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1. Introduction

Currently, there seems to be much interest in finding discrete counterparts of
various structures of the classical (continuous, smooth) mathematics.

As it was shown in [5, 8, 9, 10], developing discrete counterparts of (contin-
uous) function theory is useful in the numerical treatment of problems related to
potential theory and boundary values problems.

In the case of classical complex analysis there exist two approaches to this
problem. The first one is based on discretizations of the Cauchy-Riemann equa-
tions [7], [4], [11], e.g. given by

fm,n+1 − fm+1,n = i(fm+1,n+1 − fm,n).

The second one defines circle patterns to be natural discrete analogues of
holomorphic functions [12].

In higher dimensions the situations gets even worse. In [6], the authors in-
troduce discrete versions of Fischer decomposition, Euler and Gamma operators for
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discrete Dirac operators, but Dirac operators which only involve forward/backward-
differences do not factorize the star Laplacian ∆h, where only the nonzero bound-
ary weights occur on mh ± hj bj . Hereby bj denotes the jth component of the
standard Rn basis.

However, in the quaternionic case, by mixing forward and backward differ-
ences, it is possible to construct difference Dirac operators which do factorize
∆h [6, 10]. But this is done by a direct construction via 4 × 4-matrices, which
coincide with the matrix representation of quaternions only asymptotically. It is
not clear how this construction can be carried out in higher dimensions.

In this paper we will present a constructive framework to define discrete
Dirac operators, which allows to define them in any dimension. This framework
also explains the reasons, why the construction represented in [10] works so well
in the quaternionic case.

Furthermore, in [2] a notion of discrete holomorphic functions on quad-graphs
is presented which is extended to higher dimensions. In the last chapter we will
compare our constructive framework with this notion of discrete holomorphic func-
tions on quad-graphs and bricks. This will allow us to define discrete Dirac oper-
ators on n-rhombohedric embeddings of spatial graphs.

2. Preliminaries

Let e1, . . . , en be an orthonormal basis of Rn. The Clifford algebra C`0,n is the
free algebra over Rn generated modulo the relation

x2 = −|x|2e0,

where e0 is the identity of C`0,n. For the algebra C`0,n we have the anti-commutation
relationship

ejej + ejej = −2δjke0,

where δjk is the Kronecker symbol. In the following we will identify the Euclidean
space Rn with

∧1
C`0,n, the space of all vectors of C`0,n. This means that each

element x of Rn may be represented by

x =
n∑

i=1

xiej .

From an analysis viewpoint one extremely crucial property of the algebra C`0,n is
that each non-zero vector x ∈ Rn has a multiplicative inverse given by −x

|x|2 . Up
to a sign this inverse corresponds to the Kelvin inverse of a vector in Euclidean
space. Moreover, given a general Clifford number a =

∑
A eAaA, A ⊂ {1, . . . , n}

we denote by Sc a = a∅ the scalar part and by ~a = e1a1 + . . . + enan the vector
part.
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For all what follows let Ω ⊂ Rn be a bounded domain with a sufficiently
smooth boundary Γ = ∂Ω. Then any function f : Ω 7→ C`0,n has a representation
f =

∑
A eAfA with R-valued components fA. We now introduce the Dirac oper-

ator D =
∑n

i=1 ej
∂

∂xi
. This operator is a hypercomplex analogue to the complex

Cauchy-Riemann operator. In particular we have that D2 = −∆, where ∆ is the
Laplacian over Rn. A function f : Ω 7→ C`0,n is said to be left-monogenic if it
satisfies the equation (Df)(x) = 0 for each x ∈ Ω. A similar definition can be
given for right-monogenic functions. Basic properties of the Dirac operator and
left-monogenic functions can be found in [1], [3], [8], and [9].

Now, we need some more facts for our discrete setting. To discretize point-
wise the partial derivatives ∂

∂xi
in the equidistant lattice with mesh-width h > 0,

Rn
h =

mh =
n∑

j=1

(mjh)ej : mj ∈ Z, j = 1, . . . , n

 ,

we introduce for the basis e1, . . . , en, the forward/backward differences ∂±i
h :

∂±j
h u = ∓h−1(I − σ±j

h )u

where I denotes the identity operator and σ±j
h u = u(· ± hej) denotes the shift

operator on the grid Rn
h.

3. Discrete Versions of Laplace Operators

Definition 3.1. Let G be a connected graph and let V (G),
−→
E (G) and E(G) the sets

of vertices, directed and undirected edges of G.
For a vertex x ∈ V (G) and for the set of all vertices incident to x, N (x),

we define the discrete Laplacian ∆G,ν corresponding to the weight function ν :
E(G) → C is the operator acting on functions f : V (G) 7→ C`0,n by

(∆G,νf)(x) =
∑

y∈N (x)

ν(x, y) (f(y)− f(x)) . (3.1)

In the continuous case, there is a canonical correspondence between harmonic
and holomorphic functions on C: the real and the imaginary parts of a holomorphic
function are harmonic, and any real-valued harmonic function can be considered
as a real part of a holomorphic function but these two classes of functions live then
on different graphs. Discrete monogenic functions live on quad-graphs.

Definition 3.2. A cell decomposition D of Rn is called a quad-graph, if the graph
is regular and the boundary of each cell consists of 4-cycles.

We will denote by F (G) the set of faces of G. To any such G there corresponds
canonically a combinatorial/geometric quad-graph called its double (or diamond)
constructed from G and its dual G∗. Recall that, in general, a dual cell decompo-
sition G∗ is only defined up to isotopy, but it can be fixed uniquely with the help
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of Voronoi/Delaunay construction. The dual G∗ is characterized as follows. Ver-
tices of G∗ are in a one-to-one correspondence to faces of G. Each edge e ∈ E(G)
separates two faces of G, which in turn correspond to two vertices of G∗. It is
declared that these two vertices are connected by the edge e∗ ∈ E(G∗) dual to e.
Finally, the faces of G∗ are in a one-to-one correspondence with the vertices of G:
if x0 ∈ V (G), and x1, . . . , xd ∈ V (G) are neighbors connected with x0 by the edges
e1 = (x0, x1), . . . , ed = (x0, xd), then the face of G∗ corresponding to x0 is defined
by its boundary e∗1∪ . . .∪ e∗n. If one assigns a direction to an edge e ∈ E(G), then it
will be assumed that the dual edge e∗ ∈ E(G) is also directed, in a way consistent
with the orientation of the underlying surface, namely so that the pair (e, e∗) is
oriented directly at this crossing point. This orientation convention implies that
e∗∗ = −e.

Now the double is constructed from G,G∗ as follows. The set of vertices of
the double D is V (D) = V (G)∪V (G∗). Each pair of dual edges, say e = (x0, x1) ∈
E(G) and e∗ = (y0, y1) ∈ E(G∗), defines a quadrilateral (x0, x1, y0, y1). These
quadrilaterals constitutes the faces of the cell decomposition (quad-graph) D. The
edges of D belong neither to E(G) nor to E(G∗). A star of a vertex x0 ∈ V (G)
produces a flower of adjacent quadrilaterals from F (D) around the common vertex
x0.

Observe that the double D is automatically bipartite since its vertices V (D)
are decomposed in two halves V (D) = V (G) ∪ V (G∗) (“black” and “white” ver-
tices), such that the ends of each edge from E(D) are of different colors.

Without loss of generality we will restrict our study to lattice functions with
equidistant mesh-width h > 0 with respect to a non-negative weight function
ν : E(G) → [0,∞). In this case, the cell decomposition of Rn, say D, can be
identified by Rn

h and for mh ∈ Rn
h, the set of all vertices incident to mh, can be

described by N (mh) = mh + hK with

K =
n⋃

j=1

⋃
k≤j

{
αjej + βkek : α2

j , β
2
k ∈ Z2, 1 ≤ α2

j + β2
k ≤ 2− δjk

}
and for a small mesh-size h, the weight function has the same behaviour of 1

h2 .
Hence,

∆G,ν =
∑
r∈K

ν(·, ·+ rh) (σr
h − I) (3.2)

∼
∑
r∈K

1
h2

(σr
h − I) (3.3)

where σr
h := (σjαj

h )α2
j (σjβj

h )β2
j for a certain r = αjej + βkek ∈ K.

One example of a discrete Laplacian is
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• the star Laplacian

∆h =
n∑

j=1

σ+j
h + σ−j

h − 2I

h2

=
n∑

j=1

∂−j
h ∂+j

h .

In this case, only mh ∈ Rn
h and its incident vertices mh + hK∗, with

K∗ =
⋃n

j=1{−ej , ej}, are considered for the discrete approximation of the
Laplace operator.

Another example is given by
• the cross Laplacian

∆×
h =

n∑
j=1

∑
k<j

σ+j
h σ+k

h + σ−j
h σ−k

h + σ−j
h σ+k

h + σ+j
h σ−k

h − 4I

h2

=
n∑

j=1

∑
k<j

∆̃j,k
h ,

where ∆̃j,k
h := ∂+j

h ∂+k
h + ∂−j

h ∂−k
h − ∂+j

h ∂−k
h − ∂−j

h ∂+k
h denotes the cross Laplacian

on the plane ejek.
In this case, mh ∈ Rn

h and its incident vertices mh + hK×, with

K× =
n⋃

j=1

⋃
k<j

{−ej + ek, ej + ek, ej − ek,−ej − ek},

are considered for the discrete approximation of the Laplace operator.
Let us remark that K = K∗ ∪ K×. Thus approximations of the continuous

Laplace operator which take all the incident vertices of a lattice point mh ∈ Rn
h into

account can be obtained if we take linear combinations of the star Laplacian and
the cross Laplacian. This is the case when both representatives (mh, mh± rh) of
any edge carry the same value ν(mh, mh+rh) = ν(mh, mh−rh) as the underlying
undirected one.

Figure 1. Example of a star Laplacian and a mixed Laplacian in R3.
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4. Factorization of Discrete Laplacians

4.1. A first look

One of the main goals in the discrete case is to approximate the classical Dirac
operator

D =
n∑

i=1

ej
∂

∂xi
(4.1)

by its discrete analogues such that they factorize the discrete Laplacian.
It is clear that one has to replace the partial derivatives ∂

∂xi
by difference

operators on the right hand side of (4.1). Some canonical choices are

1. The forward/backward differences ∂±i
h .

2. The bi-directional difference 1
2

(
∂+i

h + ∂−i
h

)
.

These canonical choices induce the forward/backward discretizations of the
Dirac operator, D±

h , defined in [8], and the bi-directional discretization 1
2

(
D+

h + D−
h

)
,

respectively.
More general, we can obtain a difference approximation as linear combina-

tions of forward and backward differences, that is,

∂j
h,θ = θ∂+j

h + (1− θ)∂−j
h

= h−1
(
θσ+j

h + (θ − 1)σ−j
h − (2θ − 1)I

)
, θ ∈ R (4.2)

and, therefore, for a sequence Θn = (θj)n
j=1, we can define a difference approxima-

tion of (4.1) by

Dh,Θn
=

n∑
j=1

ej∂
j
h,θj

(4.3)

Theorem 4.1. For all sequences Θn and Γn, the difference Dirac operators Dh,Θn

and Dh,Γn
do not factorize −∆he0.

Proof. Suppose that Dh,Θn and Dh,Γn factorize −∆he0.
Starting from the definition, we can split Dh,Θn

Dh,Γn
into the sum

Dh,ΘnDh,Γn =
n∑

j,k=1

ejek

(
I−h (j, k) + I+

h (j, k) + I+−
h (j, k) + I−+

h (j, k)
)

with

I−h (j, k) = (1− θj)(1− γk)∂−j
h ∂−k

h

I+
h (j, k) = θiγj∂

+j
h ∂+k

h

I+−
h (j, k) = θj(1− γk)∂+j

h ∂−k
h

I−+
h (j, k) = (1− θi)γj∂

−j
h ∂+k

h .
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Because Dh,ΘnDh,Γn = −∆h, we have

I−h (j, k) = 0

I+
h (j, k) = 0

I−+
h (j, k) = 0, j 6= k

I+−
h (j, k) = 0, j 6= k.

That is, the sequences Θn and Γn satisfy the conditions

θjγj = 0
θj + γj = 1

θj = θjγk j 6= k

γk = θjγk j 6= k,

which is a contradiction. �

4.2. Factorization of the star Laplacian

According to Theorem 4.1, we cannot define discrete Dirac operators which fac-
torize −∆h if we only consider the Clifford basis e1, . . . , en and hence, we cannot
identify the discrete Dirac operator as a pure Clifford number as it is the case
with the continuous Dirac operator (c.f. [10]) On the other hand, the last proof
tells us that to factorize the discrete Laplacian, we must choose two sequences
Θn = (θj)n

j=1 and Γn = (1− θj)n
j=1 with θj ∈ Z2, for all j = 1, . . . , n. For simplifi-

cation we will write γj = 1− θj .

For this reasons, we will introduce generalizations of the discrete Dirac oper-
ators introduced in (4.3) using the following approach:

Splitting the basis vectors e1, . . . , en in ej = e+
j + e−j and defining the oper-

ators D±
h,Θn

by

D±
h,Θn

=
n∑

j=1

e±j ∂j
h,θj

, (4.4)

we can approximate the Dirac operator by D+
h,Γn

+ D−
h,Θn

and D−
h,Γn

+ D+
h,Θn

.

To apply our formalism, let us consider the following example:
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Example 4.2. The discrete Dirac operators introduced by Gürlebeck and Hommel
in [10] have the matrix representation

D−+
h =


0 −∂−1

h −∂−2
h −∂−3

h

∂−1
h 0 −∂3

h ∂2
h

∂−2
h ∂3

h 0 −∂1
h

∂−3
h −∂2

h ∂1
h 0

 (4.5)

D+−
h =


0 −∂1

h −∂2
h −∂3

h

∂1
h 0 −∂−3

h ∂−2
h

∂2
h ∂−3

h 0 −∂−1
h

∂3
h −∂−2

h ∂−1
h 0

 . (4.6)

For fh = f0
h + ~fh, these operators factorize −∆h in the sense that

D+−
h D−+

h fh = −∆hfh = D−+
h D+−

h fh.

Considering the sequences Θn = (1)n
j=1 and Γn = (0)n

j=1 for n = 3 and the
matrix elements

e−1 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 e+
1 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0



e−2 =


0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

 e+
2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0



e−3 =


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

 e+
3 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


we can write D−+

h = D−
h,Γn

+ D+
h,Θn

and D+−
h = D+

h,Γn
+ D−

h,Θn
.

The matrix elements ej = e+
j + e−j , j = 1, 2, 3 satisfy the Clifford algebra

property ejek +ekej = −2δjke0 and the matrix elements e±j , i = 1, 2, 3 satisfy the
conditions

e−j e−k + e+
k e+

j = −δjke0 (4.7)

e+
j e−k + e+

k e−j = 0 (4.8)

e−j e+
k + e−k e+

j = 0 (4.9)

e+
j e−j = 0 = e−j e+

j . (4.10)
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More generally, in R0,n we can construct a Clifford basis e1, . . . , en by taking
ej = e+

j + e−j such that e±j , j = 1, . . . , n satisfy the conditions (4.7)-(4.9).
Furthermore, we obtain the following theorem.

Theorem 4.3. If the elements e±j satisfy the conditions (4.7)–(4.10), the discrete
Dirac operators D+

h,Γn
+ D−

h,Θn
and D−

h,Γn
+ D+

h,Θn
factorize −∆h.

Proof. Starting from the definition, we can split the product
(
D+

h,Γn
+ D−

h,Θn

)
(
D−

h,Γn
+ D+

h,Θn

)
into the sum(

D+
h,Γn

+ D−
h,Θn

) (
D−

h,Γn
+ D+

h,Θn

)
= Jh(Γn,Θn) + Lh(Γn,Θn) + Mh(Γn,Θn)

with

Jh(Γn,Θn)

=
∑n

j=1

(
e+

j e−j ∂j
h,γj

∂j
h,γj

+ e−j e+
j ∂j

h,θj
∂j

h,θj
+

(
(e+

j )2 + (e−j )2
)
∂j

h,γj
∂j

h,θj

)
Lh(Γn,Θn)

=
∑n

j=1

∑
k<j(e

+
j e−k + e+

k e−j )∂j
h,γj

∂j
h,γk

+
∑n

j=1

∑
k<j(e

−
j e+

k + e−k e+
j )∂j

h,θj
∂j

h,θk

Mh(Γn,Θn)

=
∑n

j=1

∑
k<j(e

+
j e+

k + e−k e−j )∂j
h,γj

∂j
h,θk

+
∑n

j=1

∑
k<j(e

−
j e−k + e+

k e+
j )∂j

h,θj
∂j

h,γk
.

Using the properties (4.7)-(4.10), we obtain

Jh(Γn,Θn) = −
n∑

j=1

∂j
h,γj

∂j
h,θj

e0

Lh(Γn,Θn) = 0
Mh(Γn,Θn) = 0.

Therefore, by remembering γj = 1− θj we conclude our proof. �

With the last proof, we generalize the discrete Dirac operators introduced
by Gürlebeck and Hommel in [10]. Moreover, with this result we prove that there
exists more than one pair of discrete Dirac operators which factorize −∆h. From
now on, we will denote by

D+−
h,Θn

=
n∑

j=1

e+
j ∂j

h,θj
+ e−j ∂j

h,1−θj
, (4.11)

D−+
h,Θn

=
n∑

j=1

e−j ∂j
h,θj

+ e+
j ∂j

h,1−θj
, (4.12)

for all Θn = (θj)n
j=1 ∈ (Z2)n, our discrete Dirac operators.
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Let us remark that using the last approach, when h → 0, we approximate the
factorization property D2 = −∆, where D denotes the standard Dirac operator.
However, contrary to the continuous case, we need two discrete Dirac operators to
split the star Laplacian.

4.3. Factorization of the star Laplacian: Another approach

In the previous section we could see how one can obtain discrete Dirac operators
using forward/backward differences. In this section we will present a different
approach using the bi-directional differences ∂i

h = 1
2 (∂+i

h + ∂−i
h ).

This will allow us afterwards to develop a unified framework for the construc-
tion of discrete Laplacians using the power of Clifford algebras on a 3∗ . . .∗3-grid.

The basic idea is to consider two Clifford basis e+
j , j = 1, . . . ,m and e−j , j =

1, . . . ,m, assuming that the whole collection {e+
j , e−j } would be a Clifford basis of

dimension 2m for some suitable metric. This means we introduce two symmetric
matrices g+

jk, g−jk and one general matrix Mjk for which we assume the relations

e+
j e+

k + e+
k e+

j = −2g+
jk, e−j e−k + e−k e−j = −2g−jk,

e+
j e−k + e−k e+

k = −2Mjk.

The idea now is to define the discrete Dirac operator by

Dh =
1
2

(
D+

h + D−
h

)
with D±

h =
∑m

k=1 e±j ∂±i
h .

Of course we need Dh to approximate the Euclidean Dirac operator for which
we make the following assumption.

Assumption 1. The basis ej = e+
j + e−j is the standard Clifford basis, i.e. ejek +

ekej = −2δjk.

This immediately gives rise to the constraint

g+
jk + g−jk + Mjk + Mkj = δjk.

There are many possibilities still. Next, for a rectangular grid it is natural to
assume that all coordinates are equally important.

Assumption 2. (Dimensional democracy) For the diagonal entities of the matrices
we assume g+

jj = λ+, g−jj = λ−,Mjj = µ is independent from j.

Hence, we get λ+λ− + 2µ = 1.
Also g+

jk, g−jk,Mjk for j 6= k should not depend on j and k so that in particular
Mjk = Mkj = M and g±jk = g±, whereby thus g+ + g− + 2M = 0.

Finally, another assumption would be

Assumption 3. The two directions “+” and “-” are equally important, leading to
λ+ = λ− = λ and 2λ+2µ = 1 and also g+ = g− = g and g +M = 0, i.e. M = −g.
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So now we have the relations

e+
j e+

j = e−j e−j = −λ, e+
j e−j + e−j e+

j = −2µ

e±j e±k + e±k e±j = −2g, e+
j e−k + e−k e+

j = +2g.

If we now choose λ = 0 and µ = 1/2 we end up with the relation (e+
j )2 =

(e−j )2 = 0, as well as

e+
j e−j + e−j e+

j = −1.

This results in

D2
h =

1
4
(D+

h + D−
h )2 (4.13)

= −
m∑

j=1

∂+j
h ∂−j

h + g
∑
j 6=l

(
−∂+j

h ∂+l
h + 2∂+j

h ∂−l
h − ∂−j

h ∂−l
h

)
, (4.14)

so that choosing g = 0 we obtain the usual discrete (star-)Laplacian.

4.4. Factorization of discrete Laplacians: A constructive framework

The main idea is to approximate the standard Dirac operator using the formulae
(4.11) and (4.12). This means that the elements e1, . . . , en given by ej = e+

j + e−j
should be generators of a Clifford basis.

Let us suppose that one of the following two sets of assumptions hold for
e±1 , . . . , e±n :

Assumption 4. There exist two symmetric matrices f+−jk , f−+
jk and one general ma-

trix Ljk for which we assume the relations

1. e−j e−k + e+
k e+

j = −2Ljk,
2. e+

j e−k + e+
k e−j = −2f+−jk ,

3. e−j e+
k + e−k e+

j = −2f−+
jk ,

4. e±j e∓j = 0,
5. e+

j and e−j have the same direction, that is, f+−jk = f−+
jk and Ljk = Lkj ,

6. f+−jk + f−+
jk + Ljk + Lkj = δjke0.

Assumption 5. There exist two symmetric matrices g+
jk, g−jk and one general matrix

Mjk for which we assume the relations

1. e±j e±k + e±k e±j = −2g±jk

2. e+
j e−k + e−k e+

j = −2Mjk

3. (e±j )2 = 0
4. e+

j and e−j have the same direction, that is, g+
jk = g−jk and Mjk = Mkj .

5. g+
jk + g−jk + Mjk + Mkj = δjke0.
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In the set of assumptions 4 by the constraints 4 and 6 we have the relation
Ljj = 1

2e0. Moreover, we get(
D+

h,Γn
+ D−

h,Θn

) (
D−

h,Γn
+ D+

h,Θn

)
= −e0

n∑
j=1

∂j
h,γj

∂j
h,θj

−2
n∑

j=1

∑
k<j

(
f+−jk ∂j

h,γj
∂k

h,γk
+ f−+

jk ∂j
h,θj

∂k
h,θk

+ Ljk∂j
h,γj

∂k
h,θk

+ Lkj∂
k
h,γk

∂j
h,θj

)
.(4.15)

In case of the assumptions 5 from the constraints 5 and 3 we obtain the
relation Mjj = 1

2e0. This leads to (
D+

h,Γn
+ D−

h,Θn

)2

= −e0

n∑
j=1

∂j
h,γj

∂j
h,θj

−

−2
n∑

j=1

∑
k<j

(
g+

jk∂j
h,γj

∂k
h,γk

+ g−jk∂j
h,θj

∂k
h,θk

+ Mjk∂j
h,γj

∂k
h,θk

+ Mkj∂
j
h,γj

∂k
h,θk

)
.(4.16)

Hence, we obtain the following theorems, respectively:

Theorem 4.4. Under the assumptions 4, we have

1. If Ljk = 0 for all j < k, then D+−
h,Θn

D−+
h,Θn

= −∆he0 = D−+
h,Θn

D+−
h,Θn

.
2. If for all j < k, Ljk = cjk, (cjk ≥ 0) then −D+−

h,Θn
D−+

h,Θn
= −D+−

h,Θn
D−+

h,Θn

is the discrete Laplacian according to (3.2) only if Θn ∈ (Z2)n is a constant
sequence.

Moreover,

−D+−
h,Θn

D−+
h,Θn

= e0

∆h + 2
n∑

j=1

∑
k<j

cjk∆̃j,k
h

 ,

with ∆̃j,k
h := ∂+j

h ∂+k
h +∂−j

h ∂−k
h −∂+j

h ∂−k
h −∂−j

h ∂+k
h being the cross Laplacian

on the plane ejek.
Furthermore, if all the directions are equally important, i.e. cjk = c :

k = 1, . . . , n, j < k, the right-hand side of −D+−
h,Θn

D−+
h,Θn

is equal to e0(∆h +
2c∆×

h ).

Theorem 4.5. Under assumptions 5, we get

1. If Mjk = 0 for all j < k, then (D+−
h,Θn

)2 = −∆he0 = (D−+
h,Θn

)2.
2. If for all j < k, Mjk = cjk, (cjk ≥ 0) then −(D+−

h,Θn
)2 = −(D−+

h,Θn
)2 is a

discrete Laplacian according to (3.2).
Moreover,

−(D−+
h,Θn

)2 = e0

∆h + 2
n∑

j=1

∑
k<j

cjk∆̃j,k
h

 ,
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and if all the directions are equally important (i.e. cjk = c : j < k, k =
1, . . . , n,) the right-hand side of −(D−+

h,Θn
)2 is equal to e0(∆h + 2c∆×

h ).

Under the conditions of assumptions 4 and 5 we obtain factorizations of the
star Laplacian, a sum between a star Laplacian and a “weighted” cross Laplacian.
However, we never obtain factorizations of “weighted” cross Laplacians.

To solve this drawback, instead of last relation in the set of assumptions 4
and 5, we will suppose:

f+−jk + f−+
jk + Ljk + Lkj = 0

and
g+

jk + g−jk + Mjk + Mkj = 0,

respectively.
Under the above conditions, the elements ẽ1, . . . , ẽn given by ẽj = e+

j + e−j
satisfy the relation ẽj ẽk + ẽkẽj = 0, i.e. form a Grassmann basis.

Therefore, we get (
D+

h,Γn
+ D−

h,Θn

) (
D−

h,Γn
+ D+

h,Θn

)
= −2

n∑
j=1

∑
k<j

(
f+−jk ∂j

h,γj
∂k

h,γk
+ f−+

jk ∂j
h,θj

∂k
h,θk

+ Ljk∂j
h,γj

∂k
h,θk

+ Lkj∂
k
h,γk

∂j
h,θj

)
(4.17)

as well as (
D+

h,Γn
+ D−

h,Θn

)2

= −2
n∑

j=1

∑
k<j

(
g+

jk∂j
h,γj

∂k
h,γk

+ g−jk∂j
h,θj

∂k
h,θk

+ Mjk∂j
h,γj

∂k
h,θk

+ Mkj∂
j
h,γj

∂k
h,θk

)
.

(4.18)

which leads to the following theorems.

Theorem 4.6. If assumptions 4 with f+−jk +f−+
jk +Ljk+Lkj = 0 are valid, we obtain:

If for all j < k, Ljk = cjk, cjk > 0, then −D+−
h,Θn

D−+
h,Θn

= −D+−
h,Θn

D−+
h,Θn

is a
discrete Laplacian according to (3.2).

Moreover,

−D+−
h,Θn

D−+
h,Θn

= e0

n∑
j=1

∑
k<j

2cjk∆̃j,k
h ,

and if all the directions are equally important, i.e. cjk = c : j = 1, . . . , n, j < k,
the right-hand side of −D+−

h,Θn
D−+

h,Θn
is equal to 2ce0∆×

h .

Theorem 4.7. If assumptions 4 with g+
jk + g−jk + Mjk + Mkj = 0, are valid, we get:

If for all j < k, Mjk = cjk, cjk > 0, then −(D+−
h,Θn

)2 = −(D−+
h,Θn

)2 is the
discrete Laplacian according to (3.2).
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Moreover,

−(D−+
h,Θn

)2 = 2e0

n∑
j=1

∑
k<j

cjk∆̃j,k
h ,

and if all the directions are equally important, i.e. cjk = c : j = 1, . . . , n, j < k,
the right-hand side of −(D−+

h,Θn
)2 is equal to 2ce0∆×

h .

5. Discrete Dirac Operators and Discrete Holomorphic Functions
on Graphs

In [2] a notion of discrete analytic functions on quad-graphs is studied. To this
end quasicristallic rhombic embeddings D with set of labels {±α1, . . . ,±αn} are
considered. Extending the labelling α : ~E(D) 7→ C to all edges Zn, assuming that
all edges parallel to (and directed as) ek carry the label αk, leads then to the
following definition.

Definition 5.1. [2] A function f : Zn 7→ C is called discrete holomorphic, if it
satisfies, on each elementary square of Zn, the equations

f(m + ej + ek)− f(m)
f(m + ej)− f(m + ek)

=
αj + αk

αj − αk

for all j and k.

In other words, the quotient of the diagonals of the f−image on each elemen-
tary quadrilateral (m,m+ek,m+ej +ek,m+ej) ∈ F(D) is equal to the quotient
of diagonals of the corresponding parallelogram.

Figure 2. Elementary square of Zn

To extend this ideas to our setting, we introduce for a set of labels AΘn =
{αj : j = 1, . . . , n} ⊂ R0,n and consider the discrete Dirac operator

D̃j,k
h,Θn

= (αj − αk)
σj

h,θj
σk

h,θk
− I

2h
− (αj + αk)

σj
h,θj

− σk
h,θk

2h
, (5.1)
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with σj
h,θj

= θσ+j
h + (1 − θ)σ−j

h , and we define discrete holomorphic functions
as null solutions of the Dirac operator (5.1). Therefore, considering the sequence
Γn = (γl)n

l=1 with γl = 1− θl ∈ Z2 we obtain

D̃j,k
h,Γn

D̃j,k
h,Θn

= (αj − αk) (αj − αk)
2I − σj

h,θj
σk

h,θk
− σj

h,γj
σk

h,γk

h2

+(αj + αk) (αj + αk)
2I − σj

h,θj
σk

h,γk
− σj

h,γj
σk

h,θk

h2

+2 (αjαj − αkαk)
σj

h,θj
− σk

h,θk
+ σj

h,γj
− σk

h,γk

h2
. (5.2)

Therefore, −D̃j,k
h,Γn

D̃j,k
h,Θn

is a discrete Laplacian in the sense of (3.2), that is
−D̃j,k

h,Γn
D̃j,k

h,Θn
∼ e0∆̃

j,k
h , if and only if α2

j = α2
k and αjαk + αkαj = −δjke0.

Moreover, the formula (5.2) becomes then

D̃j,k
h,Γn

D̃j,k
h,Θn

=

= (αjαk + αkαj)
4I−σj

h,θj
σk

h,θk
−σj

h,γj
σk

h,γk
−σj

h,θj
σk

h,γk
−σj

h,γj
σk

h,θk

4h2

= αjαk+αkαj

4

(
∂+j

h ∂+k
h + ∂−j

h ∂−k
h − ∂+j

h ∂−k
h − ∂−j

h ∂+k
h

)
= − 1

4e0∆̃
j,k
h .

(5.3)

Therefore, choosing ek = αk−αj and ej = αk +αj we obtain D̃j,k
h,Γn

= D+−
h,Θn

(satisfying assumptions 4 or assumptions 5) restricted to the plane ekej . Hereby,
we used the fact that αk − αj and αk + αj are always orthogonal to each other in
a rhombic embedding.

Moreover, we obtain as an immediate consequence, that a discrete monogenic
function, i.e. a function f with D+−

h,Θn
f = 0, which is additionally complex-valued,

is also a discrete holomorphic function, i.e. satisfies Definition 5.1.
An interesting consequence of the above considerations is that they allow us

to define discrete Dirac operators on spatial graphs. To this end we will consider
n-rhombohedric embeddings D with set of labels {±α1, . . . ,±αn}. Extending the
labelling α : ~E(D) 7→ C to all edges of Rn

h, we create a new basis (locally for each
rhombohedron) via

e1 = α1 + . . . + αn−2 + αn−1 + αn

e2 = α1 + . . . + αn−2 + αn−1 − αn

e3 = α1 + . . . + αn−2 − αn−1 − αn

e4 = α1 + . . .− αn−2 − αn−1 − αn

...

and, afterwards, we decompose it into ej = e+
j + e−j . Therefore, joining the center

points of the rhombohedrons we create two graphs, G (“white” vertices) and G∗
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(“black” vertices), which lead to the following definition of a discrete monogenic
function on the graph D, constructed from G and G∗ ( V (D) = V (G) ∪ V (G∗) ).

Figure 3. Local construction in a rhombohedron.

Definition 5.2. A function f : V (D) 7→ C`0,n is called discrete monogenic, if it
satisfies one of the following equations:

D+−
h,Θn

f = 0 or D−+
h,Θn

f = 0.

for a certain sequence Θn ∈ (Z2)n.

An immediate consequence of our definition of a discrete monogenic function
on the graph D is that the projection into the plane ekj = ekej will be discrete
holomorphic for all j and k.
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