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Abstract The �-operator (Ahlfors–Beurling transform) plays an important role in
solving theBeltrami equation. In this paperwe define two�-operators on the n-sphere.
The first spherical �-operator is shown to be an L2 isometry up to isomorphism.
To improve this, with the help of the spectrum of the spherical Dirac operator, the
second spherical� operator is constructed as an isometric L2 operator over the sphere.
Some analogous properties for both �-operators are also developed. We also study
the applications of both spherical�-operators to the solution of the spherical Beltrami
equations.

Keywords Singular integral operator · �-Operator · Spectrum · Beltrami equation

1 Introduction

The�-operator is one of the tools used to study smoothness of functions over Sobolev
spaces and to solve some first order partial differential equations such as the Beltrami
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equation which describes quasi-conformal mappings. In one dimensional complex
analysis, the Beltrami equation is the partial differential equation:

∂w

∂z
= μ

∂w

∂z

where μ = μ(z) is a given complex function, and z = x + iy ∈ C, ∂z = ∂

∂x
− i

∂

∂y
,

∂z̄ = ∂

∂x
+ i

∂

∂y
. It can be transformed to a fixed-point equation

h = q(z)(I + ��h)

where

��h(z) = − 1

π i

∫
�

h(ξ)

(ξ − z)2
dξ1dξ2

is the complex �-operator. This singular integral operator acts as an isometry from
L2(C) to L2(C) with the L p-norm being a long standing conjecture by Iwaniec.

With the help of Clifford algebras, the classical Beltrami equation and �-operator
with some well known results can be generalized to higher dimensions. Abundant
results in Euclidean space have been found( see [4,8,9]). In order to generate results
in Euclidean space to the unit sphere, we define two �-operators related to the con-
formally invariant spherical Dirac operator. The idea to consider the n-sphere is not
only motivated by being the classic example of a manifold and being invariant under
the conformal group, but also by the fact that in the case of n = 3 due to the recently
proved Poincaré conjecture there is awide class ofmanifoldswhich are homeomorphic
to the 3-sphere. This makes our results much more general and valid for any simply
connected closed 3-manifold. In particular, results on local and global homeomorphic
solutions of the sperical Beltrami equation carry over to such manifolds.

This paper is organized as follows: In Sect. 2, we briefly introduceClifford algebras,
Clifford analysis, the Euclidean Dirac operator, and some well known integral formu-
las. In Sect. 3, we review the construction and some properties for the �-operator in
Euclidean space. In Sect. 4, we construct the �-operator in a generalized spherical
space and solve the Beltrami equation with a singular integral operator �s,0. In the
last section, we will investigate the spectra of several spherical Dirac type operators
and the spherical Laplacian, and construct the isometric spherical �-operator �s,1.

2 Preliminaries

Let e1, · · · , en be an orthonormal basis ofRn+1. TheClifford algebra Cln is the algebra
over R

n generated by the relation

x2 = −||x ||2e0
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where e0 is the identity of Cln . These algebras were introduced by Clifford in 1878 in
[6]. Each element of the algebra Cln can be represented in the form

x =
∑

A⊂{1,··· ,n}
xAeA

where xA are real numbers. The norm of a Clifford number x is defined as

‖x‖2 =
∑

A⊂{1,··· ,n}
x2A.

If the set A contains k elements, then we call eA a k-vector. Likewise, we call each
linear combination of k-vectors a k-vector. The vector space of all k-vectors is denoted
by �k

R
n . Obviously, Cln is the direct sum of all �k

R
n for k ≤ n. The following anti-

involutions are well known:

• Reversion:

ã =
∑
A

(−1)|A|(|A|−1)/2aAeA,

where |A| is the cardinality of A. In particular, ˜e j1 · · · e jr = e jr · · · e j1 . Also
ãb = b̃ã for a, b ∈ Cln .

• Clifford conjugation:

a† =
∑
A

(−1)|A|(|A|+1)/2aAeA,

satisfying e j1 · · · e jr † = (−1)r e jr · · · e j1 and (ab)† = b†a† for a, b ∈ Cln .
• Clifford involution:

ā = ã† = ã†.

In the following we identify the Euclidean space R
n+1 with the direct sum �0

R
n ⊕

�1
R
n . For all that follows let � ⊂ R

n+1 be a domain with a sufficiently smooth
boundary � = ∂�. Then functions f defined in � with values in Cln are considered.
These functions may be written as

f (x) =
∑

A⊆{e1,e2,...en}
eA fA(x), (x ∈ �).

Properties such as continuity, differentiability, integrability, and so on, which are
ascribed to f have to be possessed by all components f A(x), (A ⊆ {e1, e2, . . . en}).
The spacesCk(�, Cln), L p(�, Cln) are defined as right Banach modules with the cor-
responding traditional norms. The space L2(�, Cln) is a rightHilbertmodule equipped
with a Cln-valued sesquilinear form
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(u, v) =
∫

�

u(η)v(η) d�η.

Furthermore, Wk
p(�, Cln), k ∈ N ∪ {0}, 1 ≤ p < ∞ denotes the Sobolev spaces

as the right module of all functionals whose derivatives belong to L p(�, Cln), with
norm

‖ f ‖Wk
p(�,Cln) :=

⎛
⎝∑

A

∑
‖α‖≤k

‖Dα
w f A‖p

L p(�,Cln)

⎞
⎠

1/p

.

The closure of the space of test functionsC∞
0 (�, Cln) in theWk

p-normwill be denoted

by
◦
Wk

p (�, Cln).
The Euclidean Dirac operators Dx and D0 arise as generalizations of the Cauchy–

Riemann operator of one complex variable. As homogenous linear differential
operators,

Dx :=
n∑

i=1

ei∂xi ,

D0 := e0∂x0 +
n∑

i=1

ei∂xi = e0∂x0 + Dx .

Note D2
x = −�x , where �x is the Laplacian in R

n+1, and �n+1 = D0D0, where D0
is the Clifford conjugate of D0.

Definition 1 A Cln-valued function f (x) defined on a domain � in R
n+1 is called

left monogenic if

Dx f (x) =
n∑

i=1

ei∂xi f (x) = 0.

Similarly, f is called a right monogenic function if it satisfies

f (x)Dx =
n∑

i=1

∂xi f (x)ei = 0

Let f ∈ C1(�, Cln), G(x − y) = x − y

‖x − y‖n+1 being the fundamental solution of

D0. Hence, the Cauchy transform is defined as

T� f (x) = 1

ωn+1

∫
�

G(x − y) f (y)dy,
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where T is the generalization of the Cauchy transform in the complex plane to
Euclidean space, and it is the right inverse of D0, that is D0T = I . Also, the non-
singular boundary integral operator is given by

F∂� f (x) = 1

ωn+1

∫
∂�

G(x − y)n(y) f (y)dσ(y).

We have the Borel–Pompeiu Theorem as follows.

Theorem 1 ([8]) For f ∈ C1(�, Cln) ∩ C(�̄), we have

f (x) = 1

ωn+1

∫
∂�

G(x − y)n(y) f (y)dσ(y) + 1

ωn+1

∫
�

G(x − y)D0 f (y)dy,

In particular, if f ∈
◦
W 1

2 (�, Cln), then

f (x) = 1

ωn+1

∫
�

G(x − y)D0 f (y)dy.

3 �-Operator in Euclidean Space

It is well known that in complex analysis, the �-operator can be realized as the
composition of ∂z̄ and theCauchy transform.As the generalization to higher dimension
in Clifford algebra, we have the �-operator in R

n+1 defined as follows.

Definition 2 The �-operator in Euclidean space R
n+1 is defined as

� = D0T .

The following are some well known properties for the �-operator.

Theorem 2 ([8]) Suppose f ∈
◦
Wk

p (�)(1 < p < ∞, k ≥ 1), then

1. D0� f = D0 f,
2. �D0 f = D0 f − D0F∂� f,
3. F∂�� f = (� − T D0) f,
4. D0� f − �D0 f = D0F∂� f.

The following decomposition of L2(�, Cln) helps us to observe that the�-operator
actually maps L2(�, Cln) to L2(�, Cln).
Theorem 3 ([8]) (L2(�, Cln) Decomposition)

L2(�, Cln) = L2(�, Cln)
⋂

KerD0

⊕
D0(

◦
W 1

2 (�, Cln)),
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and

L2(�, Cln) = L2(�, Cln)
⋂

KerD0

⊕
D0

( ◦
W 1

2 (�, Cln)
)

.

Notice that, since

�(L2(�, Cln)
⋂

KerD0) = L2(�, Cln)
⋂

KerD0,

�(D0

( ◦
W 1

2 (�, Cln))
)

= D0

( ◦
W 1

2 (�, Cln)
)

,

hence, this �-operator is from L2(�, Cln) to L2(�, Cln).
One key property of the �-operator is that it is an L2 isometry, in other words,

Theorem 4 ([4]) For functions in L2(�, Cln), we have

�∗� = I.

To complete this section, we give the classic example of the �-operator solving the
Beltrami equation. Let � ⊆ R

n+1, q : � → Cln a bounded measurable function and
ω : � → Cln be a sufficiently smooth function. The generalized Beltrami equation

D0ω = qD0ω

could be transformed into an integral equation

h = q(D0φ + �h)

where ω = φ + Th, which could have a unique solution if ‖q‖ ≤ q0 <
1

‖�‖ , see [8],
with q0 being a constant. This tells us that the existence of a unique solution to the
Beltrami equation depends on the norm estimate for the �-operator.

4 Construction and Properties of Spherical �-Type Operator with
Generalized Spherical Dirac Operator

Recall that in one dimensional complex analysis, the �-operator is defined as

� f (z) := ∂z̄ T f (z) = ∂z̄

∫
�

f (z)

η − z
dz,

where z = x + iy ∈ C and ∂z̄ = ∂

∂x
+ i

∂

∂y
. This suggests us to generalize the

�-operator, we need to consider a variable z with “real” and “imaginary” parts, so we
can take conjugate of ∂z to define the �-operator.
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4.1 Spherical �-Type Operator with Generalized Spherical Dirac Operator

Let S
n be the n-unit sphere. The spherical Dirac operator Ds on S

n is defined as
follows.

xD0 =
n∑
j=1

e0e j
(
x0∂x j − x j∂x0

) −
n∑

i=1, j>i

ei e j
(
xi∂x j − x j∂xi

) +
n∑
j=0

(
x j∂x j

)
.

Denote �0 =
n∑
j=1

e0e j
(
(x0∂x j − x j∂x0)

) −
n∑

i=1, j>i

ei e j
(
(xi∂x j − x j∂xi )

)
. Hence,

Ds = x−1xDs = x

‖x‖2 (Er + �0) = ξ

(
Dr + �0

r

)
,

where r Dr = Er , r = ‖x‖ and ξ ∈ S
n .

In particular, we have the conformally invariant spherical Dirac operator as follows,

Ds = w
(
�0 − n

2

)
.

Similarly, we have Ds = ξ

(
Dr + �0

r

)
, and since Ds is also conformally invariant,

we have Ds = w(�0 − n
2 ), where

�0 = −
n∑
j=1

e0e j
(
w0∂w j − w j∂w0

) −
n∑

i=1, j>i

ei e j
(
wi∂w j − w j∂wi

)
.

Here Ds is the Clifford involution of Ds .

Lemma 1

�0w = nw − w�0;
�0w = nw − w�0.

Proof The proof is similar to Theorem 3 in [10]. ��
Theorem 5

Dsw = −wDs, Dsw = −wDs .

Proof Applying the last Lemma, a straight forward calculation completes the proof.
��
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Theorem 6 Since Ds and Ds are both conformally invariant, we have their funda-
mental solutions as follows:

DsGs(w − v) = Ds
w − v

‖w − v‖n = δ(v),

DsGs(w − v) = Ds
w − v

‖w − v‖n = δ(v),

where w, v ∈ S
n.

Proof The proof is similar to Proposition 4 in [10]. ��
Let� be a bounded smooth domain in S

n and f ∈ C1(�, Cln), we have the Cauchy
transforms for both Ds and Ds ,

T� f (w) = 1

ωn

∫
�

Gs(w − v) f (v)dv =
∫

�

w − v

‖w − v‖n f (v)dv,

T� f (w) = 1

ωn

∫
�

Gs(w − v) f (v)dv =
∫

�

w − v

‖w − v‖n f (v)dv.

Also, the non-singular boundary integral operators are given by

F∂� f (w) = 1

ωn

∫
∂�

Gs(w − v)n(v) f (v)dσ(v),

F∂� f (w) = 1

ωn

∫
∂�

Gs(w − v)n(v) f (v)dσ(v)

Then we have Borel–Pompeiu Theorem as follows.

Theorem 7 ([10]) (Borel–Pompeiu Theorem)
For f ∈ C1(�) ∩ C(�̄), we have

f (w) = 1

ωn

∫
∂�

Gs(w − v)n(v) f (v)dσ(v) + 1

ωn

∫
�

Gs(w − v)Ds f (v)dv,

in other words, f = F∂� f + T�Ds f . Similarly, f = F∂� f + T�Ds f

f (w) = 1

ωn

∫
∂�

Gs(w − v)n(v) f (v)dσ(v) + 1

ωn

∫
�

Gs(w − v)Ds f (v)dv,

If f is a function with compact support, then T Ds = T Ds = I .

Since the conformally invariant spherical Laplace operator�s has the fundamental

solution Hs(w − v) = − 1

n − 2

1

‖w − v‖n−2 , see [10]. We have factorizations of �s

as follows.

Theorem 8 �s = Ds(Ds + w) = Ds(Ds + w).
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Proof The proof is similar to Proposition 5 in [10]. ��

We also have the dual of Ds as follows.

Theorem 9 D∗
s = −Ds .

Proof Let f, g : � → Cln both have compact supports,

< Ds f, g >=< w
(
�0 − n

2

)
f, g >=<

(
�0 − n

2

)
f, wg >

=< �0 f, wg > −n

2
< f, wg >=< f, �0wg > −n

2
< f, wg >

=< f, (nω − ω�0)g > −n

2
< f, wg >=< f,−w(�0 − n

2
)g >

=< f,−Dsg > .

��

Definition 3 Define the generalized spherical �-type operator as

�s,0 f = (Ds + w)T f.

We have some properties of �s,0 as follows.

Proposition 1

Ds�s,0 = Ds − w,

�s,0Ds = Ds + w.

Proof

Ds�s,0 = Ds(Ds + w)T = (Ds − w)DsT = Ds − w,

�s,0Ds = (Ds + w)T Ds = Ds + w.

��

From the proposition above, we can have decompositions of L2(�, Cln) as follows.

Theorem 10

L2(�, Cln) = L2(�, Cln)
⋂

Ker(Ds − w)
⊕

Ds

( ◦
W 1

2 (�, Cln)
)

,

L2(�, Cln) = L2(�, Cln)
⋂

KerDs

⊕
(Ds + w)

( ◦
W 1

2 (�, Cln)
)

.
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Notice that

�s,0(L
2(�, Cln)

⋂
Ker(Ds − w) = L2(�, Cln)

⋂
KerDs,

�s,0Ds

( ◦
W 1

2 (�, Cln)
)

= (
Ds + w

) ( ◦
W 1

2 (�, Cln)
)

.

Hence, �s,0 operator is from L2(�, Cln) to L2(�, Cln). The proof is similar to The-
orem 1 in [8].

Definition 4 We define the �+
s operator as

�+
s f = DsT

+ f,

where T+ f = 1
ωn

∫
�

G+(w − v) f (v)dv,

G+(w − v) = Gs(w − v) + wHs(w − v) − 2G(3)
s (w − v),

and

G(3)
s (w − v) = 1

(n − 2)(n − 4)

w − v

‖w − v‖n−4 .

Notice thatG(3)
s (w−v) is actually the reproducing kernel of D(3)

s = (Ds−w)Ds(Ds+
w) and the proof is similar to a proof in [10].

Proposition 2

�s,0(L
2(�, Cln)

⋂
KerDs) = L2(�, Cln)

⋂
Ker(Ds − w),

�s,0(Ds + w)

( ◦
W 1

2 (�, Cln)
)

= Ds

( ◦
W 1

2 (�, Cln)
)

.

Theorem 11 �s is an isometry on
◦
W 1

2 (�, Cln) up to isomorphism.
Proof Let f ∈ L2(�, Cln), then

〈�s f,�
+
s g〉 = 〈(Ds + w)T f, DsT

+g〉
= 〈T f, (−Ds + w)DsT

+g〉
= −〈T f, (Ds − w)DsT

+g〉
= −〈T f, Ds(Ds + w)T+g〉
= 〈DsT f, (Ds + w)T+g〉 = 〈 f, g〉.

��
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4.2 Application of �s,0 to the Solution of a Beltrami Equation

We have a Beltrami equation related to �s,0 as follows. Let � ⊆ S
n−1 be a bounded,

simply connected domain with sufficiently smooth boundary, q : � −→ Cln a mea-
surable function. Let f : � −→ Cln be a sufficiently smooth function. The spherical
Beltrami equation is as follows:

Ds f = q(Ds + w) f.

It has a unique solution f = φ + Th where φ ia an arbitrary left-monogenic function
such that Dsφ = 0 and h is the solution of an integral equation

h = q
(
(Ds + w)φ + �s,0h

)
.

By theBanach fixed point theorem, the previous integral equation has a unique solution
in the case where

‖q‖ ≤ q0 <
1

‖�s,0‖ ,

with q0 being a constant. Hence, for the rest of this section, we will estimate the L p

norm of �s,0 with p > 1.
Since Ds = w(� − n

2 ) = w(wD0 − Er − n
2 ) = D0 − wEr − n

2w, then

�s,0 f (w) = (Ds + w)T f (w) = (DT + w(1 − Ew)T − n

2
T ) f (w).

it is easy to see that

∂

∂w j

∫
Sn

w − v

‖w − v‖n f (v)dv =
∫
Sn

e j − n(w j − v j )
w−v

‖w−v‖2
‖w − v‖n f (v)dv + ωn

e j
n

f (v),

since

∂

∂w j

w − v

‖w − v‖n =
e j − n(w j − v j )

w−v
‖w−v‖2

‖w − v‖n ,

and using Chapter IX § 7 in [11]∫
S

w − v

‖w − v‖ cos(r, w j )dS = ωn
e j
n

,

where S is a sufficiently small neighborhood of w on S
n .

Hence, we have

DT f (w) = 1

ωn

∫
Sn

∑
e j 2 − n

∑
(w j − v j )e j

w−v
‖w−v‖2

‖w − v‖n f (v)dv +
∑

e j 2

n
f (v)

= 1

ωn

∫
Sn

(1 − n) − n w−v
2

‖w−v‖2
‖w − v‖n f (v)dv + 1 − n

n
f (v)
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EwT f (w) = 1

ωn

∫
Sn

∑
w j e j − n

∑
w j (w j − v j )

w−v
‖w−v‖2

‖w − v‖n f (v)dv +
∑

w j e j
n

f (v)

= 1

ωn

∫
Sn

w − n < w,w − v > w−v
‖w−v‖2

‖w − v‖n f (v)dv + w

n
f (v).

Therefore, we have an integral expression of �s,0 as follows.

Theorem 12

�s,0 f (w) = (DT + w(1 − Ew)T − n

2
T ) f (w)

= 1

ωn

∫
Sn

1 − n − w2

‖w − v‖n f (v)dv + n

ωn

∫
Sn

v − 〈w, v〉w
‖w − v‖n+1 · w − v

‖w − v‖ f (v)dv

+
(
1 − n

2

) w

ωn

∫
Sn

w − v

‖w − v‖n f (v)dv + 1 − n

n
f (v).

Since

�s,0 = (Ds + w)T = (w(�0 − n

2
) + w)T = w�0T + (1 − n

2
)wT,

where �0 = −
∑n

j=1
e0e j (x0∂x j − x j∂x0) −

∑n

i=1, j>i
ei e j (xi∂x j − x j∂xi ). To esti-

mate the L p norm of �s,0, we need the following result.

Theorem 13 Suppose p is a positive integer and p > 1, then ‖T ‖L p ≤ ωn−1

4
.

Proof Since

‖T f ‖pL p =
(

1

ωn

)p ∫
�

‖
∫
�
Gs(w − v) f (v)dvn‖pdwn

=
(

1

ωn

)p ∫
�

‖
∫
�
Gs(w − v)

1
q Gs(w − v)

1
p f (v)dvn‖pdwn

≤
(

1

ωn

)p ∫
�

( (∫
�

‖Gs(w − v)‖dvn
) p

q ·
∫
�

‖Gs(w − v)‖‖ f (v)‖pdvn
)
dwn

≤
(

1

ωn

)p
C

p
q
1

∫
�

∫
�

‖Gs(w − v)‖‖ f (v)‖pdvndwn

=
(

1

ωn

)p
C

p
q
1

∫
�

‖ f (v)‖p
(∫

�
‖Gs(w − v)‖dwn

)
dvn

≤
(

1

ωn

)p
C

p
q +1
1

∫
�

‖ f (v)‖p
(∫

�
‖Gs(w − v)‖dwn

)
dvn
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=
(

1

ωn

)p
C p
1 ·

∫
�

‖ f (v)‖pdvn

=
(

1

ωn

)p
C p
1 · ‖ f ‖pL p

where p, q > 1 are positive integers and
1

p
+ 1

q
= 1, where

C1 ≤ ∣∣ ∫
Sn

‖Gs(w − v)‖dvn
∣∣ = ∣∣ ∫

Sn

1

‖w − v‖n−1 dvn
∣∣.

Due to the symmetry we can choose any fixed point w, hence we choose w =
(1, 0, 0, . . . , 0) and v = (x0, x1, · · · , xn) ∈ S

n , i.e.
∑n

i=0
‖xi‖2 = 1. Let v =

cos θe0+sin θζ , where ζ is a vector on n−1-sphere, then we have dvn = sinn−1 θdθ ,

∫
Sn

1

[2(1 − x1)] n−1
2

dvn

= 2− n−1
2

∫ π

0

1

(1 − cos θ)
n−1
2

sinn−1 θdθ

= 2− n−1
2

∫ π

0

(
2 sin2

θ

2

)− n−1
2

(
2 sin

θ

2
cos

θ

2

)n−1

dθ

=
∫ π

0
cosn−1 θ

2
dθ

= 2 · 1
2

· �
( 1
2

)
�

( n
2

)
�( n−1

2 + 1)

= √
π

�( n2 )

�
( n+1

2

) .

Since ωn = 2π(n+1)/2

�( n+1
2 )

, we have ‖T ‖L p ≤ ωn−1

4
. ��

Let G0 be the operator defined by

G0g(w) = − 1

(n − 1)ωn

∫
Sn

1

‖w − v‖n−1 g(v)dv, n ≥ 3,

and Rs = �0 ◦ G0 is a Riesz transformation of gradient type (see [1]). Then we have,

Proposition 3 [1], The operator Rs is a L p operator and the L p norm is bounded by

π1/2

2
√
2

(
p

p − 1

)1/2

Bp,
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where Bp = CM,p + Cp, CM,p is the L p norm of the maximal truncated Hilbert
transformation on S

1, and Cp = cot π
2p∗ , 1

p + 1
p∗ = 1.

Hence,

‖�0
1

ωn

∫
�

1

‖w − v‖n−1 · w − v

‖w − v‖ f (v)dv‖L p

≤ (n − 1)
π1/2

2
√
2

(
p

p − 1

)1/2

Bp‖ f (v)‖L p

= (n − 1)
π1/2

2
√
2

(
p

p − 1

)1/2

Bp‖ f (v)‖L p . (1)

Recall that�s,0 f = (Ds+w)T f = (w(�0− n
2 )+w)T f = w�0T f +(1− n

2 )wT f ,
and by Theorem 13,

||
(
1 − n

2

)
wT f ||L p = ‖

(
1 − n

2

) w

ωn

∫
�

w − v

‖w − v‖n f (v)dv‖L p ≤
(n
2

− 1
) ωn−1

4
‖ f ‖L p .

(2)

By inequalities (1) and (2), we show that �s,0 is a bounded operator mapping from
L p space to itself, and

‖�s,0‖L p ≤ (n − 1)
π1/2

2
√
2

(
p

p − 1

)1/2

Bp +
(n
2

− 1
) ωn−1

4
.

Remark The spherical �-type operator �s,0 preserves most properties of the � oper-
ator in Euclidean space and more importantly, it is a singular integral operator which
helps to solve the corresponding Beltrami equation. Unfortunately, it is also only an
L2 isometry up to isomorphism as shown in Theorem 11 . In the next section, we
will use the spectrum theory of differential operators to claim that there is a spherical
�-type operator which is also an L2 isometry.

5 Eigenvectors of Spherical Dirac Type Operators

In this section, we will investigate the spectrums of several spherical Dirac type oper-
ators and the spherical Laplacian. During the investigation, we will point out there is
a spherical �-type operator which is an L2 isometry.

Since �0 = xD0 − Er , it is easy to verify the fact that if pm is a monogenic
polynomial and is homogeneous with degree m, that is D0 fm = 0 and Er fm = m fm ,
then �0 fm = −m fm , so fm is an eigenvector of �0 with eigenvalue −m. Similarly, if
D0gm = 0, gm is an eigenvector of �0 with eigenvalue −m.

Let Hk be the space of Cln-valued harmonic polynomials homogeneous of degree
k and Mk be the Cln-valued monogenic polynomials homogeneous of degree k, Mk

is the clifford involution of Mk . By an Almansi-Fischer decomposition [5,7], Hk =
Mk

⊕
x̄Mk−1. Hence, for for all harmonic functions with homogeneity of degree k,



Spherical �-Type Operators in Clifford Analysis and… 1109

there exist pk ∈ KerD0, and pk−1 ∈ KerD0 such that hk = pk + x̄ pk−1. Then, it is
easy to get that �0 pk = −kpk and �0 x̄ pk−1 = (n + k)x̄ pk−1.

Let Hm denote the restriction to S
n of the space of Cln-valued harmonic poly-

nomials with homogeneity of degree m. Pm is the space of spherical Cln-valued
left monogenic polynomials with homogeneity of degree −m and Qm is the space
of spherical Cln-valued left monogenic polynomials with homogeneity of degree
n + m, m = 0, 1, 2, . . .. Then we have Hm = Pm

⊕
Qm ( [3]). It is well known

that L2(Sn) =
∑∞

m=0
Hm ([2]), it follows L2(Sn) =

∑∞
m=0

Pm
⊕

Qm . If
pm ∈ Pm , since �0 pm = −mpm , it is an eigenvector of �0 with eigenvalue −m,
and for qm ∈ Qm , it is an eigenvector of �0 with eigenvalue n + m. Therefore,
the spectrum of �0 is σ(�0) = {−m,m = 1, 2, . . .} ∪ {m + n,m = 0, 1, 2, . . .},.
Since Ds = w(�0 − n

2
), the spectrum of Ds is σ(Ds) = σ(�0) − n

2 , which is

{−m − n
2 ,m = 0, 1, 2, . . .} ∪ {m + n

2 ,m = 0, 1, 2, . . .}.
As mentioned in the previous section that DsT = T Ds = I , and we know

that Ds : Pm −→ Qm ( [3]). Hence, we have T : Qm −→ Pm and the spec-
trum of T is the reciprocal of the spectrum of Ds , which is σ(T ) = { 1

m+ n
2
,m =

0, 1, 2, . . .} ⋃{ 1
−m− n

2
,m = 0, 1, 2, . . .}. Similar arguments apply for Ds and T , in

fact σ(Ds) = σ(Ds) and σ(T ) = σ(T ).
Now with similar strategy as in [3], we consider the operator DsT which maps

L2(Sn) to L2(Sn). If u ∈ C1(Sn) then u ∈ L2(Sn). It follows that

u =
∞∑

m=0

∑
pm∈Pm

pm +
−∞∑
m=0

∑
qm∈Qm

qm,

where pm and qm are eigenvectors of �0. Further the eigenvectors pm and qm can
be chosen so that within Pm they are mutually orthogonal. The same can be done
for the eigenvectors qm . Moreover, as u ∈ C1(Sn) then DsTu ∈ C0(Sn) and so
DsTu ∈ L2(Sn). Consequently,

DsTu =
∞∑

m=0

∑
pm∈Pm

DsT pm +
∞∑

m=0

∑
qm∈Qm

DsTqm

=
∞∑

m=0

∑
qm∈Qm

Ds
1

m + n
2

qm +
∞∑

m=0

∑
pm∈Pm

Ds
1

−m − n
2

pm

and

||DsTu||2L2 =
∞∑

m=0

(
1

m + n
2

)2 ∑
qm∈Qm

‖Dsqm‖L2 +
∞∑

m=0

(
1

−m − n
2

)2 ∑
pm∈Pm

‖Ds pm ||L2

=
∞∑

m=0

(
1

m + n
2

)2

(m + n

2
)2

∑
pm∈Pm

‖pm ||L2 +
∞∑

m=0

(
1

−m − n
2

) (
−m − n

2

)2 ∑
qm∈Qm

‖qm ||L2
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=
∞∑

m=0

∑
pm∈Pm

||pm ||L2 +
∞∑

m=0

∑
qm∈Qm

||qm ||L2

= ||u||L2 .

This shows DsT is an L2(Sn) isometry.
By the help of the spectrum of T , we have the L2 norm estimate of the �s,0, that

is

‖�s,0u‖L2 ≤ ‖DsTu‖L2 + ‖w‖L2‖Tu‖L2

= ‖u‖L2 +
(

1

m + n
2

)2
⎛
⎝ ∞∑

m=0

∑
pm∈Pm

‖pm‖L2 +
∞∑

m=0

∑
qm∈Qm

‖qm‖L2

⎞
⎠

≤
(
1 + 4

n2

)
‖u‖L2 .

Hence we have ‖�s,0‖L2 ≤ 1 + 4

n2
.

By Theorem 13,�s = Ds(Ds +w) = (Ds −w)Ds = Ds(Ds +w) = (Ds −w)Ds .

Since Ds = w(�0 − n

2
), Ds = w(�0 − n

2
), a straightforward calculation shows us

that

�s = −
(
�0 − n

2

)2 − ww
(
�0 − n

2

)
= −�2

0 + (n − 1)�0 −
(
n2

4
− n

2

)

= −
(
�0 − n

2

)2 − ww(�0 − n

2
) = −�0

2 + (n − 1)�0 −
(
n2

4
− n

2

)
.

Since for 0 < r < 1, any harmonic function hm ∈ B(0, r) = {x ∈ R
n : ||x || < r}

with homogeneity degree m, we have hm = fm + gm , where fm ∈ KerD0 and gm ∈
D0, they are both homogeneous with degree m (see Lemma 3 [12]). Consequently,

�s fm =
(

−�2
0 + (n − 1)�0 −

(
n2

4
− n

2

))
fm =

(
−m2 − m(n − 1) −

(
n2

4
− n

2

))
fm ,

and

�s gm =
(

−�0
2 + (n − 1)�0 −

(
n2

4
− n

2

))
gm =

(
−m2 − m(n − 1) −

(
n2

4
− n

2

))
gm .

Hence

�shm = �s( fm + gm) =
(

−m2 − m(n − 1) −
(
n2

4
− n

2

))
( fm + gm)

=
(

−m2 − m(n − 1) −
(
n2

4
− n

2

))
hm .
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Since for any function u ∈ L2(Sn) : � �→ Cln , u =
∑∞

m=0
hm , where hm ∈

Hm , it follows that �s has spectrum σ(�s) =
{
−m2 − m(n − 1) −

(
n2
4 − n

2

)
: m

= 0, 1, 2, . . .
}
.

In order to preserve the property of isometry of the �-operator on the sphere, we
define the isometric spherical �-operator as �s,1 as �s,1 = DsT , which is isometry
in L2 space. We can solve the Beltrami equation related to �s,1 as follows.

Let � ⊆ S
n be a bounded, simply connected domain with sufficiently smooth

boundary, and q, f : � −→ Cln , q is a measurable function, and f is sufficiently
smooth. The spherical Beltrami equation is as follows:

Ds f = qDs f.

It has a unique solution f = φ + Th where φ ia an arbitrary left-monogenic function
such that Dsφ = 0 and h is the solution of an integral equation

h = q(Dsφ + �s,1h).

By theBanach fixed point theorem, the previous integral equation has a unique solution
in the case of

‖q‖ ≤ q0 <
1

‖�s,1‖

with q0 being a constant. Hence, we can use the estimate of the L p norm of �s,1 with
p > 1, where

‖�s,1‖L p ≤ (n − 1)
π1/2

2
√
2

(
p

p − 1

)1/2

Bp + n

2

ωn−1

4
.
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