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Abstract. Classic hypercomplex analysis is intimately linked with elliptic operators, such as the
Laplacian or the Dirac operator, and positive quadratic forms. But there are many applications

like the crystallographic X-ray transform or the ultrahyperbolic Dirac operator which are closely

connected with indefinite quadratic forms. Although appearing in many papers in such cases Hilbert
modules are not the right choice as function spaces since they do not reflect the induced geometry. In

this paper we are going to show that Clifford-Krein modules are naturally appearing in this context.

Even taking into account the difficulties, e.g. the existence of different inner products for duality and
topology, we are going to demonstrate how one can work with them. Taking into account possible

applications and the nature of hypercomplex analysis special attention will be given to the study

of Clifford-Krein modules with reproducing kernels. In the end we will discuss the interpolation
problem in Clifford-Krein modules with reproducing kernel.

1. Introduction

Classic hypercomplex function theory is intimately connected with the factorization of the Laplacian
and an elliptic Dirac operator. This leads to the point that Hilbert modules are the appropriate
function spaces. They are based on a interplay between two inner products, one which provides the
link with Riesz representation theorem and one which leads to norm and, therefore, provides the
topological structure. But there are many applications where one uses either Clifford algebras with
signatures different of (0, n) or operators which are not elliptic. Besides the obvious applications in
Minkowski space, etc, there are even practical problems in which such Clifford algebras and operators
naturally arise. For instance, the second order scalar differential operator connected with a Clifford
algebra of signature (p, q) which is factorized by the Dirac operator is the ultra-hyperbolic Laplacian
∆p−∆q. This operator does not only appear in problems of PDE’s, but also characterizes the target
space of the spherical (or crystallographic) Radon transform. In such a case it turns out that Hilbert
modules are not the correct spaces, i.e. the underlying sesqui-linear form of the Hilbert module and
the underlying bilinear form of the Clifford algebra are not compatible. As will be seen in this paper
in such a setting the correct notion of a function space is the notion of a Krein module where the
underlying space of coefficients forms a Pontryagin module. The Hermitean form associated to a
Pontryagin module has a finite number of negative squares, but the number of coefficients is infinite,
and hence the Krein space structure. To be more explicit, let us give an example from classical
function theory. Let

J =

(
1 0
0 −1

)
.

The space C2 endowed with the Hermitean form

[u, v]J = u∗Jv

is a two dimensional Pontryagin space. The set H2,J of C2-valued functions of the form f(z) =∑∞
n=0 z

nun where the vectors un = (u1
n, u

2
n) ∈ C2 satisfy

∑∞
n=0

(
|u1
n|2 + |u2

n|2
)
<∞, is a Krein space
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when endowed with the form

[f, g] :=

∞∑
n=0

[un, vn]J =

∞∑
n=0

u∗nJvn,

for f(z) =
∑∞
n=0 z

nun, g(z) =
∑∞
n=0 z

nvn. See e.g. [18], and also [4] for the similar space in the
setting of slice-hyperholomorphic functions, and [7] for an example in the setting of split-quaternions.

We are not aware of any works which study Krein modules in the context of Clifford-algebra valued
functions, although there are indeed papers studying it in the context of quaternions. Our impression
is that this is due to the fact that in the quaternionic context we still have the classic property that
the sequilinear form which gives rise to the Riesz representation theorem is also giving rise to a norm.
This is not anymore true for Krein modules in the general context of Clifford-algebra valued norms
which requires to work with a careful interplay between two different sesqui-linear forms.

Motivated from applications such as crystallographic diffraction tomography and null-solutions of
the ultra-hyperbolic Dirac operator we will use our study of Krein spaces to look into the interpolation
problem, i.e. the construction of a function from given data. Since classic approaches like Lagrange
interpolation are difficult to study in hypercomplex analysis one has to look for a different approach.
In fact, there is a natural setting given by using reproducing kernels and reproducing kernel modules.
Interestingly enough, there exist a lot of confusion about this approach and the correct notions to be
applied like the notion of a positive function. For instance, in [22] the notion of positive function is
given by a complicated and cumbersome formula which leaves the reader none-the-wiser. Although
correct approaches are given in the case of quaternions (see e.g. [2, 3, 4, 8]) where one still has the
preservation of the norm under the multiplication there does not seem to exist a paper specifically
looking into the general non-commutative case where the norm is not preserved under multiplication.
To remedy this we will provide a short overview on reproducing kernel Hilbert modules and the
corresponding interpolation problem. Afterwards, we will take a detailed look into reproducing Krein
modules. In the end we will look into the interpolation problem for null-solutions of the hyperbolic
Dirac operator.

The paper consists of five sections besides the introduction. In Section 2 we survey part of Clifford
analysis (and in particular modules) necessary for the sequel. Positive kernels and the associated
reproducing kernel Hilbert modules are considered in Section 3, where one can in particular find the
counterpart of the Moore-Aronszajn theorem in the present setting. In Section 4 we consider the
case of Pontryagin reproducing kernel modules. Then, the underlying sesquilinear form is not positive
anymore, but has a finite dimensional negative part. We give the main theorems, both geometric
and analytic, which allow to proceed in this setting. Krein modules are considered in Section 5. The
geometry there is much more involved. Applications to Dirac operators and Radon transforms are
presented in the last section.

2. Preliminaries

2.1. Clifford algebras. Let {e1, · · · , en} be the standard basis of the Euclidean vector space in Rn.
The associated Clifford algebra Rp,q is the free algebra generated by Rn modulo x2 =

∑p
i=1 x

2
i −∑n

i=p+1 x
2
i , with p + q = n. The defining relation induces the multiplication rules e2

i = +1 for i =

1, · · · , p, e2
i = −1 for i = p + 1, · · · , n, and eiej + ejei = δi,j , i 6= j, where δi,j denotes the Kronecker

symbol.

A vector space basis for Rp,q is given by the set

(1) {e∅ = 1, eA = el1el2 . . . elr : A = {l1, l2, . . . , lr}, 1 ≤ l1 < . . . < lr ≤ n} .
Each a ∈ Rp,q can be written in the form a =

∑
A aA eA, with aA ∈ R. Moreover, each element

a =
∑
A aA eA decomposes into k-blades [a]k :=

∑
A:#A=k aA eA with a =

∑n
k=0[a]k, and we write

Rp,q = ∪nk=0 Rkp,q, where Rkp,q := {[a]k, a ∈ Rp,q}.
The conjugation in the Clifford algebra Rp,q is defined as the automorphism x 7→ x =

∑
A xA eA,

where e∅ = 1, ej = −ej(j = 1, . . . , n), and eA = elr elr−1 . . . el1 . For a vector x =
∑n
j=1 xjej ∈ Rp,q
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we have xx = |x|2 :=
∑p
j=1 |xj |2 −

∑q
j=p+1 |xj |2. Hence, each non-zero vector x =

∑n
j=1 xjej with

|x| 6= 0 has an unique multiplicative inverse given by x−1 = x
|x|2 .

An Rp,q-valued function f over a non-empty domain Ω ⊂ Rn is written as f =
∑
A fAeA, with

components fA : Ω → R. Properties such as continuity are to be understood component-wisely.
For example, f =

∑
A fAeA is continuous if and only if all components fA are continuous. Finally,

we recall the Dirac operator D =
∑n
j=1 ej ∂xj , which factorizes the ultra-hyperbolic operator, i.e.,

D2 = ∆p −∆q =
∑p
j=1 ∂

2
xj
−
∑n
j=p+1 ∂

2
xj

. A Rp,q-valued function f is said to be left-monogenic if it

satisfies Df = 0 on Ω (resp. right-monogenic if it satisfies fD = 0 on Ω).

2.2. Clifford-Hilbert modules. A right (unitary) module over R0,n is a vector space V together
with an algebra morphism R : R0,n 7→ End(V ), or to say it more explicitly, there exists a linear
transformation (also called right multiplication) R(a) of V such that

(2) R(ab+ c) = R(b)R(a) +R(c),

for all a ∈ R0,n, and where R(1) is the identity operator. We consider in V the right multiplication
defined by

(3) R(a)v = va, v ∈ V, a ∈ R0,n.

In particular, if V denotes a function space, the product (3) is defined by point-wise multiplication.
We say that V is a right Banach R0,n-module if

• V is a right R0,n-module;
• V is a real Banach space;
• there exists C > 0 such that for any a ∈ R0,n and x ∈ V it holds

(4) ‖xa‖V ≤ C |a|‖x‖V , where |a|2 :=
∑
A

|aA|2.

In particular, we have ‖xa‖V = |a|‖x‖V if a ∈ R. These considerations give rise to the adequate
right modules of R0,n-valued functions defined over any suitable subset Ω of Rn. Of course, by similar
reasoning one can define adequate left modules of R0,n-valued functions.

Consider H to be a real Hilbert space. Then V := H⊗R0,n defines a right-Clifford-Hilbert module
(rHm for short). Indeed, the inner product < ·, · > in H gives rise to two inner products in V :

(5) 〈〈x, y〉〉 :=
∑
A,B

< xA, yB > eAeB and 〈x, y〉 :=
∑
A

< xA, yA >= [〈〈x, y〉〉]0 .

We remark that while only the second inner product gives rise to a norm (in the classic sense) the
first provides a generalization of Riesz’ representation theorem in the sense that a linear functional
φ is continuous if and only if it can be represented by an element fφ ∈ V such that φ(g) = 〈〈fφ, g〉〉.
Furthermore, a mapping K : V → W between two right-Clifford-Hilbert modules V and W is called
a R0,n-linear mapping if K(fa + g) = K(f)a + K(g), where f, g ∈ V, a ∈ R0,n. For more details we
refer to [23, 12].

We end this section with some important inequalities involving the sesquilinear form and the norm
coming from the complex-valued inner product:

• Hölder inequality: | 〈f, g〉 | ≤ 2n/2‖f‖Lp(Ω,R0,n)‖g‖Lq(Ω,R0,n) with 1
p + 1

q = 1

• ‖af‖L2(Ω,R0,n) ≤ 2n/2|a|‖f‖L2(Ω,R0,n) for all a ∈ R0,n, but ‖af‖L2(Ω,R0,n) = |a|‖f‖L2(Ω,R0,n)

whenever a is a scalar or a vector.
• ‖f‖L2(Ω,R0,n) ≤ | 〈f, f〉 | ≤ 2n/2‖f‖L2(Ω,R0,n)

• ‖f‖L2(Ω,R0,n) ≤ sup‖g‖L2(Ω,R0,n)≤1 | 〈f, g〉 | ≤ 2n/2‖f‖L2(Ω,R0,n)

Many facts from classic Hilbert spaces carry over to the notion of a Clifford Hilbert module. Here
too we refer to [23] for more details.
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3. Positive kernels

In this section we present some important results about reproducing right-Clifford-Hilbert modules.
While we believe that experts in the field of Clifford analysis are familiar with these results we could
not find them anywhere in the literature.

Consider a right-Clifford-Hilbert module V = H ⊗ R0,n where H denotes a Hilbert space of real-
valued functions on an open set Ω ⊂ Rn, with a reproducing kernel kx = k(x, ·), x ∈ Ω ⊂ Rn,
i.e.

(6) f(y) = 〈〈k(y, ·), f(·)〉〉, y ∈ Ω, ∀f ∈ V.

Consider now f =
∑M
l=1 k(xl, ·)cl, where cl ∈ R0,n. We have

〈〈f, f〉〉 = 〈〈
M∑
i=1

k(xi, ·)ci,
M∑
j=1

k(xj , ·)cj〉〉

=

M∑
i,j=1

ci〈〈k(xi, ·), k(xj , ·)〉〉cj

=

M∑
i,j=1

cik(xj , xi)cj = c∗Kc

with c = (c1, · · · , cM )T , c∗ = (c1, · · · , cM ), and K = (k(xj , xi))
M
i,j=1. Now, in general we have 〈〈f, f〉〉

being Clifford-valued and, therefore, it does not corresponding to a classic inner product. But, as in
(5), we have that

(7) [c∗Kc]0 = 〈f, f〉 ≥ 0.

This corresponds to the following notion of positivity of a matrix with Clifford valued entrances.

Definition 1. A matrix A ∈ (R0,n)M×M is said to be positive (positive semi-definite) if and only if

(8) [c∗Ac]0 ≥ 0

for all c ∈ (R0,n)M .

Based on this notion of positivity we introduce the notion of a positive kernel.

Definition 2. A kernel k : Ω× Ω→ R0,n, where Ω ⊂ Rn is an open set, is said to be positive if and
only if for every M ∈ N the matrix K = (k(xj , xi))

M
i,j=1 satisfies

(9) [c∗Kc]0 ≥ 0

for all (xi, xj) ∈ Ω× Ω and all c ∈ (R0,n)M .

Let us remark that the above notion of positivity also corresponds to the established notion of
positivity in the case of quaternionic analysis [2, 3, 4, 8]. The reason is that in the quaternionic case
the inner products 〈·, ·〉 and 〈〈·, ·〉〉 while not coinciding do give rise to the same norm.

The above considerations lead to the following theorem.

Theorem 1. A reproducing kernel k : Ω×Ω 7→ R0,n associated to a reproducing right-Clifford-Hilbert
module is positive.

We are in conditions to establish in the Clifford setting a version of Moore-Aronszajn Theorem (see
[9, 25]).

Theorem 2. Let k : Ω × Ω 7→ R0,n be a Hermitean positive kernel. Then there exists a unique
right-reproducing kernel Hilbert module (rRKHM) which has k as its reproducing kernel.
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Proof. Let k be a Hermitean positive kernel, that is to say, for all M ∈ N the matrix

K = (k(xj , xi))
M
i,j=1 := (〈〈k(xi, ·), k(xj , ·)〉〉)Mi,j=1

is Hermitean and satisfy to [c∗Kc]0 ≥ 0, for all (xi, xj) ∈ Ω×Ω and all c ∈ (R0,n)M . We can consider
now the functions kx = k(x, ·) and the associated right-linear module V = span{kx, x ∈ Ω}. On this
right-linear module V we introduce the sesquilinear forms 〈〈·, ·〉〉V and 〈·, ·〉V defined by

〈〈
M∑
i=1

kxici,

M∑
j=1

kxjdj〉〉V :=

M∑
i,j=1

ci〈〈k(xi, ·), k(xj , ·)〉〉dj =

M∑
i,j=1

cik(xj , xi)dj ,(10)

〈
M∑
i=1

kxi
ci,

M∑
j=1

kxj
dj

〉
V

:=

 M∑
i,j=1

ci〈〈k(xi, ·), k(xj , ·)〉〉dj


0

=

 M∑
i,j=1

cik(xj , xi)dj


0

(11)

for every finite linear combination in V. By construction the sesquilinear form is both Hermitean and
positive, i.e. 〈

M∑
i=1

kxi
ci,

M∑
j=1

kxj
cj

〉
V

≥ 0.

Subsequently, (10) defines a Clifford-valued inner product and V is a right-linear pre-Hilbert Clifford
module. Next, we consider the closure V of V and define a sesquilinear Hermitean and positive
definite form in V as an extension of the sesquilinear form in V. Given f, g ∈ V there exist two Cauchy
sequences (fn)n∈N and (gn)n∈N in V, such that f = limn fn and g = limn gn. We define the desired
sesquilinear form as

(12) 〈〈f, g〉〉V := lim
n→∞

〈〈fn, gn〉〉V .

It is easy to see that this form is well-defined, possesses all desired properties, and it does not depen-
dent on the Cauchy sequences taken. Let us call equivalent two Cauchy sequences whose difference
converges to 0. The space V is the space of equivalence classes of Cauchy sequences, endowed with
the inner product (12). We associate to every element in V a function f in Ω in a unique way by
noting that a Cauchy sequence converges also weakly, and in particular pointwise. Therefore, for a
Cauchy sequence (fn) we define

(13) F (y) = lim
n→∞

〈〈ky, fn〉〉V .

The limit is the same for two equivalent Cauchy sequences, and will be identically equal to 0 if and
only if the Cauchy sequence is equivalent to the zero-sequence. We associate to an equivalent class
of Cauchy sequences the limit (13). The space of such functions, with the inner product (12) is the
required reproducing kernel Hilbert module. �

Remark 1. We remark that Theorem 1 and Theorem 2 ensure a one-to-one correspondence between
positive definite kernels and right-reproducing kernel Hilbert modules (rRKHM).

Furthermore, let us assume that V is a rRKHM and let {ϕj , j ∈ J} be a basis in V, orthonormal

w.r.t. 〈〈·, ·〉〉V . Then we know that 〈〈f, f〉〉V =
∑
j∈J 〈〈ϕj , f〉〉V 〈〈ϕj , f〉〉V for all f ∈ V . For f = k(x, ·)

we get

k(x, x) = 〈〈k(x, ·), k(x, ·)〉〉V =
∑
j∈J
〈〈ϕj(·), k(x, ·)〉〉V 〈〈ϕj(·), k(x, ·)〉〉V =

∑
j∈J

ϕj(x)ϕj(x) ∈ R0,n,

and, in particular,
∣∣∣∑j∈J ϕj(x)ϕj(x)

∣∣∣2 <∞ for all x ∈ Ω. This allows us to write

k(x, y) =
∑
j∈J

ϕj(y)ϕj(x).
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One application of reproducing kernel Hilbert modules in Clifford analysis is interpolation. Given
evaluation mappings

E(xi) : f ∈ V → f(xi) ∈ R0,n,

we are interested in finding a function f such that

zi = E(xi)f

for all i.

Given the functions ki = k(xi, ·) associated with N observations f(xi) we can consider the subspace
VN of V spanned by the k′is. Therefore, we have for each g ∈ VN

g =

N∑
i=1

kici

Since V is a Hilbert module there exists a unique best approximation fN in VN for any f ∈ V . Since
fN − f ⊥ VN we have

0 = 〈〈ki, f − fN 〉〉V = 〈〈ki, f −
N∑
i=1

kici〉〉V

This leads to the system Kc = z where K is the Gram matrix with entries Kij = 〈〈ki, kj〉〉V = k(xj , xi)
and zi = E(xi)f = 〈〈f, ki〉〉V . Note that the Gram matrix K is hermitean. From the condition that

[

M∑
i,j=1

ciKijcj ]0 > 0,

for all choices of c = (ci)
M
i=1, with ci ∈ R0,n, we also have the positivity of all sub-matrices KN =

(Kij)
N
i,j=1 with N ≤ M . Furthermore, the positivity condition for the matrices KN implies that the

corresponding Schur complements are positive and, consequently, the quasideterminants of KN since
a quasideterminant is built from the Schur complements and satisfies the heredity principle [20, 16].
This implies that the quasideterminant of the matrix K is invertible and, therefore, the system Kc = z
has a unique solution.

The corresponding bi-orthogonal basis is given by

ki =

M∑
j=1

Kijkj

where Kij = (K−1)ij and, therefore,

fM =

M∑
i=1

zik
i.

For the last step we recall that 〈ki, kj〉V = δij .
The above statements mean that the solution to the interpolation problem in rKHM corresponds

to the orthogonal projection into the (finite-) dimensional subspace spanned by the functions ki, i =
1, . . . ,M , or, equivalently, to the solution of the problem

E∗MEMf = E∗Mz

where EM =
∑M
i=1 eiE(xi) and E∗M =

∑M
i=1 eiki. Furthermore, the operator

EME
∗
M =

M∑
i=1

eikijej

is equivalent to the kernel matrix K. Its solution is given by the Moore-Penrose (or generalized)
inverse

(14) fM = E†Mz = E∗M (EME
∗
M )†z.
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4. Pontryagin reproducing kernel modules

Let us consider a right-linear module V with a sesquilinear form 〈〈·, ·〉〉V denoted by (V, 〈〈·, ·〉〉V ). We
call (V,−〈〈·, ·〉〉V ) its anti-module. Let us just point out the obvious fact that if 〈〈·, ·〉〉V is a non-negative
form, i.e. 〈x, x〉V ≥ 0, for all x ∈ V, then obviously the anti-module of (V, 〈〈·, ·〉〉V ) is endowed with a
non-positive form.

Definition 3 (adapted from [11]). A right-linear module V endowed with a sesquilinear form 〈〈·, ·〉〉V
is called a Krein module if

(i) it admits a decomposition

(15) V = V+ ⊕ V−,
where both, V+ and the anti-module of V−, are Hilbert modules;

(ii) the decomposition is orthogonal with respect to the sesquilinear form, i.e.

(16) 〈〈v+, v−〉〉V = 0,

for each pair (v+, v−) ∈ V+ × V−.

The decomposition (15) is called a fundamental decomposition. Some remarks must be made.

Remark 2. A Krein module is a inner product space which is non-degenerate, decomposable, and
complete. In general V+ and the anti-module of V− are infinite-dimensional Hilbert modules which
are orthogonal to each other with respect to 〈〈·, ·〉〉V . Moreover, the decomposition is not unique. More
important, and in difference to the classic case of Krein spaces, the sesquilinear form 〈〈·, ·〉〉V induces
a secondary linear form 〈·, ·〉V := [〈〈·, ·〉〉V ]0 which determines positivity.

To characterize the Krein module in a unique way we introduce the associated signature operator,
or canonical symmetry, JV of V via

(17) JV (v+ + v−) := v+ − v−,
where v = v+ + v− ∈ V, with v± ∈ V±. Moreover, JV is a self-adjoint, involutory and unitary
operator. Remark now that V+ (resp. V−) is a maximal strictly positive (resp. maximal strictly
negative) submodule of V . This implies that the dimensions of V+ and of V− are independent of
the fundamental decomposition for V. Hence, we define the positive and negative indices of V as
ind±V := dimV± ∈ N0 ∪ {∞}. Since ind±V are independent of the decomposition they characterize
the module (V, 〈〈·, ·〉〉V ) in a unique way. Indeed, consider the associated right-linear Hilbert module
|V | := V+ ⊕ |V−| where V− is replaced by its anti-module |V−|. This new Hilbert module has a norm
induced by the linear form 〈·, ·〉V := [〈〈·, ·〉〉V ]0, that is,

‖v‖2V := 〈JV v, v〉V = 〈v+, v+〉V − 〈v−, v−〉V ,
and since two norms arising from different fundamental decompositions are equivalent the induced
norm topology is unique (see also [11, Theorem 7.19]). Since in our case the norms are arising from
the corresponding Clifford-valued inner products the justification still holds.

Definition 4. A Krein module V = V+ ⊕ V− is a Pontryagin module if

min{ind+V, ind−V } <∞.

Example 1. The Clifford module V = Rp,q endowed with the sesquilinear form

(18) 〈〈x, y〉〉V :=
∑
A,B

< xA, yB > eAeB ,

and

(19) 〈x, y〉V := [〈〈x, y〉〉V ]0 =
∑

A:eAeA=+1

< xA, yA > −
∑

A:eAeA=−1

< xA, yA > .

is a Pontryagin module.
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In a similar way, the Clifford module L2(Ω;Rp,q) := L2(Ω)⊗R Rp,q, where Ω ⊂ Rn, endowed with
the sesquilinear form

(20) 〈〈f, g〉〉2 :=
∑
A,B

〈fA, gB〉L2(Ω) eAeB ,

and

(21) 〈f, g〉2 := [〈〈f, g〉〉2]0 =
∑

A:eAeA=+1

〈fA, gA〉L2(Ω) −
∑

A:eAeA=−1

〈fA, gA〉L2(Ω) .

is a Krein module but not a Pontryagin module.

For Pontryagin modules we have the following very important property.

Theorem 3 (Pontryagin’s Theorem (see [24])). Let D be a dense linear submodule of a Pontryagin
module P. Then D contains the negative submodule P− in some fundamental decomposition P =
P+ ⊕ P−

Now we consider a Pontryagin module P consisting of functions from a certain domain Ω which
take values in a Krein space K. Then K is called its coefficient space. Furthermore, assume that for
each x ∈ Ω the evaluation mappings

E(x) : f ∈ P → f(x) ∈ K,

are linear mappings from P to K. In other words, they are linear operators on P which are defined
pointwise.

A reproducing kernel for P is a kernel k = k(x, y) defined on Ω×Ω with values in K such that for
every x ∈ Ω and f ∈ P we have

(1) kx(y) = k(x, y) belongs to P as a function of y;
(2) 〈〈k(x, ·), f〉〉P = f(x).

Theorem 4. Let P be a Pontryagin module over the space of functions defined on a set Ω and taking
values in a Krein space K. Then P has a reproducing kernel if and only if all evaluation mappings
E(x), x ∈ Ω, act continuously from P to K. The reproducing kernel is unique with

(22) k(x, y) = E(x)E(y)∗, x, y ∈ Ω,

where E(x)∗ denotes the adoint of the evaluation mapping operator, and it admits a decomposition
k = k+ − k− where the rRKHM generated by −k− has minimal finite dimension κ, (here, κ being the
negative index of P).

Furthermore, if Ω is an open set in Rn and the elements of P are monogenic functions then k(x, y)
is monogenic at right in x and is adjoint-monogenic at left in y, that is to say

(23) k(x, y)Dx = 0, Dyk(x, y) = 0.

Proof. If P has a reproducing kernel, then the closed graph theorem implies continuity of the evalu-
ation mappings E(·), with E(x)E(y)∗ being a reproducing kernel of P. Conversely, if the evaluation
mappings are continuous then E(x)E(y)∗ is a reproducing kernel of P. The uniqueness of the kernel
ensures k(x, y) = E(x)E(y)∗.

Since k(x, ·) ∈ K = P+⊕P− it admits a fundamental decomposition k(x, ·) = k+(x, ·)−k−(x, ·), with
k+ and −k− reproducing kernels which span the Hilbert modules P+ and P− . But P− cannot have
dimension smaller than κ otherwise P+ would not be a reproducing kernel Hilbert module. Finally,
if the elements of P are monogenic functions then E(·) is a monogenic operator-valued function, that
is x 7→ f(x) = E(x)f is monogenic for all f ∈ P. In consequence, the evaluation mappings E(·) are
monogenic and, therefore, the reproducing kernel satisfy the monogenicity equations (23). �

We denote by L(K) the space of linear bounded operators from a Krein module K into itself. A
very important theorem for rRKPM is the following.
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Theorem 5. Let k = k(x, y) be a Hermitean kernel on Ω×Ω, satisfying to (23) and taking values in
L(K) for some Krein module K and region Ω. If the restriction k0(x, y) to Ω0 × Ω0, (Ω0 ⊂ Ω), can
be written in the form k0 = k0,+ − k0,− where the rRKHM generated by k0,− has dimension κ then
k = k+ − k− where the rRKHM generated by k− has also dimension κ.

Theorem 5 basically states that reducing the domain to a smaller domain does not change the
negative index of the rRKPM. For the proof we will need following two lemmas.

Lemma 1. Let k(x, y) be a monogenic Hermitean kernel defined for |x| < R and |y| < R with values
in L(K) for some Krein module K and positive number R. If the restriction of k(x, y) to |x| < r, |y| < r
is nonnegative for some r ∈ (0, R) then k(x, y) is nonnegative for |x| < R, |y| < R.

Proof. The proof follows the following lines: a monogenic Hermitean kernel k can be written as
k(x, y) =

∑∞
|α|,|β|=0 Vβ(y)Cα,βVα(x), |x| < R, |y| < R, where Vα denotes the inner spherical monogenic

of degree α ∈ Nd. It will be shown that k(x, y) is nonnegative if and only if the matrix (Cα,β)α,β is
positive for |α|, |β| ≤ N, and for all N ≥ 0. Since this condition does not depend on R our lemma will
follow.
First, we assume k(x, y) is non-negative for |x| < R, |y| < R. Then,

k(ρx, ρy) =

∞∑
|α|,|β|=0

ρ|α|+|β|Vβ(y)Cα,βVα(x), for 0 < ρ < R.

This allows us to reduce the problem to the case of R > 1. By Cauchy’s integral theorem we have

k(x, y) =

∫
Γ

∫
Γ

u− x
|u− x|n

n(u)k(u, v)n(v)
v − y
|v − y|n

dSvdSu, |x| < 1, |y| < 1,

where dS denotes the surface measure, n(u) the outward pointing normal vector at u ∈ Γ, and Γ
the surface of the unit ball in Rn. For arbitrary points x1, . . . , xM of modulus less than one and
f1, . . . , fM ∈ K the non-negativity of k means that

0 ≤
M∑

i,j=1

[〈〈k(xi, xj)fj , fi〉〉K]0

=

∫
Γ

∫
Γ

M∑
i,j=1

fj
v − xj
|v − xj |n

n(v)k(u, v)n(u)
u− xi
|u− xi|n

fidSvdSu


0

=

∫
Γ

∫
Γ

[〈〈k(u, v)ϕ(u), ϕ(v)〉〉K]0 dSvdSu

with ϕ(u) =
∑M
i=1 n(u) u−xi

|u−xi|n fi for every u. Now an approximation argument gives us∫
Γ

∫
Γ

[〈〈k(u, v)p(u), p(v)〉〉K]0dSvdSu ≥ 0

for every monogenic polynomial p(u) =
∑N
|α|=0 Vα(u)gα with coefficients in K. Then

0 ≤
N∑

|α|,|β|=1

∫
Γ

∫
Γ

[〈〈k(u, v)gα, gβ〉〉K]0dSvdSu = [

N∑
|α|,|β|=1

〈〈Cα,βgα, gβ〉〉K]0

Therefore (Cα,β)α,β is positive for all N ≥ 0.
Now, assume that (Cα,β)α,β with |α|, |β| ≤ N is nonnegative. Choose f1, . . . , fM ∈ K and restrict

to the case R > 1 and x1, . . . , xM with modulus less than one (without loss of generality). Let ϕN be
the N-th degree approximant for the function ϕ above. Reversing the steps and passing to the limit
as N →∞ we obtain the result. �
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Lemma 2. Let k = k(x, y) be a monogenic Hermitean kernel on Ω × Ω in L(K) for some Krein
module K and domain Ω. Suppose that Ω = Ω1 ∪ Ω2, where Ω1,Ω2 are domains and the restrictions
k1(x, y) and k2(x, y) to Ω1 × Ω1 and Ω2 × Ω2 are nonnegative. Then k(x, y) is nonnegative.

Proof. Since Ω = Ω1 ∪ Ω2 is a domain (and therefore connected) the intersection Ω0 = Ω1 ∩ Ω2

is nonempty. We have that the restriction k0(x, y) of k(x, y) to Ω0 × Ω0 is nonnegative. Denote
by V0, V1, V2 the Hilbert modules of monogenic functions on Ω0,Ω1,Ω2 with reproducing kernels
k0(x, y), k1(x, y), k2(x, y), respectively. For j = 1, 2 we consider the restriction mapping

Rjϕj = ϕj
∣∣
Ω0

=: ϕ0, ϕj ∈ Vj , j = 1, 2,

which represents a Hilbert module isomorphism from Vj onto V0. We now define a new Hilbert module
in the following way. Each ϕ0 ∈ V0 satisfies

ϕ0 = ϕ1

∣∣∣
Ω0

= ϕ2

∣∣∣
Ω0

with ϕ1 ∈ V1 and ϕ2 ∈ V2. Consequently, ϕ0 = ϕ
∣∣
Ω0

where ϕ is a monogenic function on Ω. Let M
be the space of all such functions ϕ. Then M is a Hilbert module with a unique sesquilinear form
such that the mapping ϕ0 → ϕ is an isomorphism from V0 onto M. Moreover, evaluation mappings
onM are continuous since if x ∈ Ω we have x ∈ Ω1 or x ∈ Ω2. For simplicity sake let us assume that
x ∈ Ω1.

Consider a norm ‖ · ‖K which determines the strong topology of K. Let ϕ ∈ K and take ϕ0 = ϕ
∣∣∣
Ω0

and ϕ1 = ϕ
∣∣∣
Ω1

. Then, we have ϕ0 ∈ V0 and ϕ1 ∈ V1. For each f ∈ K, and due to the Hilbert module

isomorphisms, it holds∣∣[〈〈ϕ(x), f〉〉K]0
∣∣ =

∣∣[〈〈ϕ1(x), f〉〉K]0
∣∣

≤ Mx‖f‖K‖ϕ1‖V1
= Mx‖f‖K‖ϕ0‖V0

= Mx‖f‖K‖ϕ‖M
with Mx being a constant. Therefore, M has a reproducing kernel l(x, y) which is nonnegative since
M is a Hilbert module. Since the restriction to Ω0 is an isomorphism fromM to V0 the restriction of
l(x, y) to Ω0 × Ω0 is a reproducing kernel for V0. Since k(x, y) and l(x, y) are monogenic Hermitean
kernels which coincide on Ω0×Ω0 we have that they are identical. Therefore, k(x, y) is nonnegative. �

These two lemmas allow us to prove now Theorem 5.

Proof. Let k(x, y) be nonnegative on Ω0. Denote by B0, . . . , Bn balls in Ω such that the center of B0

is in Ω0 and the center of Bj is in Bj−1, j = 1, . . . , n. By our previous lemmas k(x, y) is nonnegative
on B0, B1, and B0∪B1. In the same way, k(x, y) is nonnegative on B2 and (B0∪B1)∪B2. Continuing
in thus way we have that k(x, y) is nonnegative on Bn and B0 ∪ B1 ∪ . . . ∪ Bn. In case of κ = 0 the
result follows immediately because any finite set of points in Ω are contained in the union of a system
of such balls.

In the general case we use the fundamental decomposition

k0(x, y) = k0,+(x, y)− k0,−(x, y), x, y ∈ Ω0,

where k0,+(x, y) is a reproducing kernel and k0,−(x, y) is the reproducing kernel in the κ-dimensional
anti-space. The kernel k0,−(x, y) can be written as

〈〈k0,−(x, ·), f〉〉K = −
κ∑
j=1

uj(x)〈〈uj(·), f〉〉K, f ∈ K,

on Ω × Ω and k0,+ is the restriction to Ω0 × Ω0 of the monogenic Hermitean kernel k+(x, y) =
k(x, y) + k−(x, y) on Ω× Ω. Using now the case of κ = 0, we have that k+(w, z) is nonnegative and,
hence, the reproducing kernel for a Hilbert module K+ of monogenic functions on Ω and k−(w, z) is
the reproducing kernel for a κ-dimensional module K− which is the anti-space of a Hilbert module.
It is easy to see that there is a Pontryagin module K which contains K+ and K− isometrically as
orthogonal submodules and k(x, y) is a reproducing kernel for K. �
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One of the important concepts in Pontryagin modules is the possiblity to extend densely defined
contractions to continuous contractions.

Theorem 6. Let T be a densely defined contraction, i.e. [〈〈Tx, Tx〉〉W ]0 ≤ [〈〈x, x〉〉V ]0 for all x in the
domain of T , between two Pontryagin modules V and W of the same finite index. Then T can be
extended to a continuous contraction and the adjoint of T is again a contraction.

Proof. Let us start with choosing a fundamental decomposition V = V+ + V− and W = W+ +W−
such that V− ⊂ D(T ) and TV− =W−. Such a choice of V− is always possible since every dense linear
submodule contains a negative submodule of maximum dimension κ and TV− = W− is justified by
the contraction property.

Let now Q± denote the projections of W into W± and let M be any κ-dimensional uniformly
negative submodule of D(T ). Let Q−Tf = 0 for some f ∈M. Then,

0 ≤ [〈〈Q+Tf,Q+Tf〉〉W ]0

= [〈〈Q+Tf,Q+Tf〉〉W ]0 + [〈〈Q−Tf,Q−Tf〉〉W ]0

= [〈〈Tf, Tf〉〉W ]0 ≤ [〈〈f, f〉〉V ]0 ≤ 0.

Therefore, [〈〈f, f〉〉V ]0 = 0 and, consequently, f = 0. Since W− and M have dimension κ we obtain

Q−TM =W−.
Now, let w1, . . . , wκ be a basis for W− and let Fi : D(T ) 7→ R0,n, i = 1, . . . , κ, be linear functionals
such that

Q−Tf =

κ∑
i=1

wiFi(f), f ∈ D(T ).

Obviously, no Fi can vanish identically. We are going to show that all F ′is are bounded. To this end
assume that F1 is unbounded. Take f1 ∈ D(T ) such that F1(f1) = 1 and consider the decomposition

D(T ) = span{f1}+ kerF1.

Then, there exists a sequence (gn)∞n=1 in D(T ) such that gn → 0 and F1(gn) = 1 for all n. Hence,

(f1 − gn)∞n=1 is sequence in kerF1 which converges to f1. Therefore, f1 ∈ kerF1 = D(T ) = V. But
then there exists a κ-dimensional submodule of V which is also a subset of the kernel of F1 and,
consequently, F1 vanishes identically which is a contradiction. Therefore, F1 is bounded. Proceeding
iteratively we obtain that Fi is bounded for all i = 1, · · · , κ.

Let JV and JW be the fundamental symmetries for V and W, respectively. For all f ∈ D(T ) we
have

[〈〈Q+Tf,Q+Tf〉〉W ]0 + [〈〈Q−Tf,Q−Tf〉〉W ]0 = [〈〈Tf, Tf〉〉W ]0 ≤ [〈〈f, f〉〉V ]0 ≤ [〈〈JVf, f〉〉V ]0

and, hence, there exists a constant C such that

[〈〈Q+Tf,Q+Tf〉〉W ]0 ≤ [〈〈JVf, f〉〉V ]0 + [〈〈JWQ−Tf,Q−Tf〉〉W ]0 ≤ C[〈〈JVf, f〉〉V ]0.

Consequently, the operator Q+T is bounded on D(T ) and T + Q+T + Q−T is bounded on D(T ).

Therefore, T has a continuous extension to an operator T̃ ∈ L(V,W) which is a contraction. �

Theorem 7. Let H1 and H2 be Pontryagin modules with the same index κ and let R ⊂ H1 ×H2 be
a densely defined contractive relation. Then R extends to the graph of a continuous contraction from
H1 to H2.

Proof. The proof follows similar lines as in [6] and [4]. We start with the remark that the domain of
the relation contains a maximum negative submodule since every dense linear submodule contains a
negative submodule of maximum dimension κ. Let H− be the submodule of the domain of R,

dom(R) = {h1 ∈ H1 : (h1, h2) ∈ R for some h2 ∈ H2}.
Now, consider (h1, w2) ∈ R and h1 ∈ H−. Since R is a contractive relation, that is,

[〈〈w2, w2〉〉H2 ]0 ≤ [〈〈h1, h1〉〉H1 ]0,
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whenever (h1, w2) ∈ R, we have

[〈〈w2, w2〉〉H2 ]0 ≤ [〈〈h1, h1〉〉H1 ]0 ≤ 0.

In case of h1 6= 0 we have even [〈〈h1, h1〉〉H1
]0 < 0 which implies that [〈w2, w2〉H2

]0 < 0. Furthermore,

let (h,w) and (h̃, w) belong to R with h, h̃ ∈ H− and w ∈ H2. This means that (h − h̃, 0) ∈ R and

[〈〈0, 0〉〉H2
]0 ≤ [〈〈h − h̃, h − h̃〉〉H1

]0. Because H− is a strictly negative submodule we get h = h̃ and,
consequently, that R has a zero kernel and the image of H− is a strictly negative submodule of H2

with dimension κ.

Now, let us take a basis h1, . . . , hκ in H−. Then, there are uniquely defined elements w1, . . . , wκ in
H2 such that (hi, wi) ∈ R for all i. Denote by W− the linear span of w1, . . . , wκ. We know that

dimH− = dimW− = indH1 = indH2

which mean that we have the fundamental decompositions H1 = H+ + H− and H2 = W+ +W−.
Now let us take w = w+ + w− with w+ ∈ W+ and w− ∈ W−. Then (v−, w−) ∈ R and (0, w) =
(v−, w−) + (−v−, w−) ∈ R. Consequently, we have that (−v−, w−) ∈ R and due to the contractivity
of R we have also [〈〈w+, w+〉〉H2

]0 ≤ [〈〈v−, v−〉〉H2
]0 ≤ 0 from which follows that w+ = 0. Therefore,

(0, w−) ∈ R and since R is one-to-one on H− we get w− = 0.

Finally, let us consider the orthogonal projection from H2 onto W− and let us denote by T the
densely defined contraction which has R as its graph. Then there exist right linear functionals
c1, . . . , cκ defined on the domain of R such that

Tv =

κ∑
n=1

wncn(v) + w+

with w+ ∈ W+ satisfies [〈〈wn, w+〉〉H2
]0 for n = 1, 2, . . . , κ. Suppose that c1 is not bounded on its

domain and take v+ such that c1(v+) = 1 and vn ∈ V+ such that c1(vn) = 1, for all n = 1, 2, · · · , and
limn→∞[〈〈v+− vn, v+− vn〉〉H1 ]0 = 0. This means that v+ is in the closure of kerc1 and, consequently,
kerc1 = V+ and kerc1 contains a strictly negative subspace of dimension κ denoted by V+−. But then,
we have

Tv =

κ∑
n=2

wncn(v)

for v ∈ V+− since also v ∈ kerc1, i.e. the dimension is smaller than κ which is a contradiction. This
leaves us only the question of continuity. Here, we can use

[〈〈w+, w+〉〉H2
]0 = [〈〈Tv, Tv〉〉H2

]0 − [〈〈w−, w−〉〉H2
]0

≤ [〈〈v, v〉〉H1
]0 − [〈〈w−, w−〉〉H2

]0

= [〈〈v+, v+〉〉H1
]0 + [〈〈v−, v−〉〉H1

]0 − [〈〈w−, w−〉〉H2
]0

≤ [〈〈v+, v+〉〉H1
]0 − [〈〈v−, v−〉〉H1

]0 − [〈〈w−, w−〉〉H2
]0

where w− =
∑κ
n=2 wncn(v). From this we obtain that the densely defined map v 7→ w+ is bounded be-

tween Hilbert modules due to the fact that v 7→ w− is bounded and the inner product [〈〈v+, v+〉〉H1
]0 +

[〈〈v−, v−〉〉H1 ]0 induces the topology of H1. Therefore, the mapping v 7→ w+ has an everywhere defined
continuous extension. �

5. Krein modules again

Let us now come back to the study of Krein modules. Hereby, we are adapting ideas from [17]
and [24] to the case of Clifford-Krein modules. One of the first questions in this case is of course if
there exists also a version of the theorem of Moore-Aronszajn. Since positivity of the inner product is
not an issue one could believe that any Hermitean kernel will give rise to a reproducing kernel. That
this is not true in the case of a Clifford-Klein module can be seen from the complex-valued case; it is
easily seen that a necessary condition for a function of two variables to be the reproducing kernel of
a reproducing kernel Krein space is that it can be expresses as a difference of two positive functions.
The following particular example appears in Schwartz paper [26], but also in Aronszajn’s paper [10],
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and in Bognar’s book [13], and present an Hermitean function which cannot be expressed as difference
of two positive functions. Let E be a Banach bi-module that does not allow a Hilbert structure, and
let Ω = E′ × E. Then the kernel

k : E′ × E 7→ E × E′

((e′1, e1), (e′2, e2)) 7→ e′1(e2) + e′2(e1)

cannot be the difference of two positive kernels (or as we will state in the sequel it cannot admit a
Kolmogorov decomposition) since if we could write k = k+− k− then (E,E′) = H+⊕H− in terms of
sets and E could be endowed with a Hilbert structure.

This means that a Hermitean kernel function is in general not a reproducing kernel of a Clifford-
Krein module. Furthermore, there may be more than one reproducing kernel Krein module with
a given reproducing kernel; see [26, 1], One needs additional (different) sets of conditions and con-
cepts, like the concept of Kolmogorov decomposition, to insure existence and unicity. To introduce
Kolmogorov decomposition, we write a Hermitean kernel as

(24) K = [Ki,j ]i,j∈J, Ki,j ∈ L(Vi,Vj),
where Ki,j = K∗j,i, for all i, j ∈ J, and Vj ’s are Krein modules. This allows us to give the following
definition.

Definition 5. A Hermitean kernel K = [Ki,j ]i,j∈J,Ki,j ∈ L(Vi,Vj), admits a Kolmogorov decompo-
sition if there exists a Krein module K and operators Vj ∈ L(Vj ,K), j ∈ J, such that

i) Ki,j = V ∗i Vj , i, j ∈ J;
ii) K = ∨jVjVj .

Two Kolmogorov decompositions Ki, i = 1, 2, with operators Vi,j ∈ L(Vj ,Ki), j ∈ J, are said
equivalent if there is an isomorphism W ∈ L(K1,K2) such that V2,j = WV1,j , j ∈ J. If any two
Kolmogorov decompositions are equivalent then we say that the kernel K has an essentially unique
Kolmogorov decomposition.

Let F denote the linear space of all finitely nonzero indexed sets f = (fj)j∈J where fj are vectors
in Vj . We define a K-inner product on F as

(25) 〈〈f, g〉〉K :=
∑
i,j∈J
〈〈Ki,jfj , gi〉〉Vi , f, g ∈ F.

We say that K is nonnegative and write K ≥ 0 if the K-inner product (25) is nonnegative, i.e.
the inner product 〈f, g〉K = [〈〈f, g〉〉K ]0 is nonnegative. We write that two Hermitean kernels verify
K1 ≤ K2 whenever K2 −K1 ≥ 0.

We call a Hermitean kernel L associated to the same Krein spaces Vj with L ≥ 0 and −L ≤ K ≤ L
a nonnegative majorant for a Hermitean kernel K. Hereby, we associate a Hilbert space HL with L
by standard construction. Then the quotient space F/HL, where HL is the subspace of all elements
orthogonal to F in the L-inner product, is dense in HL. For f ∈ F denote by [f ] the corresponding
coset in F/HL. An inner product in HL is given on the dense set by

〈〈[f ], [g]〉〉HL
:= 〈〈f, g〉〉L, f, g ∈ F.

Furthermore, there exists a unique operator J ∈ L(HL) such that

〈〈J [f ], [g]〉〉HL
:= 〈〈f, g〉〉K , f, g ∈ F.

The operator J is selfadjoint and satisfies ‖J‖ ≤ 1. It is called Gram operator of the kernel K for the
majorant L.

Before we continue let us give an important lemma for Clifford-Krein modules which is based on
the fact that every selfadjoint operator on a Krein module is congruent to a selfadjoint operator on a
Hilbert module, i.e. if C ∈ L(K) there is a Hilbert module H, a selfadjoint operator B ∈ L(H) and an
invertible operator X ∈ L(H,K) such that C = X∗BX. This allows us to state the following theorem.



14 D. ALPAY, P. CEREJEIRAS, AND U. KÄHLER

Theorem 8. Let K be a Hermitean kernel then the following statements are equivalent

i) K has a Kolmogorov decomposition;
ii) K has a nonnegative majorant;

iii) K = K+ −K− for some Hermitean kernels K+ ≥ 0,K− ≥ 0.

In this case, iii) can be chosen such that the only Hermitean kernel M such that 0 ≤ M ≤ K± is
M = 0.

Proof. i) ⇒ ii) Suppose K has a Kolmogorov decomposition and we construct a Hilbert module M
and an invertible operator X ∈ L(K,M) such that

| 〈f, f〉K | = |[〈〈f, f〉〉K]0| ≤ 〈Xf,Xf〉M , f ∈ K.

Consider now

(26) L = {Lij}i,j∈J, s.t. Lij = V ∗i X
∗XVj ∈ L(Vi,Vj), i, j ∈ J,

with Vi’s Krein modules - recall Definition 5. Obviously, L is a nonnegative majorant for K.
ii) ⇒ i) Let K have a nonnegative majorant L. We denote by J ∈ L(HL) the associated Gram

operator. Using the fact that every self-adjoint operator on a Clifford-Hilbert module has a factor-
ization J = AA∗ with kerA = {0} we have that there is a natural continuous embedding operator Ej
from Vj to HL for all j ∈ J. In particular, Eju = [fu], where fu is the element of F which has u as
its j-th component and has zero in all other components. Now, setting Vj = A∗Ej , j ∈ J leads to a
Kolmogorov decomposition.

ii)⇒ iii) Let us assume that K has a nonnegative majorant L with corresponding Gram operator
J . Since J is Hermitean it has real eigenvalues. Then, using the above defined embedding operators
Ej , j ∈ J, we have Kij = E∗i JEj , i, j ∈ J. We denote by P0, P± the projection operators given by

P0J [f ] = 0, [〈〈P+J [f ], [f ]〉〉HL
]0 > [〈〈f, f〉〉K ]0, [〈〈P−J [f ], [f ]〉〉HL

]0 < [〈〈f, f〉〉K ]0,

for all f ∈ F. Then we can define kernels K± via

(27) K±ij = E∗i (±P±)JEj , i, j ∈ J,

such that K± ≥ 0 and K = K+ −K−.

We can now point out that the kernels K± are minimal in the sense of the theorem. For this we
suppose there exist a Hermitean kernel M with 0 ≤M ≤ K±. Due to ‖J‖ ≤ 1 and K± ≤ L we have
0 ≤M ≤ L. Now, the Gram operator H ∈ L(HL) associated to M relative to L satisfies

0 ≤ 〈H[f ], [f ]〉HL
= [〈〈H[f ], [f ]〉〉HL

]0 ≤ [〈〈±P±J [f ], [f ]〉〉HL
]0 = 〈±P±J [f ], [f ]〉HL

, f ∈ F.

But since P+J and P−J are supported on orthogonal submodules of HL we get H = 0 and 〈〈f, g〉〉M = 0
for all f, g ∈ F, and, therefore, M = 0.
iii)⇒ ii) Suppose that K = K+ −K−. Then L = K+ +K− is a nonnegative majorant for K. �

The first part of the above proof provides us with a constructive way to obtain a majorant L (26)
which we can explore further. To this end let us now consider K to be a Hermitean kernel where a
nonnegative majorant L exists. We say that a Kolmogorov decomposition for K is L-continuous if
the mapping which maps [f ] on F/HL into

∑
j∈J Vjfj on K extends to a continuous operator from on

HL into K. Here, we can state the following theorem.

Theorem 9. Suppose K is a Hermitean kernel.

i) if K has a Kolmogorov decomposition, the decomposition is L-continuous with respect to the
nonnegative majorant L given by (26);

ii) if K has a nonnegative majorant L , the Kolmogorov decomposition of K constructed via the
kernels (27) is L-continuous.

This theorem means that L-continuous Kolmogorov decompositions always exist whereby unique-
ness depends on the Gram operator.
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Proof. To prove the first item we note that

〈〈[f ], [g]〉〉HL
= 〈〈X

∑
i∈J

Vifi, X
∑
j∈J

Vjgj〉〉M, f, g ∈ F.

Therefore, the mapping which maps [f ] into X
∑
i∈J Vifi is an isometry from HL into M and the

mapping which maps [f ] into
∑
i∈J Vifi is the composition of the previous mapping and X−1, thus

continuous.

For the second item we have to show that the mapping which maps [f ] into
∑
i∈J Vifi extends to

a continuous operator from HL into the Krein module K. By the previous theorem, the associated
Gram operator J admits a factorization J = AA∗ with kerA = {0}. Because K is the closed span of
the ranges of the operators Vi if we show that for any f, g ∈ F

〈〈[f ], A
∑
j∈J

Vjgj〉〉HL
= 〈〈

∑
i∈J

Vifi,
∑
j∈J

Vjgj〉〉K

then the continuous extension is simply A∗. For the operators Vi, i ∈ J, we have Vi = A∗Ei and∑
i∈JEigi = [g]. Therefore, the above equality can be written as

〈〈[f ], AA∗[g]〉〉HL
= 〈〈

∑
i∈J

Vifi,
∑
i∈J

Vigi〉〉K,

which holds true due to AA∗ = J and, consequently, both sides are equal to 〈〈f, g〉〉K . �

One of the first questions now is if in the present case of Clifford-Krein modules Kolmogorov
decompositions are unique. To this end we have to introduce the concept of a unique factorization
property.

Definition 6. A self-adjoint operator C ∈ L(K) on a Clifford-Krein module has the unique factor-
ization property if for any two factorizations

C = A1A
∗
1 = A2A

∗
2

with Aj ∈ L(Kj ,K), kerAj = {0}, j = 1, 2 for some Clifford-Krein modules Kj , there exists an
isomorphism U ∈ L(K1,K2) such that A1 = A2U .

This definition allows us to state the following theorem.

Theorem 10. Let K be a Hermitean kernel with nonnegative majorant L and Gram operator J.
Any two L-continuous Kolmogorov decompositions are equivalent if and only if J has the unique
factorization property.

Proof. Assume that the Gram operator J has the unique factorization property. Consider two L-
continuous Kolmogorov decompositions:

Kij = V ∗1,iV1,j , V1,j ∈ L(Vj ,K1), i, j ∈ J,
Kij = V ∗2,iV2,j , V2,j ∈ L(Vj ,K2), i, j ∈ J.

Since we know that the mapping which maps [f ] into
∑
j∈J V1,jfj extends to a continuous operator

A from HL into K1 with adjoint A1 = A∗ ∈ L(K1,HL). For all f, g ∈ F we have

〈〈[f ], A1

∑
i∈J

V1,igi〉〉HL
= 〈〈

∑
j∈J

V1,jfj ,
∑
i∈J

Vigi〉〉K1

and, therefore,

〈〈J [f ], [g]〉〉HL
= 〈〈f, g〉〉K1

= 〈〈
∑
j∈J

V1,jfj ,
∑
i∈J

Vigi〉〉K1 = 〈〈[f ], A1A
∗
1[g]〉〉HL

.

The latter means that J = A1A
∗
1. In the same way we can get the factorization J = A2A

∗
2, and due

to the unique factorization property we have A1 = A2W for some unitary operator W ∈ L(K1,K2).
This leads to

V2,j = A∗2Ej = WA∗1Ej = WV1,j ,
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for all j ∈ J and the two Kolmogorov decompositions are equivalent. Let us assume now that any two
L-continuous Kolmogorov decompositions of K are equivalent. Consider

J = A1A
∗
1 = A2A

∗
2

with A1 ∈ L(K1,HL), A2 ∈ L(K2,HL), kerA1 = {0}, and kerA2 = {0}. Using Theorem 9 we can
construct L-continuous Kolmogorov decompositions by putting V1,j = A∗1Ej and V2,j = A∗2Ej for all
j ∈ J. Now, using the condition that the decompositions are equivalent we have that there exist a
unitary operator W ∈ L(K1,K2) such that V2,j = WV1,j for each j ∈ J. Since K1 = ∨jV1,jVj and
K2 = ∨jV2,jVj we get WA∗1 = A∗2 and, consequently, A1 = A2W . With other words, J possesses the
unique factorization property. �

We can give a better result on uniqueness if we assume stronger conditions.,

Theorem 11. An essentially unique Kolmogorov decomposition for a Hermitean kernel K exists if
and only if for all nonnegative majorants the Gram operators have the unique factorization property.

Proof. The necessity of the condition is immediate since otherwise the previous theorem ensures the
existence of nonequivalent Kolmogorov decompositions. Let us assume now that each Gram opera-
tors possesses the unique factorization property. By Theorem 9 we know that any two Kolmogorov
decompositions are continuous relative to the majorants L1 and L2, thus L = L1 + L2 is a majorant
for the kernel K. Because of L1, L2 ≤ L we have that the corresponding mappings are densely defined
contractions from HL into HL1 and HL2 , respectively. But these spaces are Hilbert spaces and, there-
fore, the mappings which map [f ] into

∑
j∈J V1,jfj and

∑
j∈J V2,jfj , respectively, are compositions

of continuous operators, and, therefore, L-continuous. By the previous theorem the two Kolmogorov
decompositions are equivalent. �

Theorem 12. Let K be a Hermitean kernel, and assume that there exists a Kolmogorov decom-
position such that the linear span of the submodules Vj , j ∈ J, contains one of the submodules K±
in some fundamental decomposition K = K+ ⊕ K−. Then K has an essentially unique Kolmogorov
decomposition.

Proof. Consider two Kolmogorov decompositions and define a linear relation R from K1 into K2 via

R = {(
∑
j∈J

V1,jfj ,
∑
j∈J

V2,jfj) : f ∈ F}.

From the definition of a Kolmogorov decomposition we know that R has to have dense domain and
dense range. For all f ∈ F we have

〈〈
∑
j∈J

V1,jfj ,
∑
j∈J

V2,jfj〉〉K1
= 〈〈f, f〉〉K = 〈〈

∑
j∈J

V2,jfj ,
∑
j∈J

V2,jfj〉〉K2
.

Now, the domain of R contains one of the submodules K1,+ in some fundamental decomposition
K1 = K1,+ ⊕K1,−. This means that the closure of R is the graph a unitary operator W ∈ L(K1,K2).
Therefore, we get V2,j = WV1,j for all j ∈ J and with it the equivalence of the two Kolmogorov
decomposition. �

We also get the following corollary.

Corollary 1. If a Hermitean kernel K has a Kolmogorov decomposition such that K is either a
Clifford-Pontryagin module or the antimodule of a Pontryagin module, then K has an essentially
unique Kolmogorov decomposition.

From the above we can see that as a sufficient condition we can reduce the question of uniqueness
to the question of self-adjoint operator C ∈ L(K) having the unique factorization property. For this
property we can state the following theorem.

Theorem 13. Let K be a Krein module and let C ∈ L(K) be a self-adjoint operator then the following
statements are equivalent:
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(1) C has the unique factorization property
(2) for some factorization C = AA∗, ran(A∗) contains one of the submodules K± in some funda-

mental decomposition K = K+ ⊕K−.

The proof will be omitted since it is an easy adaptation of the proof of Theorem 2.8 in [15].

There are some simple sufficient conditions for the unique factorization property given by the next
theorem.

Theorem 14. Let K be a Krein module and let C ∈ L(K) be a self-adjoint operator then the following
conditions are sufficient for C having the unique factorization property:

(1) C is non-negative, i.e. C ≥ 0,
(2) One of ind±C is finite,
(3) C2 ≤ C.

Proof. Obviously, the first condition implies the second. For the second we can assume ind−C <∞.
Now, let C = AA∗ be any factorization. Then we have ind−K1 = ind−C <∞ and due to kerA = {0},
ran(A∗) is dense in A and condition 2 follows from Theorem 3. �

6. Examples of Krein modules with reproducing kernels in Clifford analysis

Let us start with the usual characterization of a reproducing kernel.

Theorem 15. Let K be a Clifford-Krein module of functionals defined on a set Ω and taking values
in a Clifford-Krein module V. Then K has a reproducing kernel if and only if all evaluation mappings
E(x), x ∈ Ω belong to L(K,V). The reproducing kernel is uniquely determined by the module K and
given by

K(x, y) = E(x)E(y)∗, x, y ∈ Ω.

Now, for a Clifford-Krein module to have a reproducing kernel is equivalent to the existence of a
Kolmogorov decomposition with Vj = E∗j . Yet this reproducing Clifford-Krein module is not unique,
i.e. we can have two Clifford-Krein modules with the same reproducing kernel. To restore the
uniqueness we need that the Krein module has an essentially unique Kolmogorov decomposition.
This observation results in the following theorem.

Theorem 16. If K(x, y), x, y ∈ Ω is a Hermitean kernel with values in L(V) for some Krein module
V, then the following statements are equivalent:

(1) K(x, y) is the reproducing kernel for some Krein module K of functions on Ω.
(2) K(x, y) has a nonnegative majorant L(x, y) on Ω× Ω.
(3) K(x, y) = K+(x, y)−K−(x, y) for some nonnegative kernels K±(x, y) on Ω× Ω.

Furthermore, under the above conditions we have

(1) For a given nonnegative majorant L(x, y) for K(x, y) there is a Krein module K with reproduc-
ing kernel K(x, y) which is contained continuously in the Hilbert module HL with reproducing
kernel L(x, y).

(2) There is a continuous self-adjoint operator J on HL such that J : L(x, ·)f 7→ K(x, ·)f, x ∈
Ω, f ∈ V. The module K is unique if and only if J has the unique factorization property.

Proof. The equivalence of statements 1 to 3 is already proven in Theorem 8. For the proof of state-
ment 1 we can construct a reproducing kernel Clifford-Krein module K with kernel K as in the proof of
Theorem 8 based on the nonnegative majorant L(x, y). The corresponding reproducing kernel Hilbert
module HL appears naturally and the associated Gram operator J satisfies the mapping condition in
(5). Now, Theorem 9 implies that there exist a continuous operator A∗ mapping HL into K such that

A∗ : L(x, ·)f 7→ K(x, ·)f, x ∈ Ω, f ∈ V.

Since the adjoint operator is just the inclusion mapping from K into HL we have that J = AA∗ and
K is continuously contained in HL.
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Furthermore, suppose that J has the unique factorization property and denote by K1 and K2 two
Clifford-Krein modules with the same reproducing kernel K which are contained continuously in HL.
Since the two Kolmogorov decomposition are equivalent by Theorem 10 we have that the identity
mapping on the linear span of all functions K(x, ·)f, x ∈ Ω, f ∈ V extends to a unitary operator
from K1 onto K2. Due to the fact that the evaluation mappings are bounded for any reproducing
kernel Clifford-Krein module we have that the modules K1 and K2 are identical. On the other hand,
if we assume that we have two distinct Krein spaces K1 and K2 with reproducing kernel K contained
continuously in HL then we have two nonequivalent L-continuous Kolmogorov decompositions. From
Theorem 10 we have that the Gram operator J cannot possess the unique factorization property. �

Let us now take a closer look at some examples. As stated already before an obvious example for
a Pontryagin space is the space Rp,q with the sesquilinear form

< x, y >=

p∑
i=1

xiyi −
p+q∑
i=p+1

xiyi,

which gives rise to the Clifford module Rp,q with sesquilinear form

〈〈x, y〉〉 =
∑
A,B

〈xA, yB〉eAeB .

For this Clifford-Pontryagin module we have a fundamental decomposition in the form

x+ =
∑

#{i∈A:1≤i≤p} even

eAxA, and x− =
∑

#{i∈A:1≤i≤p} odd

eAxA

with xA ∈ Rp,q. To this decomposition we associate the norms

‖x+‖2+ := [〈〈x+, x+〉〉]0, ‖x−‖2− := −[〈〈x−, x−〉〉]0.

Now, the resulting function space L2(Rn,Rp,q) = L2(Rn)⊗Rp,q is a classic example of a Clifford-Krein
module with an associated fundamental decomposition L2(Rn,Rp,q) = V+ ⊕ V− with f = f+ + f−,
f+ ∈ V+, f− ∈ V− where f =

∑
A eAfA, and

f+ =
∑

#{i∈A:1≤i≤p} even

eAfA ∈ (L2(Rn)⊗ Rp,q)+,

and

f− =
∑

#{i∈A:1≤i≤p} odd

eAfA ∈ (L2(Rn)⊗ Rp,q)−.

For the above decomposition of the Clifford-Krein module we introduce the norms

(28) ‖f+‖2+,2 := [〈〈f+, f+〉〉]0, f+ ∈ (L2(Rn)⊗ Rp,q)+,

and

(29) ‖f−‖2−,2 := −[〈〈f−, f−〉〉]0, f− ∈ (L2(Rn)⊗ Rp,q)−.

Furthermore, the above canonical decomposition gives rise to the signature operator JV (f+ +f−) =
f+ − f−. Obviously, for this operator we have J2

V = I and J∗V = J . Hereby, J∗ denotes the adjoint
operator with respect to the indefinite inner product

〈〈f, g〉〉 =

n∑
i=1

< fA, gB > eAeB .

To provide a more specific example let us take a look at the Clifford algebra R1,1. Representing a
general element in this algebra x = x0 + e1x1 + e2x2 + e1e2x12 as a vector in R4 we observe that it
splits into

x = x+ + x− := (x0 + e2x2) + (e1x1 + e1e2x12)
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so that the operator J can be represented by the matrix

J =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

Since ind±J are both finite J has the unique factorization property by Theorem 14.
Let us consider the application of our study to two examples of reproducing kernel Krein modules

in this context.

In the first example we consider the ultrahyperbolic Dirac operator. For simplicity we abbrevi-
ate x =

∑p
i=1 eixi +

∑p+q
i=p+1 eixi := T + X, where T =

∑p
i=1 eixi and X =

∑p+q
i=p+1 eixi. The

ultrahyperbolic Dirac operator is given by ∂p,q = ∂T − ∂X . It factorizes the ultrahyperbolic oper-
ator ∂2

p,q = ∆T − ∆X . Elements of its kernel are called ultrahyperbolic monogenic functions. If
we additionally assume ultrahyperbolic monogenic functions to be α−homogeneous we arrive at the
system {

∂p,qu = ∂Tu− ∂Xu = 0,
Eu = αu,

where E =
∑p+q
i=1 xi∂i is the Euler operator which measures the degree of homogeneity. The solutions

of this system were studied in [19] and presented in the form of the following theorem. Here, we
denote T = |T |ε,X = |X|ω.

Theorem 17. [19] Given two inner spherical monogenics Vλ(ε) and Vκ(ω), i.e. restrictions of ho-
mogeneous null solutions for the Dirac operator on Rp,0, respective R0,q, to Sp−1, respective Sq−1 a
null-solution for the ultrahyperbolic Dirac operator is given by

u(T,X) = ∂p,q|T |α+1f(|X|2)εVλ(ε)Vκ(ω)

where f(t) = f(|X|2) satisfies the hypergeometric differential equation

t(1− t)d
2f

dt2
+
[
κ+

q

2
− (κ− α− p

2
+ 1)t

] df
dt
− (κ+ λ− α)(κ− λ− α− p)

4
f = 0.

If we restrict now to rTS
p−1 × rXSq−1 := |T |Sp−1 × |X|Sq−1 these functions have the form

uλ,κ(ε, ω) = −2r2
T [A(rX) + ωεB(rX)]Vλ(ε)Vκ(ω),

where A(rX), B(rX) are constants depending on rX .

Let us now consider the reproducing kernels

K(x, y) =

∞∑
|λ|+|κ|=0

a(ωy, εy)Vλ(εy)Vκ(ωy)a(ωx, εx)Vλ(εx)Vκ(ωx)cλ,κ,

where a(ωx, εx) = A(rX) + ωεB(rX) and cλ,κ ∈ R for all λ, κ. When cλ,κ = 1, for all κ, λ, we recover
the corresponding “Hardy” space, i.e.

f(x) =

∫
Sp−1

∫
Sq−1

K(x, y)f(y)dS(ωy)dS(εy).

For a given sequence c = (cλ,κ), where cλ,κ ≥ 0 for λ ∈ Np0, κ ∈ Nq0, we define its support as

supp(c) := {(λ, κ) ∈ Np+q0 : cλ,κ 6= 0}.
We now consider the space with the reproducing kernel given by

Kc(x, y) =

∞∑
(λ,κ)∈supp(c):|λ|+|κ|=0

a(ωy, εy)Vλ(εy)Vκ(ωy)a(ωx, εx)Vλ(εx)Vκ(ωx)cλ,κ

:=

∞∑
(λ,κ)∈supp(c):|λ|+|κ|=0

Ψλ,κ((ωx, εx), (ωy, εy))cλ,κ,(30)
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where Ψλ,κ((ωx, εx), (ωy, εy)) := a(ωy, εy)Vλ(εy)Vκ(ωy)a(ωx, εx)Vλ(εx)Vκ(ωx) with a(ωx, εx) = A(rX)+
ωεB(rX). The components Ψλ,κ decompose into

(31) Ψλ,κ = Ψ+
λ,κ −Ψ−λ,κ,

with Ψ±λ,κ taking values in V±. The kernel (30) defines the reproducing kernel right Krein module

(RKrKM) Hc containing all functions

f(y) =

∞∑
(λ,κ)∈supp(c):|λ|+|κ|=0

Ψλ,κ((ωx, εx), (ωy, εy))fλ,κ, fλ,κ ∈ Rp,q,

for which it holds

(32) ‖f‖2c :=

∞∑
(λ,κ)∈supp(c):|λ|+|κ|=0

‖fλ,κ‖2|Rp,q|

cλ,κ
<∞.

The RKrKM Hc is associated to the domain

(33) Ωc :=

y ∈ Rp,q :

∞∑
(λ,κ)∈supp(c):|λ|+|κ|=0

(
‖Ψ+

λ,κ‖
2
+,2 + ‖Ψ−λ,κ‖

2
−,2

)
cλ,κ <∞

 ,

where these norms are given by (28) and (29). Moreover, the following reproducing formula holds.

(34) f(x) =

∫
(ωy,εy)∈Sp−1×Sq−1

Kc(x, y)f(y)dS(ωy)dS(εy).

A majorant for the reproducing kernel Kc is given by the kernel

L(x, y) =

∞∑
(λ,κ)∈supp(c):|λ|+|κ|=0

Ψ+
λ,κ((ωx, εx), (ωy, εy))cλ,κ + Ψ−λ,κ((ωx, εx), (ωy, εy))cλ,κ

which allows us to apply Theorem 16. The Gram operator J in Theorem 16 acts on f as Jf+ = f+

and Jf− = −f− and has a trivial factorization J = AA∗ with A = J and A∗ = I whereby A∗ denotes
the J-adjoint operator. Since V+ ⊂ ranJ∗ = ranI by Theorem 13 J has the unique factorization
property.

Furthermore, we want to point out that also in this case the same reproducing kernel can lead to
different RKrKM’s. To this end we recall that the matrices

T =

(
cosh θ sinh θ
sinh θ cosh θ

)
are J-unitary, i.e. TJT ∗ = J . Now, for functions f(ε, ω) =

∑∞
|λ|+|κ|=0 uλ,κ(ε, ω)fλ,κ we can introduce

the norms

‖f‖K1
=

∞∑
n=0

∑
|λ|+|κ|=n

[ fλ,κfλ,κ ]0

‖f‖K2 =

∞∑
n=0

∑
|λ|+|κ|=n

[ fλ,κT
2nfλ,κ ]0

together with the inner product 〈〈f, g〉〉J =
∑∞
n=0

∑
|λ|+|κ|=n fλ,κJgλ,κ. Now, it is easy to show that

the modules K1 and K2 are different, c.f. [1].
An interesting case is when the coefficients cλ,κ = 1 which correspond to the (counterpart of the)

Hardy space. The coefficients cλ,κ = λ!
|λ|!

κ!
|κ|! correspond to the Arveson space while cλ,κ = λ!κ! to the

Fock space.
The study of the corresponding tensor products and associated Krein spaces Hc will be presented

in a future publication.
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Let us now consider the classic problem of interpolation for null solutions of the ultrahyperbolic
Dirac operator:

Given the nodes and values (xj , yj), j ∈ J we want construct a function f , such that

(35) f(xj) = yj , for all j ∈ J.

Suppose that f ∈ Hc then we can write the interpolation condition as

yj = f(xj) =

∞∑
(λ,κ)∈supp(c):|λ|+|κ|=0

Ψλ,κ(ωxj
, εxj

)fλ,κ, fλ,κ ∈ Rp,q.

Now, restricting (λ, κ) to a finite set with cardinality equal to J we arrive at the following matrix
problem

y = (Ψλl,κl
(ωxj

, εxj
))j,l∈Jfλ,κ.

Unfortunately, the matrix (Ψλl,κl
((ωxj , εxj ))j,l is not positive definite, so that we cannot directly study

the solution of this problem, but by using Theorem 16 via the fundamental decomposition we can
split the above problem into two problems:

y+ = (Ψ+
λl,κl

(ωxj
, εxj

))j,lf
+
λ,κ,

y− = (Ψ−λl,κl
(ωxj , εxj ))j,lf

−
λ,κ.(36)

While the first matrix Ψ+
λl,κl

corresponds to the kernel matrix of a reproducing kernel over a Hilbert
module and, therefore, the matrix is positive definite the negative of the second matrix corresponds
to the kernel matrix of a reproducing kernel over an anti-Hilbert module and, consequently, Ψ−λl,κl

is
also positive definite. We can get the solvability of these matrix equations in the same way as the
solvability of equation (14) and arrive at the following theorem:

Theorem 18. Let f be in Hc then the interpolation problem (35) has a unique solution whereby the
coefficients fλ,κ satisfy fλ,κ = f+

λ,κ − f
−
λ,κ and f+

λ,κ, f
−
λ,κ are solutions of the matrix systems (36).

A second example is motivated by the spherical Radon transform which arises in the determination
of the orientation density function f (ODF) of a polycrystalline specimen from given pole density
data [14].

Definition 7. [Spherical Radon transform] [14]) Let f be a L1(S3) function. We define the spherical
Radon transform of f as the mean over all rotations q mapping the direction ε ∈ S2 into ω ∈ S2 and
we write

(Rf)(ε, ω) :=
1

2π

∫
{q∈S3:ω=qεq}

f(q)dq(37)

=
1

2π

∫ 2π

0

f(q(ε, ω, t))dt,

where q(ε, ω, t) =
(

cos η2 + ε×ω
‖ε×ω‖ sin η

2

)
cos t + ε+ω

‖ε+ω‖ sin t, with η = arccos(〈ε, ω〉), denotes the great

circle in S3 of all unit quaternions q which rotates ε ∈ S2 into ω ∈ S2.

For the spherical Radon transform it is well-known that R : L2(S3) 7→ L2(S2 × S2) and (∆ε −
∆ω)(Rf)(ε, ω) = 0. Denote u = Rf we can write it in the form

u(ε, ω) =

∞∑
l=0

l∑
m1=−l

l∑
m2=−l

Y m1

l (ε)Y m2

l (ω)λm1m2

l

where λm1m2

l = O(l−k) for any k ∈ N.
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Instead of using the standard inner product of L2 for the study of these functions it is more
appropriate to use the “energetic” inner product

〈u, v〉R = 〈∂p,qu, ∂p,qv〉
using our ultrahyperbolic Dirac operator ∂p,q. This inner product is indefinite and gives rise to a
Krein space L2(S2 × S2) with 〈·, ·〉R.

From the above considerations we can consider reproducing kernel modules Hc with kernels

Kc(x, y) =

∞∑
l=0

l∑
m1=−l

l∑
m2=−l

Y m1

l (εy)Y m2

l (ωy)Y m1

l (εx)Y m2

l (ωx)cm1,m2

l

with cm1,m2

l ∈ R.
An interesting case is when the coefficients cm1,m2

l factorize as

cm1,m2

l = dm1

l dm2

l .

The corresponding kernel Kc factorizes as

Kc = (Kd)
2

where

Kd(x, y) =

∞∑
l=0

l∑
m1=−l

Y m1

l (εy)Y m1

l (εx)dm1

l .

The corresponding reproducing kernel Hilbert space is the restriction to the diagonal of the elements
of the tensor product H(Kd) ⊗ H(Kd). See [9](S. 8, p. 357) for the classical case. The case where
dλ = 1 corresponds to the (counterpart of the) Hardy space, dλ = λ!

|λ|! to the Arveson space, dλ = λ!

to the Fock space.
We can again consider the interpolation problem for functions u, i.e. the following question:

Find u ∈ L2(S2 × S2), such that u(εj , ωj) = aj where aj is the given data.

As a first step we are looking to express u in terms of

u(ω) =
∑
λ∈Λ

K(ελ, ω)uλ, uλ ∈ R.

From our fundamental decomposition we can write

K(ελ, ω) = K+(ελ, ω)−K−(ελ, ω),

where K+ and −K− are positive kernels, and associate to each of these kernels a problem of the type
(36). This leads to the following theorem.

Theorem 19. Let f be in Hc then the above interpolation problem has a unique solution whereby the
coefficients uλ satisfy uλ = u+

λ − u
−
λ and u+

λ , u
−
λ, are solutions of the matrix systems arising from the

positive kernels K+ and K−.
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