
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50 that

BpF = = (01 E.)F,

which eliminates 87, while also 8y = BE —-X0rF, X = z, so that the Dirac equation
expressed in the z-coordinates is given by

X+e

8,+2 <

(o— g)j‘ F=DIF=0,z| <L

We also have that
(—8x + .saT)’ =—-Ax+ 6%.

is the wave operator while (~8x + ed7)F is homogeneous of degree & — 1 provided
(Ex + TOr)F = oF.

Hence, the wave operator (—dx + edp)2F for F(AX,AT) = A*F(X,T) has to

correspond in the z-coordinates to the operator
—AZ = Delpe.

Let. us compute this purely scalar operator. First

DEDE =4, +2{”’+‘2(a Ea)y— }

+4 (f“z(a Q)Q

whereby

{$+€2(a Ew)a} £ B)oy+ 0.5 (e - By

which, using the Hestenes overdot notation (see [Hs]), is given by

THe {—m 2z(m+e)}{

{Bm,:c—i-e}(

1—p2 = + (I 232 2) + <)

whereby {35, Z -+ ¢} = —2F; so that the second term in D2 D2 is given by

'1:-9-66 [42@—&-6) 4E, + 2m

21__.7.2 (1_,,.2)2“ 12 ](O‘“E;)-
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The third term is given by

L+e€ z+e

4?:—(Q_E£)I_T2(Q—Eg) . )
4 2 z+e by 2ri(z + € _ .
= le—E) -4 [l-ﬂr? T (a— Eg)

All together this gives

2
Z+e 4o + 2m gr? _E s o—E,
Aa_zl_r26§.+ 1—72 (O‘_Es)‘i‘(l_rz)z(o’ =) (1—-r2)2( z)

while also

’ z+e - LL+e€
a—1 Ho xne 9= | — — - E; -
e 1D£—D£D£- 21_7_2( 3£+21_T2(C\' _))

Hence, i
DEIDE = - (- B+ A - B
= —=Ag
incaseof a=1- m/é.
S.econdly, note that _
{z+eD; = '—{g+ €)0z -+ 2(a — Ey)

= 2F, + 8z -+ m+Oe+ 20— 2E;
= Bz +€) + (m42a).
Hence, for ¢ = —F, null solutigns of Dgg(x) = 0 are given by
| | 8.f(z)=0,f(@) = &+ )g()
so that we work esseﬁtially with monogenic functions. For the other values of &

this is much less the case, a new function theory is to be de\{eloped.

Note that for & = —F we have that
mn

2 + By

. 4
DEiDg = —AH 10 (
which is another canonical operator on the hyperbolic disk.
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A New Characterization of M&bius
Transformations by Use of 2n Points

Nikolas Samaris

Abstract. Using appropriate classes of conformal mappings we give a new
characterization of Mébius Transformation. As a special case of this char-
acterization we generalize to arbitrary Apollonius 2n-gon results that were
only known for n =1 and n = 2, ’

1. Introduction

A 2n-~gon (not necsssarily simple} on the complex plane is called Apollonius if

for the consecutive vertices 2;, 22, ..., zzq € C, the following condition holds

Alzi,22,...,20) =1, _ (1)
where

E(Zl - 22)(23 - 24) Tt (z2n.—] - Zzn)l
[(22 =~ za){zs — 25) -+ (2on—2 — Zon1 M (22n — 21)|

(2

Az, 22,000, 200) =
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