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Abstract Westudy the problemof compressed sensing for quaternionic Fouriermatri-
ces as arising in color representation of images. We will show that such matrices are
allowing a sparse reconstruction bymeans of an l1-minimizationwith high probability.
Examples of sparse sampling of color images are provided.
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1 Introduction

In the last decade a new paradigm has taken hold in signal and image processing:
compressed sensing. The possibility of reconstructing a signal by only a fewmeasure-
ments under the condition that the representation in a given basis or frame is sparse
has allowed to look at new methods and algorithms. Although sparsity constraints are
directly connected only with non-convex optimization the uniqueness property shown
by Candes et al. [10] allows the application of simple convex algorithms, such as linear
programming. In parallel, during the last 15 years quaternion-valued functions have
been used to represent color images, in particular RGB images [11]. Hereby, repre-
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sentations using the discrete and continuous quaternionic Fourier transforms play a
particular important role [4]. In this paper we will show that it is possible to combine
both approaches, i.e., to use sparse sampling methods in the quaternionic represen-
tation of color images. This is a priori not so evident due to the non-commutative
structure of the quaternions. For instance, it is not clear that quaternionic sampling
matrices will fulfil the RIP condition as the traditional condition for compressed sens-
ing. Therefore, we intend to go back to the origins of compressed sensing and follow
the original approach by Rauhut [28] to show that quaternionic color images allow
sparse reconstruction by means of an l1-minimization with high probability. As the
principal example of a quaternionic Fourier sampling matrix we base ourselves on the
discrete version of the classic quaternionic Fourier transform by Sommen [31]. The
reason is twofold. First of all, it represents all the important difficulties coming from
the quaternionic structure so that it can easily adapted to other cases. Second, it also
represents the quaternionic Fourier transform which is most used in applications, this
being the main reason why it has been re-invented so many times. We will show that it
is possible to follow Rauhut’s ideas despite the fact that in the quaternionic case non-
commutativity of the multiplication does not allow a direct application. Furthermore,
we will give some examples of sparse sampling of images given as quaternionic sig-
nals. It shows that the practical application of these ideas in the field of hypercomplex
analysis is possible. As a final remark we would like to point out that the ideas in the
present paper can be also applied to the wider area of interpolation of quaternionic
valued functions.

2 Preliminaries

In this section we recall some basic notions about quaternions and quaternionic expo-
nentials which will be needed in the sequel.

The algebra of quaternionsH is a four-dimensional real associative division algebra
with unit 1 spanned by the elements {I, J, K} endowed with the relations

I2 = J2 = K2 = IJK = −1, IJ = −JI = K.

This algebra is non-commutative.The real and imaginaryparts of a givenquaternion

q = x01 + x1I + x2J + x3K

are defined as Re(q) = q0 := x0, and Im(q) := x1I + x2J + x3K. Therefore, we have
the natural embeddings of the real numbers and of R3 into quaternions given by

x0 ∈ R → x01 ∈ H and (x1, x2, x3) ∈ R
3 → x1I + x2J + x3K ∈ H.

This leads to the identifications

H ≡ R
4, ImH ≡ R

3, ReH ≡ R,

where ImH is the three dimensional space of pure imaginary quaternions, and hence,
H = R ⊕ R

3.
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The conjugation on H is an automorphism of H onto itself given by

q = x0 + Im q → q = x0 − Im q,

together with the involution property

qp = p q, ∀p, q ∈ H.

A purely imaginary quaternion with absolute value 1 is called an imaginary unit.
We denote the set of all imaginary units by S

2, that is,

S
2 =

{
x1I + x2J + x3K ∈ H :

3∑
i=1

x2i = 1

}
.

2.1 Inner and Outer Products

Given two quaternions q, p ∈ H its quaternionic multiplication can be expressed in
terms of the usual scalar and vector products on ImH ∼ R

3 by

q p = (q0 + Im q)(p0 − Im p) = q0 p0 + Im q · Im p︸ ︷︷ ︸
∈R

+ (−q0 Im p + p0 Im q − Im q × Im p︸ ︷︷ ︸
∈ImH

).

Moreover, we have

〈q, p〉 = Re(q p),

where 〈·, ·〉 corresponds to the Euclidean scalar product defined on H ∼ R
4, and the

induced norm

‖q‖2 = Re(qq) = 〈q, q〉

which satisfies the product rule ‖qp‖ = ‖q‖ ‖p‖.Also, for every non-zero quaternion
q it holds

q−1 = q

‖q‖2 .

Furthermore, we can introduce the signum of a quaternion q defined via

sgn q =
{

q
‖q‖ , q �= 0

0, q = 0.

Note that sgn q ∈ H. For sgn q we have the following properties.
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Lemma 2.1 Let q = q0 + q1I + q2J + q3IJ and p = p0 + p1I + p2J + p3IJ be two
quaternions. It holds

1. ‖sgn p‖ = 1, p �= 0;
2. sgn p sgn p = 1, p �= 0;
3. p sgn p = ‖p‖;
4. ‖q‖ ‖sgn p‖ = ‖q sgn p‖.
The proof is rather straightforward. For details we refer to [19].
For an invertible quaternion we have the following representation.

Theorem 2.2 Let q be an invertible quaternion. Then,

q = ‖q‖ [cos(θ) + ω(q) sin(θ)] ,

where ω(q) = Im q
‖ Im q‖ ∈ S

2 ⊂ ImH and θ ∈ [0, π ] is such that cos θ = q0
‖q‖ and

sin θ = ‖ Im q‖
‖q‖ .

This leads to the following definition of a quaternionic exponential (see, e.g. [20]):

Definition 2.3 Given a purely imaginary quaternion ω ∈ S
2 ⊂ ImH, we define the

quaternionic exponential eωθ as

θ ∈ R 
→ eωθ := cos(θ) + ω sin(θ) ∈ H. (2.1)

We list some of its properties.

• ‖eωθ‖ = 1;
• ‖eωθ‖ ≤ e|θ |;
• given ω1, ω2 ∈ S

2, we have

eω1θ1eω2θ2 = eω1θ1+ω2θ2 , ∀θ1, θ2 ∈ [0, 2π ],

only if ω1ω2 = ω2ω1.

The last property shows the non-commutative character of quaternionic exponen-
tials and presents one of the major problems in the application of the classic approach
by Rauhut [28].

3 Sparse Sampling of Quaternionic Signals

3.1 The Setting

While there is quite a variety of possibilities to consider concrete quaternionic Fourier
transforms [29] we will consider here decompositions with respect to the atoms
�k,l(x, y) = eIkx eJly , (k, l) ∈ Z

2. On the one side this corresponds to the origi-
nal definition of a quaternionic Fourier transform by Sommen in 1982 [31] which has
been reinvented several times since then. On the other side this quaternionic Fourier
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transform is also the principal Fourier transform to be used in applications in image
processing (c.f. [6]). Furthermore, this example can also be easily adapted to the other
cases. Let us denote by

∏
ρ the space of all quaternionic trigonometric polynomials of

maximal order ρ ∈ N0 in two real variables. The dimension of
∏

ρ is d := (2ρ + 1)2.
Therefore, an element q ∈ ∏

ρ is of the form

q(x, y) =
∑

(k,l)∈[−ρ,ρ]2∩Z2

eIkx eJlyck,l , (x, y) ∈ [0, 2π ]2, ck,l ∈ H. (3.1)

We want to determine the coefficients ck,l from a few given samples. To this end
we consider the sequence of coefficients c := (ck,l)k,l as a vector (strictly speaking
a tensor) such that c is supported on a set T which has a much smaller cardinality
than the dimension of

∏
ρ . That is to say, the finite combination in (3.1) is “sparse”.

However, we do not require any information on T except its maximum size. Therefore,
we introduce the set (not a linear space)

∏
ρ(M) ⊂ ∏

ρ of all polynomials of type (3.1)

such that the sequence of their coefficients c has support on a set T ⊂ [−ρ, ρ]2 ∩ Z
2

with |T | ≤ M , i.e., q ∈ ∏
ρ(M) is of the form

q(x, y) =
∑

(k,l)∈T⊂[−ρ,ρ]2∩Z2

eIkx eJlyck,l .

Furthermore,weconsider a given sampling set X := {(x1, y1), (x2, y2), . . . , (xN , xN )}
as a set of independent randomvariables having uniformdistribution on [0, 2π ]2. Thus,
the main objective is to reconstruct q ∈ ∏

ρ(M) from the samples f (xi , yi ) at those
N randomly chosen points.

The standardway of determining the coefficients ck,l would be by applying a greedy
algorithm, such as �0-minimization or matching pursuit. It basically corresponds to
searching for the atomwith the largest coefficient in each step [36].Unfortunately, such
an algorithm is NP-hard with exponentially growing computational costs. Therefore,
we would like to use a different algorithm, such as basis pursuit. This consists in the
following non-linear method of reconstructing q ∈ ∏

ρ(M) from its sampled values
(q(x1, y1), . . . , q(xN , yN )). Weminimize the �1-norm of the Fourier coefficients ck,l ,

||(ck,l)||1 :=
∑

(k,l)∈[−ρ,ρ]2∩Z2

|ck,l |,

under the constraint that the corresponding trigonometric polynomial matches q on
the sampling points. In other words we solve the problem

||(ck,l)||1 → min s.t.
∑

(k,l)∈[−ρ,ρ]2∩Z2

eIkxi eJk̃ yi ck,l = q(xi , yi ), i = 1, . . . , N .

(3.2)

We can directly point out that basis pursuit [12] can be performedwith efficient convex
optimization techniques [5] via linear programming. This makes it a much faster
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algorithm than the simple �0-minimization. But, of course, the principal question is if
we indeed can replace the �0-minimization by an �1-minimization.

3.2 Equivalence Between �0-minimization and Basis Pursuit

Wewould like to use basis pursuit [12] to reconstruct f completely by determining all
coefficients ck,l , (k, l) ∈ [−ρ, ρ]2 ∩Z

2. Unfortunately, a condition like the restrictive
isometry property (RIP [1]) which is valid in all cases (including the worst) is too
restrictive in our case. Therefore, we are going to give a probabilistic answer. The
theorems below are analogues to the theorems given in Candes et al. [10] and in
Rauhut [28].

Theorem 3.1 Assume f ∈ ∏
ρ(M) with some sparsity M ∈ N. Let (x1, y1), . . . ,

(xN , yN ) ∈ [0, 2π ]2 be independent random variables having uniform distribution
on [0, 2π ]2. Choose n ∈ N, β > 0, κ > 0 and K1, . . . , Kn ∈ N such that

a :=
n∑

m=1

βn/Km < 1 and
κ

1 − κ
≤ 1 − a

1 + a
M−3/2. (3.3)

Set θ := N/M. Then with probability at least

1 −
(
dβ−2n

n∑
m=1

G2mKm (θ) + κ−2 M G2n(θ)

)
, (3.4)

where Gn(θ) = θ−n ∑� n
2 �

k=1 S2(n, k)θk and S2(n, k) denote the Stirling num-
bers of the second kind, f can be reconstructed exactly from its sampled values
f (x1, y1), . . . , f (xN , yN ) by solving the �1-minimization problem

min
∥∥(ck,l)∥∥1 := min

∑
(k,l)∈[−ρ,ρ]2∩Z2

|ck,l |,

s.t. f (xi , yi ) :=
∑

(k,l)∈[−ρ,ρ]2∩Z2

eIkxi eJlyi ck,l , i = 1, . . . , N . (3.5)

While the above theorem provides exact constants we can give a version of the
theorem which is somewhat easier to apply.

Theorem 3.2 There exists an absolute constant C > 0 such that the following is true.
Assume f ∈ ∏

ρ(M) for some sparsity M ∈ N. Let (x1, y1), . . . , (xN , yN ) ∈ [0, 2π ]2
be independent random variables having the uniform distribution on [0, 2π ]2. If for
some ε > 0 it holds

N ≥ CM log(d/ε) (3.6)

then with probability at least 1 − ε the function f can be recovered from its sampled
values f (xi , yi ), i = 1, . . . , N, by solving the minimization problem (3.5).
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For our third theorem about reconstructing a sparse trigonometric polynomial from
random samples we need some additional explanations. For convenience, we will
use the notation

∏
T as the set of all trigonometric polynomials whose coefficients

are supported on T and we model the set T ⊂ [−ρ, ρ]2 ∩ Z
2 of non-vanishing

Fourier coefficients as random. Here we will treat the “generic” case and not arbitrary
sparse polynomials. We expect to get better estimates for the probability of exact
reconstruction.

Consider 0 < τ < 1. The probability that an index (k, l) ∈ [−ρ, ρ]2 ∩Z
2 belongs

to T is assumed to be

P((k, l) ∈ T ) = τ (3.7)

independently of each (k, l). The choice of the sampling set X is stochastically inde-
pendent. Furthermore, we also assume the same for the choice of T . So the length
of T , i.e., |T |, has a binomial distribution and the expected size of |T | is, obviously,
E|T | = τd = τ(2ρ + 1)2.

We will define now two auxiliary notations to announce the third theorem. For
n ∈ N we define

W (n, N ,E|T |, d) := N−2n
min{n,N }∑

t=1

N !
(N − t)!

2n∑
s=2

(E|T |)s
min{s,t}−1∑

R=0

Q(2n, t, s, R)d−R

(3.8)

and for K ,m ∈ N we define

Z(K ,m, N ,E|T |, d)

:= N−2Km
min{Km,N }∑

t=1

N !
(N − t)!

2Km∑
s=1

(E|T |)s
min{s,t}∑
R=0

Q∗(2K ,m, t, s, R)d−R . (3.9)

By using Basis Pursuit our theorem is given as follows.

Theorem 3.3 Let (x1, y1), . . . , (xN , yN ) ∈ [0, 2π ]2 be independent random vari-
ables having the uniform distribution on [0, 2π ]2. Further assume that T := T1 × T2
(which is an independent set of (xi1 , yi1), . . . , (xiN , yiN )) is a random subset of mod-
eled by P((k, l) ∈ T ) = τ such that E|T | = τd ≥ 1. Choose n ∈ N, α, β > 0 and
K1, . . . , Kn ∈ N such that

a :=
n∑

m=1

βn/Km < 1 and
k

1 − k
≤ 1 − a

1 + a
((α + 1)E|T |)−3/2. (3.10)

Then with probability at least

1 −
(

κ−2W (n, N ,E|T |, d) + β−2nd
n∑

m=1

Z(Km ,m, N ,E|T |, d) + exp

(
− 3α2

6 + 2α
E|T |

))

(3.11)
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any f ∈ ∏
T ⊂ ∏

ρ(|T |) can be reconstructed exactly from its sample values
f (x1, y1), . . . , f (xN , yN ) by solving the minimization problem (3.5).

In the next section we will give the proof of these theorems.

4 Proof of the Main Theorems

First of all, we need to introduce some auxiliary notations. We abbreviate Z
2
ρ =

[−ρ, ρ]2∩Z2 and denote by �2(Z
2
ρ), �2(T ), �2(X) the �2−spaces of sequences indexed

by our discrete sets Z2
ρ , T , and X , respectively. We also need the sampling operator

FX : �2(Z
2
ρ) → �2(X) given by

(FXck,l
)
(x, y) :=

∑
(k,l)∈Z2

ρ

(
eIkx eJlyck,l

)
, (x, y) ∈ X.

By FT X we denote its restriction to sequences with support only on T . Hence,
FT X is an operator acting from �2(T ) in �2(X). Also, we have to consider their
adjoint operators, F∗

X : �2(X) → �2(Z
2
ρ) and F∗

T X : �2(X) → �2(T ).

The next lemma is the fundamental lemma on which our subsequent investigations
will be based.

Lemma 4.1 Let c ∈ �2(Z
2
ρ) and T := supp c. Furthermore, let us assume thatFT X :

�2(T ) → �2(X) is injective and suppose that there exists a P ∈ �2(Z
2
ρ) with the

following properties:

(i) Pk,l = sgn
(
ck,l

)
k,l for all (k, l) ∈ T,

(ii)
∣∣Pk,l ∣∣ < 1 for all (k, l) /∈ T ,

(iii) there exists a λ ∈ �2(X) such that P = F∗
Xλ.

Then c is the unique minimizer to the problem (3.5).

This lemma is the fundamental lemma for [10,28]. Since unlike these cases we are
working here with quaternion-valued vectors, i.e., a non-commutative structure, we
are going to present a proof for our case.

Proof Let us assume X �= ∅ and c �= 0 to exclude the trivial cases. Furthermore, let
us suppose that the vector P exist. Let r be any vector different to c withFXr = FXc.
Consider q := r − c, then FXq vanishes on X. This means that for rk,l , (k, l) ∈ T ,
we have the following estimate

|rk,l | = |ck,l + qk,l | = |(ck,l + qk,l)sgn ck,l sgn ck,l |
= ∣∣(ck,l sgn ck,l + qk,l sgn ck,l

)
sgnck,l

∣∣
= | |ck,l | + qk,l sgn ck,l ||sgnck,l |
= | |ck,l | + qk,l sgn ck,l | ≥ |ck,l | + Re

(
qk,l sgn ck,l

)
= |ck,l | + Re

(
qk,l Pk,l

)
.
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Thus, for any (k, l) ∈ T we have |ck,l | + Re
(
qk,l Pk,l

) ≤ |rk,l |. Otherwise, for
(k, l) /∈ T we have Re

(
qk,l Pk,l

) ≤ |qk,l | = |rk,l | since |Pk,l | < 1. Thus

||r ||1 ≥ ||p||1 +
∑

(k,l)∈[−ρ,ρ]2∩Z2

Re
(
qk,l Pk,l

)
.

Now, from condition (iii) we get

∑
(k,l)∈Z2

ρ

Re
(
qk,l Pk,l

) = Re

⎛
⎜⎝ ∑

(k,l)∈Z2
ρ

qk,l
(F∗

Xλ
)
k,l

⎞
⎟⎠

= Re

(
N∑
i=1

(FX q) (xi , yi )λ(xi , yi )

)
= 0 (4.1)

whereas FX q vanishes. Thus, FX P is supported on X and FXq vanishes on X.

Therefore, ||r ||�1 ≥ ||c||�1 . The equality holds when ||qk,l || = Re
(
qk,l Pk,l

)
for all

(k, l) /∈ T . Since ||Pk,l || < 1, this forces q to vanish outside of T . Taking in account
the injectivity of FT X we have that since FXq vanishes on X , q vanishes identically
and we get r = c. Thus, this shows that c is unique minimizer c� to the problem (3.5).

��
For the invertibility we can state the following obvious lemma.

Lemma 4.2 If N ≥ |T | then FT X is injective almost surely.

We need to show now that with high probability there exists a P with the required
properties so that we can apply Lemma 4.1. To show this we proceed as in [28] but
with the necessary modifications for the quaternionic case.

We introduce the restriction operator RT : �2(Z
2
ρ) → �2(T ), RT ck,l = ck,l for

(k, l) ∈ T . Its adjoint R∗
T = ET : �2(T ) → �2(Z

2
ρ) is the operator that extends

a vector outside T by zero, i.e., (ET d)k,l = dk,l for (k, l) ∈ T and (ET d)k,l = 0
otherwise.

Now, for the moment let us assume that F∗
T XFT X : �2(T ) → �2(T ) is invertible.

This is true almost surely under the condition of Lemma4.2 sinceFT X is then injective.
In this case we can represent P explicitly in the form

P := F∗
XFT X (F∗

T XFT X )−1RT sgn(c),

It is easy to check that P fulfills property (i) and property (iii) in Lemma 4.1 with

λ := FT X (F∗
T XFT X )−1RT sgn

(
ck,l

)
k,l ∈ �2(X).

Thismeans that we have to show that P fulfills (ii) of Lemma 4.1with high probability.
To this end we represent P in terms of the following operators

H := �2(T ) → �2(Z
2
ρ), H0 := �2(T ) → �2(T ),
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where

H := NET − F∗
T XFT X H0 := N IT − F∗

T XFT X ,

and IT denotes the identity operator on �2(T ). Furthermore, the matrix H0 is self-
adjoint, and H acts on c as

(Hc)k,l = −
N∑
i=1

∑
(k̃, l̃) ∈ T

(k̃, l̃) �= (k, l)

e−Jlyi eI(k̃−k)xi eJl̃ yi ck̃,l̃ , (4.2)

By using H and H0 we can rewrite P as

P =
[
(NET − H) (N IT − H0)

−1
]
RT sgn(c). (4.3)

After joining the two terms into the last representation of P the result (4.3) looks very
similar to the one of Rauhut [28], so we just adapt his approach below. Taking into
account that we are interested in property (ii) from Lemma 4.1 we only need the values
of P on T c = Z

2
ρ\T . Since RTc ET = 0 we can write these components of P as

Pk,� =
(

−N−1RTc H

(
IT − N−1H0

)−1

RT sgn(c)

)
k,�

for all (k, �) ∈ T c.

(4.4)

Let us take a closer look at the operator
(
IT − N−1H0

)−1
. We would like to apply the

von Neumann series, but that would require ‖N−1H0‖ < 1 which we cannot ensure.
Therefore, let us assume that we can ensure ‖(N−1H0)

n‖ < 1 for some n ∈ N. Then
we get (

IT −
(
N−1H0

)n)−1 = IT + An

with

An :=
∞∑
r=1

(
N−1H0

)rn
(4.5)

and, consequently,

(
IT − N−1H0

)−1 = (IT + An)

n−1∑
m=0

(
N−1H0

)m
.

This means that on the complement of T we have

RTc P = −N−1H(IT + An)

(
n−1∑
m=0

(
N−1H0

)m)
RT sgn(c) = −

(
P(1) + P(2)

)
,
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where

P(1) = Snsgn(c) and P(2) = 1

N
H AnRT (I + Sn−1)sgn(c),

with Sn :=
∑n−1

m=0

(
N−1HRT

)m .
Since we would like to know when property (ii) fails we need to estimate the

probabilityP(sup(k,l)∈T c |Pk,l | ≥ 1) by estimating P(1) and P(2) individually. Tomake
this splitting we consider two arbitrary numbers a1, a2 > 0 satisfying a1 + a2 = 1.
Then we have

P
(
sup(k,l)∈T c |Pk,l | ≥ 1

) ≤ P

({
sup(k,l)∈T c |P(1)

k,l | ≥ a1
} ∪ {

sup(k,l)∈T c |P(2)
k,l | ≥ a2

})
.

(4.6)

Thus, the first term can be estimated by

P
(|P(1)

k,l | ≥ a1
) = P

(∣∣(Snsgn(c))k,l ∣∣ ≥ a1
)

≤ P

(
n∑

m=1

|((N−1HRT )msgn(c))k,l | ≥ a1

)
=: P(Ek,l). (4.7)

while for the second term we have

sup(k,�)∈T c |P(2)
k,l | ≤

∥∥∥P(2)
∥∥∥∞

≤
∥∥∥N−1H An

∥∥∥
�∞(T )→�∞(�)

(1 + ‖RT Sn−1sgn(c)‖�∞(T )), (4.8)

where� := �∞(Z2
ρ) denotes the space of sequences indexed byZ2

ρ with the supremum
norm.

Let us first analyze the term ‖RT Sn−1sgn(c)‖�∞(T ). This term is the same as in (4.7)
and we obtain

P
(|(Sn−1sgn(c))k,�| ≥ a1

) ≤ P

( n∑
m=1

|((N−1HRT )msgn(c))k,�| ≥ a1

)
= P(Ek,�)

Now, let us analyze the norm of the operator in (4.8). By definition we know that
||An||∞ = supr

∑
s |(An)r,s | seen as a matrix operator. We also know that

∥∥∥N−1H An

∥∥∥∞ ≤
∥∥∥N−1H

∥∥∥∞ ‖An‖∞ . (4.9)

with An =
∑∞

r=1

(
N−1H0

)rn
.
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The term ‖An‖∞ can be estimated using the Frobenius norm. For the Frobenius
norm we have ‖A‖2F := Tr(AA∗) = ∑

r,s |Ar,s |2, where Tr(AA∗) denotes the trace
of AA∗. Let us assume that ∥∥∥(N−1H0

)n∥∥∥
F

≤ κ < 1. (4.10)

From the definition (4.5) of An , it follows that

‖An‖F =
∥∥∥∥∥

∞∑
r=1

(
N−1H0

)rn
∥∥∥∥∥
F

≤
∞∑
r=1

∥∥∥(N−1H0)
n
∥∥∥r
F

≤
∞∑
r=1

κr = κ

1 − κ
.

Furthermore, since An has |T | columns by Cauchy–Schwarz inequality we get

‖An‖2∞ ≤ sup
i

∑
j

|(An)i, j |2 ≤ |T | ‖An‖2F . (4.11)

Thus, from (4.10) and ‖Sn−1sgn(c)‖∞ < a1 it follows

sup(k,�)∈T c |P(2)
k,l | ≤ (1 + a1)

κ

1 − κ
|T | 32 . (4.12)

This leads to the condition

κ

1 − κ
≤ a2

1 + a1
|T |− 3

2 (4.13)

to ensure sup(k,l)∈T c |P(2)
k,l | ≤ a2 as intended.

Also it follows from (4.13) that κ < 1 and |T | ≥ 1 (we can exclude the case T = ∅
since it corresponds to the trivial case of f = 0 where �1-minimization will obviously
recover f ).

Now, since in Theorem 3.1 |T | is deterministic and in Theorem 3.3 |T | is a ran-
dom variable we have to proceed differently in each case. In the case where |T | is
deterministic we have

P
(
sup(k,�)∈T c |Pk,�| ≥ 1

) ≤
∑

(k,�)∈[−ρ,ρ]2∩Z2

P(Ek,�) + P

(∥∥∥(N−1H0)
n
∥∥∥
F

≥ κ
)

.

(4.14)

where we use the condition in (4.13).
Consider the second case, where |T | is random by Theorem 3.3. If we assume

|T | ≤ (α + 1)E|T |

with α > 0 and also assume

κ

1 − κ
≤ a2

1 + a1
((α + 1)E|T |)−3/2 (4.15)
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then clearly (4.13) is satisfied and consequently

sup
t∈T c

∣∣∣P(2)
k,l

∣∣∣ ≤ a2.

This means that we get from (4.6) the following estimate

P
(
sup(k,l)∈T c |Pk,l | ≥ 1

) ≤ P

⎛
⎝ ⋃

(k,l)∈T c

{ ∣∣∣P(1)
k,l

∣∣∣ ≥ a1

}
∪ { ‖RT sgn(c)‖∞ ≥ a1

}

∪
{∥∥∥(N−1H0)

n
∥∥∥
F

≥ κ
}

∪ { |T | ≥ (α + 1)E |T | }
⎞
⎠

≤ P

⎛
⎝ ⋃

(k,l)∈[−ρ,ρ]2∩Z2

Ek,l ∪ { ∥∥∥(N−1H0)
n
∥∥∥
F

≥ κ
}

∪ {|T | ≥ (α + 1)E |T |}
⎞
⎠

≤
∑

(k,l)∈[−ρ,ρ]2∩Z2

P(Ek,l) + P

(∥∥∥(N−1H0)
n
∥∥∥
F

≥ κ
)

+P (|T | ≥ (α + 1)E |T |) . (4.16)

Note that |T | is the sum of independent random variables. For the third term of (4.16),
we obtain

P
( |T | ≥ αE |T | + E |T | ) ≤ exp

(
−3(αE |T |)2/(6E |T | + 2(αE |T |))

)
= exp

(
− 3α2

6 + 2α
E |T |)

)
. (4.17)

Therefore, in the next two sections we have to estimate the quantities P(Ek,�) and
P(‖(N−1H0)

n‖F ≥ κ), respectively.

4.1 Analysis of the Powers of H0

The objective of this section is to estimate the second term in (4.16) and (4.14). To
this end we need to estimate Frobenius norm of our random matrix H0. For this
propose we will estimate

∥∥Hn
0

∥∥2
F by means of Markov’s inequality. We will start

with some auxiliary lemmas which will be needed for the proof of Lemma 4.5 in
which we will determine the expectation value towards the random sampling set X =
{(x1, y1), . . . , (xN , yN )}.
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Lemma 4.3 Consider θr ∈ R and a ∈ {−1, 1}. For

λ(ar , θr ) =
{
cos θr , ar = +1

sin θr , ar = −1,

it holds

2n−1
n∏

r=1

λ(ar , θr ) =
∑

α2,...,αn∈{−1,1}
α

δ2
2 . . . αδn

n λ

⎛
⎝ n∏

j=1

a j , θ1 + α2θ2 + · · · + αnθn

⎞
⎠

such that δ1 := 0 and

δn := δ

⎛
⎝n−1∏

j=1

a j , an

⎞
⎠ (4.18)

with

δ(am, am+1) =
{ |am |−am

2 , am · am+1 = +1
|am |+am

2 , am · am+1 = −1.
(4.19)

Proof The proof is given by mathematical induction. In the case of n = 1 we obtain
λ(a1, θ1) = ∑

α1∈{−1,1} λ(a1, θ1) = λ(+1, θ1) + λ(−1, θ1) = cos θ1 + I sin θ1. Now,
let us assume that our equality holds for some natural number n. We have to show that
it holds for n + 1. Here, we can state

2n
n+1∏
r=1

λ(ar , θr ) = 2n−1
n∏

r=1

λ(ar , θr ) · λ(an+1, θn+1)

=
∑

α2,...,αn∈{−1,1}
α

δ2
2 . . . αδn

n λ

×
⎛
⎝ n∏

j=1

a j , θ1 + α2θ2 + · · · + αnθn

⎞
⎠ · λ(an+1, θn+1)

=
∑

α2,...,αn ,αn+1∈{−1,1}
α

δ2
2 . . . αδn

n · α
δn+1
n+1 λ

×
⎛
⎝n+1∏

j=1

a j , θ1 + α2θ2 + · · · + αnθn + αn+1θn+1

⎞
⎠ .

��
Lemma 4.4 Let n ∈ N. It holds

n∏
r=1

(
eJAr cos θr + eJCr sin θr I

)
=

∑
a∈{−1,1}n

eJ
∑n

r=1 σ̃ (ar )I
1−∏n

j=1 a j
2

n∏
r=1

λ(ar , θr ), (4.20)
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where

σ̃ (a, r) =
{

(−1)π(r)Ar , ar = +1

(−1)π(r)Cr , ar = −1,
λ(ar , θr ) =

{
cos θr , ar = +1

sin θr , ar = −1,

such that π(1) = 0 and π(n) = ∑n−1
j=1

|a j |−a j
2 (n > 0) which counts the number of

sin’s in the vector a = (a1, . . . , an) ∈ {−1, 1}n.
Proof Again, the proof will be given by mathematical induction.

For the case n = 1 we have

eJA1 cos θ1 + eJC1 sin θ1I =
∑

a∈{−1,1}
eJσ̃ (a1)σ (a1) = eJσ̃ (+1)σ (+1) + eJσ̃ (−1)σ (−1),

where σ̃ (+1) = (−1)π(1)A1 = A1 and σ̃ (−1) = (−1)π(1)C1 = C1. Note that we
have π(1) = 0 as initial condition. For the induction step, let n ∈ N be given and
suppose (4.20) is true for n. Then

n+1∏
r=1

(
eJAr cos θr + eJCr sin θr I

)

=
n∏

r=1

(
eJAr cos θr + eJCr sin θr I

)(
eJAn+1 cos θn+1 + eJCn+1 sin θn+1I

)

=
n∏

r=1

∑
a∈{−1,1}n

eJ
∑n

j=1 σ̃ (ar )I
1−∏n

j=1 a j
2

n∏
r=1

λ(ar , θr )
(
eJAn+1 cos θn+1 + eJCn+1 sin θn+1I

)

=
n∏

r=1

∑
a∈{−1,1}n

eJ
∑n

r=1 σ̃ (ar )+(−1)π(n+1)An+1I
1−∏n

j=1 a j
2

n∏
r=1

λ(ar , θr ) cos θn+1

+
n∏

r=1

∑
a∈{−1,1}n

eJ
∑n

r=1 σ̃ (ar )+(−1)π(n+1)Cn+1I
1−∏n

j=1 a j
2

n∏
r=1

λ(ar , θr ) sin θn+1I

=
n+1∏
r=1

∑
a∈{−1,1}n+1

eJ
∑n+1

r=1 σ̃ (ar )I
1−∏n+1

j=1 a j
2

n+1∏
j=1

λ(ar , θr ),

such that a = (a, an+1) ∈ {−1, 1}n+1 and an+1 = ±1. ��
Using the above lemmaswe can nowestimate the expectation value of the Frobenius

norm of our random matrix Hn
0 . The need of these lemmas stems from the fact that

we cannot use a direct approach via exponentials due to the non-commutativity of
quaternions.

Lemma 4.5 It holds

EX

[∥∥Hn
0

∥∥2
F

]
=

min{n,N }∑
t=1

N !
(N − t)!

∑
A∈P(2n,t)

∑
(k1, l1), . . . , (k2n , l2n) ∈ T

(k j , l j ) �= (k j+1, l j+1)
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×
∏
A⊂A

∑
a ∈ {−1, 1}r
a1 . . . ar = +1

δ

⎛
⎝∑
r∈A

�̃(ar )

⎞
⎠ 21−|A| ∑

α2,...,αn∈{−1,1}
α

δ2
2 . . . α

δ|A|
|A| δ

⎛
⎝θ1 +

∑
r∈A

αsθs

⎞
⎠ ,

where δ(n) denotes the Kronecker δ0n and (k2n+1, l2n+1) = (k1, l1) and

�̃(a, lr ) =
{

(−1)π(r)(lr+1 − lr ), ar = +1

−(−1)π(r)(lr+1 + lr ), ar = −1,
θs = (ks+1 − ks)

such that π(|A|) = ∑|A|−1
j=1

|a j |−a j
2 .

Proof Since Hn
0 is self adjoint we have from the definitionEX [∥∥Hn

0

∥∥2
F ] = EX [trH2n

0 ].
Consider

H0 [(k1, l1), (k2, l2)] = (1 − δk1,k2δl1,l2)

N∑
i1=1

[
e−Jl1yi1 eI(k2−k1)xi1 eJl2 yi1

]
,

(k1, l1), (k2, l2) ∈ T .

Algebraic operations with quaternions constitute a big handicap because quaternions
do not commute. Thus, we have to find a new strategy. What plays to our advantage
are the anti-commutativity of the basis elements, that is, IJ = −JI. Moreover, this
means that IeJy = e−JyI. Thus, we can simplify our expression as

e−Jlr yir eI(kr+1−kr )xir eJlr+1yir = eJ(lr+1−lr )yir cos
([kr+1 − kr ]xir

)
+ e−J(lr+1+lr )yir sin

([kr+1 − kr ]xir
)

I. (4.21)

Furthermore, we can write the 2n-th power of the matrix H0 as follows

H2n
0

[
(k1, l1), (k2n+1, lk2n+1 )

]
=

∑
(k2, l2), . . . , (k2n, l2n) ∈ T
(k j , l j ) �= (k j+1, l j+1)

H0 [(k1, l1), (k2, l2)] . . . H0
[
(k2n, l2n) (k2n+1, lk2n+1 )

]

=
N∑

i1 = 1
.
.
.

i2n = 1

∑
(k2, l2), . . . , (k2n, l2n) ∈ T

(k j , l j ) �= (k j+1, l j+1), j = 1, . . . , 2n

[
2n∏
r=1

e−Jlr yir eI(kr+1−kr )xir eJlr+1 yir

]
.

Since we need the diagonal element of the 2n-th power of our matrix to calculate the
norm

∥∥Hn
0

∥∥2
F = TrH2n

0 we require (k2n+1, lk2n+1) = (k1, l1). Therefore, using the
linearity of the expectation value it follows
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EX

[
TrH2n

0

]

=
N∑

i1 = 1
...

i2n = 1

∑
(k1, �1), . . . , (k2n, l2n) ∈ T

(k j , l j ) �= (k j+1, l j+1)

EX

[
2n∏
r=1

e−Jlr yir eI(kr+1−kr )xir eJlr+1yir

]
.

Furthermore, some indices ir might be the same which means that we cannot use
directly the product rule for the expectation value since it is only valid for independent
random variables. This is where we consider a set partition. We associate a partition
A = (A1, A2, . . . , At ) of {1, . . . , 2n} to a certain vector i1, . . . , i2n such that ir = ir ′
if and only if r and r ′ are contained in the same set Ai ∈ A. This is allows us to
unambiguously write i A instead of ir if r ∈ A. Now, the independence of the variables
(xA, yA) yields

EX

[
2n∏
r=1

exp
(−Jlr yir

)
exp

(
I(kr+1 − kr )xir

)
exp

(
Jlr+1yir

)]

= EX

[∏
A∈A

∏
r∈A

exp (−Jlr yA) exp (I(kr+1 − kr )xA) exp (Jlr+1yA)

]

=
∏
A∈A

EX

[∏
r∈A

exp (−Jlr yA) exp (I(kr+1 − kr )xA) exp (Jlr+1yA)

]
. (4.22)

Let us introduce now

σ̃ (a, lr ) =
{

(−1)π(r)(lr+1 − lr )yA, ar = +1

(−1)π(r)(−lr+1 − lr )yA, ar = −1,

and

λ(ar , θr ) =
{
cos(kr+1 − kr )xA, ar = +1

sin(kr+1 − kr )xA, ar = −1
,

and by applying Lemma 4.4 we get for the expectation value in (4.22)

EX

⎛
⎝ ∑
a∈{−1,1}r

eJ
∑

r∈A σ̃ (ar )
∏
r∈A

λ(ar , θr )

⎞
⎠

= EX

⎛
⎜⎜⎜⎜⎜⎝

∑
a ∈ {−1, 1}r
a1 . . . ar = +1

eJ
∑

r∈A σ̃ (ar )
∏
r∈A

λ(ar , θr ))+
∑

a ∈ {−1, 1}r
a1 . . . ar = −1

eJ
∑

r∈A σ̃ (ar )I
∏
r∈A

λ(ar , θr )

⎞
⎟⎟⎟⎟⎟⎠
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= EX

⎛
⎜⎜⎜⎜⎜⎝

∑
a ∈ {−1, 1}r
a1 . . . ar = +1

eJ
∑

r∈A σ̃ (ar )
∏
r∈A

λ(ar , θr )

⎞
⎟⎟⎟⎟⎟⎠

+ EX

⎛
⎜⎜⎜⎜⎜⎝

∑
a ∈ {−1, 1}r
a1 . . . ar = −1

eJ
∑

r∈A σ̃ (ar )I
∏
r∈A

λ(ar , θr )

⎞
⎟⎟⎟⎟⎟⎠ . (4.23)

The last line in (4.23) can be analyzed as follows: when a1 . . . ar = +1 then the
term is independent of I and when a1 . . . ar = −1 the term depends on I. This can be
easily seen as in the first case the number of a j = −1 which corresponds to the terms
containing I being even. For this reason the basis element I vanishes because I2r = ±1,
with r ∈ N. For the second term in (4.23) the number of terms with a j = −1 is odd,
matching the number of sin-functions in the product. That means the basis element I
never vanishes for the second term since I2r−1 = ±I, with r ∈ N.

We emphasized here that the expectation value of the second term vanishes because
it is given in terms of sin-functions which vanish when xsA is integrated over [0, 2π ].
Therefore, only the first term is surviving. In turn, the first term has 2n−1 sub-terms.
Thus, we can state

EX

⎡
⎢⎢⎢⎢⎣

∑
a ∈ {−1, 1}r
a1 . . . ar = +1

eJ
∑

r∈A σ̃ (ar )
∏
r∈A

λ(ar , θr )

⎤
⎥⎥⎥⎥⎦

=
∑

a ∈ {−1, 1}r
a1 . . . ar = −1

∫
[0,2π ]

eJ
∑

r∈A σ̃ (ar )dy
∫

[0,2π ]

∏
r∈A

λ(ar , θr )dx

where

σ̃ (ar ) =
{

(−1)π(r)(lr+1 − lr )yr , ar = +1

−(−1)π(r)(lr+1 + lr )yr , ar = −1,

and

λ(ar , θr ) =
{
cos[(kr+1 − kr )xr ], ar = +1

sin[(kr+1 − kr )xr ], ar = −1,

such that π(n) = ∑n−1
j=1

1−a j
2 . The last quantity π(n) does nothing else then counting

the number of sin-functions. By invoking Lemma 4.3 for the product altogether we
obtain
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EX

[
exp

(
J
∑
r∈A

σ̃ (a, lr )

)∏
s∈A

λ(ar , θr )

]

=
∑

a ∈ {−1, 1}r
a1 . . . ar = +1

δ

(∑
r∈A

�̃(ar )

)
21−|A| ∑

α2,...,αn∈{−1,1}
α

δ2
2 . . . α

δ|A|
|A| δ

(
θ1+

∑
r∈A

αrθr

)
,

such that

�̃(a, lr ) =
{

(−1)π(r)(lr+1 − lr ), ar = +1

−(−1)π(r)(lr+1 + lr ), ar = −1.
(4.24)

Furthermore, the condition |A| ≥ 2 for all A ∈ A should be satisfied, i.e., we consider
partitions P(2n, t) with t ≥ 2. Moreover, the number of vectors (A1, A2, . . . , At ) ∈
{1, . . . , N }t with different entries is exactly N . . . (N − t+1) = N !/(N − t)! if N ≥ t
and 0 if N ≤ t. ��
For later reference let us introduce the following notation

CH(A, T ) :=
∑

(k1, l1), . . . , (k2n, l2n) ∈ T
(k j , l j ) �= (k j+1, l j+1)

∑
a ∈ {−1, 1}r
a1 . . . ar = +1

∏
A∈A

× δ

(∑
s∈A

�̃(as)

)
21−|A| ∑

α2,...,αn∈{−1,1}
α

δ2
2 . . . α

δ|A|
|A| δ

(
θ1 +

∑
r∈A

αrθr

)
,

(4.25)

with

�̃(a, ls) =
{

βs(ls+1 − ls), as = +1

−βs(ls+1 + ls), as = −1.

and βs = (−1)π(s) where π(s) = ∑n−1
j=1

|a j |−a j
2 .

4.2 Analysis of P(Ek,l )

While we have the estimate for the Frobenius norm of Hn
0 from the previous section

we still need to study the probability P(Ek,l), i.e., the first term in (4.16) and (4.14).
Similar to [28] consider the numbers βm > 0, m = 1, . . . , n, such that

n∑
m=1

βm = a1

and Km ∈ N, m = 1, . . . , n, some natural numbers. Let (k, l) ∈ Z2
ρ. By applying

Markov’s inequality it follows
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P(Ek,l) = P

(
n∑

m=1

|((N−1HRT )msgn(c))k,l | ≥ a1

)

≤
n∑

m=1

P
(
N−m |((HRT )msgn(c))k,l | ≥ βm

)

=
n∑

m=1

P

(
N−2mKm |((HRT )msgn(c))k,l |2Km ≥ β2Km

m

)

≤
n∑

m=1

EX

(
|((HRT )msgn(c))k,l |2Km

)
N−2mKmβ−2Km

m . (4.26)

Let us consider βm = βn/Km , i.e., β−2Km
m = β−2n

m . Now, from (4.26) it follows

P(Ek,l) ≤ β−2n
m

n∑
m=1

EX

(
|((HRT )msgn(c))k,l |2Km

)
N−2mKm (4.27)

while the condition a1 = ∑n
m=1 βm can be written as

a1 = a =
n∑

m=1

βn/Km < 1.

The following lemma attends the expectation value appearing in (4.27). While
Lemma 4.6 is similar to Lemma 4.5, it requires much more work and, unfortunately,
lengthy calculations. That is why we need to refer to Appendix B in the Ph.D. thesis
[19] for the lengthy calculations which form part of this proof.

Lemma 4.6 For a sequence c = (ck,l) ∈ �2(Z
2
ρ) with supp c = T , it holds

EX

[∣∣∣((HRT )msgn(c)
)
k,l

∣∣∣2K]

≤
min{Km,N }∑

t=1

N !
(N − t)!

∑
A∈P(2Km,t)

∑
(k(1)

1 , l(1)1 ), . . . , (k(1)
m , l(1)m ) ∈ T

...

(k(K )
1 , l(K )

1 ), . . . , (k(K )
m , l(K )

m ) ∈ T

(k(p)
j , l(p)j ) �= (k(p)

j+1, l
(p)
j+1)

23−m

×
∑

(r1,...,rK )⊂V ({1,...,16},K )

∑
a ∈ {−1, 1}m

a(1)
1 . . . a(1)

m = ±1
...

a(K )
1 . . . a(K )

m = ±1

∑
α

(1)
2 , . . . , α

(1)
m ∈ {−1, 1}
...

α
(K )
2 , . . . , α

(K )
m ∈ {−1, 1}
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×
∏
A∈A

δ

⎛
⎝ ∑

(r,p)∈A

α
(p)
r θ

(p)
r

⎞
⎠ δ

⎛
⎝ ∑

(s,p)∈A

β
(p)
s φ

(p)
s

⎞
⎠ ,

where θ
(p)
r = (k(p)

r+1 − k(p)
r ) and φ

(p)
s =

{
(l(p)s+1 − l(p)s ), as = +1

−(l(p)s+1 + l(p)s ), as = −1,
with α

(p)
r ∈

{−1, 1} and β
(p)
s = (−1)π(s) such that π(s) = ∑s−1

j=1
|a j |−a j

2 counts the number of
sin’s.

Proof Wewant to compute the expectation valueEX of the Kth-power of themodulus,
i.e., the expectation value of the quantity

∣∣((HRT )msgn(ck,l))k,l
∣∣2K . But there exist

a major problem due the non-commutativity in the quaternionic setting. While in the
previous proof we could still use the anti-commutativity of the basis elements I and
J we now have to take into account quaternion-valued coefficients. That means we
have to compute first (HRT )m and then multiply it by the coefficient vector from
the signal. This we are going to do in the way that we write the previous quantity as
(|((HRT )mσ)k,l |2)K = (Q2

0 + Q2
1 + Q2

2 + Q2
3)

K . Of course, breaking the power of
a quaternion in several small pieces and joining afterwards usually involves lengthy
calculations. We refer for the calculation of the large formulae to Appendix B in the
Ph.D. thesis [19]. Thus, we get

(
(HRT )

[
(k1, l1), (km+1, lm+1)

])m
=

∑
(k2, l2), . . . , (km , lm ) ∈ T

(k j , l j ) �= (k j+1, l j+1), j = 1, . . . ,m

HRT [(k1, l1), (k2, l2)] . . . HRT
[
(km , lm) (km+1, lm+1)

]

=
N∑

i1 = 1
.
.
.

im = 1

∑
(k2, l2), . . . , (km , lm) ∈ T

(k j , l j ) �= (k j+1, l j+1), j = 1, . . . ,m

[
m∏

r=1

e−Jlr yir eI(kr+1−kr )xir eJlr+1 yir

]

=
N∑

i1 = 1
.
.
.

im = 1

∑
(k2, l2), . . . , (km , lm) ∈ T

(k j , l j ) �= (k j+1, l j+1), j = 1, . . . ,m

∑
a ∈ {−1, 1}m

eJ
∑m

r=1 βrφr

m∏
s=1

λ(as , θs)

=
N∑

i1 = 1
.
.
.

im = 1

∑
(k2, l2), . . . , (km , lm) ∈ T

(k j , l j ) �= (k j+1, l j+1), j = 1, . . . ,m

∑
a ∈ {−1, 1}m
a1 . . . am = +1

21−m

×eJ
∑m

r=1 βrφr
∑

α2,...,αm∈{−1,1}
α

δ2
2 . . . αδm

m λ

⎛
⎝ m∏

j=1

a j , θ1 +
m∑

r=2

αr θr

⎞
⎠
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+
N∑

i1 = 1
.
.
.

im = 1

∑
(k2, l2), . . . , (km , lm) ∈ T

(k j , l j ) �= (k j+1, l j+1), j = 1, . . . ,m

∑
a ∈ {−1, 1}m
a1 . . . am = −1

21−m

× eJ
∑m

r=1 βrφr
∑

α2,...,αm∈{−1,1}
α

δ2
2 . . . αδm

m λ

⎛
⎝ m∏

j=1

a j , θ1 +
m∑

r=2

αr θr

⎞
⎠ .

In accordance with the proof of our previous Lemma 4.3, we have

(
(HRT )

[
(k1, l1), (km+1, lm+1)

])m
=

N∑
i1 = 1

.

.

.

im = 1

∑
(k2, l2), . . . , (km , lm) ∈ T

(k j , l j ) �= (k j+1, l j+1), j = 1, . . . ,m

∑
a ∈ {−1, 1}m
a1 . . . am = +1

21−m

× eJ
∑m

r=1 βrφr
∑

α2,...,αm∈{−1,1}
α

δ2
2 . . . αδm

m cos

(
θ1 +

m∑
r=2

αr θr

)

+
N∑

i1 = 1
.
.
.

im = 1

∑
(k2, l2), . . . , (km , lm) ∈ T

(k j , l j ) �= (k j+1, l j+1), j = 1, . . . ,m

∑
a ∈ {−1, 1}m
a1 . . . am = −1

21−m

× eJ
∑m

r=1 βrφr
∑

α2,...,αm∈{−1,1}
α

δ2
2 . . . αδm

m sin

(
θ1 +

m∑
r=2

αr θr

)
I

=
N∑

i1 = 1
.
.
.

im = 1

∑
(k2, l2), . . . , (km , lm) ∈ T

(k j , l j ) �= (k j+1, l j+1), j = 1, . . . ,m

∑
a ∈ {−1, 1}m
a1 . . . am = +1

21−m

×
(
cos

(
m∑

r=1

βrφr

)
+ J sin

(
m∑

r=1

βrφr

)) ∑
α2,...,αm∈{−1,1}

α
δ2
2 . . . αδm

m cos

(
θ1 +

m∑
r=2

αr θr

)

+
N∑

i1 = 1
.
.
.

im = 1

∑
(k2, l2), . . . , (km , lm) ∈ T

(k j , l j ) �= (k j+1, l j+1), j = 1, . . . ,m

∑
a ∈ {−1, 1}m
a1 . . . am = −1

21−m

(
cos

( m∑
r=1

βrφr

)
+ J sin

( m∑
r=1

βrφr

)) ∑
α2,...,αm∈{−1,1}

α
δ2
2 . . . α

δm
n sin

(
θ1 +

m∑
r=2

αr θr

)
I
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=
N∑

i1 = 1
...

im = 1

∑
(k2, l2), . . . , (km , lm) ∈ T

(k j , l j ) �= (k j+1, l j+1), j = 1, . . . ,m

∑
a ∈ {−1, 1}m
a1 . . . am = +1

21−m

× cos

( m∑
r=1

βrφr

) ∑
α2,...,αm∈{−1,1}

α
δ2
2 . . . α

δm
m cos

(
θ1 +

m∑
r=2

αr θr

)

+
N∑

i1 = 1
...

im = 1

∑
(k2, l2), . . . , (km , lm) ∈ T

(k j , l j ) �= (k j+1, l j+1), j = 1, . . . ,m

∑
a ∈ {−1, 1}m
a1 . . . am = +1

21−m

× sin

( m∑
r=1

βrφr

) ∑
α2,...,αm∈{−1,1}

α
δ2
2 . . . α

δm
m cos

(
θ1 +

m∑
r=2

αr θr

)
J

+
N∑

i1 = 1
...

im = 1

∑
(k2, l2), . . . , (km , lm) ∈ T

(k j , l j ) �= (k j+1, l j+1), j = 1, . . . ,m

∑
a ∈ {−1, 1}m
a1 . . . am = −1

21−m

× cos

( m∑
r=1

βrφr

) ∑
α2,...,αm∈{−1,1}

α
δ2
2 . . . α

δm
m sin

(
θ1 +

m∑
r=2

αr θr

)
I

+
N∑

i1 = 1
...

im = 1

∑
(k2, l2), . . . , (km , lm) ∈ T

(k j , l j ) �= (k j+1, l j+1), j = 1, . . . ,m

∑
a ∈ {−1, 1}m
a1 . . . am = −1

21−m

× sin

( m∑
r=1

βrφr

) ∑
α2,...,αm∈{−1,1}

α
δ2
2 . . . α

δm
m sin

(
θ1 +

m∑
r=2

αr θr

)
JI

= P0 + IP1 + JP2 − KP3.

Let us consider σm = σm(k1, l1) = σ0m(k1, l1) + Iσ1m(k1, l1) + Jσ2m(k1, l1) +
Kσ3m(k1, l1). We are interested to compute

∑
(k1,l1)∈T

[P0 + IP1 + JP2 − KP3]

× [σ0m(k1, l1) + Iσ1m(k1, l1) + Jσ2m(k1, l1) + Kσ3m(k1, l1)]

=
∑

(k1,l1)∈T

[
(P0σ0m(k1, l1) − P1σ1m(k1, l1) − P2σ2m(k1, l1) + P3σ3m(k1, l1))



N. Gomes et al.

+ (
P0σ1m(k1, l1) + P1σ0m(k1, l1) + P2σρ03 + P3σ2m(k1, l1)

)
I

+ (P0σ2m(k1, l1) − P1σ3m(k1, l1) + P2σ0m(k1, l1) − P3σ1m(k1, l1)) J

+ (P0σ03m(k1, l1) + P1σ2m(k1, l1) − P2σ1m(k1, l1) − P3σ0m(k1, l1)) K
]

=
∑

(k1,l1)∈T
(P0σ0m(k1, l1) − P1σ1m(k1, l1) − P2σ2m(k1, l1) + P3σ3m(k1, l1))

+
∑

(k1,l1)∈T

(
P0σ1m(k1, l1) + P1σ0m(k1, l1) + P2σρ03 + P3σ2m(k1, l1)

)
I

+
∑

(k1,l1)∈T
(P0σ2m(k1, l1) − P1σ3m(k1, l1) + P2σ0m(k1, l1) − P3σ1m(k1, l1)) J

+
∑

(k1,l1)∈T
(P0σ03m(k1, l1) + P1σ2m(k1, l1) − P2σ1m(k1, l1)−P3σ0m(k1, l1)) K

= Q0 + Q1I + Q2J + Q3K.

Let us consider the expectation value applied to the sum. As in the proof of Lemma 4.5
we have to take into account that some of the indices i (p)r might coincide. This means
that we have to use again set partitions. Let (i (p)r )

p=1,...,2K
r=1,...,m ⊂ {1, . . . , N }2Km be a

vector of indices and let A = (A1, A2, . . . , At ) , Ai ⊂ {1, . . . ,m} × {1, . . . , 2K } be
a corresponding partition such that (r, p) and (r ′, p′) are contained in the same block

if and only if i (p)r = i (p
′)

r ′ . For some A ∈ A we may unambiguously write i A instead

of i (p)r if (r, p) ∈ A. Once again, if A ⊂ A contains only one element then the last
expression vanishes due to the condition (k(p)

r , l(p)r ) �= (k(p)
r−1, l

(p)
r−1). Thus, we only

need to consider partitions A ∈ P(2Km, t) with t > 1. Now we are able to rewrite
the inequality as

EX

[∣∣∣((HRT )m sgn(ck,l)
)
k,l

∣∣∣2K]

≤
min{Km,N }∑

t=1

N !
(N − t)!

∑
A∈P(2Km,t)

∑
(k(1)

1 , l(1)1 ), . . . , (k(1)
m , l(1)m ) ∈ T

...

(k(K )
1 , l(K )

1 ), . . . , (k(K )
m , l(K )

m ) ∈ T

(k(p)
j , l(p)j ) �= (k(p)

j+1, l
(p)
j+1)

23−m

×
∑

(r1,...,rK )⊂V ({1,...,16},K )

∑
a ∈ {−1, 1}m

a(1)
1 . . . a(1)

m = ±1
...

a(K )
1 . . . a(K )

m = ±1

∑
α

(1)
2 , . . . , α

(1)
m ∈ {−1, 1}
...

α
(K )
2 , . . . , α

(K )
m ∈ {−1, 1}

∏
A∈A
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×
∏
A∈A

δ

⎛
⎝ ∑

(r,p)∈A

α
(p)
r θ

(p)
r

⎞
⎠ δ

⎛
⎝ ∑

(s,p)∈A

β
(p)
s φ

(p)
s

⎞
⎠ ,

where θ
(p)
r = (k(p)

r+1 − k(p)
r ) and φ

(p)
s =

{
(l(p)s+1 − l(p)s ), as = +1

−(l(p)s+1 + l(p)s ), as = −1,
which α

(p)
r ∈

{−1, 1} and β
(p)
s = (−1)π(s) with π(s) = ∑s−1

j=1
|a j |−a j

2 . ��

To simplify our work in the next section we abbreviate

BH(A, T ) =
∑

(k(1)
1 , l(1)1 ), . . . , (k(1)

m , l(1)m ) ∈ T
...

(k(K )
1 , l(K )

1 ), . . . , (k(K )
m , l(K )

m ) ∈ T

(k(p)
j , l(p)j ) �= (k(p)

j+1, l
(p)
j+1)

23−m

×
∑

(r1,...,rK )⊂V ({1,...,16},K )

∑
a ∈ {−1, 1}m

a(1)
1 . . . a(1)

m = ±1
...

a(K )
1 . . . a(K )

m = ±1

∑
α

(1)
2 , . . . , α

(1)
m ∈ {−1, 1}
...

α
(K )
2 , . . . , α

(K )
m ∈ {−1, 1}

×
∏
A∈A

δ

⎛
⎝ ∑

(r,p)∈A

α
(p)
r θ

(p)
r

⎞
⎠ δ

⎛
⎝ ∑

(s,p)∈A

β
(p)
s φ

(p)
s

⎞
⎠ . (4.28)

4.3 Proof of Theorem 3.1

Using our lemmas from the previous section, in particular Lemma 4.5, we will give
now the proof of Theorem 3.1. The value of the quantityCH(A, T ) as defined in (4.25)
depends on T and A ∈ P(2n, t). Here, the indices ((k1, l1), . . . , (k2n, l2n)) ∈ T 2n

are conditioned by the |A| = t linear constraints
∑

r∈A (kr+1 − kr ) = 0 and∑
s∈A (ls+1 ± ls) = 0 for all A ∈ A. These constraints are independent except for∑2n
r=1 (kr+1 − kr ) = 0 and

∑2n
s=1 (ls+1 ± ls) = 0. Thus, from (4.25) we can estimate

CH(A, T ) ≤ |T |2n−t+1 ≤ M2n−t+1. (4.29)

ByLemma4.5weobtain (since inTheorem3.1T is not randomwhichmeansE = EX )

E

[∥∥Hn
0

∥∥2
F

]
≤

min{n,N }∑
t=1

N !
(N − t)!

∑
A∈P(2n,t)

|T |2n−t+1 ≤ M2n+1
n∑

t=1

(
N

M

)t

S2(2n, t),



N. Gomes et al.

where S2(n, t) = |P(2n, t)| are the associated Stirling numbers of the second kind.
Let us put θ = N

M . By Markov’s inequality it follows

P

(∥∥∥(N−1H0

)n∥∥∥
F

≥ κ
)

= P

(∥∥Hn
0

∥∥2
F ≥ N 2nκ2

)
≤ N−2nκ−2

E

[∥∥Hn
0

∥∥2
F

]
≤ κ−2 M θ−2n F2n(θ) = κ−2 M G2n(θ).

Let us point out that κ < 1. This implies
∥∥(N−1H0)

n
∥∥
F ≤ κ and, therefore, (IT −

(N−1H0)
n) and also [F∗

T XFT X ] = N (IT −N−1H0) are invertible. In particular,FT X

is injective.
Let us now take a look at P(Ek,l). By Lemma 4.6 we need to estimate

BH(A, T ), which represents the number of elements (k(p)
j , l(p)j ) ∈ T 2Km that sat-

isfy
∑

(r,p)(k
(p)
r − k(p)

r−1) = 0 and
∑

(s,p)(k
(p)
s+1 ± k(p)

s ) = 0 for all A ∈ A with
A ∈ P(2Km, t). Since we have t independent linear constraints BH(A, T ) is bounded
from above by |T |2Km−t ≤ M2Km−t . Thus, by putting again θ = N

M , we get

EX

[∣∣((HRT )m sgn c
)
kk̃

∣∣2K ] ≤
Km∑
t=1

Nt S2(2Km, t)M2Km−t = M2KmF2Km(θ),

and, therefore, we get

P(Ek,l) = β−2n
n∑

m=1

θ2mKm F2mKm (θ) = β−2n
n∑

m=1

G2mKm (θ).

Let us denote by P(failure) the probability that exact reconstruction of f by means
of �1-minimization fails.

By Lemma 4.1 and the above estimates it follows

P(failure) ≤ P
({FT X {is not injective} ∪ {sup(k,l)∈T c |Pk,l | ≥ 1})

≤
∑

(k,l)∈Z2
ρ

P(Ek,l) + P

(∥∥∥(N−1H0

)n∥∥∥ ≥ κ
)

≤ (2ρ + 1)2β−2n
n∑

m=1

G2mKm (θ) + κ−2 M G2n(θ)

under the conditions

a1 = a =
n∑

m=1

βn/Km < 1, a2 + a1 = 1, i.e., a2 = 1 − a,

κ

1 − κ
≤ a2

1 + a1
M−3/2 = 1 − a

1 + a
M−3/2.

�
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Let us remark that, given n, a possible choice for Km is Km ≈ m/n, m = 1, . . . , n,
by rounding m/n to the nearest integer. Then β is chosen quite close to the maximal
value such that a = ∑n

m=1 βn/Km < 1. By our choice of Km we approximately have

n∑
m=1

βn/Km ≈
n∑

m=1

βm ≈ β

1 − β
.

Thus, the optimal β will always be close to 1/2.

4.4 Proof of Theorem 3.2

The proof of the Theorem 3.2 is practically the same as the proof of Theorem 2.1
in [28], because it depends only on set partitions without the algebraic structure of
quaternions entering the picture. For more details we refer to [19].

4.5 Proof of Theorem 3.3

To prove our theorem we will need some modifications of Lemmas 4.5 and 4.6, in
particular for the quantities CH(A, T ) and BH(C, T ) defined in (4.25) and (4.28),
respectively. Hereby,we have to consider T as a random setmodeled by (3.7), similarly
as [28]. We will start first with (4.25) as follows.

Lemma 4.7 For A ∈ P(2n, t) we have

E [CH(A, T )]

≤
n∑

s=2

(E|T |)s
min{s,t}−1∑

R=0

(2ρ + 1)−2R#{B ∈ U (2n, s), rank M(A,B) = R},

where M = M(A,B) denote the t × s matrix whose entries are given by

Mi, j := |Ai ∩ Bj | − |(Ai + 1) ∩ Bj |, 1 ≤ i ≤ t, 1 ≤ j ≤ s.

Proof Using the linearity of the expectation value we get

E [CH(C, T )] = E

⎡
⎢⎢⎢⎢⎣

∑
(k1, l1), . . . , (k2n , l2n) ∈ Z

2
ρ

(k j , l j ) �= (k j+1, l j+1)

2n∏
j=1

1{(k j ,l j )∈T }

×
∏
A∈A

δ

(∑
r∈A

(kr+1 − kr )

)
δ

(∑
r∈A

(lr+1 ± lr )

)
⎤
⎥⎥⎥⎥⎦
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=
∑

(k1, l1), . . . , (k2n , l2n) ∈ Z
2
ρ

(k j , l j ) �= (k j+1, l j+1)

E

⎡
⎣ 2n∏

j=1

1{(k j ,l j )∈T }

⎤
⎦

×
∏
A∈A

δ

(∑
r∈A

(kr+1 − kr )

)
δ

(∑
r∈A

(lr+1 ± lr )

)
.

Hereby, 1{(k,l)∈T } denotes the characteristic function of the set T , i.e., it is 1 if and

only if (k, l) ∈ T . The expression E

[∏2n
j=1 1{(k j ,l j )∈T }

]
depends on on the num-

ber of (k j , l j ) belonging to T . In this way, we can play again with partitions. If
((k1, l1), . . . , (k2n, l2n)) ∈ (Z2

ρ)2n is a vector satisfying (k j , l j ) �= (k j+1, l j+1) then
we can associate to it a partition B = (B1, . . . , Bs) of {1, . . . , 2n} such that j and j ′
are in the same set Bi if and only if (k j , l j ) = (k j ′, l j ′). Obviously, j and j +1 have to
be contained in different blocks for all j due to the condition (k j , l j ) �= (k j+1, l j+1)

(once again we use the convention that 2n + 1 is identified with 1). In other words
B has no adjacencies, i.e., B ∈ U (2n, s). Now if B has |B| = s blocks we use the
probability model for T given by P((k, l) ∈ T ) = τ , 0 < τ < 1, (see (3.7)) and
stochastic independence to get

E

[
2n∏
i=1

1{(ki ,li )∈T }

]
= E

⎡
⎣ s∏

j=1

1{(k,l)B j ∈T }

⎤
⎦ =

s∏
j=1

E

[
1{(k,l)B j ∈T }

]
= τ s, (4.30)

where (unambiguously) (k, l)Bj = (k, l)i if i ∈ Bj . By introducing the notation
σB(r) = j if and only if r ∈ Bj ∈ B we can write

E [CH(C, T )]

=
n∑

s=2

τ s
∑

B∈U (2n,s)

∑
(k1, l1), . . . , (k2n, l2n) ∈ Z

2
ρ

(ki , li ) p.w. different

∏
A∈A

δ

(∑
r∈A

(kσB(r+1) − kσB(r))

)
.

Clearly, we have
∏

A∈A δ
(∑

r∈A(kσB(r+1) − kσB(r))
) = 1 and

∏
A∈A δ(∑

r∈A(lσB(r+1) − lσB(r))
) = 1 if and only if, respectively,∑

r∈A

(kσB(r+1) − kσB(r)) = 0, for all A ∈ A (4.31)

and ∑
r∈A

(lσB(r+1) ± lσB(r)) = 0, for all A ∈ A. (4.32)

Otherwise, the terms are 0. For j ∈ {1, . . . , s} the term (k j , l j ) appears |Ai ∩ Bj |
times in the terms (kσB(r), lσB(r)) when r runs through Ai ∈ A. Let M = M(A,B)

denote the t × s matrix whose entries are given by
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Mi, j := |Ai ∩ Bj | − |(Ai + 1) ∩ Bj |, 1 ≤ i ≤ t, 1 ≤ j ≤ s.

Then (4.31) and (4.32) are satisfied if and only if ((k1, l1), . . . , (ks, ls)) ∈ (Z2
ρ)s

belongs to the kernel of M(A,B). Thus, if the rank of M(A,B) equals R then the
number of vectors (k1, l1), . . . , (ks, ls) ∈ (Z2

ρ)s for which (4.31) and (4.32) are sat-
isfied can be bounded by ((2ρ + 1)2)s−R . Here we even neglected the condition that
(k1, l1), . . . , (ks, ls) should be pairwise different. So finally we obtain

E [CH(C, T )] ≤
n∑

s=2

τ s
min{s,t}−1∑

R=0

(2ρ + 1)2(s−R)#{B ∈ U (n, s), rank M(A,B) = R}

=
n∑

s=2

(E|T |)s
min{s,t}−1∑

R=0

(2ρ + 1)−2R#{B ∈ U (n, s), rank M(A,B) = R},

where we substituted E|T | = τD. ��
Since E = EX ET by Fubini’s theorem and stochastic independence of T and X the
previous result yields together with Lemma 4.5

E

[∥∥Hn
0

∥∥2
F

]
≤

min{n,N }∑
t=1

N !
(N − t)!

∑
A∈P(2n,t)

n∑
s=2

(E|T |)s

×
min{s,t}−1∑

R=0

(2ρ + 1)−2R#{B ∈ U (n, s), rank M(A,B) = R}

≤
min{n,N }∑

t=1

N !
(N − t)!

n∑
s=2

(E|T |)s
min{s,t}−1∑

R=0

(2ρ + 1)−2RQ(2n, t, s, R)

= N 2nW (n, N ,E|T |, D).

Hereby,Q(2n, t, s, R) := # {(A,B) : A ∈ P(n, t),B ∈ U (n, s), rankM(A,B) = R}
and

W (n, N ,E|T |, ρ)

:= N−2n
min{n,N }∑

t=1

N !
(N − t)!

n∑
s=2

(E|T |)s
min{s,t}−1∑

R=0

(2ρ + 1)−2RQ(2n, t, s, R).

Applying Markov’s inequality we obtain

P

(∥∥∥(N−1H0)
n
∥∥∥
F

≥ κ
)

≤ N−2nκ−2
E

[∥∥Hn
0

∥∥2
F

]
≤ κ−2W (n, N ,E|T |, ρ).

Obviously, like in the proof of Theorem 3.3 FT X is injective if
∥∥(N−1H0)

n
∥∥
F < 1.

As in the case where T is not random we have to estimate P(Ek,l). This has to be
done like in Lemma 4.6, i.e., we need to estimate the expectation value of BH(C, T )

defined in (4.28).
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Lemma 4.8 Suppose A ∈ P(2Km, t) then we have

E [BH(C, T )]

≤
2Km∑
s=1

(E|T |)s
min{s,t}−1∑

R=0

(2ρ + 1)−2R#{B ∈ U∗(2K ,m, s), rank L(A,B) = R},

where similar to [28]U∗(2K ,m, s) denotes all partitions of [K ]×[m] such that (r, p)
and (r, p + 1) are not contained in the same block. L = L(A,B) denote the t × s
matrix whose entries are given by

Li, j :=
∑

(p,u)∈Ai∩Bj

(−1)p −
∑

(p,u)∈(Ai−1)∩Bj

(−1)p.

Proof In the same way as in the proof of Lemma 4.7 we can consider

E [BH(C, T )] =
∑

(k1, l1), . . . , (k2n, l2n) ∈ Z
2
ρ

(k j , l j ) �= (k j+1, l j+1)

E

⎡
⎣ ∏

(p, j)∈[2K ]×[m]
1{(k j ,l j )∈T }

⎤
⎦

×
∏
A∈A

δ

⎛
⎝ ∑

(r,p)∈A

α(k(p)
r+1 − k(p)

r )

⎞
⎠ δ

⎛
⎝ ∑

(r,p)∈A

α(l(p)r+1 − l(p)r )

⎞
⎠ .

Hereby, E[∏(p, j)∈[2K ]×[m] 1{(k(p)
j ,l(p)j )∈T }] depends only on the number of different

(k(p)
r , l(p)r )’s. Therefore, if ((k(1)

1 , l(1)1 ), . . . , (k(2K )
m , l(2K )

m )) ∈ (Z2
ρ)(2Km) satisfies

(
k(p)
j , l(p)j

) �= (
k(p)
j+1, l

(p)
j+1

)
for all j ∈ [m], p ∈ [2K ] (4.33)

we can identify it with partitionB = (B1, . . . , Bs) of [2K ] such that (p, j) and (p′, j ′)
are belonging to the same block if and only if k(p)

j = k(p′)
j ′ . This implies thatB belongs

to U∗(2K ,m, s) since (p, j) and (p, j + 1) cannot be in the same block due to the
condition (4.33). Now B has s sets which means that we have s different values of
(k(p)

j , l(p)j ) and

E

⎡
⎣ ∏

(p, j)∈[2K ]×[m]
1{(k(p)

j ,l(p)j )∈T }

⎤
⎦ = τ s

as in (4.30). Using again the notation σB(p, j) = i if (p, j) ∈ Bi ∈ B and σ(p, 0) = 0
we get
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E [BH(C, T )] =
2n∑
s=1

τ s
∑

B∈U∗(2K ,m,s)

∑
(k1, l1), . . . , (k2n, l2n) ∈ Z

2
ρ

(ki , li ) p.w. different

×
∏
A∈A

δ

⎛
⎝ ∑

(p, j)∈A

α(kρB(p, j+1) − kρB(p, j))

⎞
⎠ δ

⎛
⎝ ∑

(p, j)∈A

α(lρB(p, j+1) ± lρB(p, j))

⎞
⎠ .

The term
∏

A∈A δ
(∑

(p, j)∈A α(lρB(p, j+1) − lρB(p, j))
)

δ
(∑

(p, j)∈A α(lρB(p, j+1)

±lρB(p, j))
)
is non-zero if and only if

∑
(p, j)∈A

α(kρB(p, j+1) − kρB(p, j)) = 0 for all A ∈ A

and

∑
(p, j)∈A

α(lρB(p, j+1) ± lρB(p, j)) = 0 for all A ∈ A.

Similar to [28] this leads to the estimate

E [B(A, T )] ≤
2Km∑
s=1

τ s
min{s,t}∑
R=0

Ds−R#{B ∈ U∗(2K ,m, s), rank L(A,B) = R}.

Since E|T | = τD this proves the lemma. ��
Using our Lemma 4.6 the previous result gives us

E

[
|((HRT )mσ)k,l |2K

]

≤
min{Km,N }∑

t=1

N !
(N − t)!

2Km∑
s=1

(E|T |)s
min{s,t}∑
R=0

Q∗(2K ,m, t, s, R)D−R

= N 2Km Z(K ,m, N ,E|T |, D)

where Q∗(2K ,m, t, s, R) are numbers defined by

Q∗(2K ,m, t, s, R)

:= #
{
(A,B),A ∈ P(2Km, t),B ∈ U∗(2K ,m, s), rank L(A,B) = R

}
.

From (4.27) we get

P(Ek,l) ≤ β−2n
n∑

m=1

Z(Km,m, N ,E|T |, D).
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Finally, again let P(failure) denote the probability that exact reconstruction of f fails.
ByLemma4.1, expressions (4.16) and (4.17), and using the fact {FT X is not injective}
⊂ {∥∥(N−1H0)

n
∥∥
F ≥ κ} we finally obtain

P(failure) ≤ P
({FT X {is not injective} ∪ {sup(k,l)∈T c |Pk,l | ≥ 1})

≤
∑

(k,l)∈Z2
ρ

P(Ek,l) + P

(∥∥∥(N−1H0

)n∥∥∥ ≥ κ
)

+ P(|T | ≥ (α + 1)E|T |)

≤ Dβ−2n
n∑

m=1

Z(Km,m, N ,E|T |, D) + κ−2W (n, N ,E|T |, D)

+ exp

(
− 3α2

6 + 2α
E|T |

)

under the conditions (see also (4.15))

a1 = a =
n∑

m=1

βn/Km < 1, a2 + a1 = 1, i.e., a2 = 1 − a,

κ

1 − κ
≤ a2

1 + a1
((α + 1)E|T |)−3/2 = 1 − a

1 + a
((α + 1)E|T |)−3/2.

This proves Theorem 3.3.

5 Applications

Although there exists a large variety of applications of quaternionic signals, in this
section we will restrict ourselves to the case of color-encoded images represented by
quaternions, i.e., the R-,G-, and B-components of the image are represented by the
I-, J-, K-components of a given quaternion, respectively. In what follows we present
some numerical experiments. Namely, we reconstruct a given signal by means of the
�1-minimization problem

min ‖x‖1 =
N∑

s=1

|xs |

s.t. �x = y, (5.1)

where � ∈ H
M×N is our quaternionic sampling matrix, y ∈ H

M×1 is the vector
consisting of chosen random pixels from the given image under the assumption that
the signal vector x ∈ H

N×1 is k-sparse, i.e., at most k entries of x are non-zero. The
support of x is the set of indexes corresponding to the non-zero entries, supp x = {s ∈
{1, . . . , N } : xs �= 0}. We aim to illustrate that an effective signal reconstruction is
possible even if using only a small amount of the signal information.

For the implementation of the �1-minimization algorithmweuse theMatlab toolbox
�1-Magic [9].
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Since a quaternion is defined as follows

q = R(q) + II (q) + JJ (q) + KK (q)

where R(q) is the real part of the quaternion and I (q), J (q) and K (q) are its three
imaginary components we have for vectors and matrices of quaternions the decompo-
sition

v = R(v) + II (v) + JJ (v) + KK (v)

M = R(M) + II (M) + JJ (M) + KK (M).

Since �1-Magicworks onlywith real-valued vectorsweneed tomodify our quaternion-
valued system. We rewrite the quaternionic multiplication (α + Iβ + Jγ + Kδ)(x +
Iy + Jv + Kw) = a + Ib + Jc + Kd as a matrix-vector multiplication, i.e.,

⎛
⎜⎜⎝

α β γ δ

−β α −δ γ

−γ δ α −β

−δ −γ β α

⎞
⎟⎟⎠
⎛
⎜⎜⎝
x
y
v

w

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
a
b
c
d

⎞
⎟⎟⎠ .

This allows us to rewrite the quaternionic linear system (5.1) in the form ỹ = Mx̃
with

M =

⎛
⎜⎜⎝

R(�) −I (�) J (�) −K (�)

−I (�) R(�) −K (�) J (�)

−J (�) K (�) R(�) −I (�)

−K (�) −J (�) I (�) R(�)

⎞
⎟⎟⎠ ,

Fig. 1 Lena—original image
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Fig. 2 Lena
image—reconstructed from
40,000 pixels

Fig. 3 Galaxy—original image

x̃ =

⎛
⎜⎜⎝
R(x)
I (x)
J (x)
K (x)

⎞
⎟⎟⎠ , and ỹ =

⎛
⎜⎜⎝
R(y)
I (y)
J (y)
K (y)

⎞
⎟⎟⎠ .

In our implementation we use the sampling matrix in its explicit form. This leads
to large requirements in terms of memory since we deal with a matrix of dimension
M×N 2. To be able to workwith such largematrices, we used a strategy of dividing the
image into 8 × 8-blocks followed by an individual reconstruction of each block. The
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Fig. 4 Galaxy
image—reconstructed from
40,000 pixels

Fig. 5 Saturn—original image

sampling matrices for the blocks themselves are constructed by using DCT (Discrete
Cosine Transform) and DST (Discrete Sine Transform). Since we study each block
individually, we obviously get the additional problem of reassembling them. To this
end we introduce reflexive boundary conditions on each block.

We performed the calculations on a computer with Intel(R) Core(TM) i7-4790U
CPU 3.60 GHz, RAM 16 GB, Windows 8.1, OS 64-bit(win64) and running Matlab
R2012b.
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Fig. 6 Saturn
image—reconstructed from
40,000 pixels

Fig. 7 Chips—original image

For our examples we choose the following images: Lena (Fig. 1), Galaxy (Fig. 3),
and the Saturn rings (Fig. 5), each with N 2 = 262,144 pixels (512 × 512). Lena
image was chosen as one of the standard examples in image processing. Galaxy and
Saturn have large black parts which of course can affect the reconstruction when by
random choice mainly black pixels are chosen. Furthermore, Saturn is also easily
visible as a gray-scale image. For the reconstruction we use 40,000 randomly chosen
pixels (M = 625 samples in each block) which corresponds to ≈15.26% of the total
information. The reconstructed images can be seen in Figs. 2, 4, and 6, respectively.
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Fig. 8 Reconstructed Chips
image using information of
10,000 pixels

Fig. 9 Comparison between number of random samples and reconstruction error

Another particularly interesting example is the chips image (Fig. 7). This image
combines textures and sharp edges and represents a kind of worst case scenario. In
this example, the image has N 2 = 65,536 pixels (256 × 256). For the reconstruction
we use 10,000 pixels (M = 625 samples in each block). Since the overall size of
the image is smaller we just use a decomposition into 4 × 4 blocks. Under the same
conditions as above (≈15.26% of the original pixels where taken as random samples)
we obtain our reconstruction (see Fig. 8).
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While the image is still blurred (as expected) it still contains all relevant details.
To show the error reduction we provide Fig. 9 which shows the relation between the

number of used pixels and the error given by the l2-norm of the matrix containing the
difference in the pixels between the original chips image (Fig. 7) and the reconstructed
image. The figure shows an exponential decay in the error. It also shows why we
opted to use the values of 10,000 pixels in the reconstruction since it is an interesting
compromise between numbers of pixels and quality of the reconstructed image.
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