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The Balian–Low theorem expresses the fact that time–frequency
concentration is incompatible with non-redundancy for Gabor systems.
In this article, the Balian–Low theorem is established for a new kind of
Gabor systems feim �ð2�tÞgðt� nÞgm,n2Z associated with a phase function �(t)
satisfying certain assumptions. Meanwhile, some properties of the
corresponding generalized Zak transform are shown and explicit examples
of the phase function �(t) are provided.
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1. Introduction

The Balian–Low theorem, which is a key result in time–frequency analysis, has been
of interest to many researchers for some years [1–10]. It expresses the fact that
time–frequency concentration and non-redundancy are incompatible properties for
Gabor systems fe2�imtgðt� nÞgm,n2Z. Specifically, if g2L

2(R) has the property that
the functions gm,n(t)¼ e2�imtg(t� n) constitute a frame for L2(R), i.e.,

Ak f k2 �
X

m,n2Z

jh f , gm,nij
2 � Bk f k2,

then either Z þ1
�1

t2j gðtÞj2dt ¼ 1 or

Z þ1
�1

�2jĝð�Þj2d� ¼ 1,

where the Fourier transform ĝ of g is formally defined by

ĝð!Þ ¼ Fgð!Þ ¼

Z
R

gðtÞe�2�it!dt:

*Corresponding author. Email: ukaehler@ua.pt

ISSN 0003–6811 print/ISSN 1563–504X online

� 2011 Taylor & Francis

http://dx.doi.org/10.1080/00036811.2011.640626

http://www.tandfonline.com



It is well-known that the Zak transform is an important tool for studying the frame

given by Gabor systems [8,11–13]. The Zak transform was independently introduced

by J. Zak in 1967 and defined by

ðZf Þðt,!Þ ¼
X
k2Z

e2�ik!f ðt� kÞ, ðt,!Þ 2 ½0, 1Þ2:

This defines a unitary operator from L2(R) to L2([0, 1)2). In abstract harmonic

analysis the Zak transform is called the Weil–Brezin map.
Note that the harmonic waves e2�in!, n2Z in the Zak transform have constant

frequencies, which can be seen as the derivative of the linear phase �(!)¼ 2�n!, such
a purely monochromatic signal cannot expose the time-varying property of non-

stationary signals [14–16]. Recently, a kind of specific nonlinear phase function

�a(2�!) are proposed [17–21]. For different a, the shapes of cos �a(2�!) (also those of

sin �a(2�!)) are different. It is observed that the closer jaj gets to 1, the sharper the

graph of cos �a(2�!) is. The nontrivial harmonic waves ei�að2�!Þ, which represent a

conformal re-scaling of classic Fourier atoms, have positive time-varying frequencies

and are expected to be better suitable and adaptable, along with different choices of

a, to nonlinear and non-stationary time–frequency analysis. Moreover, in [22],

associated with a kind of phase function �(t) and ’(t) satisfying certain assumptions,

the authors study the Chirp transform with the kernel ei�(t)’(!), get some new

phenomena on the Shannon sampling theorem by dealing with sampling points

which may non-equally distributed and solve certain differential equations with

variable coefficients.
Motivated by these points, this article studies a new kind of Gabor systems

generated by g

feim �ð2�tÞgðt� nÞgm,n2Z

by replacing the harmonic waves e2�imt in the Zak transform by eim�(2�t) where �(t)
satisfies certain assumptions. The proposed Gabor system feim �ð2�tÞgðt� nÞgm,n2Z can

be related to already existing cases. Trivially, if we assume �(2�t)¼ 2��t, for a fixed

parameter �4 0, then the proposed Gabor system reduces to the classical cases

[8,23]. Moreover, in the case of �(2�t)¼ �a(2�t), i.e., using the nonlinear Fourier

atoms in [17–21], we have that the frequency modulation eim�a(2�t) represents a

conformal dilation of the classical modulation ei2�mt on the unit circle. If we take the

proposed Gabor systems with different parameters a, we can obtain a dictionary of

Gabor frames with different dilation parameters in the modulation part. A simple

change of variables can establish a clear relation between this system and the system

generated by the affine Weyl–Heisenberg group with dilation on the window

function [24,25]. The nonlinear Fourier atoms eim �að2�tÞ discussed in [17–21]

correspond to conformal re-scalings of the classical Fourier atoms e2�imt and

therefore are better adapted to capture non-stationary features of band-limited

signals. Those atoms are a particular case of the ones in the proposed Gabor system

in so far as we are not restricted to conformal phase functions �a(t). This freedom
allows us to choose phase functions adequate to the necessary non-uniform sampling

of the signal [22]. Applications of non-uniform sampling range from communication

theory (missing data problem) and astronomical measurements to medical imaging
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such as computerized tomography and magnetic resonance imaging, as they require
the use of Gabor systems with nonlinear phase functions [26].

The rest of this article is organized as follows: Section 2 is devoted to giving some
assumptions on the phase function �(t) and providing some explicit phase functions
satisfying the given assumptions. In Section 3, we depict some properties of the
generalized Zak transform. In Section 4, we prove the Balian–Low theorem for the
Gabor systems feim �ð2�tÞgðt� nÞgm,n2Z. Some conclusions are drawn in Section 5.

2. Preliminaries

In this section, we introduce some assumptions on the phase function � necessary for
our study and give some explicit examples satisfying the assumptions. Firstly, we fix
the notations to be used later on. For any arbitrary measure � in R, consider the
function spaces Lp(R, d�), with 05 p51, of p-integrable functions in R with
respect to the measure � and with finite norm

k f kp,�¼

�
1

2�

Z þ1
�1

j f ðtÞjpd�ð2�tÞ

�1
p

:

In addition, for p¼ 2, denote its norm as kfk2,�¼k fk�, equipped with the inner
product

h f, gi2,� :¼ h f, gi� ¼
1

2�

Z þ1
�1

f ðxÞgðxÞd�ð2�xÞ:

We also denote by L2([0, 1)2, d�) the Hilbert space with inner product

h f, gi2,� :¼ h f, gi� ¼
1

4�2

Z 1

0

Z 1

0

f ðt,!Þgðt,!Þd�ð2�tÞd�ð2�!Þ:

Secondly, we introduce our main assumptions as follows.

ASSUMPTION 2.1 Consider the set of measures � : R!R of class C2 satisfying �04 0.

Due to the reason that we need to consider the Hilbert space L2([0, 1)2, d�) for the
phase function �(2�t) defined in the interval [0, 1) and being strictly increasing, we
extend �(2�t) from [0, 1) to the whole line by keeping the property of a strictly
increasing function. For this reason, the following restriction on the phase function �
is very natural.

ASSUMPTION 2.2 Assume that �(t) is a function satisfying Assumption 2.1 and,
furthermore,

�ðtþ 2k�Þ ¼ �ðtÞ þ 2k�, ð2:1Þ

for any t2R, k2Z.

In what follows, under Assumption 2.2, we can get some properties of the phase
function �. On the one hand, � satisfies Assumption 2.2 if and only if it is uniquely
determined by its restriction �j[0,2�]. The restriction map

�j½0,2�� : ½0, 2�� ! ½c0, c0 þ 2��
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is a bijection, where c0¼ �(0). Thus �([0, 2�]) is a closed interval of length 2�. On the

other hand, �0 is a 2�-period function and �0 ’ 1. Indeed by the periodicity

05 min
x2 ½0,2��

�0ðxÞ � �0ðtÞ � max
x2 ½0,2��

�0ðxÞ 8t2R, ð2:2Þ

as desired.
Assume that � satisfies Assumption 2.2, by Qian’s theorem [21], d�(t) is a sum of a

number of n harmonic measures on the unit disc if and only if

Hðei’ðtÞÞ ¼ �iei’ðtÞ þ
i

2�

Z 2�

0

’ðtÞdt,

where H is the circular Hilbert transform on L2([0, 2�]), satisfying

HðeiktÞ ¼ �i sgnðkÞeikt 8k2Z:

At last, we shall provide explicit phase functions satisfying Assumption 2.2.

Nonlinear Fourier atoms can be understood as boundary values of Blaschke

products [17–19]. In the simplest case they are defined by

ei�aðtÞ :¼ �aðe
itÞ,

with �a being the Möbius transformation

�aðzÞ ¼
z� a

1� az
, jaj5 1:

For any complex number a ¼ jajeita with jaj5 1, the nonlinear phase function �a(t) is
given by

�aðtÞ :¼ tþ 2 arctan
jaj sinðt� taÞ

1� jaj cosðt� taÞ
8t2R, ð2:3Þ

which has the unique decomposition: the sum of a linear part and a periodic part.

One can easily check that the nonlinear phase function �a(t) satisfy Assumption 2.2

based on the following facts. By direct calculation, one can find

�0aðtÞ ¼
1� jaj2

1� 2jaj cosðt� taÞ þ jaj
2
¼

1� jaj2

j1� a eitj2
¼ 2�paðtÞ4 0,

where pa(t) is the Poisson kernel for the point a, and

�aðtþ 2�Þ ¼ �aðtÞ þ 2�, paðtþ 2�Þ ¼ paðtÞ:

Since 1� jaj � j1� aeitj � j1þ jaj, one can obtain the bounds

1� jaj

1þ jaj
� paðtÞ �

1þ jaj

1� jaj
,

or rather, pa(t)’ 1.
The above concerns the case of a nonlinear Fourier atom based on a single

Möbius transform. This can be extended to the case of finite Blaschke product.
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For some fixed N2N, the nonlinear Fourier atom generated by the finite Blaschke
product

B~aðzÞ ¼
YN
k¼1

�ak ðzÞ, jakj5 1

is given by

ei
PN

k¼1
�ak ðtÞ ¼ B~aðe

itÞ:

Consider the nonlinear phase function

�~aðtÞ ¼
1

N

XN
k¼1

�akðtÞ: ð2:4Þ

For �0
~a
ðtÞ we have

�0~aðtÞ ¼
1

N

XN
k¼1

�0akðtÞ ¼ 2�
1

N

XN
k¼1

pak ðtÞ ¼ 2�p~aðtÞ,

which is always positive. We can check that the phase function �~aðtÞ defined by (2.4)
also satisfies Assumption 2.2.

3. Properties of the generalized Zak transform

We want to establish the Balian–Low theorem for a new kind of Gabor systems

gm,nðtÞ :¼ eim �ð2�tÞgðt� nÞ, t2R, m, n2Z, ð3:1Þ

for the spaces L2(R, d�), where the phase function �(t) satisfies Assumption 2.2.
To this end, we consider the generalized Zak transform Z� defined by

ðZ�f Þðt,!Þ :¼
X
k2Z

ei k �ð2�!Þf ðt� kÞ, ðt,!Þ 2 ½0, 1Þ2:

It can be shown that the series above converges in the norm of L2([0, 1)2, d�).
Some properties of the generalized Zak transform Z� are discussed here. In what

follows, we will focus on considering that the generalized Zak transform Z� is a
unitary map from L2(R, d�) to L2([0, 1)2, d�). One way of seeing this is the following.
Let us consider the function em,n¼ eim�(2�x)e(x� n), with e(x)¼ 1 for 05 x5 1,
e(x)¼ 0 otherwise. Simple calculation offers that the system fei n�ð2�xÞgþ1n¼�1 consti-
tutes an orthonormal basis for L2([0, 1), d�). Thus em,n constitutes an orthonormal
basis for L2(R, d�). Direct calculation tells us that

ðZ�em,nÞðt,!Þ ¼ eim�ð2�tÞe�i n�ð2�!ÞðZ�eÞðt,!Þ,

and (Z�e)(t,!)¼ 1 almost everywhere on [0, 1)2. It follows that Z� maps an
orthonormal basis of L2(R, d�) to an orthonormal basis of L2([0, 1)2, d�), so that Z�
is unitary.

By using the identity (2.1), it is easy to see the properties of time and frequency
shifts of the generalized Zak transform.
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THEOREM 3.1 The generalized Zak transform Z� satisfies the following two

equations:

ðZ�f Þðt,!þ nÞ ¼ ðZ�f Þðt,!Þ

and

ðZ�f Þðtþ n,!Þ ¼ ei n�ð2�!ÞðZ�f Þðt,!Þ:

From Theorem 3.1, we can extend Z�f outside [0, 1)
2. Another way of seeing this

fact is shown in the following theorem.

THEOREM 3.2 The operator Z� is unitary from L2(R, d�) to L2([0, 1)2, d�), i.e.,

hZ�f,Z�gi� ¼ h f, gi�, f, g2L2ðRÞ: ð3:2Þ

Proof We only need to show the result for f, g2L2(R)\L1(R) since the general case

can be treated by limit procedure. By the definition of the nonlinear Zak transform

and interchanging the order of the integral and summation, we have that

hZ�f,Z�gi�

¼
1

4�2

Z 1

0

Z 1

0

Z�f ðt,!ÞZ�gðt,!Þd�ð2�tÞd�ð2�!Þ

¼
1

4�2

X
n2Z

Z 1

0

f ðt� nÞ
X
m2Z

gðt�mÞ ð

Z 1

0

eiðn�mÞ�ð2�!Þd�ð2�!Þ Þd�ð2�tÞ:

By a simple calculation, we know that

Z 1

0

eiðn�mÞ�ð2�!Þd�ð2�!Þ ¼ 2�	n,m,

where 	n,m denotes Kronecker delta and here we have used the fact �(2�)¼ �(0)þ 2�.
By noting this and the 2�-periodicity of �0(t), we have that

hZ�f,Z�gi� ¼
1

2�

X
n2Z

Z 1

0

f ðt� nÞgðt� nÞd�ð2�tÞ

¼
1

2�

X
n2Z

Z �nþ1
�n

f ðtÞgðtÞd�ð2�tÞ

¼
1

2�

Z þ1
�1

f ðtÞgðtÞd�ð2�tÞ:

g

The following theorem states that we can reconstruct the original signal from its

generalized Zak transform. We remark that the reconstruction formula of signal f

can also be given in discrete form by the generalized Zak transform similar to the

classical case. Although that is not in the scope of this article, we refer to [27,28] for

more details.

6 Y. Fu et al.



THEOREM 3.3 If f2L2(R), then the following relations hold true:

f ðtÞ ¼
1

2�

Z 1

0

Z�f ðt,!Þd�ð2�!Þ, t2R, ð3:3Þ

f̂ð!Þ ¼

Z 1

0

Z�f

�
t,

1

2�
��1ð2�!Þ

�
e�2�it!dt, !2R, ð3:4Þ

where f̂ is the Fourier transform of f and ��1(!) is the inverse of the phase function �.

Proof We first show (3.3). The definition of the generalized Zak transform implies
that

1

2�

Z 1

0

Z�f ðt,!Þd�ð2�!Þ

¼
1

2�

Z 1

0

f ðtÞd�ð2�!Þ þ
1

2�

Z 1

0

X
k6¼0

f ðt� kÞei k�ð2�!Þd�ð2�!Þ:

Note that the first integral of the right side of above equation is just f(t). To calculate
the second integral of the right side of above equation, we interchange the order of
the integral and summation and get thatZ 1

0

X
k 6¼0

f ðt� kÞei k�ð2�!Þd�ð2�!Þ

¼
X
k6¼0

f ðt� kÞ

Z 1

0

ei k�ð2�!Þd�ð2�!Þ

¼
X
k6¼0

f ðt� kÞ

Z �ð2�Þ

�ð0Þ

ei k�d� ¼ 0:

Here we have used the fact �(2�)¼ �(0)þ 2� again.
Now we turn to show (3.4). The definition of the generalized Zak transform

leads to Z 1

0

Z�f

�
t,

1

2�
��1ð!Þ

�
e�2�it!dt

¼

Z 1

0

X
k2Z

f ðt� kÞe�2�i!ðt�kÞdt

¼
X
k2Z

Z �kþ1
�k

f ðxÞe�2�i!xdx ¼ f̂ð!Þ:

g

Let us therefore define the space Z by

Z :¼

�
� : R

2
! C;�ðtþ n,!Þ ¼ ei n�ð2�!Þ�ðt,!Þ,�ðt,!þ nÞ

¼ �ðt,!Þ, k�k2� ¼
1

4�2

Z 1

0

Z 1

0

j�ðt,!Þj2d�ð2�tÞd�ð2�!Þ51
�
, ð3:5Þ
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then the generalized Zak transform Z� is unitary between L2(R, d�) and Z. By (3.3),

we know the inverse map is easy as well: for any �2Z,

ðZ�1� �ÞðtÞ ¼
1

2�

Z 1

0

�ðt,!Þd�ð2�!Þ:

4. Generalized Balian–Low theorem

In this section, based on the properties of the generalized Zak transform, we mainly

discuss the time–frequency localization properties of Gabor systems gm,n(t) which are
the content of the generalized Balian–Low theorem. At first, we prove some useful

lemmas as follows.

LEMMA 4.1 If gm,n(t) is defined as (3.1), then

ðZ�gm,nÞðt,!Þ ¼ eim�ð2� tÞe�i n�ð2�!ÞðZ�gÞðt,!Þ: ð4:1Þ

Proof From the definition of the generalized Zak transform and gm,n, we get that

ðZ�gm,nÞðt,!Þ ¼
X
k2Z

ei k�ð2�!Þgm,nðt� kÞ

¼
X
k2Z

ei k�ð2�!Þgðt� k� nÞeim �ð2� ðt�kÞÞ

¼
X
k2Z

ei ðk�nÞ�ð2�!Þgðt� kÞeim �ð2� tÞ

¼ eim�ð2� tÞe�in�ð2�!Þ
X
k2Z

ei k�ð2�!Þgðt� kÞ:

g

From the classical Parseval identity, we can conclude the generalized Parseval
identity Z 1

0

Z 1

0

j f ðt,!Þj2d�ð2�tÞd�ð2�!Þ

¼
1

4�2

X
m,n2Z

����
Z 1

0

Z 1

0

f ðt,!Þeim�ð2�tÞein�ð2�!Þd�ð2�tÞd�ð2�!Þ

����2:
Based on Lemma 4.1 and the generalized Parseval identity, we get the following
result.

LEMMA 4.2 For any function f2L2(R), the following relation holds true:X
m,n2Z

jh f , gm,ni�j
2

¼
1

4�2

Z 1

0

Z 1

0

jZ�f ðt,!Þj
2jZ�gðt,!Þj

2d�ð2�tÞd�ð2�!Þ: ð4:2Þ
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Proof As already shown in Theorem 3.2, the operator Z� is unitary. This implies

X
m,n2Z

jh f , gm,ni�j
2 ¼

X
m,n2Z

jhZ� f ,Z�gm,ni�j
2

¼
X
m,n2Z

���� 1

4�2

Z 1

0

Z 1

0

Z�f ðt,!ÞZ�gðt,!Þe
�i m�ð2�tÞei n�ð2�!Þd�ð2�tÞd�ð2�!Þ

����2

¼
1

4�2

Z 1

0

Z 1

0

jZ�f ðt,!Þj
2jZ�gðt,!Þj

2d�ð2�tÞd�ð2�!Þ:

g

From this Lemma, we get that Z�ðF
�F ÞZ�1� corresponds to a multiplication by

jZ�g(t,!)j
2 on the space Z defined in (3.5), where F is the coefficient operator from

L2(R, d�) to

l2ðZÞ :¼ fc ¼ ðcm,nÞm,n2Z
; kck2¼

X
m,n2Z

jcm,nj
2 51g

defined by

ðFf Þm,n ¼ h f , gm,ni�,

and the frame operator F*F is defined by

F �Ff ¼
X

m,n2Z

h f, gm,ni� gm,n, ð4:3Þ

where F* is the adjoint operator of F,

F�c ¼
X

m,n2Z

cm,ngm,n:

Based on general frame theory, if the functions gm,n(t)¼ g(t� n)eim�(2�t) constitute a

frame for L2(R, d�), then the frame operator F*F defined by (4.3) is a bounded,

positive and invertible mapping from L2(R, d�) onto itself. The associated dual frameegm,n given by (F*F)�1gm,n yields an exact frame expansion of f of the form

f ¼
X

m,n2Z

h f,egm,ni�gm,n ¼
X

m,n2Z

h f, gm,ni�egm,n,

which provides an explicit reconstruction of the signal from the Gabor frame

gm,n [13].
To get the following lemma, let us recall the rule of thumb, the smooth-and decay

principle: if the function f is smooth, then the Fourier transform F f decays quickly

and vice versa. Here is the link between the function f and its Fourier transform F f.

Denote the multiplication and differentiation operators as

Qf ðxÞ :¼ xf ðxÞ, Pf ðxÞ :¼ �if 0ðxÞ: ð4:4Þ

Applicable Analysis 9



The Fourier transform F turns differentiation operators into multiplication

operators, i.e.,

F � P ¼ 2�Q � F :

LEMMA 4.3 Suppose fk, Pfk, Qfk2L
2(R, d�), k¼ 1, 2, where the operators Q, P are

defined as in (4.4). Then

hPf1,Qf2i�

¼ hQf1,Pf2i� þ ih f1, f2i� þ 2�i

Z þ1
�1

xf1ðxÞf2ðxÞ�
00ð2�xÞdx:

Proof As we all know, if ’(x),  (x) satisfy

j’ðxÞj � Cð1þ x2Þ�1, j ðxÞj � Cð1þ x2Þ�1,

then we have

hQ’,P i� ¼
1

2�

Z þ1
�1

x’ðxÞi 0ðxÞd�ð2�xÞ

¼ �

Z þ1
�1

i½x’ðxÞ�0ð2�xÞ�0 ðxÞdx

¼ �ih’, i� þ hP’,Q i� � 2�i

Z þ1
�1

x’ðxÞ ðxÞ�00ð2�xÞdx:

On the other hand, since fk, Pfk, Qfk2L
2(R, d�), by using (2.4), we get that fk, Pfk,

Qfk2L
2(R). Consequently, there exist fk,n satisfying

j fk,nðxÞj � Cnð1þ x2Þ�1,

such that

k fk,n � fkk2! 0, kPfk,n � Pfkk2! 0, kQfk,n �Qfkk2! 0, n!1:

In fact, for instance, we can take fk,n as

fk,n ¼
Xn
l¼0

h fk,HliHl,

where Hl are the Hermite functions [7]. Due to (2.2), we get that

k fk,n � fkk� ! 0, kPfk,n � Pfkk� ! 0, kQfk,n �Qfkk� ! 0, n!1:

Then

hPf1,Qf2i�

¼ lim
n!1
hPf1,n,Qf2,ni�

¼ lim
n!1
½hQf1,n,Pf2,ni� þ ih f1,n, f2,ni� þ 2�i

Z þ1
�1

xf1,nðxÞf2,nðxÞ�
00ð2�xÞdx�

¼ hQf1,Pf2i� þ ih f1, f2i� þ 2�i

Z þ1
�1

xf1ðxÞf2ðxÞ�
00ð2�xÞdx:

g
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THEOREM 4.4 Let g2L2(R, d�) have the property that the functions gm,n(t)¼

g(t� n)eim�(2�t) constitute a frame for L2(R, d�), i.e.,

Ak f k2� �
X

m,n2Z

jh f , gm,ni�j
2 � Bk f k2� :

Then either Z þ1
�1

t2j gðtÞj2d�ð2�tÞ ¼ 1 or

Z þ1
�1

�2jĝð�Þj2d�ð2��Þ ¼ 1:

Proof The proof presented here is analogous with the proof of the classical

assertion for the classical Balian–Low theorem. At last we regard the classical result

as a special case on the construction of the contradiction in our proof. Since we have

proved Lemma 4.2 and since the generalized Zak transform Z� is unitary, this implies

05A � jZ�gðs, tÞj
2 � B51: ð4:5Þ

Now let us consider the dual frame vector ~gm,n given by

~gm,n ¼ ðF
�FÞ�1gm,n: ð4:6Þ

Since Z�ðF
�F ÞZ�1� corresponds to a multiplication by jZ�gj

2 on Z, it follows that

Z� ~gm,n ¼ jZ�gj
�2Z�gm,n

or

Z� ~gm,nðt,!Þ ¼ jZ�gðt,!Þj
�2eim�ð2�tÞe�i n�ð2�!ÞðZ�gÞðt,!Þ

¼ eim�ð2�tÞe�i n�ð2�!Þ½ðZ�gÞðt,!Þ�
�1, ð4:7Þ

which is in the space Z by (4.5). In particular, (4.7) implies that

~gm,nðxÞ ¼ eim�ð2�xÞ ~gðx� nÞ,

with Z� ~g ¼ ½Z�g�
�1.

Suppose now thatZ þ1
�1

t2j gðtÞj2d�ð2�tÞ51 and

Z þ1
�1

�2jĝð�Þj2d�ð2��Þ51,

we can get that Qg,Pg2L2(R, d�), where the multiplication and differentiation

operators Q, P are defined as in (4.4). This will lead to contradiction, which will

prove the theorem. One checks that

½Z�ðQgÞ�ðt,!Þ ¼ tðZ� gÞðt,!Þ �
1

2�i�0ð2�!Þ
@!ðZ� gÞðt,!Þ,

which means that Qg2L2(R, d�) if and only if @!(Z�g)2L
2([0, 1)2, d�) . Similarly,

Pg2L2(R, d�) if and only if @t(Z�g)2L
2([0, 1)2, d�). Consequently,

@tZ� ~g ¼ ½Z�g�
�2@tZ�g and @!Z� ~g ¼ ½Z�g�

�2@!Z�g

Applicable Analysis 11



are in L2([0, 1)2, d�); hence Q ~g,P ~g2L2ðR, d�Þ. For the functions g and ~g, we shall

next prove the fact

hQg,P ~gi� ¼ hPg,Q ~gi�,

where we derive the contradiction. In fact, we firstly have

h ~g, gm,ni�

¼ hZ� ~g,Z�gm,ni�

¼
1

4�2

Z 1

0

Z 1

0

Z� ~gðt,!ÞZ�gm,nðt,!Þd�ð2�tÞd�ð2�!Þ

¼
1

4�2

Z 1

0

Z 1

0

Z� ~gðt,!ÞZ�gðt,!Þe
�i m�ð2� tÞein�ð2�!Þd�ð2�tÞd�ð2�!Þ

¼ 	m,0	n,0,

where 	n,m denotes Kronecker delta. Similarly, we can get that

hg, ~gm,ni� ¼ 	m,0	n,0: ð4:8Þ

Secondly, since Qg,P ~g2L2ðR, d�Þ and since the gm,n, ~gm,n constitute dual frames,

we have

hQg,P ~gi� ¼
X
m,n

hQg, ~gm,ni�hgm,n,P ~gi�:

Due to (2.4) and (4.8), we have

hQg, ~gm,ni� ¼
1

2�

Z þ1
�1

xgðxÞe�i m�ð2�xÞ ~gðx� nÞd�ð2�xÞ

¼
1

2�

Z þ1
�1

gðxÞe�i m�ð2�xÞðx� nÞ ~gðx� nÞd�ð2�xÞ

¼ hg�m,�n,Q ~gi�:

Similarly, hgm,n,P ~gi� ¼ hPg, ~g�m,�ni�. Consequently,

hQg,P ~gi� ¼
X
m,n

hPg, ~g�m,�ni�hg�m,�n,Q ~gi� ¼ hPg,Q ~gi�:

Together with the result in Lemma 4.3 this implies

hg, ~gi� ¼ �2�

Z þ1
�1

xgðxÞ ~gðxÞ�00ð2�xÞdx: ð4:9Þ

However, from (4.8) we have

hg, ~gi� ¼ 1: ð4:10Þ

Now, we can get that there exists a contradiction between (4.9) and (4.10), that is, we

need to interpret that

�2�

Z þ1
�1

xgðxÞ ~gðxÞ�00ð2�xÞdx � 1

12 Y. Fu et al.



is not true for arbitrary phase function �(x) satisfying Assumption 2.2. We remark

that for the left-hand equivalence above we have that it is zero or negative while on

the right-hand side 1 is positive. In particular, let �(x)¼ 1þ x, which evidently

satisfies Assumption 2.2, thus we get that

�2�

Z þ1
�1

xgðxÞ ~gðxÞ�00ð2�xÞdx ¼ 0,

which results in a contradiction between (4.9) and (4.10). The proof is

complete. g

5. Conclusions

Associated with some properties of the well-defined generalized Zak transform, this

article deals with the Balian–Low theorem for a new kind of Gabor systems

feim �ð2�tÞgðt� nÞgm,n2Z, where the phase function �(t) satisfies Assumption 2.2.

Applying Theorem 4.4 to the explicit example for the phase function �(t), the specific
nonlinear phase function �a(t),

�aðtÞ ¼ tþ 2 arctan
jaj sinðt� taÞ

1� jaj cosðt� taÞ
,

we can get that if g2L2(R, d�a) has the property that the functions gm,nðtÞ ¼

eim �að2� tÞgðt� nÞ constitute a frame for L2(R, d�a), then eitherZ þ1
�1

t2j gðtÞj2
1� jaj2

j1� a e2�itj2
dt ¼ 1 or

Z þ1
�1

�2jĝð�Þj2
1� jaj2

j1� a e2�i�j2
d� ¼ 1:

Especially, if we take a¼ 0, then the nonlinear phase function �0(t)¼ t, and the result

above reduces to the classical case.
More generally, applying Theorem 4.4 to the specific nonlinear phase function

�~aðtÞ ¼
1

N

XN
k¼1

�ak ðtÞ,

we can get that if g2L2ðR, d�~aÞ has the property that the functions gm,nðtÞ ¼

eim �~að2� tÞgðt� nÞ constitute a frame for L2ðR, d�~aÞ, then either

Z þ1
�1

t2j gðtÞj2
XN
k¼1

1� jakj
2

j1� ak e2�itj
2
dt ¼ 1

or

Z þ1
�1

�2jĝð�Þj2
XN
k¼1

1� jakj
2

j1� ak e2�i�j
2
d� ¼ 1:

Applicable Analysis 13
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