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1. Introduction

A function f(z), z = x + iω, that has continuous partial derivative with respect to x and ω up to order
n � 1 on the whole complex plane C is called a polyanalytic function on C if it satisfies the generalized
Cauchy–Riemann equation

∂nf

∂zn
= 0, ∀z ∈ C, (1.1)

where the Cauchy–Riemann operator is defined by

∂

∂z
= 1

2

(
∂

∂x
+ i

∂

∂ω

)
. (1.2)

Polyanalytic functions inherit some of the properties of analytic functions, often in a nontrivial form. How-
ever, many of the properties break down once we leave the analytic setting. A clear difference lies in the
structure of the zeros. A theory on polyanalytic functions had been investigated thoroughly, notably by the
Russian school led by Balk [5], and provided extensions of the classical operators from complex analysis [6].
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It is well known that there exists a close connection between the classical Bargman–Fock space of analytic
functions and the time-frequency analysis. Specifically, up to a certain weight, the Gabor transform (also
called short-time Fourier transform or windowed Fourier transform) with a Gaussian window is tightly
related to the Bargmann transform and the corresponding Fock space of analytic functions [10]. Moreover,
it had been shown that this is the only choice leading to spaces of analytic functions [4].

Recently, a series of works have been devoted to the theory of the vector-valued Gabor frames (sometimes
called Gabor superframe) with Hermite functions [1,9,11,12]. It is worth pointing out that a new connection
between polyanalytic functions and time-frequency analysis is established. Actually, the Gabor transform
with the kth Hermite function is shown to be a polyanalytic function of order k+1, which is corresponding to
the true polyanalytic Bargmann transform of order k, a unitary mapping between the Hilbert spaces and true
polyanalytic Fock spaces [1–3]. The polyanalytic Fock space of order n can be orthogonally decomposed into
a superposition of all true polyanalytic Fock spaces up to order n−1. Moreover, the concept of interpolating
and sampling sequences corresponds to the case where stable numerical reconstruction of a function from its
samples is possible [13]. A complete characterization of all lattice sampling and interpolating sequence was
developed for the Fock space of polyanalytic functions, or equivalently, for all vector-valued Gabor frames
with Hermite functions [1]. Furthermore, in [2], the authors studied the structure of Gabor and super-Gabor
space and obtained an explicit formula of reproducing kernel for the Fock space of polyanalytic functions.

As mentioned briefly in Balk’s monography [5], polyanalytic functions can be extended to more general
cases, such as metaanalytic functions. Metaanalytic functions are closely connected with many applications
in mathematics and physics, some works on them had captured the attention of many researchers [8,14–16].

In this paper, our original goal is to deal with the Fock space of metaanalytic functions, which is a
generalization of the Fock space of polyanalytic functions, recently proposed by Abreu [1,2]. We establish
the definition of the metaanalytic Bargmann transform and prove it to be a unitary mapping between
vector-valued Hilbert spaces and metaanalytic Fock spaces. Moreover, we obtain an explicit formula for
the reproducing kernel of the metaanalytic Fock space from which growth estimates can be derived. As for
sampling and interpolating in the Fock space of metaanalytic functions, we show them to be equivalent to
the cases in the Fock space of polyanalytic functions.

This paper is organized as follows: Section 2 is devoted to reviewing some definitions and basic properties
of metaanalytic functions and the Bargmann transform. In Section 3, we provide the definitions of the true
metaanalytic Bargmann transform and metaanalytic Bargmann transform, and show some properties of
them. In Section 4, we proceed with the study of the reproducing kernel in the metaanalytic Fock space.
Furthermore, in Section 5, we establish a complete characterization of all lattice sampling and interpolating
sequence for the Fock space of metaanalytic functions.

2. Preliminaries

2.1. Metaanalytic functions

To generalize the definition of polyanalytic function given by (1.1), let

Mn :=
n∑

k=0

(
n

k

)
(−λ)n−k ∂k

∂zk
=
(

∂

∂z
− λ

)n

(2.1)

be a polynomial of Cauchy–Riemann operator ∂
∂z defined by (1.2), where λ is a complex constant.

Definition 2.1. A function f(z) that has continuous partial derivatives with respect to x and ω up to order
n � 1 is called a metaanalytic function of order n on C if it satisfies Mnf = 0 on C, denoted by f ∈ Mn(C),
where the operator Mn is defined by (2.1).
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In particular, if we take λ = 0 in (2.1), then Mn(C) is just the class of polyanalytic functions of order n
on C denoted by Pn(C). Obviously, P1(C) denotes the class of the entire functions on C. It is well known
that we have the following two decomposition theorems (see [5] or [16] for details).

Theorem 2.2 (Decomposition theorem). If g(z) ∈ Pn(C), then there exists uniquely the expression

g(z) =
n−1∑
k=0

zkϕk(z), with ϕk(z) ∈ P1(C), z ∈ C,

that is to say, it holds Pn(C) =
⊕n−1

k=0 z
kP1(C).

Theorem 2.3 (Factorization theorem). If f(z) ∈ Mn(C), then there exist unique functions ϕ1 ∈ Pn(C) and
ϕ2 ∈ Pn(C) such that

f(z) = ϕ1(z)eλz = ϕ2(z)eλz−λz, ∀z ∈ C. (2.2)

Corollary 2.1. If functions ϕ ∈ Pn(C), then the associated functions

f(z) = ϕ(z)eλz−λz, ∀z ∈ C (2.3)

are metaanalytic functions of order n, i.e., f ∈ Mn(C).

It is easy to check that the factor eλz−λz in (2.2) satisfies the following properties∣∣eλz−λz
∣∣ = 1 (2.4)

and

eλz−λzeλz−λz = 1, (2.5)

which will be fundamental together with Theorems 2.2 and 2.3 in what follows.

2.2. The Bargmann transform

The Gabor transform of a function f ∈ L2(R) with respect to a non-zero window function g ∈ L2(R) is
defined, for every x, ω ∈ R, by

Vgf(x, ω) =
∫
R

f(t)g(t− x)e−2πitω dt = 〈f,MωTxg〉L2(R), (2.6)

where the translation operator Tx and modulation operator Mω are defined by Txg(t) = g(t−x), Mωg(t) =
e2πiωtg(t), respectively. The following relation on inner products of the Gabor transform, called orthogonal
relations and corresponding to Parseval’s identity, will be used. Let f1, f2, g1, g2 ∈ L2(R). Then Vgjfj ∈
L2(R2) for j = 1, 2, and it holds

〈Vg1f1, Vg2f2〉L2(R2) = 〈f1, f2〉L2(R)〈g1, g2〉L2(R). (2.7)

In particular, if we choose the Gaussian window h0(t) = 21/4e−πt2 as a window function in (2.6), then a
simple calculation leads to

Vh0f(x,−ω) = eπiωx−π |z|2
2 Bf(z), z = x + iω, (2.8)
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where Bf(z) denotes the Bargmann transform of a function f ∈ L2(R), defined by

Bf(z) := 21/4e−πz2/2
∫
R

f(t)e−πt2e2πtz dt. (2.9)

The Bargmann transform B is a unitary mapping between the Hilbert space L2(R) and the Fock space
F(C), consisting of all entire functions F ∈ P1(C) such that

‖F‖2
F(C) :=

∫
C

∣∣F (z)
∣∣2e−π|z|2 dz < ∞.

The inner product on F(C) is

〈F,G〉F(C) :=
∫
C

F (z)G(z)e−π|z|2 dz.

As we all know, the set {hn}∞n=0 of the Hermite functions, defined by

hn(t) := cne
πt2 dn

dtn
e−2πt2 , n = 0, 1, 2, . . . , (2.10)

forms an orthonormal basis in L2(R), where the coefficients cn are chosen in order to have ‖hn‖L2(R) = 1
and h0(t) corresponds to the Gaussian function mentioned above. The collection of the image of the Hermite
functions under the Bargmann transform B is the set {en}∞n=0, the natural orthonormal basis in the Fock
space F(C),

Bhn(z) = en(z), (2.11)

where the monomials en(z) = (πn

n! )1/2zn, n = 0, 1, 2, . . . .
The reproducing kernel of the Fock space F(C) is the function eπzw, precisely,

F (z) =
〈
F (w), eπzw

〉
F(C), ∀F ∈ F(C). (2.12)

We introduce the shift βz : F(C) → F(C) (see [12], change the notation with ζ replaced by z in Eq. (26)),
defined by

βzF (ζ) := e−πiωx−π |z|2
2 eπzζF (ζ − z), z = x + iω. (2.13)

Then the operator βz is unitary on the Fock space F(C), and the Bargmann transform B intertwines the
Fock space shift and the time-frequency shift:

βzB = BM−ωTx, z = x + iω. (2.14)

3. Metaanalytic Fock space and metaanalytic Bargmann transform

3.1. Metaanalytic Fock space and true metaanalytic Fock space

The so-called metaanalytic Fock space, denoted by Fn
λ(C), is the Hilbert space consisting of all metaan-

alytic functions f ∈ Mn(C) of order n given by Definition 2.1, and such that

‖F‖2
Fn

λ(C) :=
∫
C

∣∣F (z)
∣∣2e−π|z|2 dz < ∞.
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The inner product on Fn
λ(C) is

〈F,G〉Fn
λ(C) :=

∫
C

F (z)G(z)e−π|z|2 dz.

Observe also that this implies

〈F,G〉Fn
λ(C) = 〈F,G〉L2(R2,e−π|z|2 ) =

〈
e−π |z|2

2 F, e−π |z|2
2 G

〉
L2(R2).

We remark that the metaanalytic Fock space Fn
λ(C) reduces to the polyanalytic Fock space Fn

0 (C) if we
take λ = 0 and to the Fock space F(C) when λ = 0 and n = 1, i.e., F1

0(C) = F(C), with the same inner
product.

Theorems 2.2 and 2.3 and Corollary 2.1 imply that the metaanalytic Fock space Fn
λ(C) admits the

following decomposition in terms of the so-called true metaanalytic Fock spaces Fk
λ (C), k = 0, 1, . . . , n− 1,

Fn
λ(C) = F0

λ(C) ⊕F1
λ(C) ⊕ · · · ⊕ Fn−1

λ (C), (3.1)

where the true metaanalytic Fock spaces Fk
λ (C) is also the Hilbert space of all metaanalytic functions

ψ ∈ Mk+1(C) satisfying

ψ(z) = eλz−λzzkϕk(z), ϕk(z) ∈ P1(C), k = 0, 1, . . . , n− 1,

with the same inner product as that in the metaanalytic Fock spaces.

3.2. True metaanalytic Bargmann transform

Consider general Hermite functions hn defined by (2.10) as a window functions for the Gabor transform
in (2.6). Using the shift operator βz defined by (2.13), recall that an easy computation (see [12] or [1] for
details) leads to

eπ
|z|2
2 −πiωxVhk

f(x,−ω) = Bkf(z), (3.2)

where Bkf(z) is the so-called true polyanalytic Bargmann transform of order k, defined by

Bkf(z) :=
(
πkk!

)−1/2
k∑

j=0

(
k

j

)
(−πz)j

(
d

dz

)k−j

Bf(z)

=
(
πkk!

)−1/2
eπ|z|

2 ∂k

∂zk
[
e−π|z|2Bf(z)

]
. (3.3)

It is clear that (3.2) is a generalization of (2.8). By (3.3) and Theorem 1.1 we see that Bkf(z) ∈ Pk+1(C).
Associated with Corollary 2.3, we give the following definition for the metaanalytic case.

Definition 3.1. The true metaanalytic Bargmann transform of order k, of a function on R, is defined for
k = 0, 1, . . . , n− 1 by the formula

Bk
λf(z) :=

(
πkk!

)−1/2
eλz−λzeπ|z|

2 ∂k

∂zk
[
e−π|z|2Bf(z)

]
, (3.4)

where the Bargmann transform Bf(z) is defined as in (2.9).
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Note that Bk
0 is the true polyanalytic Bargmann transform Bk given by (3.3) and B0

0 is the Bargmann
transform B defined by (2.9).

We will provide the fundamental properties of the true metaanalytic Bargmann transform Bk
λ following

the line of [1]. Based on (3.2), (2.4) and Corollary 2.1, the proof of the following theorem is straightforward.
For simplicity, we omit it here (see [1, Proposition 1] for details).

Theorem 3.2.

(1) If f(t) is a function on R with polynomial growth, then its true metaanalytic Bargmann transform
Bk

λf(z), given by (3.4), is a metaanalytic function of order k + 1 on C, i.e., Bk
λf(z) ∈ Mk+1(C).

(2) If we write z = x + iω, then Bk
λ is related to the Gabor transform with Hermite windows hk(t) in the

following way

Vhk
f(x,−ω) = eπiωx−π |z|2

2 eλz−λzBk
λf(z), (3.5)

where the Hermite functions hk are defined as in (2.10).
(3) If f ∈ L2(R), then Bk

λf(z) ∈ Fk
λ (C) and∥∥Bk
λf
∥∥
Fk

λ(C) = ‖f‖L2(R), k = 0, 1, . . . , n− 1. (3.6)

The true metaanalytic Bargmann transform Bk
λ keeps the unitary property as the Bargmann transform B

and true polyanalytic Bargmann transform Bk.

Theorem 3.3. The true metaanalytic Bargmann transform Bk
λ, defined as in (3.4), is an isometric isomor-

phism

Bk
λ : L2(R) → Fk

λ(C), k = 0, 1, . . . , n− 1. (3.7)

Proof. By (3.6) we know that Bk
λ is isometry. Now we only need to show that Bk

λ maps an orthonormal
basis of L2(R) to an orthonormal basis of Fk

λ(C). Since the sets {hm}∞m=0 of the Hermite functions, defined
by (2.10), forms an orthonormal basis in L2(R), for a fixed k, 0 � k � n − 1, by Theorem 3.2 we consider
the image of the Hermite functions hm under the true metaanalytic transform Bk

λ

ek,m(z) = Bk
λhm(z), m = 0, 1, 2, . . . . (3.8)

On the one hand, for a fixed k, the set {ek,m}∞m=0 is an orthonormal system of the true metaanalytic Fock
spaces Fk

λ (C). In fact, by (2.4), (2.7) and (3.5) a simple calculation leads to

〈ek,m, ek,j〉Fk
λ(C) =

〈
Bk

λhm, Bk
λhj

〉
Fk

λ(C)

=
〈
eπ

|z|2
2 −πiωxeλz−λzVhk

hm, eπ
|z|2
2 −πiωxeλz−λzVhk

hj

〉
Fk

λ(C)

= 〈Vhk
hm, Vhk

hj〉L2(R2)

= 〈hm, hj〉L2(R)

= δm,j .

On the other hand, for a fixed k, to prove the completeness of the set {ek,m}∞m=0 in the true metaanalytic
Fock spaces Fk

λ (C), we start by supposing that F ∈ Fk
λ (C) is such that

〈F, ek,m〉Fk
λ(C) = 0, m = 0, 1, 2, . . . ,
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that is to say, by (2.5), (3.4) and (3.8) we have〈
eλz−λzF,Bkhm

〉
L2(C,e−π|z|2 ) = 0,

where the true polyanalytic Bargmann transform Bk is defined by (3.3) and eλz−λzF is a metaanalytic func-
tion in terms of Corollary 2.1. Consequently, due to the fact that the set {Bkhm(z)}∞m=0 is an orthonormal
basis in the true polyanalytic Fock space (see [1, Proposition 2]), we obtain eλz−λzF = 0, ∀z ∈ C, which
implies F = 0. �

Based on the proof of Theorem 3.6, it follows that {ek,m}∞m=0 is an orthonormal basis of the true
metaanalytic Fock spaces Fk

λ(C), thus, for 0 � k � n− 1 we have

Fk
λ(C) = Span

[
{ek,m}∞m=0

]
.

Furthermore, on account of (3.1), we can also check the fact that the set {{ek,m}∞m=0}n−1
k=0 forms an or-

thonormal basis of the metaanalytic Fock spaces Fn
λ(C).

3.3. Metaanalytic Bargmann transform

Suppose fk ∈ L2(R), k = 0, 1, . . . , n− 1, consider the Hilbert space H = L2(R,Cn) consisting of vector-
valued functions f = (f0, f1, . . . , fn−1) with the inner product

〈f ,g〉H :=
n−1∑
k=0

〈fk, gk〉L2(R). (3.9)

Moreover, associated with the true metaanalytic Bargmann transform Bk
λ defined as in (3.4), the metaan-

alytic Bargmann transform of a vector-valued function f = (f0, f1, . . . , fn−1) is defined by

Bn
λf(z) :=

n−1∑
k=0

Bk
λfk(z). (3.10)

The principle significance of the following theorem is that it allows us to discuss the main result regarding
sampling in the metaanalytic Fock space Fn

λ(C).

Theorem 3.4. The metaanalytic Bargmann transform Bn
λf , defined as in (3.10), is an isometric isomorphism

Bn
λ : H → Fn

λ(C).

Proof. At first, we prove the isometry. For the true metaanalytic Bargmann transform Bk
λ defined as in (3.4),

by Theorem 3.2 we have Bk
λfk ∈ Fk

λ (C). Since Fk
λ (C) ⊂ Fn

λ(C), k = 0, . . . , n − 1, we consider the inner
product

〈
Bk

λfk, B
j
λfj

〉
Fn

λ(C) =
〈
eπ

|z|2
2 −πiωxeλz−λzVhk

fk, e
π |z|2

2 −πiωxeλz−λzVhj
fj
〉
Fn

λ(C)

= 〈Vhk
fk, Vhj

fj〉L2(R2)

= 〈hk, hj〉L2(R)〈fk, fj〉L2(R)

= δk,j〈fk, fj〉L2(R), (3.11)

where we use (2.5), (2.7) and (3.5). Then, by (3.11) we obtain
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∥∥Bn
λf
∥∥2
Fn

λ(C) =
〈
Bn

λf ,Bn
λf
〉
Fn

λ(C) =
〈

n−1∑
k=0

Bk
λfk,

n−1∑
j=0

Bj
λfj

〉
Fn

λ(C)

=
n−1∑
k=0

〈fk, fk〉L2(R) = ‖f‖H.

Moreover, Bn
λ[H] is dense in Fn

λ(C). In fact, by the decomposition (3.1), every element F ∈ Fn
λ(C) can

be written as F =
∑n−1

k=0 Fk, where Fk ∈ Fk
λ (C), k = 0, 1, . . . , n − 1. Since Theorem 3.4 tells us that Bk

λ

is a unitary mapping between L2(R) and Fk
λ(C), there exists fk ∈ L2(R) such that Fk = Bk

λfk for every
0 � k � n− 1. It follows that F = Bn

λf with f = (f0, f1, . . . , fn−1). �
4. Reproducing kernel in metaanalytic Fock space

Denote the subspace of L2(R2), which is the image of L2(R) under the Gabor transform with window
functions g ∈ L2(R), by Sg such that

Sg :=
{
Vgf(x,−ω): f ∈ L2(R)

}
.

It is well known (see [7]) that the Gabor spaces Sg have a reproducing kernel given by

Kg(u, η, x, ω) = 〈M−ωTxg,M−ηTug〉L2(R). (4.1)

We remark that we use the time-frequency shift M−ωTx in (4.1) to get the reproducing kernel here because
we use the Gabor transform Vgf(x,−ω) to establish the relation to the metaanalytic Bargmann transform
Bk

λf(z) in (3.5).
Analogously to the proof of Theorem 2 in [2], a reproducing kernel of Gabor spaces with Hermite win-

dows hk, defined by (2.10), can be provided by

Khk
(w, z) = 1

k!e
iπ(uη−xω)+π |w|2−|z|2

2
∂k

∂wk

[
eπzw−π|w|2(w − z)k

]
(4.2)

with z = x + iω and w = u + iη. Note that we slightly modify the result given by Theorem 2 in [2] due
to the reason that we use intertwining relation (2.13) and (2.14), which are a little different from the cases
introduced in [2].

Since the Fock space F(C) is related to the Gabor transform with the Gaussian window h0, setting k = 0,
this reproducing kernel can be related with the reproducing kernel of the Fock space in the following way

Kh0(w, z) = eiπ(uη−xω)−π |w|2+|z|2
2 eπzw,

where K0(w, z) = eπzw is the reproducing kernel of the Fock space F(C) given in (2.12).
Furthermore, by (3.5) we see that the true metaanalytic Fock space Fk

λ (C) is related to the Gabor space
with Hermite functions hk, 0 � k � n− 1. Then, we show that the true metaanalytic Fock space Fk

λ(C) has
a reproducing kernel and compute it explicitly associated with (4.2).

Theorem 4.1. Let Khk
(w, z) be the reproducing kernel of the Gabor space Shk

. Then, the true metaanalytic
Fock space Fk

λ (C) is a Hilbert space with a reproducing kernel, Kk(z, w), satisfying

Kk(w, z) = eπi(ωx−ηu)+π |w|2+|z|2
2 eλ(z−w)−λ(z−w)Khk

(w, z). (4.3)
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Proof. Given F ∈ Fk
λ (C), from (3.5) it follows that there exists f ∈ Shk

such that

f(z) = eπiωx−π |z|2
2 eλz−λzF (z).

Since Shk
is a Hilbert space with the reproducing kernel Khk

(w, z), the reproducing property yields

f(z) =
〈
f(w),Khk

(w, z)
〉
L2(R),

or

eπiωx−π |z|2
2 eλz−λzF (z) =

〈
eπiηu−π |w|2

2 eλw−λwF (w),Khk
(w, z)

〉
L2(R)

=
〈
eπiηu+π |w|2

2 eλw−λwF (w),Khk
(w, z)

〉
Fk

λ(R).

Thus, we obtain

F (z) =
〈
eπi(ηu−ωx)+π |w|2+|z|2

2 eλ(z−w)−λ(z−w)F (w),Khk
(w, z)

〉
Fk

λ(R)

=
〈
F (w), eπi(ωx−ηu)+π |w|2+|z|2

2 eλ(z−w)−λ(z−w)Khk
(w, z)

〉
Fk

λ(R)

=
〈
F (w),Kk(w, z)

〉
Fk

λ(R). �
Combining (4.3) and (4.2) leads to an explicit representation for the reproducing kernel of the true

metaanalytic Fock space Fk
λ(C) given by

Kk(w, z) = 1
k!e

π|w|2eλ(z−w)−λ(z−w) ∂k

∂wk

[
eπzw−π|w|2(w − z)k

]
. (4.4)

Note that Fk
0 (C) is the true polyanalytic Fock space. If we take λ = 0 in (4.4), we recover the reproducing

kernel of the true polyanalytic Fock space Fk
0 (C) (see [2, Corollary 5]). If we take λ = 0 and k = 0,

F0
0 (C) = F(C) accordingly, then (4.4) reduces to the reproducing kernel in the Fock space given by (2.12).
Recall the fact that, valid in any Hilbert space H with a reproducing kernel K(w, z), if we can estimate

the diagonal function K(z, z), we automatically have estimates for the growth of an arbitrary function
F ∈ H according to

|F | =
∣∣〈F,K(·, z)

〉
H

∣∣ � ‖F‖H
∥∥K(·, z)

∥∥
H = ‖F‖H

√
K(z, z). (4.5)

Therefore, based on (4.4) and (4.5), an estimate can be derived for the modulus of the metaanalytic functions
F ∈ Fk

λ (C), k = 0, 1, . . . , n− 1,

|F | � ‖F‖Fk
λ(C)

√
K(z, z) =

(
1
k!

)1/2
eπ

|z|2
2 ‖F‖Fk

λ(C).

Applying (3.1), we also see that reproducing kernel of the metaanalytic Fock space Fk
λ(C) is given as

Kn(w, z) = eπ|w|2eλ(z−w)−λ(z−w)
n−1∑
k=0

1
k!

∂k

∂wk

[
eπzw−π|w|2(w − z)k

]
,

and that every function F ∈ Fk
λ(C) satisfies

|F | �
(

n−1∑
k=0

1
k!

)1/2

eπ
|z|2
2 ‖F‖Fk

λ(C).
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5. Sampling and interpolating in metaanalytic Fock space

5.1. Sampling in metaanalytic Fock space

Let Λ = AZ2 be a lattice in R2, where A is a non-singular real 2 × 2-matrix. Let s(Λ) = | detA| be the
volume of a fundamental domain of Λ. The density of Λ is defined by d(Λ) = s(Λ)−1 so that d(Λ) coincides
with the usual notions of density. In what follows, we will use the notion Γ = {z = x + iω} to indicate the
complex sequence associated with the sequence Λ = (x, ω).

First of all, let us recall the definition of the Gabor superframe for the Hilbert space H = L2(R,Cn).

Definition 5.1. Let f = (f0, f1, . . . , fn−1) and g = (g0, g1, . . . , gn−1). The vector-valued system G(g, Λ) =
{MωTxg}(x,ω)∈Λ is a Gabor superframe for H = L2(R,Cn) if there exist positive constants C and D such
that, for arbitrary f ∈ H,

C‖f‖2
H �

∑
(x,ω)∈Λ

∣∣〈f ,MωTxg〉H
∣∣2 � D‖f‖2

H, (5.1)

where the inner product 〈·,·〉H is defined as in (3.9).

On the other hand, we give the definition of sampling sequence in the metaanalytic Fock space Fn
λ(C).

Definition 5.2. Γ is a sampling sequence for the metaanalytic Fock space Fn
λ(C) if there exist positive

constants C and D such that, for arbitrary F ∈ Fn
λ(C),

C‖F‖2
Fn

λ(C) �
∑
z∈Γ

∣∣F (z)
∣∣2e−π|z|2 � D‖F‖2

Fn
λ(C). (5.2)

The following lemma is a key step of the argument in [1] where the unitary of the polyanalytic Bargmann
transform is essential. For more details, we refer the reader to Lemma 2 in [1].

Lemma 5.3. Let hn = (h0, h1, . . . , hn−1), where the Hermite functions hk(t) are defined by (2.10). The
vector-valued system G(hn, Λ) is a Gabor superframe for H = L2(R,Cn) if and only if the associated
complex sequence Γ is a sampling sequence for the polyanalytic Fock space Fn

0 (C).

Observe that Theorem 3.4 shows that the metaanalytic Bargmann transform Bn
λf , defined as in (3.10),

is a unitary mapping between H and Fn
λ(C). The following result may be proved in much the same way as

Lemma 5.3.

Lemma 5.4. Let hn = (h0, h1, . . . , hn−1), where the Hermite functions hk(t) are defined by (2.10). The
vector-valued system G(hn, Λ) is a Gabor superframe for H = L2(R,Cn) if and only if the associated
complex sequence Γ is a sampling sequence for the metaanalytic Fock space Fn

λ(C).

Proof. Based on (3.9), (3.10) and (3.5), a simple calculation leads to

〈f ,MωTxhn〉H =
n−1∑
k=0

〈fk,MωTxhk〉L2(R)

=
n−1∑
k=0

eπiωx−π |z|2
2 eλz−λzBk

λf(z)

= eπiωx−π |z|2
2 eλz−λzBn

λf(z).
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Therefore, applying (2.4) and setting F = Bn
λf(z), the unitary of the metaanalytic Bargmann transform

Bn
λf(z) shows that the inequality (5.2) is equivalent to the inequality (5.1), which completes the proof. �
Combining Lemmas 5.3 and 5.4 yields the following theorem which provides the relationship of sampling

sequence between the metaanalytic Fock space Fn
λ(C) and polyanalytic Fock space Fn

0 (C).

Theorem 5.5. Γ is a sampling sequence for the metaanalytic Fock space Fn
λ(C) if and only if Γ is a sampling

sequence for the polyanalytic Fock space Fn
0 (C).

Moreover, we recall the characterization of sampling lattice in the polyanalytic Fock space Fn
0 (C) (see

[1, Theorem 4]).

Lemma 5.6. The associated complex sequence Γ is a sampling sequence for the polyanalytic Fock space Fn
0 (C)

if and only if the density d(Γ ) > n.

Thus, combining Theorem 5.5 and Lemma 5.6, we obtain the following theorem which gives a character-
ization of sampling lattice in the metaanalytic Fock space Fn

λ(C).

Theorem 5.7. Γ is a sampling sequence for the metaanalytic Fock space Fn
λ(C) if and only if the density

d(Γ ) > n.

5.2. Interpolating in metaanalytic Fock space

Definition 5.8. The sequence Γ is an interpolating sequence for the metaanalytic Fock space Fn
λ(C) if, for

every sequence {αm,j} ∈ l2, there exists a function F (z) ∈ Fn
λ(C) such that

eπiωx−π |z|2
2 eλz−λzF (z) = αm,j

holds for every z ∈ Γ .

As mentioned before, when λ = 0, the metaanalytic Fock space Fn
λ(C) reduces to the polyanalytic Fock

space Fn
0 (C). We remark here that Definition 5.8 is a generalization of the definition of interpolating sequence

for the polyanalytic Fock space (see [1, Definition 7]).
Moreover, we proceed to establish the relation of interpolating sequence between the metaanalytic Fock

space Fn
λ(C) and polyanalytic Fock space Fn

0 (C), which allows us to adapt the result of the interpolating
sequence in the polyanalytic Fock space Fn

0 (C) to our case.

Theorem 5.9. The sequence Γ is an interpolating sequence for the metaanalytic Fock space Fn
λ(C) if and

only if the sequence Γ is an interpolating sequence for the polyanalytic Fock space Fn
0 (C).

Proof. Suppose that the sequence Γ is an interpolating sequence for the metaanalytic Fock space Fn
λ(C).

Then, by Definition 5.8 we have, for every sequence {αm,j} ∈ l2, there exists a function F (z) ∈ Fn
λ(C) such

that

eπiωx−π |z|2
2 eλz−λzF (z) = αm,j

holds for every z ∈ Γ . Set G(z) := eλz−λzF (z). According to Corollary 2.1 and (2.4), we see that
G(z) ∈ Fn

0 (C). Therefore, for every sequence {αm,j} ∈ l2, there exists a function G(z) ∈ Fn
0 (C) such
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that eπiωx−π |z|2
2 G(z) = αm,j holds for every z ∈ Γ , which means that the sequence Γ is an interpolating

sequence for the polyanalytic Fock space Fn
0 (C), and vice versa. �

As before, we recall the characterization of interpolating lattice in the polyanalytic Fock space Fn
0 (C)

(see [1, Theorem 6]).

Lemma 5.10. The lattice Γ is an interpolating sequence for the polyanalytic Fock space Fn
0 (C) if and only if

the density d(Γ ) < n.

Thus, combining Theorem 5.9 and Lemma 5.10 leads to a characterization of interpolating lattice in the
metaanalytic Fock space Fn

λ(C).

Theorem 5.11. The lattice Γ is an interpolating sequence for the metaanalytic Fock space Fn
λ(C) if and only

if the density d(Γ ) < n.
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