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1. Introduction

Classical hypercomplex function theory is strongly linked to rotation groups. One
of the main properties of the Dirac operator is its invariance under rotations.
In fact, there is a correspondence between monogenic functions and irreducible
representations of Spin groups. But in many applications it would be advanta-
geous to have a function theory which is based on reflection groups instead of
rotation groups, for instance in the analysis of quantum many-body systems of
Calogero–Moser–Sutherland type in mathematical physics [2] or in the study of
the crystallographic Radon transform. However, there exists one major obstacle.
While partial derivatives are invariant under rotations this is not the case for re-
flections. The way out seems to be to consider differential-difference operators [4],
also called Dunkl operators. These operators are invariant under reflections and,
additionally, are pairwise commuting.

This allowed the authors in [1] to introduce a Dirac operator based on such
differential-difference operators which is invariant under reflection groups and also
factorizes the Dunkl Laplacian. Starting from the latter operator they obtained a
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Stokes theorem, a Borel–Pompeiu formula and a Cauchy integral formula for the
former operator. The authors also gave a method to construct a Cauchy kernel
for a Dirac operator of a given finite reflection group, but it requires the explicit
knowledge of the Dunkl transform which is known in a few particular cases only.

In this paper we will present another method of calculating the Cauchy kernel
without prior knowledge of the Dunkl transform. To this end we prove a Fischer
decomposition for Dunkl-monogenic functions. Although a Fischer decomposition
already exists for Dunkl harmonic functions (see [4]) there is a fundamental differ-
ence between the hamonic and the monogenic case. While the basic building block
for the decomposition into Dunkl harmonic polynomials, |x|2, is invariant under
reflection, i.e. ∆h|x|2 = ∆|x|2, this is no longer true in the monogenic case. This
requires a different treatment of the projectors onto the space of Dunkl monogenic
polynomials of degree k as it will be shown in Section 4. Furthermore, we will
show a bi-orthogonality between Dunkl-monogenic polynomials and usual mono-
genic polynomials. The study of the Fischer decomposition in Section 4 together
with the existence of a reproducing kernel for it will allows us to construct a
Cauchy kernel for the unit disk without the explicit knowledge of the Dunkl trans-
form. Moreover, the universality of this kernel ensures its validity for any simply
connected star-like domain.

2. Preliminaries

Let e1, . . . , en be an orthonormal basis of Rn satisfying the anti-commutation
relationships eiej + ejei = −2δi,j . We define the universal real valued Clifford
algebra C`0,n as the 2n-dimensional associative algebra with basis given by e0 = 1
and eA = eh1 · · · ehk

, where A = {h1, . . . , hk} ⊂ N = {1, . . . , n}, for 1 ≤ h1 <
· · · < hk ≤ n. Hence, each element x ∈ C`0,n will be represented by x =

∑
A xAeA,

xA ∈ R.
In what follows, sc[x] = x0 will denote the scalar part of x ∈ C`0,n, while

an element x = (x1, · · · , xn) of Rn will be identified with x =
∑n

i=1 xiei. Also,
we need the anti-involution · defined by e0 = e0, ei = −ei and eiek = ekei.
An important property of the algebra C`0,n is that each non-zero vector x ∈ Rn

has a multiplicative inverse given by x
|x|2 = −x

|x|2 . Up to a minus sign this inverse
corresponds to the Kelvin inverse of a vector in Euclidean space.

For all what follows let Ω ⊂ Rn be a bounded domain with a sufficiently
smooth boundary Γ = ∂Ω, whose complement contains a non-empty open set.
Then a C`0,n-valued function f in Ω has a representation f =

∑
A eAfA, with

components fA : Ω → R. Thus, notations such as f ∈ Ck(Ω, C`0,n), k ∈ N ∪ {0},
and f ∈ Lp(Ω, C`0,n), 1 ≤ p, will be understood co-ordinatewisely. For instance,
f ∈ Lp(Ω, C`0,n) means that fA ∈ Lp(Ω) for all A. In the following we use the
short notation Lp(Ω), Ck(Ω), etc., instead of Lp(Ω, C`0,n), Ck(Ω, C`0,n).

We now introduce the Dirac operator ∂ =
∑n

i=1 ei
∂

∂xi
. In particular we have

that ∂2 = −∆, where ∆ is the n-dimensional Laplacian. A function f : Ω → C`0,n
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is said to be left-monogenic (resp. right-monogenic) if it satisfies the equation
(∂f)(x) = 0 (resp. (f∂)(x) = 0) for each x ∈ Ω. Basic properties of the Dirac
operator and left-monogenic functions can be found in [6], [7] and [3].

3. Reflection Groups and Monogenicity

The reflection σν(x) of a given vector x ∈ Rn with respect to the hyperplane
orthogonal to ν 6= 0 is given, in Clifford notation, by

σνx := −νxν−1.

A root system R is a finite set of non-zero vectors in Rn such that σνR = R
and R∩Rν = {±ν} for all ν ∈ R. The Coxeter group G (or finite reflection group)
generated by the root system R is the subgroup of the orthogonal group O(n)
generated by {σν : ν ∈ R}. Standard examples are the groups An−1 and Bn (see
e.g. [5], [1]).

A multiplicity function κν is a G-invariant complex-valued function defined
on R, i.e., κν = κgν for all g ∈ G. A positive subsystem R+ is any subset of R
satisfying R = R+ ∪ (−R+). This implies that R+ and −R+ are separated by a
hyperplane passing through the origin.

For a chosen positive subsystem R+ we introduce the index

γκ =
∑

ν∈R+

κν

and the weight function

hκ(x) = Πν∈R+ | < ν, x > |κν .

For each fixed positive subsystem R+ and multiplicity function κν we have,
as invariant operators, the differential-difference operators (also called Dunkl op-
erators):

Djf(x) =
∂

∂xj
f(x) +

∑
ν∈R+

κν
f(x)− f(σνx)

< x, ν >
νj .

These operators are pairwise commutative: DiDj = DjDi. This property allows
us to define a Dirac operator for Coxeter groups

Df =
n∑

j=1

ejDjf = ∂f +
∑

ν∈R+

κνν
f(x)− f(σνx)

< x, ν >
. (3.1)

We would like to remark that the Dirac operator factorizes the so-called
Dunkl Laplacian D2 = ∆h := D2

1 + . . . + D2
n (see [4] and [5]).

A C1 function which is annihilated by the Dirac operator D from the left
(or right) will be called a left- (right-) Dunkl-monogenic function with respect to
the corresponding Coxeter group. For simplicity we will restrict ourselves to the
case of left-Dunkl-monogenic functions. In the sequel such a function will simply
be called a Dunkl-monogenic function. From now on let Reκν ≥ 0 and let Ω be
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a sufficiently smooth domain, invariant under the action of G, and Γ = ∂Ω its
boundary.

Another important operator is the intertwining operator which allows to in-
terchange the Dunkl derivatives with the usual partial derivatives. Let Π denote
the space of homogeneous polynomials. Furthermore, let Πk denote the space of
homogeneous polynomials of degree k.

Lemma 3.1 ([5]). If κ is such that ∩j ker Dj = C, then it exists an unique linear
isomorphism Vκ of Π, denoted as intertwining operator, which satisfies

1. Vκ(Πk) = Πk;

2. Vκ |Π0 = id;

3. DjVκ = Vκ∂j , with Vκ(1) = 1.

As an obvious consequence, we have ∆h(Vκf) = Vκ(∆f) and D(Vκf) =
Vκ(∂f).

4. Fischer Decomposition for Dunkl-Monogenic Functions

Let us start this section with the important observation that the previously defined
Dirac operator is a homogeneous operator of degree −1. Indeed, it is easy to see
that if f is a function homogeneous of degree k, then f(σν(λx)) = f(−ν(λx)ν−1) =
λkf(−νxν−1) = λkf(σνx), i.e. homogeneity is preserved under reflections. Fur-
thermore, it means that the Dirac operator not only maps polynomials of degree
k into polynomials of degree k− 1, but homogeneous polynomials of degree k into
homogeneous polynomials of degree k − 1.

Now, letMk denote the space of Dunkl-monogenic homogeneous polynomials
of degree k. For two polynomials p, q ∈ Π the Dunkl Fischer inner product with
respect to our differential-difference operators is defined by:

[p, q]h := sc[(p(D) q)(0)] p, q ∈ Π.

The Dunkl–Fischer inner product has the important property [5]:

[xip, q]h = [p, Diq]h. (4.1)

This property allows us to prove the following theorem:

Theorem 4.1. For each k ∈ N we have

Πk = Mk + xΠk−1.

Moreover, the subspaces Mk and xΠk−1 are orthogonal with respect to the Dunkl–
Fischer inner product.

Proof. Because of Πk = xΠk−1 +(xΠk−1)⊥ it is enough to prove that (xΠk−1)⊥ =
Mk−1. For this, assume that for some Pk ∈ Πk we have

[xPk−1, Pk]h = 0

for arbitrary Pk−1 ∈ Πk−1.
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Due to (4.1) we have [Pk−1,−DPk]h = 0 for all Pk−1. As DPk ∈ Πk−1 we
obtain DPk = 0 or Pk ∈ Mk. This means that (xΠk−1)⊥ ⊂ Mk−1. Now, let
Pk ∈Mk. Then we have for each Pk−1 ∈ Πk−1

[xPk−1, Pk]h = [Pk−1,−DPk]h
= [Pk−1, 0]h
= 0

and, therefore, (xΠk−1)⊥ = Mk−1. �

As a result we obtain the Fischer decomposition with respect to our Dirac
operator D.

Theorem 4.2. Fischer decomposition Let Pk be a homogeneous polynomial of degree
k. Then

Pk = Mk + xMk−1 + x2Mk−2 + . . . + xkM0

where each Mj is a homogeneous Dunkl-monogenic polynomial of degree j.

Let us remark that the Fischer decomposition can also be obtained from the
Fischer decomposition for Dunkl-harmonic functions (see [4, p.178]); all we need
to do is to decompose each Dunkl-harmonic polynomial Hk as Hk = Mk +xMk−1.
The dimension of the vector space of homogeneous Dunkl-monogenic polynomials
of degree k is

(
n+k−2

n−2

)
2n, just as in the usual monogenic case.

Also, for polynomials p, q in Πk the standard Fischer inner product

< p, q >k:= sc[p(∂)q(0)]

has a reproducing kernel given by <x,y>k

k! . Accordingly, the reproducing kernel for
the Dunkl–Fischer inner product is given by Kk(x, y) := 1

k!Vκ[< ·, y >k](x) (see
[3], [4] for details).

The Almansi decomposition for Dunkl-polyharmonic polynomials is a special
case of the results presented in [9], and also generalizes to the case of Dunkl-
polymonogenic polynomials (i.e. polynomials in the kernel of Dl): the fact that
(xlΠk−l)⊥ = {Pk ∈ Πk : DlPk = 0} and the uniqueness of the Fischer de-
composition above lead to the conclusion that DlPk = 0 if and only if Pk =
Mk + xMk−1 + x2Mk−2 + . . . + xl−1Mk−l+1, for Mj ∈Mj . Of course, this decom-
position extends to real-analytic Dunkl-polymonogenic functions.

5. Monogenic Polynomials and Cauchy Kernels

In [1] the authors constructed the Cauchy integral formula for Dunkl monogenic
functions and showed a method how to construct the Cauchy kernel based on the
knowledge of the Dunkl transform. Unfortunately, the Dunkl transform is explicitly
known only in some special cases. In this section we will show another way how
to construct the Cauchy kernel based solely on the knowledge of the intertwining
operator and the Dunkl-monogenics.

The starting point are the following identities.
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Proposition 5.1. For p ∈ Πk and q ∈Mk it holds

p(D)q(x) = ch

∫
Rn

qph2
κ exp (−|x|2/2)dx = 2k(γκ +

n

2
)kc′h

∫
Sn−1

qh2
κdσp

with ch := (
∫

Rn h2
κ exp (−|x|2/2)dx)−1 and c′h = σn−1(

∫
Sn−1 h2

κdσ)−1 being nor-
malizing constants.

Proof. For p and q as indicated we have that p(D)q(x) is constant. Hence,

p(D)q(x) = ch

∫
Rn

p(D)q(x)h2
κ exp (−|x|2/2)dx

= ch

∫
Rn

q(x)p(D∗)(1)h2
κ exp (−|x|2/2)dx

where D∗ represents the adjoint Dirac operator acting on the weighted L2-space
L2(h2

κdx, Rn) as D∗p(x) = xp(x) − Dp(x), for p ∈ Π. Applying recursively this
relation, we get p(D∗)(1) = p(x)+ r(x), with r a polynomial with degree less than
k, that is

p(D)q(x) = ch

∫
Rn

q(x)[p(x) + r(x)]h2
κ exp (−|x|2/2)dx.

As q is a Dunkl-monogenic homogeneous polynomial of degree k we have∫
Rn

q(x)r(x)h2
κ exp (−|x|2/2)dx = 0

thus proving the first equality. The second equality is obtained by a change to
spherical co-ordinates∫

Rn

q(x)p(x)h2
κ exp (−|x|2/2)dx =

=
1√

(2π)n

∫ ∞

0

r2γκ+2k+n−1e−r2/2dr

∫
Sn−1

qh2
κdσp

= 2k+γκ
Γ(γκ + k + n

2 )
σn−1Γ(n

2 )

∫
Sn−1

qh2
κdσp

and the relation between the normalizing constants

c′h = 2γκ
Γ(γκ + n

2 )
Γ(n

2 )
ch. �

Also, we need the following additional proposition, which is an adaptation of
a similar proposition for spherical harmonics (see [4]):

Proposition 5.2. Let p ∈ Πk and let q be a monogenic homogeneous polynomial of
degree k. Then

ch

∫
Sn−1

ph2
κdσVκq =

(
n
2

)
k(

γκ + n
2

)
k
σn−1

∫
Sn−1

pdσq.



Vol. 19 (2009) Cauchy Kernel for Dunkl–Dirac operators 169

The proof of the above proposition is completely similar to the proof of
Proposition 5.2.8 in [4] and, therefore, it will be omitted.

Furthermore, it holds:

Corollary 5.3. Let {Sα} be an orthonormal basis of the space of monogenic poly-
nomials of degree k. Then {VκSα} and {Sα} are biorthogonal systems with respect
to the weighted Dunkl inner product, i.e.∫

Sn−1
(VκSα)h2

κdσSβ =

(
n
2

)
k(

γκ + n
2

)
k
σn−1

δα,β .

Moreover, {VκSα} is a basis of Mk.

This corollary allows us to construct Dunkl monogenic polynomials without
the explicit knowledge of the Dunkl transform, as they can be obtained from the
knowledge of the weight function h2

κ and the theory of special functions.
Furthermore, these propositions provide us with an alternative method to

construct a Cauchy kernel. Indeed, since Kk(x, y) = 1
k!Vκ[< ·, y >k](x) is a re-

producing kernel for the Dunkl–Fischer inner product in Πk we have for a Dunkl
monogenic homogeneous polynomial q of degree k that

q(y) = [Kk(·, y), q(·)]h
= [(projMk

Kk)(·, y), q(·)]h

= 2k(γκ +
n

2
)kc′h

∫
Sn−1

qh2
κdσ(projMk

Kk)(·, y)

where projMk
denotes the projector of Kk(·, y) ∈ Πk onto Mk. Taking into con-

sideration that the intertwinning operator satisfies D(Vκf) = Vκ(∂f) we have for
the reproducing kernel of Dunkl monogenic homogeneous polynomials of degree k

Pk(x, y) = 2k(γκ +
n

2
)k(projMk

Kk)(x, y).

Straightforward calculation gives Pk in terms of Gegenbauer polynomials (see
also [8]):

Pk(x, y) =
Γ(γκ + n

2
+ 1)

2kΓ(γκ + n
2
− k + 1)

|y|k

Vκ

[
(2γκ + k + n − 2)C

γκ+ n
2−1

k (t) + (2γκ + n − 2)
· ∧ y

| · ∧y|C
γκ+ n

2
k−1 (t)

]
(x) (5.1)

with t = <·,y>
|y| and where |y| ≤ |x| = 1. Hereby, we would like to remark that the

term (γκ + n
2 )k forces the upper exponent of the Gegenbauer polynomials to be

γκ + n
2 − 1 and γκ + n

2 instead of the usual n
2 − 1 and n

2 .
Now, we obtain the following theorem for the (Dunkl–)Cauchy kernel.

Theorem 5.4. The Cauchy kernel for Dunkl monogenic functions is given by

C(x, y) = Vκ

[
∂

1
| · −y|2γκ+n−2

]
(x)
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where again Vκ is the intertwining operator corresponding to the group under con-
sideration.

Proof. From [3] we have the decomposition of the fundamental solution for the
Laplace operator in terms of Gegenbauer polynomials Cν

k of degree k associated
to ν,

1
|x− y|n−2

= (1− 2t|y|+ |y|2)−(n−2)/2

=
∞∑

k=0

|y|kC
(n−2)/2
k (t) (5.2)

=
∞∑

k=0

|y|k
 ∑

i≤k/2

((n− 2)/2)k−i

i!(k − 2i)!
(−1)i(2t)k−2i


where x = ξ ∈ Sn−1, y = |y|ω and t =< ξ, ω >. Moreover, each term in this sum
is a homogeneous polynomial of degree k in y. Hence, we have that the auxiliary
function

1
|x− y|2γκ+n−2

= (1− 2t|y|+ |y|2)−(γκ+(n−2)/2)

= (1 + |y|2)−(γκ+(n−2)/2)

(
1− 2t|y|

1 + |y|2

)−(γκ+(n−2)/2)

= (1 + |y|2)−(γκ+(n−2)/2)
∞∑

k=0

(γκ + (n− 2)/2)k2k

k!(1 + |y|2)k
|y|ktk.

Since

1
|x− y|2γκ+n−2

≤ (1 + |y|2)−(γκ+(n−2)/2)

(
1− 2t|y|

1 + |y|2

)−(γκ+(n−2)/2)

≤ (1 + |y|2)−(γκ+(n−2)/2)

one has that Vκ

(
1

|·−y|2γκ+n−2

)
(x) is defined and continuous for |x| ≤ 1. Since

|y| ≤ 1, the result follows from C(x, y) =
∑∞

k=0 Pk(x, y), expression (5.1) and the
expression of the classical kernel in terms of Gegenbauer polynomials. �

Remark 5.5. While in the above theorems the Cauchy kernel is in fact only defined
for the unit ball it can be obviously extended to any simply connected star-like
(with respect to the origin) domain Ω.
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