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For the detection of C2-singularities, we present lower estimates for the error in
Schoenberg variation-diminishing spline approximation with equidistant knots
in terms of the classical second-order modulus of smoothness. To this end, we
investigate the behaviour of the iterates of the Schoenberg operator. In addition,
we show an upper bound of the second-order derivative of these iterative approx-
imations. Finally, we provide an example of how to detect singularities based on
the decay rate of the approximation error.
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1 INTRODUCTION

The detection of singularities is one of the central topics in many areas of applications such as signal and image process-
ing, computer-aided geometric design and tomography; see, eg, previous studies.1-7 Even more general, the problem of an
efficient estimation of the local regularity of a function is necessary for the choice of suitable numerical algorithms. Since
most algorithms work stable with C2-smooth data, it is paramount to be able to detect C2-singularities. Our motivation
comes from the development of a method to detect such singularities for a robust estimation of the digital curvature of
piecewise smooth curves in images; see Nagler.8 To this end, we use lower estimates in terms of moduli of smoothness. As
usual, only discrete data are available; we provide an effective method that combines these estimates with smooth approxi-
mations of the data. More concretely, we look at this problem using variation-diminishing uniform spline approximations.
While there are more general approaches using decay rates of coefficients in some basis expansion, here, we are looking
for a fast and stable method that allows us to get also concrete constants of the estimates for numerical evaluation. Besides,
the variation-diminishing property guarantees that no additional oscillations are introduced in the approximation.

1.1 Schoenberg variation-diminishing spline operator
To introduce the spline operator, we consider integers n, k > 0, equidistant knots {xj = j

n
}n

j=0 that induce a partition of
[0, 1] and the extended knot sequence Δn = {xj}n+k

j=−k, where

x−k = · · · = x0 = 0 < x1 < · · · < xn = · · · = xn+k = 1.

Definition 1. The variation-diminishing Schoenberg operator of degree k with respect to the knots {xj}n+k
j=−k is defined

for f ∈ C([0, 1]) by

Sn,k f (x) ∶=
n−1∑
j=−k

f (𝜉j,k)Nj,k(x), x ∈ [0, 1],
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with the Greville nodes, see the supplement in Schoenberg,9

𝜉j,k ∶=
xj+1 + · · · + xj+k

k
,−k ≤ j ≤ n − 1,

and the normalized B-splines

Nj,k(x) ∶= (xj+k+1 − xj)[xj, … , xj+k+1](· − x)k
+.

Hereby, for f ∈ C([0, 1]) and points y0, … , yk ∈ [0, 1], the divided difference [y0, … , yk] f is defined to be the coefficient
of xk in the unique polynomial of degree k or less that interpolates f at the points y0, … , yk. The placeholder notation ·
is used to indicate that the divided difference is applied to the function (t − x)k

+, where x ∈ [0, 1] is fixed. Note that to
guarantee that the the Schoenberg operator can be evaluated on the whole interval [0, 1], the B-splines are chosen here
to be right-continuous at the knots x1, … , xn−1, while at the point xn = 1, they are chosen to be left-continuous; see
de Boor10 for more details. Also note that k denotes the degree of the spline and not the order as often used in the literature.
Therefore, the splines considered here are for all k > 0 continuous functions.

This spline operator samples a continuous function at the so called Greville nodes, named after T.N.E Greville who
introduced these nodes, and yields a variation-diminishing smooth approximation of this function by a linear combination
of the splines basis functions, where the smoothness is depending on the degree of the spline. The Schoenberg operator
reproduces constants since the normalized B-splines form a partition of unity

n−1∑
j=−k

Nj,k(x) = 1. (1)

Moreover, the Schoenberg operator can reproduce linear functions, ie,
n−1∑
j=−k

𝜉j,kNj,k(x) = x, (2)

due to the Greville nodes. For more properties of this operator, see, eg, Schoenberg,9 Marsden and Schoenberg,11 and
Marsden.12 We note that the reference for the Greville nodes and the Schoenberg operator is dated by 1967, while the con-
ference where the result has first been published has been held in 1965. A comprehensive overview of direct inequalities
for this operator can be found in Beutel et al.13

1.2 Lower estimates
One aim of this article is to establish lower estimates in terms of classical moduli of smoothness of the following form:
There exists constants C1,C2 > 0 independent on n such that

C1 · 𝜔2(f , 𝛿n) ≤ ‖‖Sn,kf − f‖‖
holds for all f ∈ C([0, 1]) and 𝛿n → 0 for n → ∞, where the second-order modulus of smoothness 𝜔2 ∶ C([0, 1])×

(
0, 1

2

]
→

[0,∞) is defined by
𝜔2(f , t) ∶= sup

0<h<t
sup

x∈[0,1−2h]
|f (x) − 2f (x + h) + f (x + 2h)| ;

see Butzer and Berens14 and Johnen and Scherer.15 Although there exist already several methods to derive such estimates
for positive linear operators, see, eg, Ditzian and Ivanov,16 Knoop and Zhou,17,18 and Totik,19 these methods still require
many restrictions and are not applicable for Schoenberg operator.

Error estimates of uniform spline approximations on a finite interval have already been discussed amongst others
by de Boor20 using the first-order modulus of continuity and have been later improved by Marsden.21 These estimates
provide naturally a lower bound for the approximation with Schoenberg variation-diminishing splines on uniformly dis-
tributed knots. As the second-order modulus of smoothness annihilates constant and linear functions, it better reflects
the behaviour of the spline approximation error. Thus, lower estimates in terms of the second-order modulus of smooth-
ness may lead to sharper bounds of the approximation error and are more suitable to detect C2-singularities. Furthermore,
there exists upper bounds for the approximation error with the second-order modulus of smoothness, see eg, Esser.22
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Recently, such estimates have been shown in Nagler et al23 and Zapryanova and Tachev,24 while the results in both arti-
cles do not provide computable constants. In this article, we show lower estimates of the uniform spline approximation
error in terms of the second-order modulus of smoothness. Furthermore, we provide computable constants.

To prove lower estimates, we first characterize the behaviour of the iterates of Schoenberg spline operator and show
an upper bound for the second-order derivative of these iterative spline approximations. The essential idea depends on
uniformly distributed knots and the resulting translation invariant basis functions in the interior of the interval. Finally,
we provide an illustrative example of this approach to detect singularities of a piecewise smooth function using only a
limited number of samples.

1.3 Notation
Throughout this paper, we will consider the Banach space C([0, 1]), ie, the space of real-valued continuous functions on
the interval [0, 1], endowed with the supremum norm ‖·‖[0,1],

‖f‖[0,1] = sup {|f (x)| ∶ x ∈ [0, 1]} , f ∈ C([0, 1]).

The space of bounded linear operators on C([0, 1]) will be denoted by (C([0, 1])) equipped with the usual operator
norm ‖·‖op.

By (n, k), we denote the spline space of degree k with respect to the knot sequence Δn =
{

xj
}n+k

j=−k,

(n, k) ∶=

{ n−1∑
j=−k

cjNj,k ∶ cj ∈ R, j ∈ {−k, … ,n − 1}

}
⊂ Ck−1([0, 1]).

The spline space is an n + k-dimensional subspace of C([0, 1]), as the n + k basis functions Nj,k are linearly indepen-
dent. Since (n, k) is finite-dimensional, (n, k) is a Banach space with the inherited norm ‖·‖[0,1]. The maximal distance
between 2 knots will be denoted by the mesh gauge ‖Δn‖ ∶= 1∕n. For more information on spline spaces and spline
approximations, we refer to, eg, de Boor.10

2 THE ITERATES OF THE SCHOENBERG OPERATOR

In the following, we discuss some basic properties of the iterates of the Schoenberg operator. For m ∈ N, we define

(Sm
n,k f ) ∶= (Sm−1

n,k (Sn,k f )).

Lemma 1. We can write the mth iterate of the Schoenberg operator as

Sm
n,k f = Sm−1

n,k

( n−1∑
j=−k

f (𝜉j,k)Nj,k

)

=
n−1∑

j1,… ,jm=−k
f (𝜉j1,k)Nj1,k(𝜉j2,k) · · ·Njm−1,k(𝜉jm,k)Njm,k.

Proof. Induction over m.

2.1 The first and second derivative of the iterates
In this section, we consider the derivatives and give explicit representations. For that, we define a discrete backward
difference operator ∇l by

∇lf (𝜉j,k) ∶=
f (𝜉j,k) − f (𝜉j−1,k)

𝜉j,l − 𝜉j−1,l
.
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This operator is only defined at the discrete evaluations of f at the nodes and can be seen as the usual backward difference
operator defined at these nodes but additionally weighted by the node difference of degree l. With this, we can state:

Lemma 2. Let f ∈ C([0, 1]). The first and the second derivative of the approximation of f with the Schoenberg operator
can be represented by

DSn,k f =
n−1∑

j=1−k
∇kf (𝜉j,k)Nj,k−1

and

D2Sn,k f =
n−1∑

j=2−k
∇k−1∇kf (𝜉j,k)Nj,k−2,

respectively.

Proof. This lemma follows directly from the representation of the appropriate derivatives given by Marsden.12 Using
lemma 1 on page 32, we obtain for the first derivative

DSn,k f =
n−1∑

j=1−k

f (𝜉j,k) − f (𝜉j−1,k)
𝜉j,k − 𝜉j−1,k

Nj,k−1,

while the second-order derivative can be written by Lemma 2 on page 35 as

D2Sn,k f =
n−1∑

j=2−k

f (𝜉j,k)−f (𝜉j−1,k)
𝜉j,k−𝜉j−1,k

− f (𝜉j−1,k)−f (𝜉j−2,k)
𝜉j−1,k−𝜉j−2,k

𝜉j,k−1 − 𝜉j−1,k−1
Nj,k−2.

Applying the definition of the discrete backward difference operator ∇k and ∇k−1 gives the required representation.

Now, we give an analogous representation for the iterates of the Schoenberg operator.

Corollary 1. Let f ∈ C([0, 1]). The first- and second-order derivative of Sm
n,k f is of the form

DSm
n,k f =

n−1∑
jm=1−k

n−1∑
j1,… ,jm−1=−k

f (𝜉j1,k)Nj1,k(𝜉j2,k) · · ·Njm−2,k(𝜉jm−1,k)∇kNjm−1,k(𝜉jm,k)Njm,k−1

and

D2Sm
n,k f =

n−1∑
jm=2−k

n−1∑
j1,… ,jm−1=−k

f (𝜉j1,k)Nj1,k(𝜉j2,k) · · ·Njm−2,k(𝜉jm−1,k)∇k−1∇kNjm−1,k(𝜉jm,k)Njm,k−2.

Proof. Applying Lemmas 1 and 2 to Sm−1
n,k f yields the result.

2.2 An upper bound for the second derivative of the iterates
Now, we proceed to show that the above given representation of the first- and second-order derivative of Sm

n,k f is equivalent
to other representations and the number of these equivalent representations depends on m. This will allow us to use the
arithmetic mean of these representations for our purposes.

Hereby, our idea is to work with the shift invariant basis functions Nj,k, j ∈ {0, … ,n − k − 1}, ie, to stay away from the
boundary of the interval [0, 1]. Then, the Schoenberg operator acts like a convolution operator and techniques for this
kind of operators can be applied. We will show that the backward difference operator as placed in Corollary 1 commutes
with the discrete evaluation of the spline basis functions at the nodes and, as consequence, can be also applied to all of
the values Nj1,k(𝜉j2,k), … ,Njm−1,k(𝜉jm,k). Note that this technique is only possible in the case of uniformly distributed knots.

To this end, let x ∈ IΔn,k ∶= [x2k+2, xn−2k−2]. Then, we have

x ∉
k+1⋃

j=−k
supp Nj,k and x ∉

n−1⋃
j=n−2k−2

supp Nj,k, (3)
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because supp Nj,k ⊂
[
xj, xj+k+1

]
. Besides, we can simplify the notation of the iterates of the Schoenberg operator for x ∈

IΔn,k to

Sm
n,k f (x) =

n−k−1∑
j1,… ,jm=0

f (𝜉j1,k)Nj1,k(𝜉j2,k) · · ·Njm−1,k(𝜉jm,k)Njm,k(x),

ie, we do not need to evaluate the sums outside of the interval [x2k+2, xn−2k−2]. This is useful for the calculation with
derivatives, as we can avoid to increase the lower index by the order of the differentiation. Now, we show that the basis
functions

{
Nj,k

}n−k−1
j=0 are translates of each other with respect to the Greville nodes. This idea goes back to Schoenberg,25

where a basis of translates of each other has been considered on uniform knots.

Lemma 3. The Nj,k with j ∈ {0, … ,n − k − 1} is shift invariant at the nodes, in particular,

Nj+1,k(𝜉i,k) = Nj,k(𝜉i−1,k),

and supp spanj∈{0,… ,n−k−1} Nj,k = [0, 1].

Proof. As supp Nj,k ⊂
[
xj, xj+k+1

]
all corresponding knots xi, i ∈ {j, … , j + k + 1} are distinct from each other.

Explicitly, we have xi = i
n

. Now, let h = 1∕n. Then, we get

Nj+1,k(𝜉i) = (xj+k+2 − xj+1)[xj+1, … , xj+k+2](· − 𝜉i)k
+

= (xj+k+1 − xj)
1

hk · k!

j+k+2∑
l=j+1

(
k + 1

l − j − 1

)
(−1)j+k+2−l(xl − 𝜉i)k

+

= (xj+k+1 − xj)
1

hk · k!

j+k+1∑
l=j

(
k + 1
l − j

)
(−1)j+k+1−l(xl+1 − 𝜉i)k

+

= (xj+k+1 − xj)
1

hk · k!

j+k+1∑
l=j

(
k + 1
l − j

)
(−1)j+k+1−l(xl − 𝜉i−1)k

+

= Nj,k(𝜉i−1).

The last line holds, because

xl+1 − 𝜉i =
k · (l + 1) −

∑k
j=1(i + j)

nk
=

k · l −
∑k

j=1(i + j − 1)
nk

= xl − 𝜉i−1.

Finally, note that supp N0,k = [x0, xk+1] and supp Nn−k−1,k = [xn−k−1, xn].

With Lemma 3, we can represent the first derivative of the mth iterate in m−1 equivalent ways and the second derivative
in m(m−1)

2
ways.

Theorem 1. For m ∈ N and x ∈ IΔn,k, we get

DSm
n,k f (x) =

n−k−1∑
j1,… ,jm=0

f (𝜉j1,k)Nj1,k(𝜉j2,k) · · ·Njm−2,k(𝜉jm−1,k)∇kNjm−1 (𝜉jm )Njm,k−1(x)

=
n−k−1∑

j1,… ,jm=0
f (𝜉j1,k)Nj1,k(𝜉j2,k) · · · ∇kNjm−2,k(𝜉jm−1,k)Njm−1(𝜉jm )Njm,k−1(x)

⋮

=
n−k−1∑

j1,… ,jm=0
f (𝜉j1,k)∇kNj1,k(𝜉j2,k)Nj2,k(𝜉j3,k) · · ·Njm−1 (𝜉jm)Njm,k−1(x),

ie, the backward difference operator can be applied to Nj,k for every index j. Thus, we have m − 1 possibilities to represent
the first derivative of the iterated Schoenberg operator applied to the function f.
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Regarding the term D2Sm
n,k f , we can proceed in the same way, ie,

D2Sm
n,k f (x) =

n−k−1∑
j1,… ,jm=0

f (𝜉j1,k)Nj1,k(𝜉j2,k) · · ·Njm−2,k(𝜉jm−1,k)∇k−1∇kNjm−1 (𝜉jm)Njm,k−2(x)

=
n−k−1∑

j1,… ,jm=0
f (𝜉j1,k)Nj1,k(𝜉j2,k) · · · ∇k−1Njm−2,k(𝜉jm−1,k)∇kNjm−1 (𝜉jm)Njm,k−2(x)

⋮

=
n−k−1∑

j1,… ,jm=0
f (𝜉j1,k)Nj1,k(𝜉j2,k) · · · ∇k−1Njl,k(𝜉jl+1,k) · · · ∇kNjs (𝜉jm) · · ·Njm−1 (𝜉jm )Njm,k−2(x)

⋮

=
n−k−1∑

j1,… ,jm=0
f (𝜉j1,k)∇k−1∇kNj1,k(𝜉j2,k)Nj2,k(𝜉j3,k) · · ·Njm−1 (𝜉jm )Njm,k−2(x).

(4)

Similar to DSm
n,k f , we have m(m−1)

2
possibilities to represent the second derivative of the mth iterate of the Schoenberg

operator applied to the function f.

Proof. We will only show that for a given m, it is equivalent to apply the discretely defined backward difference
operator ∇k to Njm−1,k or to Njm−2,k. Concretely, we will show that the equality

DSm
n,k f (x) =

n−k−1∑
j1,… ,jm=0

f (𝜉j1,k)Nj1,k(𝜉j2,k) · · ·Njm−2,k(𝜉jm−1,k)∇kNjm−1,k(𝜉jm,k)Njm,k−1(x) (5)

=
n−k−1∑

j1,… ,jm=0
f (𝜉j1,k)Nj1,k(𝜉j2,k) · · · ∇kNjm−2,k(𝜉jm−1,k)Njm−1,k(𝜉jm,k)Njm,k−1(x) (6)

holds. It is then easy to see that also the other cases hold true.
As we have uniformly placed knots and we only look at the basis functions that are translation invariant with respect

to the nodes, the backward difference operator ∇k applied to Nj,k(𝜉i,k) is independent on k and simplifies to

∇kNj,k(𝜉i,k) =
Nj,k(𝜉i,k) − Nj,k(𝜉i−1,k)

𝜉i,k − 𝜉i−1,k
= ‖Δn‖−1 (Nj,k(𝜉i,k) − Nj,k(𝜉i−1,k))

)
,

and by the same argument, we get

∇k−1∇kNj,k(𝜉i,k) = ∇k∇k−1Nj,k(𝜉i,k) = ‖Δn‖−2 (Nj,k(𝜉i,k) − 2Nj,k(𝜉i−1,k) + Nj,k(𝜉i−2,k)
)
.

Applying Lemma 3 to the concrete situation given here in (5), we get the difference of the B-spline Njm−1,k evaluated
at 𝜉jm,k:

∇kNjm−1,k(𝜉jm,k) = ‖Δn‖−1 (Njm−1,k(𝜉jm,k) − Njm−1+1,k(𝜉jm,k)
)
.

Therefore, the first line in (5) can be rewritten as

n−k−1∑
j1,… ,jm=0

f (𝜉j1,k)Nj1,k(𝜉j2,k) · · ·Njm−2,k(𝜉jm−1,k)∇kNjm−1,k(𝜉jm,k)Njm,k−1(x)

=‖Δn‖−1

( n−k−1∑
j1,… ,jm=0

f (𝜉j1,k)Nj1,k(𝜉j2,k) · · ·Njm−2,k(𝜉jm−1,k)Njm−1,k(𝜉jm,k)Njm,k−1(x)

−
n−k−1∑

j1,… ,jm=0
f (𝜉j1,k)Nj1,k(𝜉j2,k) · · ·Njm−2,k(𝜉jm−1,k)Njm−1+1,k(𝜉jm,k)Njm,k−1(x)

)
.
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Using an index shift regarding the index jm−1 and the relation Njm−2,k(𝜉jm−1,k)Njm−1+1,k(𝜉jm,k) =
Njm−2,k(𝜉jm−1−1,k)Njm−1,k(𝜉jm,k), we further obtain

n−k−1∑
j1,… ,jm=0

f (𝜉j1,k)Nj1,k(𝜉j2,k) · · ·Njm−2,k(𝜉jm−1,k)∇kNjm−1,k(𝜉jm,k)Njm,k−1(x)

= ‖Δn‖−1

( n−k−1∑
j1,… ,jm=0

f (𝜉j1,k)Nj1,k(𝜉j2,k) · · ·Njm−2,k(𝜉jm−1,k)Njm−1,k(𝜉jm,k)Njm,k−1(x)

−
n−k∑

jm−1=1

n−k−1∑
j1,… ,jm−2,jm=0

f (𝜉j1,k)Nj1,k(𝜉j2,k) · · ·Njm−2,k(𝜉jm−1−1,k)Njm−1,k(𝜉jm,k)Njm,k−1(x)

)

=
n−k−1∑

j1,… ,jm=0
f (𝜉j1,k)Nj1,k(𝜉j2,k) · · · ∇kNjm−2,k(𝜉jm−1,k)Njm−1,k(𝜉jm,k)Njm,k−1(x)

+ ‖Δn‖−1

( n−k−1∑
j1,… ,jm=0

f (𝜉j1,k)Nj1,k(𝜉j2,k) · · ·Njm−2,k(𝜉0,k)N0,k(𝜉jm,k)Njm,k−1(x)

)

− ‖Δn‖−1

( n−k−1∑
j1,… ,jm=0

f (𝜉j1,k)Nj1,k(𝜉j2,k) · · ·Njm−2,k(𝜉n−k,k)Nn−k,k(𝜉jm,k)Njm,k−1(x)

)
.

The last 2 sums vanish as x ∈ IΔn,k = [x2k+2, xn−2k−2] and 𝜉0,k ∉ supp(Nj,k) for j ∈ {k + 2, … ,n − 2k − 2} and 𝜉n−k,k
∉ supp(Nj,k) for j ∈ {k + 2, … ,n − 2k − 2}; see (3). Hence, the last line reduces to (6), and the proof is complete.

In the following, we are interested in an upper bound of the second-order derivative of the iterates that guarantees the
convergence of the series.

For the convenience of the reader, we will abbreviate the right-hand side in (4) by

D2 Sm
n,k f (x) =

n−1∑
j1,… ,jm=−k

f (𝜉j1,k) · P(j1, … , jm; x) · Il1,l2 (j1, … , jm−1; x), (7)

where

P(j1, … , jm; x) ∶=

[m−1∏
l=1

Njl,k(𝜉jl+1,k)

]
Njm,k−2(x),

and for l1, l2 ∈ {1, … ,m − 1}, l1 ≤ l2,

Il1,l2 (j1, … , jm−1; x) ∶=

⎧⎪⎪⎨⎪⎪⎩

∇k−1Nl1,k(x) · ∇kNl2,k(x)
Nl1,k(x) · Nl2,k(x)

, for l1 ≠ l2,

∇k−1∇kNl1,k(x)
Nl1,k(x)

, for l1 = l2.

The term Il1,l2 sets the position of the 2 backward difference operators such that ∇k is always applied in front of ∇k−1 as
l1 ≤ l2. With this notation, we are now able to give an upper bound for the second-order derivative of the iterated spline
approximation:

Theorem 2. Let f ∈ C([0, 1]) and let n > 0, k ≥ 3, m > 1 be fixed integers. The pointwise upper bound

|||D2Sm
n,k f (x)||| ≤ 2𝜀n,k

(m − 1)3∕2 ‖Δn‖ · ‖f‖[0,1] (8)

holds for x ∈ IΔn,k, where

𝜀2
n,k ∶= sup

i

n−1∑
j=−k

(Nj,k(𝜉i,k) − 2Nj,k(𝜉i−1,k) + Nj,k(𝜉i−2,k))2

Nj,k(𝜉i,k)
(9)



310 NAGLER AND KÄHLER

with

Nj,k(𝜉i,k) ∶=
{

Nj,k(𝜉i,k), if Nj,k(𝜉i,k) ≠ 0,
1, if Nj,k(𝜉i,k) = 0.

Remark 1. We introduce the modified B-splines Nj,k to avoid formal 0 divisions.

Proof. First, suppose that x ∈ IΔn,k. Then, by Theorem 1, we have m(m−1)
2

possibilities to express D2Sm
n,k f (x). This

allows us to write (7) as the following mean:

D2 Sm
n,k f (x) = 1

(m − 1)2

m−1∑
l1≤l2=1

D2 Sm
n,k f (x)

= 1
(m − 1)2

n−k−1∑
j1,… ,jm=0

(
f (𝜉j1,k) · P(j1, … , jm; x) ·

m−1∑
l1≤l2=1

Il1,l2 (j1, … , jm−1; x)

)
.

Since P is positive, we can split P into P = P1/2P1/2, where P1/2 is the positive root. Then, we apply the
Cauchy-Schwarz inequality and get in abbreviated notation the following pointwise inequality for x ∈ [x2k+2, xn−2k−2]:

|||D2Sm
n,k f ||| ≤ 1

(m − 1)2

{ n−k−1∑
j1,… ,jm=0

|f |2P

} 1
2
⎧⎪⎨⎪⎩

n−k−1∑
j1,… ,jm=0

P

( m−1∑
l1≤l2=1

Il1,l2

)2⎫⎪⎬⎪⎭
1
2

≤
1

(m − 1)2

(‖f‖[0,1] · 1
) ⎛⎜⎜⎝

n−k−1∑
j1,… ,jm=0

P

( m−1∑
l1≤l2=1

Il1,l2

)2⎞⎟⎟⎠
1
2

.

(10)

Here, we used the partition of unity property of the B-splines, namely, that
∑n−1

j=−k Nj,k(x) = 1 holds for all x ∈ [0, 1].
Summation by parts, beginning with j1, j2, … , leads to

n−k−1∑
j1,… ,jm=0

P(j1, … , jm; x) =
n−k−1∑
jm=0

Njm,k−2(x)
n−k−1∑
jm−1=0

Njm−1,k(𝜉jm,k) · · ·
n−k−1∑

j1=0
Nj1,k(𝜉j2,k) = 1.

Finally, we take the supremum norm of f and obtain the inequality used for the first term.

Next, we discuss the second product in (10). For the term
(∑m−1

l1≤l2=1 Il1,l2

)2
, we get formally( m−1∑

l1≤l2=1
Il1,l2

)2

=
m−1∑
l=1

I2
l,l +

∑
1≤l1<l2≤m
1≤s1≤s2≤m

Il1,l2 Is1,s2 .

Here, the first expression sums up all the squared values, where both backward difference operators are applied at
the same position, while in the last sum, there is at least 1 index not equal to the others.

We show that the last sum vanishes. Note that for any indices i, j ∈ {0, … ,n − k − 1}, we have

n−1∑
j=−k

∇kNj,k(𝜉i) =
1‖Δn‖

( n−1∑
j=−k

Nj,k(𝜉i,k) −
n−1∑
j=−k

Nj,k(𝜉i−1,k)

)
= 0, (11)

and similarly,

n−1∑
j=−k

∇k−1∇kNj,k(𝜉i) =
1‖Δn‖2

( n−1∑
j=−k

Nj,k(𝜉i,k) − 2
n−1∑
j=−k

Nj,k(𝜉i−1,k) +
n−1∑
j=−k

Nj,k(𝜉i−2,k)

)
= 0, (12)

because of the partition of unity (1). That means, if the difference operator ∇k or ∇k−1∇k is applied to Nj,k without
being squared, the whole sum vanishes. Concretely, let us consider the positions 1 ≤ s = s1 = s2 < l1 < l2 ≤ m of the



NAGLER AND KÄHLER 311

backward difference operators. We obtain

n−k−1∑
j1,… ,jm=0

P(j1, … , jm; x)Il1,l2 (j1, … , jm; x)Is1,s2 (j1, … , jm; x)

=
n−k−1∑
jm=0

Njm,k−2(x) · · ·
n−1∑

jl2=−k
∇kNjl2 ,k

(𝜉jl2+1,k) · · ·
n−1∑

jl1=−k
∇k−1Njl1 ,k(𝜉jl1+1,k)

· · ·
n−1∑

js=−k
∇k−1∇kNjs,k(𝜉js+1,k) · · ·

n−k−1∑
j1=0

Nj1,k(𝜉j2,k) = 0.

For the case 1 ≤ s = s1 = s2 = l1 < l2 ≤ m, we get in the same way using (11) and (12)

n−k−1∑
j1,… ,jm=0

P(j1, … , jm; x)Il1,l2(j1, … , jm; x)Is1,s2 (j1, … , jm; x)

=
n−k−1∑
jm=0

Njm,k−2(x) · · ·
n−1∑

jl2=−k
∇kNj,k(𝜉i) · · ·

n−1∑
js=−k

∇k−1∇kNjs,k(𝜉js+1,k) · ∇k−1Njs,k(𝜉js+1,k)
Njs,k(𝜉js+1,k)

· · ·
n−k−1∑

j1=0
Nj1,k(𝜉j2,k) = 0.

Thus, the only case where the sum does not vanish is whenever 1 ≤ l1 = l2 = s1 = s2 ≤ m holds, and these terms
are included in the first sum. With these results, we conclude that

n−k−1∑
j1,… ,jm=0

P

( m−1∑
l1≤l2=1

Il1,l2

)2

=
n−k−1∑

j1,… ,jm=0
P

m−1∑
l=1

I2
l,l ≤

(m − 1)𝜀2
n,k‖Δn‖4

n−k−1∑
j1,… ,jm−1=0

P =
(m − 1)𝜀2

n,k‖Δn‖4 .

Finally, we continue (10) and get for all x ∈ IΔn,k the final inequality

|||D2Sm
n,k f (x)||| ≤ 2

(m − 1)2 ‖f‖[0,1]((m − 1)
𝜀2

n,k‖Δn‖4

) 1
2

≤
2𝜀n,k

(m − 1)3∕2‖Δn‖2 · ‖f‖[0,1].
In the definition (9) of 𝜀2

n,k, the terms Nj,k(𝜉l,k) are formally needed to avoid division by 0 that can occur with the
usual values of the B-splines Nj,k(𝜉l,k).

We remark that 𝜀n,k defined in (9) is bounded for n → ∞ because of the compact support of the basis functions. There-
fore, for fixed i, there are only finitely many B-splines Nj,k that can be evaluated at the positions 𝜉i,k, 𝜉i−1,k and 𝜉i−2,k, and
thus, the resulting series is as a finite summation bounded.

Corollary 2. Let k ≥ 3 be a fixed positive integer and let m > 1. Then, the pointwise upper bound

|||D2Sm
n,k f (x)||| ≤ 2𝜀n,k

(m − 1)3∕2‖Δn‖2 · ‖f‖[0,1]
holds for n → ∞ on all compact subsets of (0, 1).

Proof. The restricted interval [x2k+2, xn−2k−2] converges to (0, 1) for n → ∞ while k is fixed.
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3 THE LOWER BOUND OF THE APPROXIMATION ERROR OF THE
SCHOENBERG OPERATOR

For f ∈ C([0, 1]), let us denote by ‖f‖IΔn ,k
the maximum norm of f restricted to the interval IΔn,k ∶= [x2k+2, xn−2k−2]. In this

section, we show that for 0 < t ≤ 1
2

and k ≥ 3, there exists a constant M > 0, such that

M · 𝜔2( f |IΔn ,k
, t) ≤ ‖‖f − Sn,k f‖‖IΔn ,k

,

and IΔn,k → [0, 1] for n → ∞. Here, the second-order modulus of smoothness 𝜔2 ∶ C([0, 1])×
(

0, 1
2

]
→ [0,∞) is defined by

𝜔2(f , t) ∶= sup
0<h<t

sup
x∈[0,1−2h]

|f (x) − 2f (x + h) + f (x + 2h)| .
As the modulus of smoothness is equivalent to the K-functional, the inequality

𝜔2(f , t) ≤ 4‖‖f − Sn,k f‖‖[0,1] + t2‖‖‖D2Sn,k f‖‖‖[0,1] (13)

holds; for details, see Timan.26, pp. 102 To prove our main result, we need to estimate the second term by the approximation
error ‖‖f − Sn,k f‖‖[0,1]. In a first step, we show that the second-order differential operator D2 is bounded on the spline space.

Lemma 4. For k ≥ 3, the differential operator D2 ∶ (n, k) → (n, k − 2) is bounded with‖‖‖D2‖‖‖op
≤

4dk‖Δn‖2 ,

where dk > 0 is a constant depending only on k.

Proof. Let s ∈ (n, k), s(x) =
∑n−1

j=−k cjNj,k(x), with ‖s‖∞ = 1. According to M. Marsden,12 lemma 2 on page 35, we can
calculate the second-order derivative by

D2s(x) =
n−1∑

j=2−k

cj−cj−1

𝜉j,k−𝜉j−1,k
− cj−1−cj−2

𝜉j−1,k−𝜉j−2,k

𝜉j,k−1 − 𝜉j−1,k−1
Nj,k−2(x).

Then, we obtain with the triangle inequality

‖‖‖D2s‖‖‖[0,1] =
‖‖‖‖‖‖‖

n−1∑
j=2−k

cj−cj−1

𝜉j,k−𝜉j−1,k
− cj−1−cj−2

𝜉j−1,k−𝜉j−2,k

𝜉j,k−1 − 𝜉j−1,k−1
Nj,k−2(x)

‖‖‖‖‖‖‖[0,1]
≤
‖c‖[0,1] + 2‖c‖[0,1] + ‖c‖[0,1]‖Δn‖2 ·

‖‖‖‖‖‖
n−1∑

j=2−k
Nj,k−2(x)

‖‖‖‖‖‖[0,1],
where ‖c‖[0,1] = max

{||cj|| ∶ j ∈ {−k, … ,n − 1}
}
. (14)

According to de Boor,27 there exists dk > 0, such that

d−1
k ‖c‖∞ ≤

‖‖‖‖‖‖
n−1∑
j=−k

cjNj,k

‖‖‖‖‖‖∞ ≤ ‖c‖∞. (15)

Rewriting the first inequality yields ‖c‖∞ ≤ dk, because ‖s‖[0,1] = 1. Now, we use the partition of unity (1) to derive
the estimate ‖‖‖D2s‖‖‖[0,1] ≤ 4‖Δn‖2 dk.

Taking the supremum of all s ∈ (n, k) with ‖s‖[0,1] = 1 yields the result.
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Now, we are able to prove our main result:

Theorem 3. For 0 < t ≤ 1
2

and k ≥ 3, there exists a constant Mn,k > 0 only depending on n and k, independent of f, such
that

Mn,k · 𝜔2( f |IΔn ,k
, t) ≤ ‖‖f − Sn,k f‖‖IΔn ,k

.

Proof. We extend ‖‖D2Sn,k f‖‖IΔn ,k
into a telescopic series:

‖‖‖D2Sn,k f‖‖‖IΔn ,k
= ‖‖‖D2Sn,k f − D2S2

n,k f + D2S2
n,k f − D2S3

n,k f + … ‖‖‖IΔn ,k

≤

∞∑
m=1

‖‖‖D2Sm
n,k (f − Sn,kf )‖‖‖IΔn ,k

= ‖‖‖D2Sn,k (f − Sn,kf )‖‖‖IΔn ,k
+

∞∑
m=2

‖‖‖D2Sm
n,k (f − Sn,kf )‖‖‖IΔn ,k

.

Then, we apply Theorem 2 and Lemma 4 and obtain

‖‖‖D2Sn,k f‖‖‖IΔn ,k
≤

4dk‖‖f − Sn,kf‖‖IΔn ,k‖Δn‖2 +
∞∑

m=1

2𝜀n,k

m3∕2 · ‖Δn‖2
‖‖f − Sn,k f‖‖IΔn ,k

≤
4dk + 2𝜀n,k · 𝜁 ( 3

2
)‖Δn‖2
‖‖f − Sn,k f‖‖IΔn ,k

.

Finally, applying the above result to (13) yields the estimate

𝜔2( f |IΔn ,k
, t) ≤

(
4 + t2

(4dk + 2𝜀n,k · 𝜁 ( 3
2
))‖Δn‖2

)‖‖f − Sn,k f‖‖IΔn ,k
.

In the limit, we obtain the lower estimate on the whole interval [0, 1]:

Corollary 3. For k ≥ 3, n → ∞ and f ∈ C([0, 1]), the following uniform estimate holds:

𝜔2( f |IΔn ,k
, 𝛿n,k) ≤ 5 · ‖‖f − Sn,k f‖‖IΔn ,k

,

where

𝛿n,k ∶= ‖Δn‖√
(4dk + 2𝜀n,k · 𝜁 ( 3

2
))

and 𝛿n,k → 0 as n → ∞.

Corollary 4. For 0 < t ≤ 1
2

and k ≥ 3, we have the equivalence

𝜔2( f |IΔn ,k
, t) ∼ ‖‖f − Sn,k f‖‖IΔn ,k

in the sense that there exist constants M1,M2 > 0 independent of f and only depending on n and k such that

M1 · 𝜔2( f |IΔn ,k
, t) ≤ ‖‖f − Sn,k f‖‖IΔn ,k

≤ M2 · 𝜔2( f |IΔn ,k
, t).

Proof. We apply Theorem 3 to get the lower inequality, and we use the inequality

‖‖f − Sn,k f‖‖[0,1] ≤ (
1 + 1

2t2 · min
{

1
2k

,
(k + 1)‖Δn‖2

12

})
· 𝜔2(f , t),

from Beutel et al13 to obtain the upper bound.

Consequently, we have proved that the conjecture stated in13 holds true for n → ∞ if the degree k of the splines is fixed
and at least three, as the restricted interval IΔn,k converges in the limit to [0, 1].
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Finally, we want to compare our result to a related result that has been shown recently in the case of non-uniform knots.
Nagler et al23 showed that for all f ∈ C([0, 1]) and n → ∞, the following estimate holds:

𝜔2

(
f , 𝛿min

k
·
(1 − 𝛾Δn,k

dk

)1∕2
)

≤ 8 · ‖‖f − SΔn,k f‖‖[0,1],
where 𝛾Δn,k is the second largest eigenvalue of Schoenberg variation-diminishing spline operator SΔn,k with knot sequence
Δn =

{
xj
}n−1

j=−k, ie,

𝛾Δn,k ∶= sup
{|𝜆| ∶ 𝜆 ∈ 𝜎(SΔn,k ) ⧵ {1}

}
,

and 𝛿min denotes the minimal mesh length of the knots,

𝛿min ∶= min
{
(xj+1,k − xj,k) ∶ j ∈ {0, … ,n − 1}

}
.

Note that the term 1 − 𝛾Δn,k tends to 0 for n → ∞, while a concrete form of the eigenvalues of the Schoenberg operator
have not been shown yet. In our result, we consider a uniform mesh, and thus, 𝛿min = ‖Δn‖ holds. Using the uniform
mesh, we have shown the estimate

𝜔2

⎛⎜⎜⎜⎝ f |IΔn ,k
,

‖Δn‖√
4dk + 2𝜀n,k · 𝜁 ( 3

2
)

⎞⎟⎟⎟⎠ ≤ 5 · ‖‖f − Sn,k f‖‖IΔn ,k
,

where 𝜀n,k is bounded for n → ∞. Hence, for fixed degree k, we have an explicit constant independent on n, whereas the
constant in the results shown in Nagler et al23 still depends on n. Further research might improve the constants shown in
both results.

4 NUMERICAL EXAMPLE

To illustrate our method, we will consider a simple example of a function with 3 different kinds of singularites:

f (x) = 2 sin(6𝜋 · x) + 15(|x − 0.2| 6
5 + |x − 0.4| 2

5 − |x − 0.7| 4
5 ) − 15.07x, x ∈ [0, 1].

This function and one of its cubic spline approximation can be seen in Figure 1. Using our approach, we are going to
detect the singularities by studying the discrete approximation error between the data and the approximation in the data
points. The decay rates of spline approximations with n = 128, n = 256, and n = 512 are shown in Figure 2.

The singularities and their types are clearly visible by the error decay, while false singularities may be detected by
looking at the absolute error of only 1 spline approximation. We would like to point out that our method detects not only
the strong singularities in x = 0.4 and x = 0.7 but also the weak singularity in x = 0.2.

FIGURE 1 Function with 3 singularities of different orders at x = 0.2, x = 0.4, and x = 0.7 [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 2 Decay rate of the cubic uniform spline approximation with 128, 256, and 512 samples. The singularities and their types are
clearly visible by the error decay [Colour figure can be viewed at wileyonlinelibrary.com]

These results show that even there is only a limited number of samples available, the singularities can be computed
because of the slow decay at the singularities. Of course, the number n should reflect the behaviour of the function f. The
detection of the singularity is dependent on n and can only detect singularities that occur at the given scale.

5 CONCLUSION

We presented lower estimates for the approximation error in Schoenberg variation-diminishing spline approximation
with equidistant knots in terms of the classical second-order modulus of smoothness. This allows the characterization
of local smoothness of a function or a curve as corresponding upper estimates exists. We have shown the principle of
detecting C2-singularities based on the decay rate of the local approximation error in a brief numerical example. Amongst
other applications, this can be used for robust estimation of the digital curvature of piecewise smooth curves in images.
In practical applications, one has to deal with 2 problems. Firstly, one has to compute discrete decay rates, and thus, the
discrimination between a slow and fast decay rate requires a parameter. Secondly, as only a limited number of data are
available, the decay rates can only be computed up to a certain resolution. Both problems need to be addressed according
to the concrete problem.
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