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Abstract The IT-operator (Ahlfors—Beurling transform) plays an important role in
solving the Beltrami equation. In this paper we define two IT-operators on the n-sphere.
The first spherical IT-operator is shown to be an L? isometry up to isomorphism.
To improve this, with the help of the spectrum of the spherical Dirac operator, the
second spherical IT operator is constructed as an isometric L2 operator over the sphere.
Some analogous properties for both IT-operators are also developed. We also study
the applications of both spherical IT-operators to the solution of the spherical Beltrami
equations.

Keywords Singular integral operator - I[T-Operator - Spectrum - Beltrami equation

1 Introduction

The IT-operator is one of the tools used to study smoothness of functions over Sobolev
spaces and to solve some first order partial differential equations such as the Beltrami
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equation which describes quasi-conformal mappings. In one dimensional complex
analysis, the Beltrami equation is the partial differential equation:

ow . Jw
07 " 0z
. . . . ad .0
where 1 = w(z) is a given complex function, and z = x +iy € C, 9, = 8_ — la—,
X y
0 0
0z = PP + ia—. It can be transformed to a fixed-point equation
X y
h=q(z)(I + lgh)
where

1 h
Mqh(z) = - /Q %d&dé‘z

is the complex [T-operator. This singular integral operator acts as an isometry from
L?(C) to L?(C) with the L ,-norm being a long standing conjecture by Iwaniec.

With the help of Clifford algebras, the classical Beltrami equation and IT-operator
with some well known results can be generalized to higher dimensions. Abundant
results in Euclidean space have been found( see [4,8,9]). In order to generate results
in Euclidean space to the unit sphere, we define two IT-operators related to the con-
formally invariant spherical Dirac operator. The idea to consider the n-sphere is not
only motivated by being the classic example of a manifold and being invariant under
the conformal group, but also by the fact that in the case of n = 3 due to the recently
proved Poincaré conjecture there is a wide class of manifolds which are homeomorphic
to the 3-sphere. This makes our results much more general and valid for any simply
connected closed 3-manifold. In particular, results on local and global homeomorphic
solutions of the sperical Beltrami equation carry over to such manifolds.

This paper is organized as follows: In Sect. 2, we briefly introduce Clifford algebras,
Clifford analysis, the Euclidean Dirac operator, and some well known integral formu-
las. In Sect. 3, we review the construction and some properties for the IT-operator in
Euclidean space. In Sect. 4, we construct the IT-operator in a generalized spherical
space and solve the Beltrami equation with a singular integral operator Il o. In the
last section, we will investigate the spectra of several spherical Dirac type operators
and the spherical Laplacian, and construct the isometric spherical [T-operator I j.

2 Preliminaries

Letey, - - - , e, be an orthonormal basis of R”!. The Clifford algebra Cl,, is the algebra
over R" generated by the relation

2 2
x° = —||x[[eo
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where e is the identity of Cl,,. These algebras were introduced by Clifford in 1878 in
[6]. Each element of the algebra Cl,, can be represented in the form

x = E XACA

Ac{l,,n}

where x4 are real numbers. The norm of a Clifford number x is defined as

2 2
IxI>= > xi

Ac{l,-- ,n}

If the set A contains k elements, then we call e4 a k-vector. Likewise, we call each
linear combination of k-vectors a k-vector. The vector space of all k-vectors is denoted
by AKR". Obviously, Cl,, is the direct sum of all AXR” for k < n. The following anti-
involutions are well known:

e Reversion:

i = Z(_l)IAI(\AI*I)/ZaAEA’
A

where |A| is the cardinality of A. In particular, e, ---¢j,
ab = ba for a, b € Cl,.
e Clifford conjugation:

= €j, " €j. Also

at = S (=)D 2g 0
A

satisfying e;, ---e;, " = (=1)"ej, - - - e}, and (ab)" = b'a' fora, b e Cl,.
o Clifford involution:

a=a' =a.

In the following we identify the Euclidean space R"*! with the direct sum A°R” &
A'R". For all that follows let @ c R"*! be a domain with a sufficiently smooth
boundary I' = 9€2. Then functions f defined in 2 with values in Cl,, are considered.
These functions may be written as

f =Y eafalx), (xeQ)

AC{er.ea,...en)

Properties such as continuity, differentiability, integrability, and so on, which are
ascribed to f have to be possessed by all components f4(x), (A C {eq, e2,...en}).
The spaces CX(2, Cl,,), L p(&2, Cl,) are defined as right Banach modules with the cor-
responding traditional norms. The space L, (2, Cl,) is aright Hilbert module equipped
with a Cl,,-valued sesquilinear form
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(u,v) = /QWn)v(n)dQn.

Furthermore, W;(Q, Cly),k e NU{0},1 < p < oo denotes the Sobolev spaces
as the right module of all functionals whose derivatives belong to L ,(2, Cl,,), with
norm

1/p

. P
I lws@.cny = D= D 1D8fAl] i

A lell<k

The closure of the space of test functions C§° (2, Cl,,) in the W;f-norm will be denoted

by W5 (R, Cly).

The Euclidean Dirac operators D, and Dy arise as generalizations of the Cauchy—
Riemann operator of one complex variable. As homogenous linear differential
operators,

n
D, = Z €0y,
i=1

n
Do := egdy, + »_ €idy; = €0dy, + Dy.
i=1

Note D)zc = —A,, where A is the Laplacian in R"*! and Apy1 = Do Dy, where Do
is the Clifford conjugate of Dy.

Definition 1 A Cl,-valued function f(x) defined on a domain € in R"*! is called
left monogenic if

D f(x) =) eidy f(x) =0.

i=1

Similarly, f is called a right monogenic function if it satisfies

fODy =Y "0, f(x)e; =0

i=1

-y
Let cl.Cl),Gx —y) = ———
e f € CHRLCh), Glx =) = i

Dy. Hence, the Cauchy transform is defined as

being the fundamental solution of

Tof(x) = /Q Gl — ) F(dy,

Wp+1
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where T is the generalization of the Cauchy transform in the complex plane to
Euclidean space, and it is the right inverse of Dy, that is DoT = I. Also, the non-
singular boundary integral operator is given by

Fanf(x) = /d Gl =) f (o).

W41

We have the Borel-Pompeiu Theorem as follows.

Theorem 1 ([8]) For f € CY (R, Cl,) N C(Q), we have

Fo) = fa Gl = ) f () () + fQ G(x — y)Dof(ydy,

Wp+1 Wp+1

In particular, if f €W21 (2, Cly), then

fx) = /QG(X —y)Do f(y)dy.

Wp+1

3 II-Operator in Euclidean Space

It is well known that in complex analysis, the I[T-operator can be realized as the
composition of 9; and the Cauchy transform. As the generalization to higher dimension
in Clifford algebra, we have the IT-operator in R"*! defined as follows.

Definition 2 The IT-operator in Euclidean space R"*! is defined as
M =D,T.

The following are some well known properties for the [T-operator.

Theorem 2 ([8]) Suppose f €W} (Q)(1 < p < 00,k = 1), then

D()Hf = D_Ofv _
Do f = Dof — DoFyq f,
Fyollf = (I — T Do) f,
DoIlf — Do f = DoFyq f.

R~

The following decomposition of L?(£2, Cl,,) helps us to observe that the [T-operator
actually maps L2($2, Cl,,) to L>(2, Cl,,).

Theorem 3 ([8]) (L*(2, Cl,)) Decomposition)

L*(Q.Cly) = L*(Q.Cly) (| KerDo €D Do(W; (2.Cly)).
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and

L*(Q,Cly) = L*(.Cly) () Ker Do @ Do (Wzl (Q, cz,,)) .
Notice that, since
(L%, Cly) ﬂ KerDo) = L*(2,Cly) ﬂ Ker Dy,

Mo (Wzl @ czn») _ Dy (W; @. cz,») ,

hence, this IT-operator is from L2(2, Cl,) to L>($2, Cl,,).
One key property of the IT-operator is that it is an L? isometry, in other words,

Theorem 4 ([4]) For functions in Lz(Q, Cl,), we have
I =1
To complete this section, we give the classic example of the IT-operator solving the
Beltrami equation. Let Q2 C Rt q : Q — Cl, abounded measurable function and
 : Q2 — Cl, be a sufficiently smooth function. The generalized Beltrami equation
Dow = qD_oa)

could be transformed into an integral equation

h = q(Do¢ + Ih)

1
where w = ¢ + T h, which could have a unique solution if ||¢|| < go < m see [8],

with go being a constant. This tells us that the existence of a unique solution to the
Beltrami equation depends on the norm estimate for the IT-operator.

4 Construction and Properties of Spherical I1-Type Operator with
Generalized Spherical Dirac Operator

Recall that in one dimensional complex analysis, the IT-operator is defined as

f(@ dz.
—Z

[f(z2) :==9:Tf(2) = 32[
Qn

d 0
where z = x + iy € Cand 9; = P + ia—. This suggests us to generalize the
X y

[T-operator, we need to consider a variable z with “real” and “imaginary” parts, so we
can take conjugate of 9, to define the I[T-operator.
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4.1 Spherical I1-Type Operator with Generalized Spherical Dirac Operator

Let S" be the n-unit sphere. The spherical Dirac operator Ds on S" is defined as
follows.

n

n
)?D():Zeoej(xoaxj—xjaxo)— Z eie;j (x,ax] X0y, —I—Z X;0 x] .

j=1 i=1,j>i j=0

n

DenoteFo—Zeoej ((xody; —xj0)) — > eiej ((xidy; — x;0y,)) . Hence,
j=1 i=1,j>i

1= 1—‘O
D, =% 'xD, = ® ”2(15 +Tr)=¢(D, + -2

where rD, = E,,r = ||x|| and & € S".
In particular, we have the conformally invariant spherical Dirac operator as follows,

n
Ds-“’(ro—z)

- I J—
Similarly, we have Dy = & (D, + —0> , and since Dy is also conformally invariant,
r

we have Dy = w(Ty — 5), where

n
F_() = — Zeoe‘/ (w03wj — wjawo) — Z e,'ej (w,'awj — w.,'awl.) .
j=1 i=1.j>i

Here D is the Clifford involution of Dj.

Lemma 1

Tow = nw — wl;

F_ow =nw — wly.
Proof The proof is similar to Theorem 3 in [10]. O
Theorem 5

Dsw = —wDg, Dsw = —wDy.

Proof Applying the last Lemma, a straight forward calculation completes the proof.
O
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Theorem 6 Since D and Dy are both conformally invariant, we have their funda-
mental solutions as follows:

w —

DiGy(w —v) = Dy———— = §(v),
lw—v|"
- w-v
DsGy(w —v) = Dym—— = 5(v),
[w — vl
where w, v € S".
Proof The proof is similar to Proposition 4 in [10]. O

Let €2 be a bounded smooth domain in S" and f € Ccl(, Cl,), we have the Cauchy
transforms for both Dy and Dy,

1
Taf) = = [ Guw=vswdo= [ = ”nf(v)dv
— 1
Taf = - [ G vrwdr= [ =5 fwav.

Also, the non-singular boundary integral operators are given by

1
Fya f(w) = - /(m Gs(w —v)n(v) f(v)do (v),
_ 1 -
Fiaf(u) = — /3 G = 0n(0) o)

Then we have Borel-Pompeiu Theorem as follows.
Theorem 7 ([10]) (Borel-Pompeiu Theorem)
For f € C1(Q) N C(Q), we have

1 1
fw) = —/ Gs(w —v)n() f(v)do(v) + —/ Gs(w —v)Ds f(v)dv,
wn JyQ Q

Wy

in other words, f = Fyqf + TqDs f. Similarly, f{ = fang + ngﬁsf

fw) = L/ Gs(w —v)n() f(v)do(v) + L/ Gs(w —v)Ds f(v)dv,
wn JyQ Q

wp

If f is a function with compact support, then TD; = T D; = I.

Since the conformally invariant spherical Laplace operator A has the fundamental
1

n—2lw-—

solution Hg(w — v) = — see [10]. We have factorizations of Ag

v”n—2 ’
as follows.

Theorem 8 A, = Dy(D; + w) = Ds(D; + W).
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Proof The proof is similar to Proposition 5 in [10].

We also have the dual of Dy as follows.

Theorem 9 D! = —D;.

Proof Let f, g : @ — Cl,, both have compact supports,

<Dsf,g>:<w<[‘0—z)f,g >=< (Fo—z>f,wg>

2 2
=<Tof,wg > —g < fiwg >=< f,Towg > —% < f,wg >
=< f, (nw —wlo)g > —g < fiwg >=< f, —w(ly — g)g >

=<f,—ﬁ_‘-g>.

Definition 3 Define the generalized spherical [1-type operator as
Ms0f = (Ds +w)Tf.

We have some properties of I o as follows.

Proposition 1

DSHS,O =D; —w,
Il 0Dy = Ds + w.

Proof

DIl 0 = Dy(Ds +w)T = (Dy — w)DT = Dy — w,
Il 0Dy = (Ds + w)T Dy = Dy 4+ w.

O

From the proposition above, we can have decompositions of (2, Cl,) as follows.

Theorem 10

L*(Q,Cly) = L*(Q.Cly) (| Ker(Dy — w) @ Dy (Wzl «, cz,,)> :

L*(Q.Cly) = L*(Q.Cly) [ Ker Dy @ (D5 + w) (W21 (Q, cz,1)> .
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Notice that
My.0(L*(Q,Cly) [ Ker(Ds — w) = L*(Q,Cly) (| KerDs,

I,,0Ds (WQ‘ (sz,czn)> = (D + w) (WZ] (Q,Cl,,)).

Hence, I, o operator is from LZ(Q, Cl,) to L? (2, Cly). The proof is similar to The-
orem 1 in [8].

Definition 4 We define the I1]” operator as

Ny f=D,T"f.
where T+ f = %/ Gt (w —v) f(v)dv,
"JQ

GT(w—v)=Gs(w—v)+wH,(w—v) — 2G§.3)(w —v),

and

1 w—v
(n—2)(n—4) |w—v||"=*

GOw —v) =
Notice that G§3) (w—v) is actually the reproducing kernel of D§3) = (Dy—w)D;(Ds+
w) and the proof is similar to a proof in [10].

Proposition 2
My,0(L* (2, Cly) [ KerDy) = L*(,Cly) | Ker(Ds — w),

I, 0(Ds + w) <W21 (Q,Cln)) = D, <W21 (sz,czn)>.

[e]
Theorem 11 Il is an isometry on W21 (2, Cly) up to isomorphism.

Proof Let f € LZ(Q,Cln),then

(I, f, I} g) = (Dy + w)Tf, D;Tg)
= (Tf, (—Ds + w)D;T*g)
—(Tf, (Dy —w)DsT*g)
—(Tf, Dy(Ds +w)Ttg)
(DsTf, (Dy +w)TTg) = (., g).



Spherical I1-Type Operators in Clifford Analysis and... 1105

4.2 Application of Il o to the Solution of a Beltrami Equation

We have a Beltrami equation related to I o as follows. Let Q2 C S"1 be a bounded,
simply connected domain with sufficiently smooth boundary, ¢ : & — Cl,, a mea-
surable function. Let f : Q — Cl, be a sufficiently smooth function. The spherical
Beltrami equation is as follows:

Dyf =q(Ds +w)f.
It has a unique solution f = ¢ + Th where ¢ ia an arbitrary left-monogenic function
such that Ds¢ = 0 and £ is the solution of an integral equation
h = q((Ds + w)¢ + I 0h).

By the Banach fixed point theorem, the previous integral equation has a unique solution
in the case where

1
lgll <go < ——,
(1T 0l

with go being a constant. Hence, for the rest of this section, we will estimate the L”
norm of I o with p > 1.
Since Dy = w(I" — 5) = w(wDo — E, — 5) = Do — wE, — 5w, then

M0 f(w) = (Ds + w)Tf(w) = (DT +w(1 — Ey)T — gT)f(w)-

it is easy to see that

ej —n(wj —vj)——

i &f(v)dv _ / lw—v]? F)dv + o gf(v)
dw; Jen [lw —v|" . w—v|" "n '
since

9 w—v :e_j_”(wj_vj)ﬁ

ow; [lw — vl lw—v|”

and using Chapter IX § 7 in [11]

w—v e;
——cos(r, w;)dS = w, —,
s lw—vll n

where S is a sufficiently small neighborhood of w on S".
Hence, we have

— 1 Zaz —n Z(wj - v/)e_/'”ww__vvuz ZFZ
DTf(w) = — f)dv+ = f(v)
Wy Jsn lw—v||” n
L =) — n—”z:giz

1—n
= — fdv + Tf(v)

wn Jsn lw — vl
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L TeE T s

E,Tf(w)
w1/ on lw — "

LW £ )
n

1 W—n<w,w-—"uv > _w—v
Tw—v]?

= fdv + — f(v)
wp

s lw ="

Therefore, we have an integral expression of Il o as follows.

Theorem 12

M0/ (w) = (DT +W(1 — E,)T — ET)f(w)

—n —w? v — T w—v
= i/ 1 z f(U)dU+ / v <w v)w . w v f(v)dv
op Jen |lw—v]" wp Js

w fw —vf* T jlw — v

n\ w w 1
+(1—5) /S—”,,f(v)dv-i-—f()

n ||w

Since

J— J— n —_ n
[0 =(Ds +w)T = (W — 5) +w)T =wloT + (1 — E)ET,

— n n .
where I'g = — Z/: eoej(xoaxj —Xj0y) — Z’ "y _ciej (x;0 ;i — X0y, ). To esti-
mate the L? norm of I o, we need the following result

Wp—1

Theorem 13 Suppose p is a positive integer and p > 1, then | T||Lr <

Proof Since

717, =

<
5

I / Gy(w — v) f(W)dV" |[Pdu”
Q

IA
TN TN N N N TN

V4
/ I / Gs(w — U)éGs(w - v)%f(v)dv” I1Pdw"
Q Q

IA

P
((fQ IIGs(w—v)Hdv")q -/QnGs(w—v)u 1/ @)I1Pdv*)dw"

/ / IG5 (w — V)ILf @IPdv" dw"
QJQ

P r
Cf’/ ILfIIP (/ IIGs(w—v)Ildw”>du”
Q Q
P Ly
cy /Ilf(v)llp (/ IIGs(w—v)IIdw">dv"
Q Q

Sl
O S~
—apr Q

- §1-31-8I- §I-§I-

N——— - e N N N
<

IA
S
3
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1 p

= (—) C{"[ I f @) [IPdv"
Wn Q
1 P

= (;) cl Iy,

1 1
where p, g > 1 are positive integers and — + — = 1, where
P 4q

1
Cr < |/Sn IGs(w —v)[ldv"| = !/Sn de”}.

Due to the symmetry we can choose any fixed point w, hence we choose w =
n

(1,0,0,...,0) and v = (xo,x1,--- ,xp) € ", ie. Z 0||x,-||2 = 1. Letv =
=l

cos Beg+sin 6¢, where ¢ is a vector on n — 1-sphere, then we have dv" = sin"~1 0do,

1
o [2(1 — X1 T
o [T 1 son—1
=272 ———————sin"" " 0d0
0 (1—cosh) 2z

n—1
L0\ 7 o o\"!
=27 7/ 2sin? — 2sin — cos — do
2 2 2

Wy—
,wehave || T|r < —

Let Gy be the operator defined by

1 1
G =— dv, n >3,
el A= L

and Ry = Ty o Gy is a Riesz transformation of gradient type (see [1]). Then we have,

Proposition 3 [1], The operator Ry is a L? operator and the LP norm is bounded by

n1/2< p >1/2B
272 \p—1 r



1108 W. Cheng et al.

where B, = Cuy,p + Cp, Cuy,p is the LP norm of the maximal truncated Hilbert
transformation on St and Cp= cotz%, 1y l* =1.

PP
Hence,
— 1 1 w—v
IIFo—[ " S)dvlLr
o Jo llw =l w— vl
/2 » 1/2
<m-1))——— B v)|lLr
=m-D = <p_1) I @)l
7172 p 1/2
=n—-1)——— B v . 1
( )2ﬁ<p—l) pllf WIlLe (D

Recallthat I, o f = (D_X+E)Tf = (E(F_o—%)+E)Tf = EF_OTf+(1—%)wa,
and by Theorem 13,

ny __ n\ w w—v n Wn—1
||(1—5)wa||Lp:||(1—5)w—n/9mf<v>dv|m5(5—1) “Liflr.
)

By inequalities (1) and (2), we show that I1; ¢ is a bounded operator mapping from
L? space to itself, and

1/2 1/2

T p n wn—1
I, <n-1))—(— B (——1) .
MsollLr < (n )2ﬁ (p—l) p+ > )

Remark The spherical IT-type operator I1; ¢ preserves most properties of the IT oper-
ator in Euclidean space and more importantly, it is a singular integral operator which
helps to solve the corresponding Beltrami equation. Unfortunately, it is also only an
L? isometry up to isomorphism as shown in Theorem 11 . In the next section, we
will use the spectrum theory of differential operators to claim that there is a spherical
I1-type operator which is also an L? isometry.

5 Eigenvectors of Spherical Dirac Type Operators

In this section, we will investigate the spectrums of several spherical Dirac type oper-
ators and the spherical Laplacian. During the investigation, we will point out there is
a spherical IT-type operator which is an L? isometry.

Since 'y = XDy — E,, it is easy to verify the fact that if p,, is a monogenic
polynomial and is homogeneous with degree m, thatis Dy f,, = 0 and E, f,, = mf,,,
then g f;, = —mfy,, so fi, is an eigenvector of Iy with eigenvalue —m. Similarly, if
Dogm =0, g, is an eigenvector of I'y with eigenvalue —m.

Let Hy, be the space of Cl,-valued harmonic polynomials homogeneous of degree
k and M, be the Cl,-valued monogenic polynomials homogeneous of degree k, M
is the clifford involution of M. By an Almansi-Fischer decomposition [5,7], Hx =
M @ x M_1. Hence, for for all harmonic functions with homogeneity of degree k,
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there exist py € Ker Dy, and px—1 € Ker Dg such that iy = Pk + Xpik—1. Then, it is
easy to get that ['gpy = —kpy and U'oxpr—1 = (n + k)X pr—1.-

Let H,, denote the restriction to S" of the space of Cl,-valued harmonic poly-
nomials with homogeneity of degree m. P, is the space of spherical Cl,-valued
left monogenic polynomials with homogeneity of degree —m and Q,, is the space
of spherical Cl,-valued left monogenic polynomials with homogeneity of degree
n+m,m =0,1,2,.... Then we have H,, = P, @ Qn ( [3]). It is well known

2 _ > : 2 _ o
that L2(S") = Zmzo H, ([2]), it fouo\ys L2(S") = Zmzo Pm@ Op. If
Pm € Py, since I'op,, = —mp,, it is an eigenvector of 'y with eigenvalue —m
and for ¢, € Qy, it is an eigenvector of I'g with eigenvalue n + m. Therefore,
the spectrum of 'y is 0 (I'g) = {—m,m = 1,2,..}U{m+n,m =0,1,2,...},.
Since Dy, = w(ly — g), the spectrum of Dy is 0(Ds) = o(I'g) — 7, which is
{=m—-35,m=0,1,2,..}U{m+35,m=0,1,2,...}.

As mentioned in the previous section that DT = TDg; = I, and we know
that Dy : P, — Q, ([3]). Hence, we have T : Q,, — P, and the spec-
trum of T is the reciprocal of the spectrum of Dy, which is o(T) = { ﬁ, m =

2
0,1,2,...} U{_ml_ﬂ ,m = 0,1,2,...}. Similar arguments apply for Dy and T, in
— 2 —
fact 0 (Ds) = 0 (D) and o (T) = o (T). o

Now with similar strategy as in [3], we consider the operator D;T which maps

L%(S") to L*(S"). Ifu € C'(S") then u € L*(S"). It follows that

=YY Y Y

m=0 p,, €Pp m=0¢gne0m

where p,, and g, are eigenvectors of I'g. Further the eigenvectors p,, and g, can
be chosen so that within P, they are mutually orthogonal. The same can be done
for the eigenvectors ¢,,. Moreover, as u € C!(S") then D;Tu € C 0(S™) and so
DyTu € L*(S"). Consequently,

00 00
ETM:Z Z FsTpm'i‘Z Z FSTQm

m=0 p, Py m=0¢g,€0m
o
=2 2 Dio—ya I P
m=0 g, €0 2 m=0 p,, € Py
and
00 1 2 o] 2
— _ _
||DsTu||Lz=Z<m+ﬂ> > \|Dsqm\|Lz+Z<_ _,l> > D5 pmllr2
m=0 2 gm€0m m=0 2 Pm€Pn

(o

m=0

) m+37 Y ||pm||Lz+Z( )( m——) > ligmll2

n
Pm€Pn S 2 qm€Qm



1110 W. Cheng et al.

00 00
=5 pmllz+ > > llgmlle

m=0 py € P m=0gu€Q0m

= lull2.
This shows DT is an L?(S") isometry.
By the help of the spectrum of 7', we have the L? norm estimate of the I, o, that
is
ITsoullp2 < IDsTullz2 + Wl 2l Tull 2

1 2 o0 e}
=||u||Lz+( ) ST pmlz Y D lgmle
m—i-j

m=0 py € P m=0 g €Q0m
4
< 1+ﬁ lluell 72

4
Hence we have |15 oll;2 <1+ —.
n — — —
By Theorem 13, Ay = Ds(Ds+w) = (Ds—w) Dy = Dg(Dg+w) = (Dg—w) D.
Since Dy = w(Ty — %), Dy = w(y — g), a straightforward calculation shows us
that

n\2z2 __ n 2 n2 n
AS=—<F0—§) —ww(F0—§>=—F0+(n—1)F0— —— =

12
=—(To n)2 T - = T4 - DT (="
o omg) mwwhom ="t min °o=\7 " 2)

Since for 0 < r < 1, any harmonic function 4,, € B(0,r) = {x € R" : ||x]| < r}
w_ith homogeneity degree m, we have h,, = f,, + gm, where f,,, € KerDg and g, €
Dy, they are both homogeneous with degree m (see Lemma 3 [12]). Consequently,

2 2
Asfn = (—F& +(n— 1Dy — (”4 - ’;)) fn = (—m2 —mn—1) - ("4 - Z)) fons

and

=2 = n? n 2 n? n
Asgm =|-To" +(m— DIy — T o) )Em = —mn—1)— T o)) Em

Hence

n

2
Ashy = As(fin + 8m) = (_m2 —mn—1) — (n_ - _>> (fn + &m)

4 2
= 2 1 " hy,
(—m —mn — )—(——§>) .
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Since for any function u € LZ(S”) Q= Cly,u = E Ohm, where h,, €
m=

H,,, it follows that A has spectrum o (Ay) = {—m2 —m(n—1)— (% — ﬂ) m

2
=0.1,2....}.
In order to preserve the property of isometry of the IT-operator on the sphere, we

define the isometric spherical IT-operator as Il 1 as 11 = ET, which is isometry
in L2 space. We can solve the Beltrami equation related to I, ; as follows.

Let @ € S" be a bounded, simply connected domain with sufficiently smooth
boundary, and ¢, f : @ — Cl,, q is a measurable function, and f is sufficiently

smooth. The spherical Beltrami equation is as follows:

Dsf = qﬁsf

It has a unique solution f = ¢ + Th where ¢ ia an arbitrary left-monogenic function
such that Dy¢ = 0 and £ is the solution of an integral equation

h = q(Ds¢ + M. 1h).

By the Banach fixed point theorem, the previous integral equation has a unique solution
in the case of

1
lgll < g0 < ——
(1T 11l

with gg being a constant. Hence, we can use the estimate of the L?” norm of I | with
p > 1, where

I, 4 < 1)711/2 p 1/23 +na)n—1
p n—1)——\—— = .
s, 1IILP = 2«/5 p—l P 2 4
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