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In this paper, we show that Lax pairs can be constructed using the Dirac operator
in the context of Clifford analysis. Since Lax pairs are closely linked to spectral
decompositions they are not easily obtainable in the context of Dirac operators
due to the non-commutativity of the underlying algebraic structure. The main
idea is to substitute the classic Lax approach by the so-called AKNS method. We
demonstrate that it is possible to obtain Lax pairs for both linear and non-linear
PDE’s in this way.

Keywords: quaternions; biquaternions; Dirac operator; Lax pairs; S-integrable;
inverse scattering transform

AMS Subject Classifications: 30G35; 35Q41; 37K15

1. Introduction

Lax pairs are a well-established tool for the study of instationary non-linear PDEs. Given
a pair of linear operators acting on a certain Hilbert space H of complex-valued functions,
we say that they form a Lax pair for an instationary non-linear PDE if that PDE arises as a
compatibility condition between the two given operators.Akey point in the theory is the fact
that one of the operators (say, L) is time-dependent with known spectra while the second
operator (say, A) controls the time evolution of the eigenvalues of the first operator. In [1],
Fokas showed that one can also find Lax pairs for linear PDEs making it an unifying theory
for both linear and non-linear PDEs. However, and although there exist some techniques
for the construction of such a pair if one has a previous knowledge of the operator L
(see [2]) up to date there is no systematic way for obtaining a Lax pair associated to a given
PDE.

Another method to derive non-linear PDEs is the AKNS method from Ablowitz, Kaup,
Newel and Segur (see [3]). Again, a compatibility equation between two operators (the
so-called AKNS pair) is interpreted as a (in general, non-linear) integrable PDE. A crucial
difference between these two methods is the fact that the eigenvalues no longer play a role
in the later one.

*Corresponding author. Email: swanhild.bernstein@math.tu-freiberg.de

© 2013 Taylor & Francis
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2 S. Bernstein et al.

The process of generating Lax pairs or, equivalently, AKNS pairs, is of crucial interest
here. On one hand, there exist large solvable classes of non-linear PDE (also denoted
S-integrable equations) to which these generating methods can be applied; on the other
hand, several theories have been developed during the last decades for solving equations
arising as compatibility between such pairs. Two standard examples are the inverse spectral
transformation (IST) (c.f. [4]) and the dressing method (by Zakharov and Shabat, c.f. [5,6]).
This last method consists of generating new solutions of a given equation departing from
a known solution of a related equation. It has its roots in the theory of Riemann–Hilbert
problems, involving the ∂ operator and complex function theory (hence, being also known
as ∂−method).

The higher dimensional equivalent to the ∂-formalism in complex function theory is
the Dirac operator in Clifford or quaternionic analysis. Here, we restrict ourselves to the
case of quaternions and biquaternions, a restriction which allows us to consider 3D spatial
problems. For the choice of the Dirac operator as a replacement of the ∂-operator, we
justify our choice with the following observations. First of all, the Dirac operator appears
in the description of the massless electron. It has a much wider appearance as the first-order
differential operator which factorizes the Laplacian and it is covariant under the action of
elements in the Spin-group, i.e. rotations. Furthermore, it also appears in connection with
the conductivity equation and the Schrödinger equation with potentials of conductivity
type. Therefore, it seems natural that any higher dimensional generalization of the above-
mentioned methods would involve a higher dimensional function theory based on the Dirac
operator. In fact, there exist already works in that direction, for example [7].

This raises an important and interesting question: can Lax pairs be obtained from equa-
tions involving the Dirac operator? The answer is not obvious. From the non-commutativity
of the setting, one expects the operator L to have left- and right-spectra which cannot be
interchanged freely. This problem affects the classic Lax pair method sufficiently as to
become impracticable in the case of non-linear equations. Therefore, we circumvent this
problem by applying the more general AKNS method.

The structure of the paper is as follows. We first show that one can obtain Lax pairs for
linear PDEs involving the Dirac operator. Hereby, we also highlight the difficulties which
arise from the non-commutativity of the underlying algebraic structure. Afterwards, we
adapt the AKNS method in order to obtain non-linear PDEs and we establish the restrictions
on the operators due to the involvement of the Dirac operator. Finally, we conclude with
some applications of this method to the construction of Lax pairs for higher dimensional
non-linear PDEs of KdV-type.

2. Toolboxes

2.1. Lax pairs and AKNS method

We start with giving a more detailed description of both methods mentioned above.As stated
before, two operators form a Lax pair for an instationary non-linear PDE if that PDE arises
as a compatibility condition between them. More precisely, consider a time-dependent linear
operator L acting on a complex-valued Hilbert space with known spectra, say Lψ = λψ ,
and an operator A (also time-dependent and linear) which controls the time-evolution of
the eigenfunctions of the previous operator. This corresponds to have the following system
of linear PDEs

Lψ − λψ = 0 & ψt − Aψ = 0, (1)
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Complex Variables and Elliptic Equations 3

or, in other word, each eigenfunctionψ of L has to satisfy the evolution equationψt = Aψ .
Then, if

(i) the spectral parameter λ is time-independent,
(ii) (Lψ)t = Ltψ + Lψt , for all ψ ∈ H,

we have that the pair (L,A) of linear operators satisfy the identity

(Lψ)t = λψt ⇔ Ltψ + Lψt = λψt

⇔ Ltψ + LAψ = ALψ,

i.e. the Lax pair (L,A) is linked to the (in general) non-linear PDE arising from the
compatibility condition

Lt + [L,A] = 0 (2)

between the operators, where [·, ·] denotes the commutator. This method is called in the
literature the Lax method (see e.g. [3]). To give an example, we consider the operators

L = i

(
1 + k 0

0 1 − k

)
∂x +

(
0 u
u 0

)
, (3)

A = ik

(
1 0
0 1

)
∂2

xx +
( −i |u|2

1+k ux

−ux
−i |u|2
1−k

)
, (4)

where the complex-valued function u = u(x, t) acts as a parameter. Then, we have that
these operators satisfy identity (2) whenever u = u(x, t) is a solution of the non-linear
Schrödinger equation

iut + u2
xx + κu2u = 0,

where κ = 2
1−k2 . The importance of this technique resides in the fact that it allows to

compute the parameter u = u(x, t) (solution of the non-linear PDE) in terms of the scattered
data of the eigenfunctions ψ (see [8]). Obviously, this fact makes the inverse problem (to
obtain a Lax pair from a given PDE) to be an interesting (and in general challenging)
problem. Also, in [1] Fokas showed that one can also find Lax pairs for linear PDEs making
it an unifying theory for both linear and non-linear PDEs. However, we repeat that up to
date there is no systematic way for obtaining a Lax pair associated to a given PDE.

It may be worth pointing out that (at least in the linear case) the notion of Lax pair is
somewhat included in the larger concept of syzygies for systems of differential operators
(see [9]). In consequence, results in the Section 3.2 could also be obtained by an adaptation
of these methods.

The AKNS method (see [3]) works in a slightly different way: consider a system

vx = X v & vt = T v (5)

where X ,T are linear matricial operators (n × n) and v is a n-dimensional vector. From
vxt = vt x , we obtain the compatibility equation

Xt − Tx = [T ,X ],
which, as in the Lax method, is a (non-linear) integrable PDE. This method was used by its
authors to solve initial value problems by means of the inverse scattering transform.
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4 S. Bernstein et al.

As long as the operators involved are linear the two methods are equivalent. However,
the AKNS method can be regarded as more general than the Lax one since it is not restricted
to the eigenvalue dependence equation Lψ = λψ.As we will show later, this modification
gives us enough freedom to overcome the non-commutative problem in the compatibility
condition. Therefore, we restrict our attention to the AKNS method for deriving non-linear
systems linked to non-linear multidimensional PDEs. In addition to this, a close observation
of example (3)–(4), linked to the Schrödinger equation, reinforces the observation that
multi-dimensional problems should be deal in terms of the Dirac operator, that is, of the
first-order operator which factorizes the Laplacian. In the next subsection, we will give a
short overview of the non-commutative setting for the Dirac operator.

2.2. Quaternions and biquaternions

The algebra of quaternions H generalizes complex numbers into higher dimensions. An
arbitrary quaternion is given by

q = q0e0 + q1e1 + q2e2 + q3e3, q j ∈ R, i = 0, 1, 2, 3,

where e0 is the unit element of the algebra and can be identified with 1. The generalized
imaginary units e1, e2, e3 (sometimes also denoted by i, j, k) satisfy the following multi-
plication rules:

e j e0 = e0e j , j = 1, 2, 3, e2
0 = 1,

ei e j + e j ei = −2δi j (Kronecker delta),

A quaternion q = q0e0 + q1e1 + q2e2 + q3e3 is a sum of a scalar part Sc q = [q]0 =
q0e0 = q0 and a vector part Vec q = q = q1e1 + q2e2 + q3e3. A quaternion is a pure
quaternion if its real part vanishes, q0 = 0, so that q = q. The conjugate quaternion q of a
quaternion q is given by

q = q0e0 − q1e1 − q2e2 − q3e3 = Sc q − Vec q.

Biquaternions B are complexified quaternions, i.e. q j ∈ C, j = 0, 1, 2, 3, whereas e j

satisfies the same multiplication rules as mentioned before. The algebra B also supports
quaternion conjugation, acting as a complex linear anti-automorphism together with the
usual complex conjugation, i.e. the conjugated quaternion a of a ∈ B is

a =
3∑

i=0

ai ei ,

whereas ai is the standard complex conjugation and ei is the quaternion conjugation. As
in the quaternion case, we define its scalar and vectorial parts as Sc(a) := a0e0 and
V ec(a) := a1e1 + a2e2 + a3e3, and one has a pure biquaternion if its real part is zero. For
a pure biquaternion a ∈ B ∼ C

3, we have

aa =
3∑

i, j=1

ai a j ei e j =
3∑

j=1

|a j |2 −
∑
i< j

(ai a j − a j ai )ei e j ,
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Complex Variables and Elliptic Equations 5

so that

[aa]0 =
3∑

j=1

|a j |2 = ||a||2,

the Euclidean norm of a ∈ C
3.

The quaternion product ax can always be decomposed into its symmetric and anti-
symmetric parts, via the anti-commutator and commutator operators,

2ax = (ax + xa)+ (ax − xa) = {a, x} + [a, x]. (6)

Moreover, if both a, b are pure biquaternions then the anti-commutator yields {a, b} =
(ab + ba) = −2a · b, where a · b is the usual Euclidean inner product between the vectors
a, b ∈ C

3, while in R
3 the commutator yields [a, b] = (ab − ba) = 2a × b, the classical

Gibbs wedge product or cross product. For more details on quaternions and biquaternions,
we refer to [10].

For constructing an analytic theory for functions of 3 real variables x = (x1, x2, x3) as
a higher dimensional analogue to the function theory of one complex variable we introduce
the Dirac operator

D =
3∑

j=1

e j∂x j .

We will write Dx whenever explicit mention of the variable on which the partial derivatives
act is needed.

A function u from an open set � ⊂ R
3 into B is said to be left-monogenic (resp.,

right-monogenic) if it holds

Du = 0 (resp. u D = 0) in �. (7)

Equation (7) generalizes the Cauchy–Riemann equations of complex analysis and can
be written as the system:

Sc (Du) = [Du]0 =
3∑

j=1

∂x j u j e
2
j = −∇ · u = −div u = 0,

Vec (Du) = Du =
3∑

j=1

∂x j u0e j +
∑
i< j

(∂xi u j − ∂x j ui )ei e j

= ∇u0 + ∇ × u = grad u0 + curl u = 0.

Moreover, we have � f = −D2u, that is, the Dirac operator factorizes the Euclidean
Laplacian.

For more details on Clifford analysis we refer to [11], [12] or [13].

3. Lax pairs for the linearized NLS equation

The key point for a successful construction of Lax pairs is an adequate factorization of
second-order operators in terms of first-order operators. Based on this observation, and
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6 S. Bernstein et al.

the fact that the spatial one-dimensional Schrödinger equation is linked to the following
factorization of the Helmholtz operator,

∂2
x + κ = (∂x − ik)(∂x + ik), k ∈ C such that k2 = κ ∈ R,

it is only natural to consider a similar factorization of its higher dimensional counterpart

�x + κ, κ ∈ R,

in terms of the Dirac operator. For that, an obvious candidate is the operator

Dx + ik,

where k ∈ B is such that k2 = −κ. Unfortunately, this naïve replacement does not work
due to the non-commutative nature of Clifford algebras. In fact,

(Dx − ik)(Dx + ik)u = (Dx − ik)(Dx u + iku) = D2
x u + i Dx (ku)− ik Dx u + k2u

= (−�+ k2)u + i[Dx (ku)− k(Dx u)].
Due to (6), we have

Dx (ku) =
n∑

j=i

e j∂x j (ku) =
n∑

j=i

e j k(∂x j u)

=
n∑

j=i

(−ke j + {e j , k})(∂x j u) = −k(Dx u)+
n∑

j=i

{e j , k}(∂x j u),

so that we get

(Dx − ik)(Dx + ik)u = −(�− k2)u − 2ik(Dx u)+ i
n∑

j=i

{e j , k}(∂x j u).

This means that such a decomposition only provides a Helmholtz operator if k and Dx

commute, that is to say, when k is a scalar.

3.1. Lax pair for the instationary Schrödinger equation

One way to overcome the problem of non-commutativity is to introduce the multiplication
operator Mk, for k ∈ B (see [14]), acting on functions as

Mk : u → Mku := uk.

Then a factorization of the Helmholtz operator is possible, i.e.

− i(Dx + M−ik)(Dx + Mik)u = −i(Dx + M−ik)(Dx u + iuk)

= −i D2
x u + Dx (uk)− (Dx u)k − ik2u = i(�+ κ)u,

for the case where κ = −k2 ∈ R.

Based on this decomposition, and following the concept of the algorithm described in
[1], we are able to construct a Lax pair for the instationary Schrödinger equation.
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Complex Variables and Elliptic Equations 7

Theorem 3.1 The instationary Schrödinger equation

(i∂t +�)μ = 0

possesses the Lax pair {
(Dx + Mik)μ = u
(i∂t − λ)μ = (Dx + M−ik)u,

(8)

where μ = μ(x, t) is a quaternion-valued function and λ = (ik)2 ∈ R.

Proof By inserting the first equation into the second equation of (8), we obtain

i∂tμ− λμ = (Dx + M−ik)u = (Dx + M−ik)(Dx + Mik)μ = −�μ+ μk2,

which implies that μ satisfies the desired PDE

i∂tμ+�μ = 0,

for any k ∈ H such that (ik)2 = λ ∈ R, the spectral parameter. �

3.2. Modified algorithm

Based on the previous observations, we can now present a first algorithm for the construction
of Lax Pairs in the case of linear PDEs.

Theorem 3.2 Let P1(D), P2(D) be two polynomial Dirac operators with constant coef-
ficients. Then {

P1(D)μ = u
P(∂t , D)μ+ P2(D)u = 0

(9)

is a Lax pair for the instationary PDE

[P(∂t , D)+ P2(D)P1(D)]μ = 0, (10)

where P(x, y) denotes a polynomial of two variables.

Proof In fact, rather elementary calculations give

0 = P(∂t , D)μ+ P2(D)u = P(∂t , D)μ+ P2(D)P1(D)μ.

�

We remark that the above construction is independent of the nature of the coefficients or
of its solutions μ = μ(x, t), u = u(x, t).Hence, PDEs with quaternion-valued coefficients
can also be considered. Theorem 3.1 is a direct application of this theorem. Let us give an
example involving a third-order PDE.

Example 3.3 The system{
(D − Mk)μ = u

(∂t + Mk3
)μ+ [D2u + (Du)k + uk2] = 0
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8 S. Bernstein et al.

is a Lax pair for the instationary PDE with constant coefficients

(∂t − D�)μ = 0.

We have P2(D) := D2 + Mk D + Mk2
which, together with P1(D) := D − Mk, satisfies

the relation

P2(D)P1(D)μ = (D2 + Mk D + Mk2
)(D − Mk)μ = (D3 − Mk3

)μ.

Hence, the above example represents a Lax pair for

0 = (∂t − D�)μ = [(∂t + Mk3
)+ (D3 − Mk3

)]μ.

Next, we present a generalization of the algorithm developed in [1] to the general case
of PDEs with quaternion-valued coefficients.

Theorem 3.4 Let P(∂t , D), P∗(∂t , D) be two operators with constant coefficients
satisfying the commutation relation

P(∂t , D)(∂t + Mik)μ = (∂t + Mik)P∗(∂t , D)μ. (11)

Then the system {
P∗(∂t , D)μ = 0

(∂t + Mik)μ = u
(12)

yields a Lax pair for the instationary PDE

P(∂t , D)u = 0. (13)

Proof Indeed, we get

P(∂t , D)u = P(∂t , D)(∂t + Mik)μ = (∂t + Mik)P∗(∂t , D)μ = 0.

�

Corollary 3.5 If P(∂t , D) has scalar-valued coefficients then we have

P∗(∂t , D) = P(∂t , D).

As already mentioned in the introduction these results can also be obtained using the
method of Syzygies in [9].

3.3. Scalar plane waves associated to the Helmholtz operator

The process of linearization of the Schrödinger equation relays on the factorization of the
Helmholtz operators

(�− k2)μ = −(Dx + M−ik)(Dx + Mik)μ.

In the 1D case, the first-order operator ∂x − ik is linked to the well-known scalar plane
waves uk(x) = eikx . Unfortunately, those solutions do not transit easily to the nD case. In
fact, we have Dx = (ik)uk(x) 	= uk(x)(ik), due to non-commutativity. We recall that the
spectral parameter in the Helmholtz equation is given by κ = (ik)2, with k ∈ H.
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Complex Variables and Elliptic Equations 9

4. Extension to non-linear systems

While the Lax pair method can be applied to linear PDEs it will show its real power when
applied to the case of non-linear PDEs. Here, this means that we have to consider non-
linear PDEs involving the Dirac operator. But, as we have seen in the previous section
when we assume the standard Lax pair method, the non-commutativity creates quite some
difficulties for the spectral equation. Therefore, in what follows we propose to exploit the
AKNS method. Since it is more general it frees us from the restrictions imposed by the
spectral equation.

In order to obtain non-linear systems by means of a convenient choice of parameters for
a time-dependent Clifford valued function u = u(x, t), with x ∈ R

n, t ∈ R
+, we consider

the matrices

X =
[

0 u − λ

1 0

]
, T =

[
α β

ξ η

]
,

where λ is scalar-valued. Nothing is said, at the moment, on the nature of parameters
α, β, ξ, η. To study the nature of these parameters we need to investigate the compatibility
condition.

4.1. The compatibility condition

Recall the compatibility condition from the AKNS method:

Xt − DxT = [T ,X ]. (14)

For the left-hand side we obtain

Xt − DxT =
[ −Dxα ut − Dxβ

−Dxξ −Dxη

]
,

while for the right-hand side, we get

[T ,X ] = T X − XT

=
[
α β

ξ η

] [
0 u − λ

1 0

]
−
[

0 u − λ

1 0

] [
α β

ξ η

]
.

Therefore, compatibility condition (14) leads to[ −Dxα ∂t u − Dxβ

−Dxξ −Dxη

]
=
[
β − (u − λ)ξ α(u − λ)− (u − λ)η

η − α ξ(u − λ)− β

]
,

and we obtain the following system of four non-linear PDEs

β = (u − λ)ξ − Dxα (15)

η = α − Dxξ (16)

Dxβ = ∂t u + (u − λ)η − α(u − λ) (17)

Dxη = β − ξ(u − λ). (18)

Substituting (15) into (17) we obtain

0 = ∂t u − Dxβ + (u − λ)η − α(u − λ)

= ∂t u − Dx [(u − λ)ξ − Dxα] + (u − λ)η − α(u − λ).
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10 S. Bernstein et al.

From (16), (15), and (18) we get{
Dxη = Dxα − D2

xξ

Dxη = [(u − λ)ξ − Dxα] − ξ(u − λ)
⇒ 2Dxα = D2

xξ + uξ − ξu, (19)

which leads to

0 = ∂t u − Dx [(u − λ)ξ − Dxα] + (u − λ)η − α(u − λ)

= ∂t u − Dx (uξ)+ λDxξ + D2
xα + (u − λ)(α − Dxξ)− α(u − λ)

= ∂t u − Dx (uξ)+ λDxξ + 1

2
[D3

xξ + Dx (uξ − ξu)] + uα − αu − (u − λ)Dxξ

= ∂t u + 1

2
D3

xξ − 1

2
Dx (uξ + ξu)+ uα − αu − (u − 2λ)Dxξ

= ∂t u + 1

2
D3

xξ − 1

2
Dx {u, ξ} + [u, α] − (u − 2λ)Dxξ, (20)

where [a, b] := ab − ba and {a, b} = ab + ba denote the commutator and the anti-
commutator, respectively. The last equation allows us to study possible choices for the
parameters α, β, ξ, η.

4.2. A variant of the transport equation

Let us first assume α to be a scalar-valued constant. Then (20) reduces to

0 = ∂t u + 1

2
D3

xξ − 1

2
Dx {u, ξ} − (u − 2λ)Dxξ.

Moreover, from (19) we have ξu = uξ + D2
xξ, and hence, we obtain

0 = ∂t u + 1

2
D3

xξ − 1

2
Dx (2uξ + D2

xξ)− (u − 2λ)Dxξ

= ∂t u − Dx (uξ)− u Dxξ + 2λDxξ. (21)

4.2.1. A multi-dimensional transport equation

If, additionally, we assume ξ ∈ C to be a constant, that is to say, Dxξ = 0, then (20) reduces
to the differential form of a n−dimensional transport equation (with f (u) = −ξu)

0 = ∂t u − ξDx u,

an equation which admits the vectorial solution

u(x, t) =
3∑

j=1

e−ξ t exp(x j e j )e j =
3∑

j=1

e−ξ t [− sin(x j )+ e j cos(x j )].

Moreover, (19) implies that Dxα = 0, that is, α must be a monogenic function. Below, we
show some examples of the scalar and vectorial parts of u (Figures 1 and 2).

The first example refers to the 1D solution u(x, t) = e−ξ t [− sin(x) + e1 cos(x)]. For
the second example, we consider ξ = −1 at time t = 4.

D
ow

nl
oa

de
d 

by
 [

b-
on

: B
ib

lio
te

ca
 d

o 
co

nh
ec

im
en

to
 o

nl
in

e 
U

A
] 

at
 0

9:
34

 0
6 

N
ov

em
be

r 
20

13
 



Complex Variables and Elliptic Equations 11

4.2.2. A non-linear evolution equation

Since, we are interested in non-linear equations, it is reasonable to require that ξ depends
on u.

At this stage, we would like to point our that if ξ and u commute (e.g. if u is scalar-
valued) then (19) means that ξ has to be harmonic or pure vector-valued. This also implies
that the case where ξ = u is trivial. Therefore, let us consider instead the case where
ξ = Dx u. Here, from (21) we obtain the equation

0 = ∂t u − Dx (u Dx u)+ u�u − 2λ�u. (22)

We observe that

Dx (u Dx u) =
3∑

j=1

e j∂x j (u Dx u)

=
⎛
⎝ 3∑

j=1

e j∂x j u

⎞
⎠ Dx u +

3∑
j=1

e j u(∂x j Dx u)

= (Dx u)2 +
3∑

j=1

(ue j + [e j , u])(∂x j Dx u)

= (Dx u)2 + u D2
x u +

3∑
j=1

[e j , u](∂x j Dx u).

Therefore, a scalar solution u of (22) will satisfy the non-linear PDE

0 = ∂t u − (Dx u)2 + 2(u − λ)�u.

4.3. A variant of the KdV equation

Let us now turn our attention to a case where we obtain a variant of the well-known KdV
equation. To this end we assume ξ = 4λ + 2u and α = Dx u. Now, from (16) we obtain
η = −Dx . This means that Equation (20) reduces to

0 = ∂t u + 1

2
D3

xξ − 1

2
Dx {u, ξ} + [u, α] − (u − 2λ)Dxξ

= ∂t u + 1

2
D3

x (4λ+ 2u)− 1

2
Dx {u, 4λ+ 2u} + [u, Dx u] − (u − 2λ)Dx (4λ+ 2u)

= ∂t u + D3
x u − 4λDx u − 2Dx (u

2)+ u(Dx u)− (Dx u)u − 2(u − 2λ)Dx u

= ∂t u + D3
x u − 2Dx (u

2)− u(Dx u)− (Dx u)u. (23)

Immediately, one observes that if the solution u is assumed to be scalar then it will satisfy

0 = [∂t u + D3
x u − 2Dx (u

2)− u(Dx u)− (Dx u)u]0 = ∂t u,

thus generating a time-independent solution of our Equation (23). In a similar way, a pure
vectorial solution u has the drawback that its time-dependence is expressed by the vectorial
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12 S. Bernstein et al.

Figure 1. Graphics of [u(x, t)]0 = −e−t sin(x) and [u(x, t)]1 = e−t cos(x)], with ξ = 1,
0 ≤ x ≤ 4π and 0 ≤ t ≤ 2.

Figure 2. Graphics of scalar and vectorial parts of u(x, y, 4) = −e4[sin(x)+sin(y)]+e4 cos(x)e1+
e4 cos(y)e2.

part of (23), thus reducing our equation to

0 = [∂t u + D3
x u − 2Dx (u

2)− u(Dx u)− (Dx u)u]1

= ∂t u − 2Dx (u
2).

Therefore, we will now direct our attention to u being a combination of scalar and vectorial
solutions.

4.3.1. The one-dimensional case

Let us start with the one-dimensional case, i.e. we consider u(x, t) = u0(x, t)+ e1u1(x, t),
for (x, t) ∈ R × R

+. In this setting the Dirac operator is reduced to D = e1∂x . Calculating
the different terms we obtain

0 = ∂t u + (e1∂x )
3u − 2e1∂x (u

2)− u(e1∂x u)− (e1∂x u)u

= ∂t (u0 + e1u1)− e1∂
3
x (u0 + e1u1)− 2e1∂x (u

2
0 − u2

1 + 2e1u0u1)

−{(u0 + e1u1), (−∂x u1 + e1∂x u0)}
so that, separating the scalar and vectorial parts, we get a system of coupled PDEs of
KdV-type {

∂t u0 + ∂3
x u1 + 6u0∂x u1 + 6u1∂x u0 = 0,

∂t u1 − ∂3
x u0 − 4u0∂x u0 + 4u1∂x u1 = 0.
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Complex Variables and Elliptic Equations 13

4.3.2. The quaternionic case

Now, let us turn our attention to the higher dimensional case. For the sake of simplicity, we
restrict ourselves to the quaternionic case where x = x1e1 + x2e2 + x3e3 ∈ H. Here, the
corresponding first-order operator is a modification of the Dirac operator, namely

D = e1∂x1 + e2∂x2 + e3∂x3 ,

and, thus, satisfies D2 = −�,� being the Laplace operator in R
3.Moreover, a quaternionic

solution

u(x, t) = u0(x, t)+ u1(x, t)e1 + u2(x, t)e2 + u3(x, t)e3

= u0(x, t)+ u(x, t) ∈ H (24)

satisfies

Du = D(u0 + u) = grad u0 − div u + curl u.

We now compute the different terms in (23). First of all, we have

D3u = −D(�u)

= −grad (�u0)+ div (�u)− curl (�u), (25)

and

− 2D(u2) = −2D(uu)

= −2

⎡
⎣(Du)u − u(Du)− 2

∑
j

u j∂x j u

⎤
⎦

= −2[(Du)u − u(Du)] + 4
∑

j

u j∂x j u.

Since −{u, Du} = − [(Du)u + u(Du)] we get

− 2D(u2)− {u, Du} = [(Du)u + u(Du)] − 4(Du)u + 4
∑

j

u j∂x j u

= 2[(Du)u]0 − 4(Du)u + 4
∑

j

u j∂x j (u0 + u).

For the first two terms on the right-hand side, we have

−4(Du)u = −4(grad u0 − div u + curl u)(u0 + u)

= 4u0div u − 4[(grad u0 + curl u)u]0 + 4(div u)u − 4u0(grad u0 + rot u)
(26)

and

2[(Du)u]0 = 2[(u0 + u)(grad u0 − div u + curl u)]0

= 2u0div u + 2[u (grad u0 + curl u)]0 (27)
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14 S. Bernstein et al.

Inserting these terms in (23), and separating the scalar and vectorial parts gives now the
non-linear system of coupled PDEs{
∂t u0 + div (�u)+ 6u0div u + 4

∑3
j=1 u j∂x j u0 − 2[u(grad u0 + curl u)]0 = 0

∂t u−grad�u0−curl (�u)+4
∑3

j=1 u j∂x j u+4(div u)u − 4u0(grad u0 + curl u) = 0

or, in terms of the standard gradient operator and u = (u1, u2, u3),{
∂t u0 + ∇(�u)+ 6u0∇ · u + 4(u · ∇)u0 + 2u · (∇u0 + ∇ × u) = 0

∂t u − ∇�u0 − ∇ × (�u)+ 4(u · ∇)u + 4(∇ · u)u − 4u0(∇u0 + ∇ × u) = 0
.

Also, we remark that, due to the nature of the quaternionic algebras, one can also consider
a pure vectorial solution u = u = u1e1+u2e2+u3e3 in which case we obtain the non-linear
PDE of KdV-type

∂t u − ∇ × (�u)+ 4[(∇ · u)+ u · ∇]u = 0.
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