
Complex Anal. Oper. Theory
DOI 10.1007/s11785-016-0544-5

Complex Analysis
and Operator Theory

Numerical Null-Solutions to Iterated Dirac Operator
on Bounded Domains

Min Ku1 · Uwe Kähler1

Received: 2 April 2015 / Accepted: 15 February 2016
© Springer International Publishing 2016

Abstract The main purpose of this paper is to study numerical null-solutions to the
iterated Dirac operator on bounded domains by using methods of discrete Clifford
analysis. First, we study the properties of discrete Euler operators, introduce its inverse
operators, and construct a discrete version of theAlmansi-type decomposition theorem
for the iterated discrete Dirac operator. Then, we give representations of numerical
null-solutions to the iterated Dirac operator on a bounded domain in terms of its
Taylor series. Finally, in order to illustrate our numerical approach, we present a
simple numerical example in form of a discrete approximation of the Stokes’ equation,
and show its convergence to the corresponding continuous problem when the lattice
constant goes to zero.

Keywords Discrete Dirac operator · Almansi-type decomposition · Taylor series ·
Numerical solutions

Mathematics Subject Classification Primary 15A66 · 35K05 · 35K08 · 39A12

Communicated by Irene Sabadini.

This work was supported in part by the Portuguese Foundation for Science and Technology
(“FCT-Fundação para a Ciência e a Tecnologia”) through the CIDMA - Center for Research and
Development in Mathematics and Applications, within project UID/MAT/04106/2013, and by the
Postdoctoral Foundation from FCT (Portugal) under Grant No. SFRH/BPD/74581/2010.

B Min Ku
kumin0844@163.com

Uwe Kähler
ukaehler@ua.pt

1 Department of Mathematics, CIDMA, University of Aveiro, Aveiro, Portugal

http://crossmark.crossref.org/dialog/?doi=10.1007/s11785-016-0544-5&domain=pdf


M. Ku, U. Kähler

1 Introduction

The Dirac equations, Maxwell equations, iterated Laplace equations, and iterated
Schrödinger equations in the higher-dimensions (cf. [1–4]) describe many physical
phenomena. It is known that these equations and their related boundary values prob-
lems (cf. [2–4]) can be studied by a factorization approach in virtue of a pair of
ladder operators constructed in Clifford analysis, which is an elegant generalization
of complex function theory to higher dimensions. Besides this, it is important to find
their numerical solutions, particularly when one has physical applications and com-
putational mechanics in mind. To this end, there are many contributions on how to
construct the discrete Dirac operator (cf. [2,5,6]), but these are based essentially on
potential theoretical arguments (cf. [2,7,8]). In [5], an alternative approach was pro-
posed based on one difference operator, i.e., either forward difference operator or
backward difference operator, but here the drawback is that it is impossible to factor-
ize the star-Laplacian (see Sect. 2). In [5,7,8], although the corresponding function
theory could be build up using polynomials, there are neither basic polynomials nor
Taylor series.

In order to overcome the shortcomings and to develop the discrete function theory
in the higher dimensions, to the authors’ knowledge, discrete Clifford analysis has
arisen as a novel branch of Clifford analysis quite recently, as can be seen in, e.g., [9–
16]. It focuses on null-solutions to the discrete Dirac operator, the so-called discrete
monogenic functions, which is a generalization of discrete analytic functions on the
complex plane (cf. [17,18]). Because the discrete Dirac operator (cf. [9,11,12,14])
by combining both forward and backward difference operators and the splitting of the
basis element into forward and backward basis elements, factorizes the star-Laplacian
it represents a refinement of discrete harmonic analysis. Moreover, by using the same
algebra asHermiteanClifford analysis, its corresponding theory of discretemonogenic
functions has been developed in several papers, like [12–16]. In [12], the authors
introduced “skew”Weyl relations, and the Lie algebra consisting of the discrete Dirac
operator, its discrete vector variable operator, and the discrete Euler operator. In [13,
15,16], the authors further constructed discrete monogenic polynomials, and studied
Taylor series expansions of discrete monogenic functions. In [14,16], the authors gave
fundamental solutions to the discrete Dirac operator, which play the same role than
fundamental solutions of the continuous Dirac operator, presented the discrete Cauchy
formula for discrete monogenic functions on half space, discussed the discrete Hilbert
transform, and proved the convergence of the results for the discrete Dirac operator to
the continuous case. As applications, this provides a way of studying numerical null-
solutions to the Dirac equations. Thus, the natural question arises as what numerical
null-solutions to the iterated discrete Dirac equations would look like. This will be
not only a purely theoretical question, but also linked to discrete physical applications
like Ising models or problems in the computational mechanics [16]. Especially, since
to obtain their numerical null-solutions we need to reduce the continuous problems
again to discrete ones.

Motivated by the above arguments, our aim is to study the structure of numerical
null-solutions to the iterated Dirac operator on bounded domains. Our main contri-
bution is to consider a discrete version of the Almansi-type decomposition theorem
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with respect to null-solutions to the iterated discrete Dirac operator, and derive explicit
numerical null-solutions to the iterated Dirac operator in terms of the Taylor series.
When the functions considered are restricted to discrete monogenic homogeneous
polynomials, the results are similar to those contained in [5,6,11,13]. Moreover, com-
pared to the results in [5,6,11,13], one of the novelties of ours is to pay attention to
explicit numerical null-solutions to the iterated Dirac operator, and show the conver-
gence theorem of our numerical null-solutions to the continuous ones. The method we
use is to first introduce the inverse of the discrete Euler operator which is more general
than the one studied in [5,6,11], and discuss its intertwining properties. This allows us
to get the Almansi-type decomposition theorem for null-solutions to the iterated dis-
crete Dirac operator. Applying it, we give representations of numerical null-solutions
to the iterated Dirac operator on a bounded domain in virtue of Taylor series. As a
special case, numerical null-solutions to the iterated Laplace operator on a bounded
domain of the higher dimensional Euclidean space are obtained. Next we illustrate our
numerical approach by means of a simple numerical example based on a laminar flow
modeled by the Stokes’ equation, and provide approximation and convergence results
when the lattice constant goes to zero. Finally, we discuss and evaluate our results. For
the sake of completeness we recall some basic facts about the discrete Dirac operator
and their underlying algebraic structure in Sect. 2.

2 Preliminaries

Let us begin with some basic facts from discrete function theory which will be needed
in the sequel. For more details refer the reader to the literature, e.g. [9,10,14].

Let Rl be the l-dimensional Euclidean space and {e j , j = 1, 2, . . . , l} be an ortho-
normal basis. ThegridhZl ofRl is denotedbyhZl =

{∑l
j=1 hm je j

∣∣∑l
j=1m je j ∈ Z

l
}
,

where h > 0 denotes the lattice constant (mesh size). The standard forward and back-
ward differences �±

j are defined by

�+
j f (mh) = h−1( f (mh + e j h) − f (mh)),

�−
j f (mh) = h−1( f (mh) − f (mh − e j h)),

with hm = h(m1e1 + . . . + mlel) ∈ hZl .

Each basis element e j , j = 1, . . . , l, will be split into two basis elements e+
j and

e−
j , i.e., e j = e+

j + e−
j , corresponding to the forward and backward directions. These

new basis elements satisfy

⎧⎪⎨
⎪⎩

e−
j e

−
k + e−

k e
−
j = 0,

e+
j e

+
k + e+

k e
+
j = 0,

e+
j e

−
k + e−

k e
+
j = δ jk,

(1)

where δ jk is the Kronecker delta. These basis elements generate a free algebra which
is isomorphic to the complexified Clifford algebra Cl [1]. Any Clifford number a in
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Cl may thus be written as a = ∑
A aAeA, aA ∈ R, where eA is a basis element of

Cl with A = { j1, . . . , jk} ⊂ {1, . . . , l}, j1 < · · · < jk , while for A = ∅, one puts
e∅ = 1, the identity element.

This discrete Dirac operator D is given by

D =
l∑

j=1

e+
j �+

j + e−
j �−

j ,

which converges to the continuous Dirac operator ∂x as h → 0 with x =∑l
j=1 e j x j (x j ∈ R), ∂x = ∑l

j=1 ∂x j , ∂x j = ∂
∂x j

. This operator factorizes the star-

Laplacian �∗
h = ∑l

j=1 �+
j �−

j , i.e.,

D2 = �∗
h,

which converges to the Laplacian � = ∑l
j=1 ∂2

x2j
as h → 0.

Let G( �= ∅) ⊂ hZl be a bounded domain containing the origin such that for
all x ∈ G the corresponding rectangle {y : |y j | ≤ |x j |} ⊆ G. Furthermore, let
� = ∪x∈G{y : |y j | ≤ |x j | + h}. Next, we consider functions defined in � and taking
values in the algebra Cl . They are of the form f = ∑

A fAeA, where fA are real-
valued. A property such as l p-summability (1 ≤ p < ∞) and so forth, are defined for a
Cl -valued function by being ascribed to each component of f , i.e., all the components
fA possess the cited property. The corresponding spaces are denoted, respectively, by
l p (�,Cl) (1 ≤ p < +∞), C (�,Cl) , C1 (�,Cl) and so on.

Definition 2.1 A function f : � → Cl is called discrete poly-monogenic if and
only if Dk f = 0, x ∈ �, where Dk f � Dk−1 (Df ) , k ∈ N. When k = 1, it
reduces to the discrete monogenic case [13,15,16]. In the sequel we consider that
k ∈ N, k ≥ 2 unless otherwise stated. In what follows, kerD j denotes the kernel of
D j , j = 1, 2, . . . , k − 1, i.e., all functions being annihilated by D j and defined in �.

We introduce the vector variable operator X (cf. [12]) corresponding to the discrete
Dirac operator D as

X =
l∑

j=1

(e+
j X

−
j + e−

j X
+
j ), (2)

where, for a fixed lattice constant h > 0, X±
j are scalar raising operators, which act

on the j-th coordinate and correspond to operators �±
j ( j = 1, 2, . . . , l) by satisfying

the Sommen–Weyl relation

�+
j X

+
j − X−

j �−
j = I,

�−
j X

−
j − X+

j �+
j = I,
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with I being the identity operator.

Definition 2.2 A discrete polynomial Pr is called homogeneous of degree
r (r ∈ N ∪ {0}) if and only if it is an eigenfunction with eigenvalue r of the discrete
Euler operator, i.e., EPr = r Pr , where the discrete Euler operator is defined by

E =
l∑

j=1

(
e+
j e

−
j X

−
j �−

j + e−
j e

+
j X

+
j �+

j

)
. (3)

3 Several lemmas

In this section we will present several lemmas before starting with our main results.

Lemma 3.1 Let X, D, l, and E be as defined in Sect. 2, and denote E+ν by Eν, ν > 0.
Then we have

DX + XD = 2E l
2
, (4)

EX − XE = X, (5)

DE − ED = D. (6)

Proof By direct calculation or checking in [12]. �
Lemma 3.2 Let D and Eν, ν > 0, be as defined in Lemma 3.1. Then one has

DEν = Eν+1D. (7)

Proof By Eν = E + ν, ν > 0, following Lemma 3.1, we get

DEν = D (E + νI) = ED + D + νID = (E + (1 + ν)I) D.

�
Definition 3.3 Let Pr be the set of all discrete homogeneous polynomials of degree
r, r ∈ N ∪ {0}. For arbitrary Pr ∈ Pr , we define the operator Iν : Pr → Pr , ν > 0,
via

Iν Pr �→ 1

r + ν
Pr .

Lemma 3.4 (cf. [15])Let� be as defined in Sect. 2 and f be defined in�. If f ∈ kerD
then we have

f (hm) =
+∞∑
r=0

Pr f (hm), Pr f ∈ Pr , hm ∈ �, (8)
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where the discrete homogeneous polynomial of degree r is given by

Pr f (hm) =
∑
|α|=r

1

α1!α2! . . . αl !Vα(mh)∂
αl
l . . . ∂

α1
1 f (0), (9)

and the discrete monogenic polynomials

Vα = CK [ξα2
2 . . . ξ

αl
l [1]]

are given by the discrete CK-extension of the discrete homogeneous monomials
ξ

α2
2 . . . ξ

αl
l [1]. Hereby, the discrete operators and discrete homogeneous monomials

are given by

∂ j = e+
j �+

j + e−
j �−

j , ξ j = e+
j X

+
j + e−

j X
−
j , j = 1, 2, . . . , l,

ξ rj [1](x j ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x j
(
e+
j + e−

j

)
, r = 1,

(
x2j + thx j (e

+
j e

−
j − e−

j e
+
j )

) t−1∏
i=1

(
x2j − h2i2

)
, r = 2t,

x j
t∏

i=1

(
x2j − h2i2

) (
e+
j + e−

j

)
, r = 2t + 1.

(10)

Furthermore, if the series of the right side of equality (8) is normally convergent in �,
then it exactly represents the Taylor series expansion in � of the discrete monogenic
function f .

Remark 3.5 It is easy to check that the discrete homogeneous polynomials (10) do
not satisfy the binomial identity:

ξ rj [1](x j + y j ) =
r∑

s=0

Cs
r ξ

r
j [1](x j )ξ rj [1](y j ), r ∈ N, r ≥ 2,

where Cs
r denoting the binomial coefficients and neither do the discrete Cauchy–

Kovalevskaya extensions of them [13,15].

Corollary 3.6 Let Iν be as defined in Lemma 3.3. Then Iν can be extended linearly
onto the space of discrete monogenic functions kerD defined in �.

Proof Observing (8), in�, the series of the right side of equality (8) is always normally
convergent. Associating Lemma 3.4 with Definition 3.3, Corollary 3.6 follows. �
Remark 3.7 After further observation of (8), under the given conditions the series
converges to the Taylor series in Theorem 11.3 of [1] when h → 0.

There is an importance consequence of our observations: since the discrete Euler
operator is defined by means of both forward and backward difference operators in the
setting of discrete Clifford analysis, whose algebraic structure is different from that of
Clifford analysis, as can be seen in, e.g., [1,19,20], it is impossible to directly follow



Numerical Null-Solutions to Iterated Dirac Operator

the way of the integral operators to determine its inverse. However, noticing the fact
that the Taylor series expansion of the discrete monogenic functions, which is defined
in a bounded domain, is always convergent, our idea is to define the inverse operator
of the discrete Euler operator by means of using the discrete Taylor series expansion
(cf. [13,15]). This is the cornerstone of this approach.

Lemma 3.8 Let Eν and Iν be as defined in Lemma 3.1 and Definition 3.3. Then we
have

Eν Iν = IνEν = I, (11)

where I is the identity operator acting on kerD.

Proof For an arbitrary function f ∈ kerD defined in �, there exists a Taylor series
expansion, which is normally convergent, seen in [15],

f (x) =
+∞∑
r=0

Pr (x), x ∈ �,

where Pr ∈ Pr , with Pr being same as in Definition 3.3.
Hence, we get

Eν Iν f =
+∞∑
r=0

Eν (Iν Pr ) = f, f ∈ kerD.

Applying Lemma 3.2, since f ∈ kerD we get Eν f ∈ kerD. Therefore, starting with
Corollary 3.6 and associating it with Lemma 3.4 we obtain that in the bounded domain

� the series
+∞∑
r=0

r Pr is normally convergent to Eν f . Hence, we obtain

IνEν f =
+∞∑
r=0

Iν(Eν Pr ) = f, f ∈ kerD.

�
Remark 3.9 In Lemma 3.8, we restrict the considered operators to the kernel kerD.
In essence, following Definition 3.3, the result of Lemma 3.8 still holds on Pr .

Lemma 3.10 Let Iν and D be as defined in Definition 3.3 and Sect. 2. Then one gets

DIν Pr = Iν+1DPr on Pr . (12)

Moreover, if f ∈ kerD then Iν f ∈ kerD.
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Proof For an arbitrary discrete homogeneous polynomial Pr , i.e., Pr ∈ Pr , by apply-
ing Lemma 3.8 we obtain

DIν Pr = Iν+1Eν+1DIν Pr = Iν+1DEν Iν Pr = Iν+1DPr .

Furthermore, considering Pr ∈ Pr ∩ kerD the result follows. �
Remark 3.11 Lemmas 3.8 and 3.10 characterize the properties of the discrete Euler
operator and its inverse, which is similar to the continuous case as it can be seen in,
e.g., [19–21].

Lemma 3.12 Let Iν, I and D be as defined in Lemma 3.10, and define an operator
Qk, k ∈ N by

Qk =
(
1

2

)k

R−1
k R−1

k−1 . . . R−1
1 with R−1

k =
{

1
s I, if k = 2s, s ∈ N,

Is+ l
2
, if k = 2s + 1, s ∈ N.

(13)

Then, for arbitrary k ∈ N, one has

Dk(XkQk f ) = f, f ∈ kerD. (14)

Proof By Definition 3.3 Qk given by (13) is well defined on kerD. Moreover, by
combining it with Lemma 3.8 the inverse of Qk exists on kerD and will be denoted
by Q−1

k , i.e.,

Q−1
k = 2k R1 . . . Rk−1Rk with Rk =

{
sI, if k = 2s, s ∈ N,

Es+ l
2
, if k = 2s + 1, s ∈ N.

(15)

Applying Lemmas 3.10 and 3.2 we get

QkkerD = kerD, i.e., DQk f = 0 for arbitrary f ∈ kerD, (16)

Q−1
k kerD = kerD, i.e., DQ−1

k f = 0 for arbitrary f ∈ kerD. (17)

When k ∈ N for arbitrary f ∈ kerD we get

D(XkQk f ) =
{
2sXk−1Qk f, if k = 2s, s ∈ N

2Xk−1Es+ l
2
Qk f, if k = 2s + 1, s ∈ N

= Xk−1(RkQk f ),

(18)

by direct calculation and using (15) we obtain

Dk(XkQk f ) = 2k R1 . . . Rk−1RkQk f = f. (19)

The proof of the lemma is complete. �
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Remark 3.13 The technique used in Lemma 3.12 is of the same flavor as the one
which appeared in [6,20–22]. Here, the difference lies in the fact that the discrete
Dirac operator is different from the one studied in [5,6,11]. This means that the Euler
operator defined in Definition 2.2 is different from the Euler operator discussed in
[5,6,11].

4 Main Results

In this section we will present the main results of this paper.

Theorem 4.1 If f is defined in � belonging to hZl and is a null-solution to Dk,
i.e., Dk f = 0 (k ∈ N, k ≥ 2), then there exits uniquely defined discrete monogenic
functions f j ( j = 0, 1, 2, . . . , k − 1), satisfying the decomposition

f (hm) = f0(hm) + X f1(hm) + X2 f2(hm) + . . . + Xk−1 fk−1(hm). (20)

The discrete monogenic functions f j ( j = 0, 1, 2, . . . , k − 1) can be expressed by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

fk−1 = Qk−1D
k−1 f,

fk−2 = Qk−2D
k−2(I − Xk−1Qk−1D

k−1) f,
fk−3 = Qk−3D

k−3(I − Xk−2Qk−2D
k−2)(I − Xk−1Qk−1D

k−1) f
.
.
.

.

.

.

f1 = Q1D(I − X2Q2D
2) . . . (I − Xk−2Qk−2D

k−2)(I − Xk−1Qk−1D
k−1) f,

f0 = (I − XQ1D)(I − X2Q2D
2) . . . (I − Xk−2Qk−2D

k−2)(I − Xk−1Qk−1D
k−1) f.

(21)

Hereby, X is defined in (2), Xk f � Xk−1 (X f ), Q j , j = 1, 2, . . . , k −
1 (k ∈ N, k ≥ 2) , I are given by (13) of Sect. 3. With other words we have

kerDk = kerD ⊕ XkerD ⊕ X2kerD ⊕ · · · ⊕ Xk−1kerD. (22)

Conversely, if f j ∈ kerD ( j = 0, 1, 2, . . . , k − 1) , k ∈ N, k ≥ 2, then
∑k−1

j=0 X
j f j ∈

kerDk.

Remark 4.2 When k = 2s, s ∈ N, kerD2s is in fact ker(�∗
h)

s = { f : � →
Cl

∣∣(�∗
h)

s f = D2s f = 0}. Hereby, we have the convergence of the discrete oper-
ator (�∗

h)
s → �s , the iterated Laplace operator, as h → 0. If f ∈ ker(�∗

h)
s

Theorem 4.1 provides a unique decomposition of discrete poly-harmonic functions
defined in �, i.e., the null-solutions to (�∗

h)
s , into discrete monogenic functions.

When the dimension of the space is l = 2 then the discrete Dirac operator D reduces
to D2 = ∑2

j=1 e
+
j �+

j + e−
j �−

j and converges to the Dirac operator
∑2

j=1 e j∂x j ,

as h → 0, where R
2 =

{∑2
j=1 e j x j : x j ∈ R, j = 1, 2

} ∼= C. This implies that

Theorem 4.1 provides a unique decomposition of the discrete poly-analytic functions
defined in �, i.e., the null-solutions to Dk

2, k ∈ N, k ≥ 2, whose limits are poly-
analytic functions (cf. [19]), into discrete analytic functions (cf. [17,18]), i.e., the
null-solutions to the discrete Dirac operator D2 = ∑2

j=1 e
+
j �+

j + e−
j �−

j .
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Remark 4.3 Although similar results can be observed in [5,6,11], there is a difference:
in our case Theorem 4.1 holds for any discrete monogenic function defined on a
bounded domain while in [6] its existence depends on the domain of convergence
of the series f = ∑+∞

s=0 fs with respect to a Hilbert space, where fs is a Clifford-
valued homogeneous polynomial of degree s (see B.3. Proof of Lemma 3.3 in [6]).
The dependence on the domain of convergence of the given series happens in [5,11],
too.

Theorem 4.4 If f is a null-solution to Dk (k ∈ N, k ≥ 2) defined in � of hZl then
we have

f (hm) =
+∞∑
r=0

k−1∑
j=0

Pj,r (hm), hm ∈ �, (23)

where α = (α1, α2, . . . , αl) , αp ∈ N (p = 1, 2, . . . , l), and for each r ∈ N, j =
0, 1, 2, . . . , k − 1, k ∈ N, k ≥ 2,

Pj,r (hm) =
∑
|α|=r

1

α1!α2! . . . αl !Vα(hm)∂
αl
l . . . ∂

α1
1 Q j D

j
k−1∏

t= j+1

(I − Xt Qt D
t ) f (0).

Remark 4.5 Theorem 4.4 represents null-solutions to the iterated discrete Dirac oper-
ator defined in � in terms of basic discrete monogenic homogeneous polynomials.
This means that we get numerical null-solutions to the iterated Dirac operator defined
in a bounded domain in virtue of the discrete Taylor series.

Remark 4.6 The Almansi-type decomposition theorem mentioned in [5,13] can be
derived for the space of discrete poly-monogenic functions. Conversely, by observing
the fact that the Taylor series expansion of the discrete monogenic functions defined in
a bounded domains is finite the Almansi-type decomposition theorem for the space of
discrete poly-monogenic functions can be obtained by applyingFischer decomposition
[13]. However, this is not described in [13]. Moreover, in the continuous case [20,21,
23] the case is a bit different: although the Almansi-type decomposition theorem for
the space of poly-monogenic functions can be also derived from the Almansi-type
decomposition theorem mentioned in [23], its existence might depend on the domain
of convergence of the Taylor series expansion for monogenic function.

5 Proof of Our Main Results

In this section we will give the proof of our main results.
Proof of Theorem 4.1

Proof For arbitrary k ∈ N, k ≥ 2 we will first prove

kerDk = kerDk−1 + Xk−1kerD. (24)
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By using Lemma 3.12 for arbitrary f ∈ kerD we have

Dk(Xk−1 f ) = D[(Dk−1Xk−1Qk−1Q
−1
k−1 f )] = DQ−1

k−1 f = 0. (25)

Therefore, we get

Xk−1kerD ⊂ kerDk .

Since kerDk−1 ⊂ kerDk we have kerDk−1 + Xk−1kerD ⊂ kerDk .
Next, we will show that kerDk ⊂ kerDk−1 + Xk−1kerD.
In fact, for arbitrary f ∈ kerDk , we have D(Dk−1 f ) = 0 and

f = (I − Xk−1Qk−1D
k−1) f + Xk−1Qk−1D

k−1 f. (26)

Since Dk−1 f ∈ kerD by (16) we obtain Qk−1Dk−1 f ∈ kerD. Furthermore, as we
have

Dk−1(I − Xk−1Qk−1D
k−1) f = Dk−1 f − Dk−1Xk−1Qk−1D

k−1 f = 0 (27)

from Lemma 3.12 we get

(I − Xk−1Qk−1D
k−1) f ∈ kerDk−1.

This implies that (24) holds.
Finally, we will show the uniqueness of our decomposition (24).
Let us assume that there exists another decomposition for an arbitrary f ∈ kerDk

such that

f = f̃ + Xk−1 f̃k−1 with f̃ ∈ kerDk−1 and f̃k−1 ∈ kerD. (28)

Applying Dk−1 on both sides of (28) we get

Dk−1 f = Dk−1 f̃ + Dk−1Xk−1 f̃k−1 = Dk−1Xk−1 f̃k−1 = Q−1
k−1 f̃k−1. (29)

Hence, we have

f̃k−1 = Qk−1D
k−1 f,

and

f̃ = (I − Xk−1Qk−1D
k−1) f.

The result now follows by simple induction.
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Conversely, noting that, for j = 0, 1, . . . , k−1, D j (X j f ) = 2 j R1R2 . . . R j f, we
obtain

Dk

⎛
⎝

k−1∑
j=0

X j f

⎞
⎠ = 0.

The proof of the theorem is complete. �
Proof of Theorem 4.4

Proof Since f ∈ kerDk by Theorem 4.1 we have

f (hm) = f0(hm) + X f1(hm) + X2 f2(hm) + · · · + Xk−1 fk−1(hm), hm ∈ �,

(30)

where

f j = Q j D
j

k−1∏
t= j+1

(I − Xt Qt D
t ) f ∈ kerD, j = 0, 1, 2, . . . , k − 1,

with D, X, I, Q j as the same operators as those in Lemma 3.12, and

Q0D
0 = I,

k−1∏
t= j+1

(I − Xt Qt D
t ) = I

for j = k − 1.
By using Lemma 3.4, we get

f (hm) =
+∞∑
s=0

k−1∑
j=0

X j Pj,s(hm), hm ∈ �, (31)

where, for arbitrary hm ∈ �,

Pj,s(hm) =
∑
|α|=s

1

α1!α2! . . . αl !Vα(hm)∂
αl
l . . . ∂

α1
1 Q j D

j
k−1∏

t= j+1

(I − Xt Qt D
t ) f (0),

as seen in (9). It follows the result. �

6 A Simple Numerical Example

In this section we give a simple example on how to apply the discrete Almansi-type
decomposition theorem in Sect. 4 and how to obtain numerical null-solutions to the
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iterated Dirac operator. Afterwards we derive error estimates between null-solutions
to the iterated Dirac operator and our calculated numerical null-solutions.

Let us consider Stokes’ equation:

⎧⎨
⎩

�u + 1
η
gradp = 0,

divu = 0,
u|
 = g,

(32)

where the parameter u represents the velocity field and p is the pressure, both are
defined over a domainU with sufficiently smooth boundary
.We additionally assume
thatU is star-like with respect to the origin. Furthermore, η denotes the viscosity. This
system describes the stationary flow of a homogeneous viscous incompressible fluid
for small Reynold numbers. The non-appearance of the density is due to the absence
of external forces. The necessary condition for solvability is

∫


gdσ = 0.

Introducing two new auxiliary functions ϕ and ψ with u = Dϕ and 1
η
p = �ψ , we

obtain the system

⎧⎨
⎩

D3(ϕ + ψ) = 0,
ScDϕ = 0.
Dϕ|
 = g,

(33)

which leads to the question of determining a poly-monogenic function under certain
conditions. Hereby, we have thatψ is scalar-valued while the second equation implies
that u = D ∧ ϕ and, therefore, ϕ is a pure vector-valued function, so that f = ψ + ϕ

and we arrive at the problem

{
D3 f = 0,
D f |
 = g.

(34)

Hereby, f is uniquely determined up to a monogenic and a harmonic function.
We discretize our continuous domain U with an equidistant square lattice with

mesh-width h, i.e., Uh = U ∩ hZ. The boundary of the discrete domain consists of
all points mh ∈ Uh which have at least one neighboring point who does not belong to
Uh . This means that we can use the discrete Dirac operator defined over an equidistant
lattice with mesh-width h, i.e.,

D3 fh(mh) = 1

h3

⎛
⎝

l∑
j=1

e+
j �+

j + e−
j �−

j

⎞
⎠

3

fh(mh) = 0 (35)

for mh ∈ hZ ∩ U . Using a simple scaling argument this domain and the discrete
function can be mapped to a bounded lattice of mesh-width one, i.e., the case consid-
ered in the previous sections. From our Almansi-type decomposition we get for the
representation of our solution fh the expression

fh(mh) = fh,0(mh) + X fh,1(mh) + X2 fh,2(mh).



M. Ku, U. Kähler

We can choose the discrete monogenic function fh,0 as being zero since it has no
influence to our final solution as it belongs to the kernel of the discrete boundary value
problem, i.e., the set of functions from the kernel which fulfill the boundary conditions
with zero right-hand side. Thus, D3 fh,0 = 0 on Uh and Dfh,0 = 0 on the boundary.
To incorporate the boundary condition we have to calculate Df . Here, we get

Df (mh) = DX fh,1(mh) + DX2 fh,2(mh)

= 2E l
2
fh,1(mh) + 2E l

2−1X fh,2(mh).

According to Lemma 3.4 we can expand fh,1 and fh,2 into the following Taylor series
(i = 1, 2)

fh,i (hm) =
+∞∑
r=0

∑
|α|=r

1

α1!α2! · · · αl !Vα(hm)∂
αl
l . . . ∂

α1
1 fh,i (0).

Since our discrete domain is bounded, the above Taylor series is in fact a finite series

fh,i (hm) =
N∑

r=0

∑
|α|=r

1

α1!α2! . . . αl !Vα(hm)∂
αl
l · · · ∂α1

1 fh,i (0), i = 1, 2, (36)

where N denotes the discrete maximum distance of the points on the lattice hZ ∩ U
from the origin.

Applying Eν and X we get for i = 1, 2

Eν fh,i (hm) =
N∑

r=0

∑
|α|=r

(ν + r)
1

α1!α2! . . . αl !Vα(hm)∂
αl
l . . . ∂

α1
1 fh,i (0),

X fh,i (hm) =
l∑

j=0

N∑
r=0

∑
|α|=r

1

α1!α2! . . . αl !V(α1,...,α j+1,...,αl )(hm)∂
αl
l . . . ∂

α1
1 fh,i (0).

Substituting the above expressions in our Eq. (35) we obtain the following linear
system for the determination of the unknown coefficients

g(mh) = l

2
[1](hm)c(0,...,0),1

+
N∑

r=1

∑
|α|=r

Vα(hm)

[(
l

2
+ r

)
1

α!cα,1

+
(
l

2
+ r − 1

) l∑
j=1

1

α1! . . . (α j − 1)! . . . αl !cα− j,2

⎤
⎦ , (37)

whereby, cα− j,2 denotes c(α1,...,α j−1,...,αl ),2 and cα,i stands for the unknown coeffi-
cients ∂

αl
l . . . ∂

α1
1 fh,i (0).
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Regarding the error estimate for the proposed method, we have a problem that there
are no convergence estimates for above given discrete monogenic Taylor series in the
literature. Therefore, let us start with the following lemma.

Lemma 6.1 For a real-analytic function f over a bounded domain U, the difference
between the discrete and the continuous Taylor series can be estimated by

∣∣∣∣∣∣
∞∑
r=0

∑
|α|=r

1

α1!α2! . . . αl ! x
α f (α)(0)

−
∞∑
r=0

∑
|α|=r

1

α1!α2! . . . αl !ξ
α1
1 . . . ξ

αl
l [1]∂α1

1 . . . ∂
αl
l f (0)

∣∣∣∣∣∣
≤ C

lhN+1

4(N + 1)
,

where C = ‖ f ‖CN+1 denotes the norm of f in CN+1.

Proof Let us start with the estimate of

∣∣∣∣∣
N∑

k=0

ξ kj [1](x j )∂k1 f (0) −
∞∑
k=0

xkj f
(k)
j (0)

∣∣∣∣∣ ,

where f (k)
j denotes the k-th partial derivative with respect to x j . Here we need to

point out that the first polynomial is interpolating at the lattice points m jh with the
coefficients given by the divided differences, i.e., it is in fact a version of Newton
interpolation in the variable x j . Trivially, this leads to the following estimate. There
exists a point c ∈ U such that

∣∣∣∣∣
N∑

k=0

ξ kj [1](x j )∂k1 f (0) −
∞∑
k=0

(x j )
k f (k)(0)

∣∣∣∣∣ =
∣∣∣∣∣

1

(N + 1)! f
(N+1)(c)

N∏
k=0

(x j − m jh)

∣∣∣∣∣ ,

which can be estimated by

hN+1

4(N + 1)
sup
c∈�

| f (N+1)(c)|.

Now, going iteratively over all space dimensions we have

∣∣∣∣∣∣
∞∑
r=0

∑
|α|=r

1

α1!α2! . . . αl ! x
α f (α)(0)

−
∞∑
r=0

∑
|α|=r

1

α1!α2! . . . αl !ξ
α1
1 [1]x (α2,...,αl )∂

α1
1 f (α2,...,αl )(0)
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+
∞∑
r=0

∑
|α|=r

1

α1!α2! . . . αl !ξ
α1
1 [1]x (α2,...,αl )∂

α1
1 f (α2,...,αl )(0)

−
∞∑
r=0

∑
|α|=r

1

α1!α2! . . . αl !ξ
α1
1 ξ

α2
2 [1]x (α3,...,αl )∂

α1
1 ∂

α2
2 f (α3,...,αl )(0)

. . .

−
∞∑
r=0

∑
|α|=r

1

α1!α2! . . . αl !ξ
α1
1 . . . ξ

αl
l [1]∂α1

1 . . . ∂
αl
l f (0)

∣∣∣∣∣∣

≤ C
lhN+1

4(N + 1)
,

where C = ‖ f ‖CN+1 . �
Let us now take a closer look at our approximation by discrete monogenic polyno-

mials.

Lemma 6.2 Let f be a real analytic function which is normal with respect the x1-
axis. For the difference between the discrete and continuous CK-extension we have
the estimate

|CKh[ f ](x) − CK [ f ](x)| ≤ Ch,

where C > 0 denotes a constant.

Proof Let us remark that in the following proof C is always denoting a constant, but
can be different from line to line. For the discrete CK-extension

CKh[ f ] =
∞∑
k=0

ξ k1 [1](x1)
k! Dk f,

and the continuous CK-extension

CK [ f ] =
∞∑
k=0

(e1x1)k

k! ∂k f,

we have

CKh[ f ] − CK [ f ] =
∞∑
k=0

ξ k1 [1] − (e1x1)k

k! Dk f +
∞∑
k=0

(e1x1)k

k! (Dk − ∂k) f,

where D denotes the discrete Dirac operator of dimension l − 1 and ∂ denotes the
continuous Dirac operator of dimension l − 1. In both sums the terms for k = 0
vanishes. Furthermore, the first sum is a finite sum with k ≤ N and the term for k = 1
being zero, too. This means that for the first term we have
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Fig. 1 Channel

∞∑
k=0

ξ k1 [1] − (e1x1)k

k! Dk f

= −
�N/2�∑
k=1

(
x21 + khx1(e

+
1 e

−
1 − e−

1 e
+
1 )

) k−1∏
i=1

(
x21 − h2i2

) − x2k1

2k! D2k f

+
�N/2�∑
k=1

x1
t∏

i=1

(
x21 − h2i2

)
e1 − (x1e1)2k+1

(2k + 1)! D2k+1 f,

which leads to the estimate
∣∣∣∣∣

∞∑
k=0

ξ k1 [1] − (e1x1)k

k! Dk f

∣∣∣∣∣ ≤ Ch.

For the second term we have the estimate
∣∣Dk f (x) − ∂k f (x)

∣∣ ≤ C lhk+1

4(4k+1) which
results in the estimate
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Fig. 2 2D cross-section for y = 0.2 with h = 0.2

∣∣∣∣∣
∞∑
k=1

(e1x1)k

k! (Dk − ∂k) f

∣∣∣∣∣ ≤ C
∞∑
k=0

|x1|k
k!

lhk+1

4(4k + 1)
= Clh

∞∑
k=1

|x1|k
k!

hk

4(4k + 1)

≤ Clh
(
e|x1|h − 1

)
.

�
Additionally we can state the following lemma (cf. [14,16]).

Lemma 6.3 Let f ∈ C1(U ) and let us denote by Xc the continuous vector variable
operator. Then we have for the difference between the discrete and the continuous
vector variable operators X and Xc

|X f (x) − Xc f (x)| ≤ Ch,

where C > 0 denotes a constant.

Since we have Vα = CKh[ξα2
2 . . . ξ

αl
l [1]] the above lemmas result in the following

convergence result.

Theorem 6.4 Let f be the solution of the continuous problem, i.e., ∂k f = 0, and fh
the solution of the discrete problem, i.e., Dk f = 0, where D is defined in Sect. 2 and

∂ =
l∑

j=1
e j

∂
∂x j

. Then
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Fig. 3 2D cross-section for y = 0.6 with h = 0.2

| f (x) − fh(x)| ≤ Ch,

where C > 0 denotes a constant.

Next, before finishing this section, let us describe our numerical experiment. To
present a numerical example in 3D,we consider a laminar flow in a rectangular channel
with reducing cross-section diameter, where the diameter is understood in metrical
sense as the maximum distance between two points of the set. The domain can be seen
in Fig. 1.

The Reynolds number is being put to 1. As boundary conditions we assume
the incoming velocity to be u = (1, 0, 0) m/s and the outgoing velocity to be
u = (4, 0, 0) m/s, whereby, the physical unit m stands for meter, s for second, and m/s
for meter per second, respectively. On the other boundaries we have no-slip boundary
conditions. The calculations were done on a PC (processor i7, 8 GB RAM).

We discretize with h = 0.2 m in each dimension (10 points in each direction). The
solution on the first discretization level can be seen in Figs. 2 and 3 as a 2D-cross-
section for y = 0.2m/s and y = 0.6m/s, respectively. The velocity field is represented
as vectors while the pressure is shown as continuous lines.

The results for a higher discretization where the step-length h was halved are given
by Figs. 4 and 5.
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Fig. 4 2D cross-section for y = 0.2 with h = 0.1

7 Discussion and Outlook

The Almansi-type decomposition theorem in Clifford analysis gives the characteriza-
tion of the conservation relationship between the space of poly-monogenic functions
and the space of monogenic functions (cf. [20] or elsewhere). Moreover, by using
it many boundary value problems and growth orders for null-solutions of iterated
Dirac operators are solved by transferring them to those for null-solutions to the Dirac
operator (cf. [19,24]). Very recently, in the setting of discrete Clifford analysis, a
discrete Hilbert boundary value problem has been considered (cf. [16]). However,
to the authors’ knowledge, discrete Hilbert value problems for null-solutions to iter-
ated discrete Dirac operators have not been looked at, yet. This will be not only a
purely theoretical question, since such problems are closely linked to discrete physi-
cal applications like Ising models or problems in computational mechanics (cf. [16]).
In our idea, a discrete version of the Almansi-type decomposition theorem might
provide a possible tool to study discrete Hilbert boundary value problems for null-
solutions to iterated discrete Dirac operators. Therefore, as a first step in this context
we introduced the discrete Euler operator and its inverse based on the observation
that the discrete Taylor series expansion of a discrete monogenic function defined in a
bounded domains is always convergent, and then derive the Almansi-type decomposi-
tion theorem for the space of discrete poly-monogenic functions defined in a bounded
domain of hZl(h > 0). As a special case when discrete monogenic functions are
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Fig. 5 2D cross-section for y = 0.6 with h = 0.1

restricted to discrete monogenic polynomials our results reduce to those in [13] while
they are similar to those in [5,6,11] due to the fact that different discrete Dirac opera-
tors were considered. Furthermore, following our proof of the discrete Almansi-type
decomposition theorem, we obtain a numerical method to determine null-solutions to
iterated Dirac equations in bounded domains and show error estimates between the
discrete solutions and the continuous ones.Moreover, our basic idea in this context can
be extended to null-solutions to iterated discrete heat operators and iterated discrete
wave operators. For the next step, by applying the obtained discrete Almansi-type
decomposition theorem, we will discuss discrete Hilbert boundary value problems for
null-solutions to iterated discrete Dirac operators in a forthcoming paper.
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