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The problem of describing interpolating sequences for analytic and harmonic functions is

rather old. L. Carleson [6–8] studied the problem for the complex case since 1959. In [8] L.

Carleson and J. Garnett proved for the space of bounded harmonic functions in the upper half

space that if a sequence is uniformly discrete and the points fulfil a certain density condition for

any Carleson cube, then the sequence can be written as a finite union of interpolating sequences.

It is not known if this two sufficient conditions are also necessary. Because of the importance of

this problem, this study was extended by other authors [2, 4, 11, 14, 15, 23, 26–28, 30]. In [12]

it was even extended to the unit ball in Cn and in [5] to the case of positive harmonic functions

in the unit disk. Unfortunately, most of the proofs in the complex case make heavy use of

Blaschke products, a tool which is unavailable if one wants to extend this results to the case

of the real unit ball in higher dimensions. But there exists another powerful tool in complex

analysis, the pseudohyperbolic metric. It is defined in terms of Möbius transformations, which

map the unit disk onto the unit disk. Because Möbius transformations can be generalized to

higher dimensions (see [1]), we can also consider the pseudohyperbolic metric in this setting
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and show its Möbius invariance. Our aim is to take a closer look into its properties and use

them to study uniformly discrete sequences for harmonic Bergman spaces. To this end, we will

follow the work of P. Duren and R. Weir [12] for the case of Cn and establish a parallel theory

for Rn. Hereby, one needs to establish similar arguments, but in the real case the theory is

not as “complete” as in the case of several complex variables (see Ahlfors [1]). In our main

result, we give necessary and sufficient conditions for uniformly discrete sequences for the case

of harmonic Bergman spaces over the unit ball in Rn.

1 Möbius Transformations and Pseudohyperbolic Metric

Let Bn be the open unit ball in Rn, that is, the set of points {x : |x| < 1}.

We shall be using the following notation: we will write x, y ∈ Rn in polar coordinates by

x = |x|x′ and y = |y|y′.

For any a ∈ B, denote by ϕa the Möbius transformation in B. It is an involution automor-

phism of B such that ϕa(0) = a and ϕa(a) = 0, which is of the form (see [1])

ϕa(x) =
|x − a|2a − (1 − |a|2)(x − a)

||x|a − x′|2
, a, x ∈ B. (1.1)

For the denominator, we will also use the abbreviation [1],

h(x, y) = ||x|y − x′|.

Furthermore, h(x, y) = h(y, x) by the symmetry lemma, and

h(x, y)2 = (1 − |x|2)(1 − |y|2) + |x − y|2.

It is well known that

|ϕa(x)| =
|x − a|

||a|x − a′|
, (1.2)

1 − |ϕa(x)|2 =
(1 − |x|2)(1 − |a|2)

||a|x − a′|2
. (1.3)

Theorem 1.1 For the Möbius transformation ϕa(x), a, x, y ∈ Bn, we have

h(ϕa(x),ϕa(y)) =
h(a, a)h(x, y)

h(a, y)h(x, a)
. (1.4)

Proof Let Jϕa(x) denote the Jacobian matrix of ϕa at x and denote |Jϕa(x)| =

| detJϕa(x)|1/n. Then (see [1]),
Jϕa(x)

|Jϕa(x)|
∈ O(n),

O(n) being the orthogonal group; moreover,

|Jϕa(x)| =
1 − |a|2

(1 − |x|2)(1 − |a|2) + |x − a|2
=

h(a, a)

h(x, a)2
,

|ϕa(x) − ϕa(y)| = |Jϕa(x)|1/2|Jϕa(y)|1/2|x − y|.

From these, we get

|ϕa(x) − ϕa(y)| =

√

h(a, a)

h(a, x)

√

h(a, a)

h(a, y)
|x − y|.

Thus, for the term h(ϕa(x),ϕa(y)), we have

h(ϕa(x),ϕa(y))2 = (1 − |ϕa(x)|2)(1 − |ϕa(y)|2) + |ϕa(x) − ϕa(y)|2
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=
h(a, a)h(x, x)

h(a, x)2
h(a, a)h(y, y)

h(a, y)2
+

h(a, a)2

h(a, x)2h(y, a)2
|x − y|2

=
h(a, a)2

h(a, x)2h(a, y)2
(h(x, x)h(y, y) + |x − y|2)

=
h(a, a)2

h(a, x)2h(a, y)2
h(x, y)2.

!

Furthermore, M̂ denotes the group generated by all similarities of Rn together with the

reflection in the unit sphere and M the subgroup which keeps the unit ball invariant. Let us

remark that any ϕ ∈ M can be written as the composition of an orthogonal transformation in

the orthogonal group O(n) with a Möbius transformation, that is, M = {Kϕa : K ∈ O(n), a ∈

B}.

The pseudohyperbolic metric for the unit ball is defined by

ρ(x, y) = |ϕy(x)| , x, y ∈ Bn.

For this metric, we have the following well-known properties:

1. ρ(x, y) ≥ 0 and ρ(x, y) = 0 ⇔ x = y,

2. ρ(x, y) = ρ(y, x),

3. ρ(x, y) ≤ ρ(x, z) + ρ(z, y),

4. ρ(Kx, Ky) = ρ(x, y), ∀ K ∈ O(n).

The first three points show that ρ(·, ·) defines indeed a metric. These assertions except the

triangle inequality come easily from the identity (1.3). Indeed, for the first point we remark

that if ρ(x, y) = 0, then we have |ϕx(y)| = 0, so that

1 = 1 − |ϕx(y)|2 =
(1 − |x|2)(1 − |y|2)

(1 − |x|2)(1 − |y|2) + |x − y|2
,

which implies x = y. Again from (1.3), it is easy to see that

1 − |ϕx(y)|2 = 1 − |ϕy(x)|2 = 1 − |ϕKy(Kx)|2

and it yields the second and fourth statements. Their proof can be found in [22] for the real

unit ball and in [29] (p.100) for the complex unit ball. We shall need the Möbius invariant

property and the strengthened triangle inequality.

Theorem 1.2 For any a, x, y ∈ Bn, we have

ρ(ϕa(x),ϕa(y)) = ρ(x, y);

and
|ρ(x, a) − ρ(a, y)|

1 − ρ(x, a)ρ(a, y)
≤ ρ(x, y) ≤

ρ(x, a) + ρ(a, y)

1 + ρ(x, a)ρ(a, y)
.

Proof For the Möbius invariance, we apply the identity

1 − |ϕa(x)|2 =
h(a, a)h(x, x)

h(a, x)2
,

so that

(1 − |ϕa(x)|2)(1 − |ϕa(y)|2) =
h(a, a)h(x, x)

h(a, x)2
h(a, a)h(y, y)

h(a, y)2
.
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By (1.4), we have

h(ϕa(x),ϕa(y)) =
h(a, a)h(x, y)

h(a, y)h(x, a)
.

Therefore, we get

1 −
∣

∣ϕϕa(x)(ϕa(y))
∣

∣

2
=

(1 − |ϕa(x)|2)(1 − |ϕa(y)|2)

h(ϕa(x),ϕa(y))2

=
h(x, x)h(y, y)

h(x, y)2
= 1 − |ϕx(y)|2.

Regarding the last statement, we can assume a = 0 in view of the Möbius invariance. In

this case, we have ρ(x, 0) = |x|, so that the statement can be rewritten as

||x|− |y||

1 − |x||y|
≤

|x − y|

||x|y − x′|
≤

|x| + |y|

1 + |x||y|
.

Notice that

|x − y|2

||x|y − x′|2
≤

(|x| + |y|)2

(1 + |x||y|)2

⇔
|x|2 + |y|2 − 2⟨x, y⟩

1 + |x|2|y|2 − 2⟨x, y⟩
≤

|x|2 + |y|2 + 2|x||y|

1 + |x|2|y|2 + 2|x||y|

⇔ (1 − |x|2)(1 − |y|2)(|x||y| + ⟨x, y⟩) ≥ 0.

In a similar way, we obtain

||x|− |y||2

(1 − |x||y|)2
≤

|x − y|2

||x|y − x′|2

⇔ (1 − |x|2)(1 − |y|2)(|x||y|− ⟨x, y⟩) ≥ 0.

which completes the proof. !

Let νn denote the Lebesgue measure in Rn, normalized so that νn(Bn) = 1, and let σn be the

corresponding measure on the surface of the unit sphere ∂Bn, normalized so that σn(∂Bn) = 1.

Then,
∫

Rn

f(x)dνn(x) = n

∫ ∞

0
rn−1

∫

∂Bn

f(rξ)dσn(ξ)dr

for any function f ∈ L1(Rn).

The invariant (Haar) measure on Bn is given by dτn(x) = dνn(x)
(1−|x|2)n

. The hyperbolic volume

of a measurable set Ω ⊂ Bn is defined by

τn(Ω) =

∫

Ω

dνn(x)

(1 − |x|2)n
.

Hereby, we obtain the fact that the hyperbolic volume is preserved under the action of Möbius

transformations τn(ϕa(Ω)) = τn(Ω), a ∈ Bn. Let us denote the pseudohyperbolic ball with

center a ∈ Bn and radius r ∈ (0, 1) by

∆(a, r) = {x ∈ Bn : |ϕa(x)| < r}.

As ϕ0(x) = −x, ∆(0, r) is the true Euclidean ball |x| < r. As the Möbius transformation

is an involution, ∆(a, r) = ϕa(∆(0, r)). Now, we give an estimate for the hyperbolic volume

τn(∆(a, r)) in Rn. We like to think of it as the equivalent result to the hyperbolic volume in

Duren/Weir [12], but here an explicit calculation is not possible.
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Lemma 1.3 For any a ∈ Bn, r ∈ (0, 1), and n ≥ 2, we have

1

2

rn

(1 − r2)n−1
≤ τn(∆(a, r)) ≤

rn

(1 − r2)n−1
.

Proof Because of the Möbius invariance, we have for the hyperbolic volume of ∆(a, r)

τn(∆(a, r)) = τn(∆(0, r)) =

∫

∆(0,r)

dνn(x)

(1 − |x|2)n
= n

∫ r

0

tn−1

(1 − t2)n
dt

= n

∫ r

0

∞
∑

k=0

Γ(n + k)

k!Γ(n)
t2k+n−1dt = rn

∞
∑

k=0

1

k!Γ(n − 1)

Γ(n + k)

2k + n
r2k.

We would like to remark that

Γ(n − 1 + k)

2
≤

Γ(n + k)

2k + n
≤ Γ(n − 1 + k).

Now,
∞
∑

k=0

Γ(n−1+k)
k!Γ(n−1) r2k = 1

(1−r2)n−1 gives us the desired result.

We would like to mention that, unlike in the complex case of Cn [12], τn(∆(a, r)) is only

equivalent to rn(1 − r2)−n+1, but not equal its scale multiple. In fact, otherwise there exists a

constant C independent of r ∈ (0, 1) such that

n

∫ r

0

tn−1

(1 − t2)n
dt = C

rn

(1 − r2)n−1
,

so that by derivating both sides, we reach a contradiction. !

For 0 < p < ∞, the harmonic Bergman space Lp
h(Bn) consists of all functions f harmonic

in Bn, that is,

∆f(x) :=

(

∂2

∂x2
1

+ · · · +
∂2

∂x2
n

)

f(x) = 0, ∀ x ∈ Bn,

and with finite volume integral

∥f∥p
p =

∫

Bn

|f(x)|pdνn(x) < ∞.

Lemma 1.4 Let 0 < p < ∞ and 0 < r < 1, and define s ∈ (r, 1). Then, for each a ∈ Bn,

and any x ∈ ∆(a, r), the inequality

|f(x)|p ≤
C

sn

∫

∆(a,s)
|f(ξ)|pdνn(ξ), ∀ f ∈ Lp

h(Bn),

holds for some constant C depending only on n and p.

One well-known fact is that harmonic functions are not invariant under Möbius trans-

formations in higher dimensions. But if f is harmonic, then ||x|a − x′|2−nf(ϕa(x)) is again

harmonic [13].

2 Uniformly Discrete Sequences in the Ball

A sequence Γ = {xk}∞k=1 ⊂ Bn is said to be uniformly discrete if there exists a positive

constant δ ∈ (0, 1) such that
∣

∣ϕxj
(xk)

∣

∣ ≥ δ > 0

for all j ̸= k. The number δ(Γ) = inf
j ̸=k

|ϕxj
(xk)| is called the separation constant of Γ.
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Lemma 2.1 If {xk}∞k=1 is a uniformly discrete sequence in Bn with separation constant

δ, then,
∞
∑

k=1

(1 − |xk|
2)n|f(xk)|p ≤ C

(

1

δ

)n ∫

Bn

|f(x)|pdνn(x)

for any f ∈ Lp
h(Bn), where C is a constant independent of f and δ.

Proof By the triangle inequality, the pseudohyperbolic balls ∆(xk, δ2 ) are pairwise dis-

joint. Moreover, one obstacle for our proof is the fact that harmonic functions are not invariant

under Möbius transformations in higher dimensions. But we obtain the result that if f is

harmonic, then ||x|a − x′|2−nf(ϕa(x)) is again harmonic [13]. Now,
∫

Bn

|f(x)|pdνn(x) ≥
∞
∑

k=1

∫

∆(xk, δ

2
)
|f(x)|p(1 − |x|2)ndτn(x)

=
∞
∑

k=1

∫

∆(0, δ

2
)
|f(ϕxk

(ξ))|p(1 − |ϕxk
(ξ)|2)ndτn(ξ)

=
∞
∑

k=1

∫

∆(0, δ

2
)
|f(ϕxk

(ξ))|p
(

1 − |xk|2

||xk|ξ − x′
k|

2

)n

dνn(ξ).

Notice that

||x|ξ − x′| ≃ 1, ∀ ξ ∈ ∆(0,
δ

2
), (2.1)

for any x ∈ Bn. Indeed, 2 > ||x|ξ − x′| ≥ 1 − |x||ξ| ≥ 1 − |ξ| ≥ 1 − δ/2 > 1/2. Therefore, from

(2.1) and Lemma 1.4, the preceding summation can be further estimated from below by

C1

∞
∑

k=1

(1 − |xk|
2)n

∫

∆(0, δ

2
)
||xk|ξ − x′

k|
2−nf(ϕxk

(ξ))|pdνn(ξ)

≥ C2δ
n

∞
∑

k=0

(1 − |xk|
2)n|f(xk)|p.

!

By taking f ≡ 1, we have the following result.

Lemma 2.2 If {xk}∞k=1 is a uniformly discrete sequence in Bn with separation constant

δ, then,
∞
∑

k=1

(1 − |xk|
2)n ≤ C

(

1

δ

)n

.

For a ∈ Bn, 0 < r < 1, and Γ a sequence in Bn, we define the counting function

N(Γ, a, r) =
∑

x∈Γ

χ∆(a,r)(x),

where χA(x) denotes the characteristic function of the set A. Namely, N(Γ, a, r) is the number

of points in Γ that lie in the pseudohyperbolic ball ∆(a, r). Clearly,

N(Γ, a, r) = N(ϕa(Γ), 0, r). (2.2)

In fact,

N(Γ, a, r) =
∑

ϕa(y)∈Γ

χ∆(a,r)(ϕa(y)) =
∑

y∈ϕa(Γ)

χ∆(0,r)(y) = N(ϕa(Γ), 0, r).
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Lemma 2.3 If {xk}∞k=1 is a uniformly discrete sequence in Bn with separation constant

δ, then its counting function satisfies

N(Γ, a, r) < 2

(

3

2

)n−2(

1 +
2

δ

)n 1

(1 − r)n−1
.

In particular,

N(Γ, a, r) = O

(

1

(1 − r)n−1

)

, r → 1.

Proof As the pseudohyperbolic metric is Möbius invariant, we have the sequence ϕa(Γ) =

{ϕa(xk)}∞k=1 that is again a uniformly discrete sequence with separation constant δ. So, by (2.2)

there is no loss of generality in taking a = 0.

We claim that for Γ = {xk}∞k=1, we have

⋃

xk∈∆(0,r)

∆(xk,
δ

2
) ⊂ ∆(0, R), and R :=

r + δ
2

1 + rδ
2

.

Indeed, {∆(xk, δ2 )} are pairwise disjoint. If x ∈ ∆(xk, δ2 ) and xk ∈ ∆(0, r), then,

|x| = ρ(x, 0) ≤
ρ(0, xk) + ρ(xk, x)

1 + ρ(0, xk)ρ(xk, x)
≤

r + δ
2

1 + r δ2
.

Hereby, we used the fact that g(x) = x+y
1+xy

is an increasing function of x ≥ 0 for any fixed

y ∈ [0, 1]. This proves the claim. From our claim, we obtain

∑

xk∈∆(0,r)

τn(∆(xk,
δ

2
)) ≤ τn(∆(0, R)).

Therefore, from Lemma 1.3,

N(Γ, 0, r)
1

2

(

δ
2

)n

(

1 −
(

δ
2

)2
)n−1 ≤

Rn

(1 − R2)n−1
.

As

1 − R2 =
1 − ( δ2 )2

(1 + rδ
2 )2

(1 − r2),

we have

N(Γ, 0, r) ≤ 2(
δ

2
)−n

(

r +
δ

2

)n(

1 +
rδ

2

)n−2 1

(1 − r)n−1

≤ 2

(

3

2

)n−2(

1 +
2

δ

)n 1

(1 − r)n−1
.

!

As in the complex case, we have the following result.

Lemma 2.4 Let Γ = {xk}∞k=1 be a sequence of points in the unit ball Bn such that for

some fixed radius r > 0, each pseudohyperbolic ball ∆(a, r) contains at most N points. Then,

Γ is the disjoint union of at most N uniformly discrete sequences.

The proof of this lemma is exactly the same as that of the corresponding lemma in [11].

For the sake of completeness, we will give it here.
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Proof Consider first the disk ∆(x1, r). By hypothesis, it contains at most N points in the

sequence Γ, including x1. Let those points be assigned to M different subsets, Γ1, Γ2, · · · , ΓM

with M ≤ N . Let xk be the first point of Γ not already assigned. Then, ρ(xk1
, x1) ≥ r, so xk1

is placed into the set Γj containing x1.

Now, we proceed inductively. Suppose that a finite number of points have been assigned to

subsets Γ1, Γ2, · · · , Γm with m ≤ N and that ρ(x, y) ≥ r for all points x, y ∈ Γj , j = 1, · · · , m.

Let x∗ be the first point of Γ not already assigned to a subset Γj . By hypothesis, the disk

∆(x∗, r) contains at most N −1 points of Γ that have already been assigned, and they represent

at most N − 1 different subsets Γj , so that the point x∗ can be assigned to some subset Γk0
not

represented in this list. It is clear by construction that ∆(x∗, r)∩Γk0
= φ; namely, ρ(x∗, ξ) ≥ r

for all points ξ ∈ Γ already assigned to Γk0
. This inductive process therefore divides the given

set Γ into disjoint subsets Γ1, · · · , Γm with m ≤ N and ρ(x, y) ≥ r for all x, y ∈ Γj , j = 1, · · · , m.

!

Theorem 2.5 For a sequence Γ = {xk}∞k=1 of distinct points in Bn, the following six

statements are equivalent.

1. Γ is a finite union of uniformly discrete sequences;

2. sup
a∈Bn

N(Γ, a, r) < ∞ for some r ∈ (0, 1);

3. sup
a∈Bn

N(Γ, a, r) < ∞ for all r ∈ (0, 1);

4. For some p ∈ (0,∞), there exists a constant c such that
∞
∑

k=1

(1 − |xk|
2)n|f(xk)|p ≤ c||f ||pp, f ∈ Lp

h(Bn);

5. For each p ∈ (0,∞), there exists a constant c such that
∞
∑

k=1

(1 − |xk|
2)n|f(xk)|p ≤ c||f ||pp, f ∈ Lp

h(Bn);

6. sup
a∈Bn

∞
∑

k=1
(1 − |ϕa(xk)|2)n < ∞.

Proof By Lemma 2.3, statement (3) follows from statement (1). Obviously, (3) im-

plies (2). By Lemma 2.4 from (2) we obtain (1). That (5) implies (4) is trivial and statement (5)

can be obtained from (1) using Lemma 2.1.

Now, because assertion (1) as a property is invariant under Möbius transformations, it

follows from Lemma 2.2 that
∞
∑

k=1

(1 − |ϕa(zk)|2)n ≤ C

(

1

δ

)n

.

This means that (1)⇒(6). Moreover, to show that (6) implies (3), we fix any r ∈ (0, 1) and let

a ∈ Bn. As |ϕa(xk)| < r for N(Γ, a, r) points xk, we infer from (6) that

N(Γ, a, r)(1 − r2)n ≤
∑

xk∈∆(a,r)

(1 − |ϕa(xk)|2)n ≤ C.

Now, we will show that (5) follows from (4). Statement (4) holds precisely when the measure
∞
∑

k=0
(1 − |xk|2)nδxk

is a Carleson measure for Lp
h(Bn). As Carleson measures are known to be

independent of p, this proves the implication [10].
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The only part which is still left is to prove that assertion (5) implies (1) which we will do

by contradiction following the ideas of the proof of Lemma 3.3 in [25]. Hereby, we remark that

if Γ is not a finite union of uniformly discrete sequences, then there exists a sequence of points

{yk}∞k=1 in Bn, such that N(Γ, yk, 1
2 ) is unbounded as k becomes large. Take

fk(x) =
K(x, yk)
√

K(yk, yk)
.

Here, K is the harmonic Bergman kernel in Bn. It is known [16] that

K(x, yk) ≃
1

(1 − |x|2)n
for any x ∈ ∆(yk, r).

Notice that in ∆(yk, r), we have (see [22])

1 − |x|2 ≃ 1 − |yk|
2 ≃ ||x|yk − x′|, ∀ x ∈ ∆(yk, r).

Now, we take p = 2. From the reproducing property of the Bergman kernel, we get ||f ||L2 = 1.

From this, we obtain

∥f∥2
L2 ≥ C

∞
∑

k=1

(1 − |xk|
2)n|f(xk)|2 = C

∞
∑

k=1

(1 − |xk|
2)n K(xk, yk)2

K(yk, yk)

≥ C
∞
∑

k=1

(1 − |xk|
2)nK(xk, yk)

≥ C
∑

xk∈∆(yk,1/2)

(1 − |xk|
2)n (1 − |yk|2)n

||xk|yk − x′
k|

2n

= C
∑

xk∈∆(yk,1/2)

(1 − |ϕxk
(yk)|2)n

≥ C

(

3

4

)n

N

(

Γ, yk,
1

2

)

,

which is a contradiction. !

As in the complex case in [12], we have the following result.

Theorem 2.6 If a sequence {xk}∞k=1 in Bn is uniformly discrete and xk ̸= 0 for all k,

then,
∞
∑

k=1

(1 − |xk|)
n−1

(

log
1

1 − |xk|

)−(1+ϵ)

< ∞

for each ϵ > 0.

Remark 2.7 The main theorem remains true if the Bergman space Lp
h(Bn) is replaced

by the harmonic Hardy space.

Remark 2.8 Although the results are given for the case of the unit ball in Rn, they can

be easily transferred to the case of the upper half plane by means of the Cayley transform.
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[17] Pavlovič M. Inequalities for the gradient of eigenfunctions of the invariant Laplacian in the unit ball. Indag

Math (NS), 1991, 2(1): 89–98

[18] Peng R, Ouyang C. Carleson Measures for Besov-Sobolev Spaces with Applications in the Unit Ball of Cn.

Acta Mathematica Scientia, 2013, 33B(5): 1219–1230

[19] Ren G, Kähler U. Radial Derivative on Bounded Symmetric Domains. Studia Mathematica, 2003, 157(1):

57–70

[20] Ren G, Kähler U. Boundary behavior of Gleason’s problem in hyperbolic harmonic Bergman space. Science

in China A, 2005, 48(2): 145–154

[21] Ren G, Shi J. Bergman type operator on mixed norm spaces with applications. Chin Ann of Math, 1997,

18B: 265–278

[22] Ren G, Kähler U, Shi J, Liu C. Hardy-Littlewood inequalities on the space of invariant harmonic functions.

Complex Analysis and Operator Theory, 2012, 6(2): 373–396

[23] Rochberg R. Interpolation by functions in Bergman spaces. Michigan Math J, 1982, 29: 229–236

[24] Rudin W. Function Theory in the Unit Ball of Cn. New York: Springer-Verlag, 1980

[25] Schuster A. On Seip’s Description of Sampling Sequences for Bergman spaces. Complex Variables, 2000,

42(4): 347–367

[26] Seip K. Interpolating and sampling in spaces of analytic functions. University Lecture Series 33. Providence,

RI: AMS, 2004

[27] Seip K. Density theorems for sampling and interpolation in the Bargmann-Fock space I. J Reine Angew

Math, 1992, 429: 91–106

[28] Seip K. Density theorems for sampling and interpolation in the Bargmann-Fock space II. J Reine Angew

Math, 1992,429: 107–113

[29] Stoll M. Invariant potential theory in the unit ball of Cn. London Mathematical Society Lecture Note

Series, 199. Cambridge: Cambridge University Press, 1994

[30] Xiao J. Carleson measure, atomic decomposition and free interpolation from Bloch space. Annal Acad

Scient Fenn Series A, 1994, 19: 35–46

[31] Zhang Y, Deng G, Kou K I. On the lower bound for a class of harmonic functions in the half space. Acta

Mathematica Scientia, 2012, 32B(4): 1487–1494


