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We consider a definition of Q,-spaces for quaternion-valued functions of three real
variables and study some of its basic properties.
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1 INTRODUCTION

A new class of complex-valued functions, the scale of so-called Q,-
spaces, has been recently introduced and studied intensively by several
authors (see e.g. [1--3]).

" Let A= {z: |z} <1} be the complex unit disk. Then the well-known
Bioch space

"B ={f: fanalyticin A and B(f) = sup(1 ~ 2 £ (2)] < oo}

* Corresponding author. Fakultit fir Mathematik, Technische Universitit Chemnitz,
D-09107 Chemnitz, Germany.
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116 - K. GURLEBECK er al.
and the Dirichlet space o
D= {f: £ analytic in A and / LF(2)F dxdy < oo}
: A

are introduced. Applying the Mobius transform @,(z) = {a—z)/
(1 — @z), which maps the unit disk A onto itself, and the fundamental
solution of the two-dimensional real Laplacian a function g{z, a) =
In|{1 - &z)/(a — )| is defined. Obviously, this function has a Ioganth-
mic singularity at @ €A, 'Then the spaces ;

Q= { 7 fanalytic i A dnd sup | 1f'(2)’e?(z, a)dxdy < oo} g
. acAJA . L

are defined. The idea of these Q,-spaces is to find a {continuous) scale
of spaces with D and B, rcspcctlvcly, “at the both end pomts” of the
“scale.
-Indeed, a lot of essenual results are already known as for instance

DcQ,cQ,cBMO4 O<p<g<l [
Q. = BMOA - 3]
Q=B ¥p>1 [l

This means that the spaces Q, form a scale as desired and for special
values of the scale parameter p these spaces are connected with other
known and important spaces of analytic functions. Anotherl special
property of these spaces is the conformal invariance under Md&bius
transformations.

There are several attempts to generalize these ideas and the corre-
sponding approach to higher dimensions [4,9,10,12]. Independently on
method these approaches treat the case of the unit ball in C” and not
the case of the unit ball in R". Basic ideas are to replace the derivative
/' by the complex gradient of f and the medsure dxdy by a weighted
measure dA(z) =dy/(1 ~ |z|2)"“ where dv stands for. the usual Lebes-
gue measure. Using an invariant Green’s function some results similar
to the complex one—dlmensmna.l case were proved The most 1mportant
results are that _

Q=B forl<p<n/(n—1) and .Q, = BMOA(8E),
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where 9B is the surface of the unit ball in C* But, for pE({{n—1)/n,

_ xf(n — 1)) all Q,-spaces are trivial, i.e., only constant functions belong

to Q,.

This is one of the reasons to look for other possibilities to generalize
the complex. (one-dimensional) ideas. Furthermore, using the C"-
approach it is impossible in principle to consider Q,-spaces in odd real
dimensions of the Euclidean space.

"In this paper we study hypercomplex generalizations of Q,-spaces.
Instead of holomorphic functions in the unit disk we study hyper-

" holomorphic functions f:R"— Céy,_; (i.e., solutions of generalized

Cauchy—Riemann systems), which are a higher-dimensional general-
ization of holomorphic functions also in the case of odd real dimen-
sions of the Euclidean space. Such important function classes like the
solutions of the div—rot system are included in the theory of hyper-

. holomorphic functions. These functions can be considered in all real

space dimensions. '

With the generalized Cauchy—-Riemann operator D, its adjoint D,
the hypercomplex Mobius transformation ,(x) = {a — x)(1 — ax)y !,
and a modified fundamental solution g of the real Laplacian we con-
sider generalized Q,-spaces defined by

= {fe kerD: sup A |Df (x)[*(g(0a(x))) dx < 00},

aeR (0} S B

where B;(0) stands for the unit ball in R”. This definition seems to be
natural because

o it has a deep structural analogy with the complex (one-dimensional)
definition;

« all the used items generalize definitions (analyticity, derivative,
Mébius transformations and Green’s functions) from the complex

. one-dimensional case; :

- o the generalized Q,-spaces have analogous properties as the complex

- Spaces. '

" “To prové these analogous properties is the aim of this paper. We

remark that for the case of functions f:R*— H it is already known
from [8] that D may be interpreted as derivative. In this paper we
réstrict us to the case n=3, the lowest non-commutative case, as a
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model case of general Clifford analysis. Moreover, we will identify the
Clifford-Algebra. Cé;; with the skew-field of quaternions. Thus we
consider functions /1R — H.. .

2 PRELIMINARIES

Tn what follows we will work in H, the skew-field of quaternions. ThlS
means we can write each elament ZE ]HI in the form

z=zo+zlx+zzj+23k, R,

where 1,7 7, k are the basis elements of H. For these elements we have
the multiplication rules P=F=K = —1, ij= —ji=k, kji= —jk=i,
ki= —ik=j. The conjugate element Z is. glven by Z=2zp~ zlz—
23] — z3k and we have the property zz = 2z = |§z|| =z} 42} + 22 + z.
Moreover, we can identify each vector ¥ = {xg,x1,x2) € R? with a
quaternion x of the form

X = xp -+ xyi+ x2].

Also, in what follows we will work in B(0) CR’, the unit ball in the
real three-dimensional space.' B;(0) is a bounded, simply connected
domain with a C™-boundary S,(0). Moreover, we will consider func-
tions f defined on B,(0) with values in F.: W& now define ‘the ‘general-
ized Cauchy—Riemann'opei'ator by '

af 8f L of
Df on 8x1 Jaz-

and it’s conjugate operator by
s OO

D= w0 o o

For these operators we have that

‘DD=DD=A;,
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where As is the Laplacian for functions defined over domains in 1’3
The Cauchy—Riemann operator has a right inverse of the form

)=~ [ (=) ”f(y)cwy, x € By(0).

[x ~

This operator acts continuously from W¥(B;(0)) into Wi+1(8:(0)),
l<p<oo,k e NU{D} (see [5]). Moreover, we need the following
Cauchy-type integral operator:

Eef() 47rf {x ;BQ(.ymy}dSy x € Bi(0),

where a(y) is the outward pointing normal vector to Sy(0) at the
point y. This operator is a continuous mapping from Wf'”" 2(S;(O))
into WEt(B)(0)), 1 <p<oo,k & NU{0} [5]. The above introduced
operators are connected by the well-known Borel-Pompeiu formula:

Fsf+TDf=f

Functlons belonging to ker D are called hyperholomorphic or regular
functions. From the Borel- —Pompeiu formula we have the Cauchy
formula

Fsf=f YfekerDn Wy (S1(0)).

For more information about these topics and general quaternionic

analysis we refer to [5-7,13].

3 DEFINITIONS OF SOME FUNCTIONAL SPACES
For |a| < 1 we will denote by

alx) = {a—x)(1 —ax)”’
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the Méobius transform, wh1ch maps the unlt bail onto itself. Further-

more, let )
11
glxa)=———— ])
()_wQ%ma. |
be the modified fundamental solution of the Laplacian in R’ com-

posed with our Mébius transform ,(x). Especially, we denote for
allp>0

B 1 r
ﬁ“”zﬁﬁ@mnfg'

Letf: Bl(O) — H be a hyperholomorphic funcnon Then we can intro-
duce the seminorms

-mﬂ—wmmeAﬁwmmm
» Op(f) = SuPues o J:B, 1Df(x)| gp(x: a)dBy,

which lead to the following definitions:

DEFINITION 3.1 The spatial (or three-dimensional} Bloch space B is
the right H-module of all hyperholomorphic functions f: B(0) — H
with B(f) < co. ‘

DeFNTIoN 3.2 The right H-module of all quaternion-vaiued func-
tions f defined on the unit ball, which are hyperholomorphic- and
satisfy Q,(f ) < oo, is called Q,-space.

Remark 3.1 Because of the special structire of g(x, a) the éeminonns
0,(f) make sense for p<3 only. Consequently, we w111 cons1der in
this paper Qp-spaces for P < 3 only

Obvmusly, these spaces are not Banach spaoes Nevertheless, if wé
consider a small neighbourhood of the origin U,, with an arbitrary but
fixed € > 0, then we can add the Li-norm of fover U, to our seminorms
and B as well as Q, will become Banach spaces. Because this
additional term is independent of p we will consider in the following
only the spaces with the corresponding seminorm, but we have to keep
in mind, that all our results are also true in the case of the norm.

DEFINITION 3.3 The right H-module of all. quaternion-valued func-
tions f defined on the umit ball, which are hyperholomorphic and
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satisfy the condition
[ 1B as, < oo,
B,(0)

is called spatial (or three-dimensional) Dirichlet space D.
Remark 3.2 Since g(x, ) is non-negative in B;(0) we have, obviously,

DcQ, 0<p<3.

4 PROPERTIES OF Q,-SPACES

In this section we will show that the Q,-spaces are in fact a scale of
(with our additional term added to the seminorm) Banach H-modules,
which connects the spatial Dirichlet space with the spatial Bloch space.
For doing this we need several lemmas.

LeMMa 4.1  Let f be hyperholomorphic in the unit ball. Then we have
Sorallr<1

f Bf(x)| dS, > 4m| BAOY,
50

where S,/0) is the surface of the ball B,(0) with center at O and radius r.

Proof Let f € ker D(B(0)) and S.{(0)=8BL0). Then we know from

Cauchy’s integral formula that

J0) = | o K(x = y)a(x)flx)dS:, Yy € B,(0),

where K{x —y)=LF&=7)/(]x— ¥} is the usual Cauchy kernel
and a(x) the outward pointing normal vector at the point x. For the
Cauchy kernel we have, for x & 5,(0),

1
K} = -
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Now we have:

< f |K(0)lla(x) ]| B ()] 455,
5.(0) .

IDAO)| = ] i o, KOoIB 85,

1

77 00

LEMMA 4.2  Under the same conditions as in Lemma 4.1 we have that
for any fixed R<1

|Df(0) dx 2 4—“5 DA

Br(0)
holds.

Proof We know f}om Lemrma 4.1 that for all r < R
B0 < Torrs ( L lﬁf(x)lde)
< 16;2,4 ( fs o Iﬁﬂx)l%.dsx) ( /S o dS)
1 S a2
= ( IS d_Sx) ,

because [, 5.(0) ds = 4nr?. If we multlp]y both sides by r* and integrate
then we get :

_ 2 R 1 R _ 2
oo | r?d_rfa( I /Sr(m_lDf(x)I a8 dr |,

or in other words

" 4 : R3 . - X
IDAOP S < [ 1D b
v Br(0). :

which leads to our statement. -
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ProrosiTION 4.1 Let [ be hyperholomorphic and 0 <p <3, then we
have

B
01 - P YIoRa < ¢ fB D) (I%( )I—I) 4B,

l
where the constant C| does not depend on a and f.

Proof Let R<1 and Ula, R) = {x: |ip,(x)| < R} be the pseudohyper-
bolic ball with radius R. Then

o P9 (i 1) 022 [ 10009 (g 1) e
“ oz (%“ 1)p fu(m DA B

(5
‘We begin with the estimation of

[ osias,
Ula,R)

/ a4

le
S|

=3 Dflipa(x)); s By

1 — ax|?

= (1~lal)?

- ax |

Obviously, we have that

1. 1
J1—ax® = (1+R)*

Therefore,

S A2 (1 la*)°
. fL:(a,R)-lDﬂx.)_I _de z (l-I-R)2 ./;R

( |a?)’ 4rR?
SigE s e

1-
Il—al

%, D (X))
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If we replace this in (1), we get

fm(o) IDF (Iw—l(x—}_l B I)P 48

A (L= RY ape B
>7—(T+_R)_ R (1 1“|)|Dﬂa})l-

as well as

PR PN
(- T P Gl B [ el (———m(x)! _,—._1) .

Choosing a suitable R from this we derive our estimate

L

) _ 1 B
a-lafisar < [ iR (=) 4B

CoroLLARY 4.1  For 0 <p <3 we have Qp CB.

This corollary means, that all Qp-épaces are subspaces of the Bloch
space.

PROPOSITION 4.2 If fis hyperholomorphzc in By(0) and 2 < p <3, then
for all |a] < 1

/ |DAx)Ig? (x, a) dBx < J(p)B(f ),
B](O) . .

where J(p) 411']0 rEH(1=7) _P(l +r) )drzsfmte

Proof 'We know from the definition of B that {1- §x| )3" 2|Dj(x
B(f). We estimate as follows: : i

f -~ |DAx)g”(x, a) dBx
v B (0} . R

- U0l .
<5 an{O) (1—]x2)®  lpa(x)i a8

. L -yl
SEU) o TP WL axlﬁ_
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Here, we used the fact that the Jacobian determinant is

(1~ |afy?

1 —ax®
Now, using the equality

L feal)l _ 1= Jaf
I— <P [I-axP

we come to our desired result. °
1 I—|x])" (1 = |a%)?
0/ _O-RP O
oy (1 — lea(R)FY 5" 11— ax]
1 |x|?
=Bz(f)f. _A=BY4p
B.(O)'(l — |xPP|xf

r2—-p 2r
nf e[ [t

=B (/)J(p

THEOREM 4.1 ° Let f hyperholomorphic in the unit ball. Then the follow-
mg conditions are equzvalem '

1. f cB. '

2 0(f)<coforall2<p<3.

3. Guf) <o for some p > 2.

Proof The implication (1=>2) follows from Proposition 4.2. It is
obvious that (2= 3), From Corollary 4.1 we have that 3 implies 1.

" Theorem 4.1 means that all Q,-spaces for p>2 coincide and are
identical with the Bloch space.

5 - ANOTHER CHARACTERIZATION OF Q,-SPACES

In this section we will give another possibility to characterize Q,-
spaces, which is often easier to handle. Among others, this new charac-
terization enables us to prove that the Q,-spaces are a scale of function
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spaces with the Dirichlet space at one extreme point and the Bloch
space on the other.

LEMMA 5.1

f DA — | dB, = j |Df(x)g(x, 0) dBx.

B (0

We remember that g(x,0)= l/w3(1/|xE - 1) w3 — 4.

Here “~” means that therc exist constarits Cy > 0 C; > 0 (indepen-
"dent on f ) such that

IDf(x)i (1 — |x12) dB

l

- 2 :
Cy [B.(O) 1Dﬂx)| g(x,0) deS[ ‘
< fB . D7) (.0} B

Proof In spherical coordinates what we need to prove is

szDfr(l— rzdr'v/ M(Df,r)— (l—-l)r dr,

where M:(Df.r) = JB" fo’r | DA, o1, tpg)l sin ¢ dz;oz ds. This means
we have to show that there exist constants €y, C; such that

1 1 o
Cl-/(; M%(ﬁf,r)w%(r—rz)dr 3‘/(; ME(DS, ) (r? - ) dr
1
sG [ MHBL) - Py
0. w3

Part (a) Letus choose C = 2w;. Then we get
: L o -
[ 40 - A =2 ar<o,
o -

because

2 __ W 20 ~ ) =(1 - ;-)r(r(r;i; 1})—-2)<0vrel0,]]
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and M3(Df,r) = 0 V¥r. This results in

1 I .
fo MYUDAN(* - 4)dr§2f0 MEDET) (r = ) dr

1 . p_p
=2w3f Mi(Dfr) dr
0 W

Part (b) Now, let us choose C; = 11ws/100, then we have to prove

v 'rz

MAD 2
[ w2 == =) o
rg _
—f M%(_Df,r) —(ar—r'z)—r2+r4 dr > 0,
o 100

where r,=1/10 is the solution of the equation »*—*—(11/100)
(r=r)=0, 0 <# <1 (This polynomial has only the zeros —11/10,0,
1/10,1). Then it is easy to see, because all integrands are positive, that

1
o
G/IOMZ(DJ;")( ""r _m(r ))
S/IOMZE a4l
+ [0 M ) (7 = g

dr

r— rz)) dr
6/10 i )

. zl_ 4 -
+ 10 Mz(Dﬂ?‘)(rzir wm(r—rz)

1710

- [ s (- - Rt arzo,

due to the fact, that the integral fﬁfllg MA(Df (P — ¥ = (11/
100)(r — #))dr is greater than the integral [)/" M3(Df,r)((11/
100)(r —#*) = +r*)dr. In particular we have MZ(Df rl) >
ME(Df, rs) for r; > r; (because Df is harmonic in B,(0) and belongs to
LyB.(O) Vr<}), ¥l —#t — (11/100)(r1 ) > 87100 for all », €[5/

10, 6/10], and (11/100)(r2 - -+ < 2/100 for alk r; € [0,1/10].

. This gives our statement.
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LEMMa 5.2 | .
] B0 — %2 4By == j - |BAx) e (x,0) dB,
B(0) . By(0) o . :

with 1 <p <2.99.
Proof We have, again, in spherical coordénates: ‘
1 _ . 1 .,_‘ 1 1 . P 5
/ MADL (L - PYPdr = / MDA (— _ 1_) Adr,
4] 0 (=5 ¥

where M%(Df,r) is as in Lemma 5.1. This means we have to show that
there exist constants C1{p), Cx( p) such that

Y A 1. i
cs) [ MYDLR) 07— 1PP e
SflMg(Dﬁr)(l —r*Yrar
0 .

1
< sz M%(Ef,r)—l—ﬁ(r"] —1Yrtdr.
0 w3

Part (a) Let Cy(p) = 2°wf. Then

4 MBI - PR - 20~ PP ar <
0 . .

because M2(Df,r) > 0¥re[0,1] and (1A% —20( " = 1)PrP=
A =P P((3 +1)PrP -2y <0 ¥r € [0, 1]: ‘

From this we get

I !
| morna - ryidr [ ainet -y ar
0 0 -
4
= Ca(p) f MA(Df,r) = (r ' ~ 1Y dr.
0 .
Part (b) Let Ci(py= (1 1/100)"”wf. We want to prove that

! 3¢ 1 —1 I : ! 2‘7 g2
Cl(p)/o MDAy 07 = 1) rzdrgj; MADEA(L - AP dr.
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This means we have to consider the integral

117

L
.j; M3(Df;7) [(1 -y *’*"1*6*6;(3’“1 - 1)‘"!‘2] dr

This is equivalent to the integral

11
2 — p\Pp2-p
f M;( (Df, v )[(1 r¥r ((I +rfrP — IDZP)] dr.
The important term in this integral is
117
— p)Ep2-p
k(r) = {1 rfr ((1 +rrf — IOZP)

‘it ihay be observed that &(r) <0 for r € (0, 1/10) with a “pole” at the
origin if 2 — p < 0 and k(#) > 0 for » € (1/10, 1). Especially, for r < 1/10

we have
11
; 021:] <

because of (1/107 + 1/10%%) — 117/10% <0.

This means we have to compare the integrals f(:/ 10 M(f,r)Pp(112/
10%)dr and [0 M3(f,7)(1 —rY'r2=2[(1 + P — 117/10%] dr. For
the first integral we get that it is smaller than {117M3(f, 1/10))/(10%)

(1/(3 — p))(1/10)*. For the second integral we have the estimate

11°

e PV PP _
‘(I rfr [(1 +r¥fr To%"

6/10 A
ML — rYP P P[(1+ P — 117 /10%] dr
5/10
6/10 11 111
+

Z 100 * 16O

Mi(f. 1/10)( r~r3)pr2_~”dr
5/10. .

2 6/10
M(f’zl/w)wf _
0 5/10

M3 1/10) 0, 1 67—
e 3—p 10%r

P dr

We remark that the infimum of — (11/100) 4 (111/100) — ris 32/100
for 5/10 < r < 6/10. Following the same lines as in the proof (Part (b))
of Lemma 5.1 we will get our estimate and our statement.
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THEOREM 5.1 Let f be hyperholomorphic in By{0). Then, for
1<p<299,

feQ,& sup
ﬂEBl(O)

[ B = ey 48s < o

B1(0)

On the first view, the condition p < 2.99 looks strange. But we have to
keep in mind that Theorem 4.1 means that all Q,-spaces for p > 2 are
the same, so in fact this condition is only of technical nature.

Proof Let us consider the equivalence

[ DR - ey b= | AP 6 dB,
B0} B1(0)

1

with g(x,a) = 1/ws((1/|a(x)}) ~ 1) and’ @a(x) = (@ = x)(1 —ax)™
the Mobius-transform, which maps the unit ball onto itself. After a

change of variables w=1,{x) (the Jacobian determinant (1= 1a?)/ _

|1— aw|®)? has no singularities) we get

/ | B Fipa(w)) (1 — )P (1‘—
Bi(0 i1~ aw|

' ) 3
- E[ |f)xf((pa(W)}|2g‘°(w,- 0) __1_:|_¢1_|22 dBy,
B0} [t — awi

where D, means the Cauchy—-Riemann-operator with respect to x.
The problem here is, that D, f{x) is hyperholomorphic, but after the
change of variables D, f(fpa( )) is not hyperholomorphic. But we
know from [11] that ((1 — wa)/|1 —aw[ )Dxf(tpa(w)} is again hyper-
holomorphic. We also refer to [13] who studied this problem for the
four-dimensional case already in 1979. Therefore, we get

/ P - WPy ——— dB,
Bi(0) |1 - aw|

N] ; ( )12 1 ('1 1)p;d}3
o2 50 | [w| |1—£"1,w|2‘ ws

with

SPACES OF QUATERNION-VAL UED FUNCTIONS 131

(w) = ((1 —wa)/[1 - aw}*) D flpa(w)). Again, this means we
have to find constants C{ p) and Cy(p) with

c [ vl (1)

2 2
< fy PRUCIERY

<Gilp / w05 (3

1

e d B
(1 —aw]? i
_t
[t -aw]®
1 £ 1
)
|wl I —awl~

Obviously, we can set Co( p) = 2Pw{. For the first estimate we choose
Ci{p) = {(117/1007) and consider the integral

f hp(w)
B1(0) .

To get our estimate this integral has to be preater than or equal to
zero. Similarly to the proof of Lemma 5.2 we get

1
[ s [ (
-/B(l,fm)(o) |1 - awiz
«f e
Bys 10y (01 By 13(0)
(L1
A100 |w|

6110 (O \Brs/ i.'f;) (O
1

(1t
100 |w!

¢

o+ £
X g X o~ X

{0\ Be103(0)

1

(11
100 [wl

e

[1 — awj

11
100 [w}

a1
100 )]

21

- awl®
lﬂo) O
c
"=
11010) (1~ w2y
, 1

() —ll .

11010) H1= WY

11

11
100

dB,

dBW _.>_ 0:

~ 155 - i) as..

"1~ |w|2)”] dB,

where B,(0) is the ball centred at zero with radius r. Obviously, the
second and the fourth integral are greater than zero. Therefore, it is
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sufficient to compare the ﬁrst and the third integral. For the further
consideration it is necessary to estimate

1.
_ - aw|*
This can be done with the aid of the ine(iuaiity
09T |w| <L Jaljw]= |1 — |awl] < |1 aw]

inB;/ioand ) ) .
[1—aw| <1+|aflw] <1+ |w <16

in Bg;10(0)\Bs/16(0). Now, let us make a change of variables to spheri-
cal coordinates, which gives us

110 22— 117 PWrPld
M3, ¥ )92 (1—#)Yr (IOOP—(1+r)r) ¥
Yy X ppp_ L
< 1o M5 (1) 162(1 —r) ((1 +r) r 100?) dr.

This can be verified in the same way as in the proof (Part (b)) of
Lemma 5.2. We only remark that for 1 <p <2.99

T (P (1
- » >_. )
327 162(6 SN2 g

Our above theorem enabies us now to state the same characteriza-
tion also in the case of p < 1.

Frorosition 5.1 Let f be hyperholomorphzc in B\(0). Then, for
0<p<l,

fEQ, & sup IDf(x)I (I  lpe(0)RP 4B, < oo.
aEBl(O) 31(0

Proof (*=") Let0<p< 1. Due to the following relationship

BRI A S
b 1('9“( )I = ws [gpa(xﬂ (l‘Pa(x)l 1) e ; )

the assertion follows.
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(“+") We suppose that sup,cp, (o) 3,0 (DA (1 — |wafx) )’ dB,
<ooforO0<p< 1_. Since

[ 1B - a0 a3,
B(0) :
< [ 1B - el dBe < o0
BI(D) ) .
and Theorem 5.1, we have

sup f |DAx) | e(x,a) dB, < cc.
B1{0)

ac B (0)

We split the integral into two parts,

[ ibofern,a)ds. = f \Bfx)Pe? (x, a) dBy
B(0). o

{ealx)i<}

+ / |DAx)|*g? (x,a) dB;.
{hﬂa(x)Pils}

It may be observed that

IENAR NN CT7V PP R AP
s~ (G 1){szs(l—r%(x)|2>, pal)] > 4.

Therefore,

{lealx)l <45}

DR g” dB, Dftx)Pelx, )
/{\saa(xnsgg} IDﬂ_x” g7(x,a)dBy < [ |DAx}glx, a)dB
< [ 1D P,y a5

and

[ IBAnPe (e dB,
{lalx) =55}

<25 [ DA - ey dB,
{liea ()i}

< ase f DA — lpa()[2) dB..
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