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We study discrete Hilbert boundary value problems in the case of the upper half lattice.
The solutions are given in terms of the discrete Cauchy transforms for the upper and
lower half space while the study of their solvability is based on the discrete Hardy
decomposition for the half lattice. Furthermore, the solutions are proved to converge to
those of the associated continuous Hilbert boundary value problems.
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1. Introduction

The Hilbert problem is a classic topic in complex analysis. The question of determining a-
holomorphic function by its boundary values is linked to many problems in continuum
mechanics, in hydrodynamics or in materials with memory. Its solvability in the
framework of complex analysis were studied in the classical papers of F.D. Gakhov, I.N.
Vekua, N.I. Mishkelishvili, B.V. Khvedekidze, D.A. Kveselava and others (see, e.g.
[12,17,21]). Later on it was extended to higher dimensions by S. Bernstein and others in
the framework of Clifford analysis (cf. [2,5,15]). These higher-dimensional Hilbert
problems are linked not only to problems in continuum mechanics, but also to other areas
like image processing, where the notion of monogenic signal corresponds to the solution of
a Hilbert problem.

Recently, there is an increased interest in constructing discrete counterparts of
continuous structures. Such connections were successfully employed by S. Smirnov and
D. Chelkak in their study of discrete Riemann problems with respect to discrete
holomorphic functions in connection with the 2D-Ising model, e.g. in [7,18]. But, although
discrete complex analysis was studied since the 1940s higher-dimensional analogues of
the discrete Cauchy—Riemann equations only appeared in the 80s and 90s starting with
Becher and Joos (cf. [1]).

The development of the corresponding function theory, as a generalization of discrete
analytic function theory into higher dimensions, also called theory of discrete monogenic
function or discrete Clifford analysis, has started quite recently, see, for instance,
[3,6,8,10,11,14]. Among others, the discrete fundamental solution to the discrete Dirac
operator and discrete Cauchy formula were constructed ([3,6,13]) with the potential for
future applications of said theory being illustrated in [4,9]. Since in their last paper [6] the
authors constructed the corresponding discrete Hardy space, the natural question arises as
how do discrete Hilbert problems would look like. This in not just a purely theoretical
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question, since such problems are closely linked to problems in elasticity, in particular to
problems related to materials with memory. Although such problems usually are modelled
as continuous problems they can be, and indeed are, initially modelled as discrete
problems over a lattice. Moreover, to obtain its solution one reduces the continuous
problem again to a discrete one. Furthermore, such discrete problems are also linked to
discrete physical applications, like the Ising model [7,18] or problems in quantum
mechanics. Motivated by these considerations, we present a first version of discrete Hilbert
boundary value problems with respect to the Dirac operator in higher dimensions.
We show that such problems can be studied by methods similar to the ones in the
continuous case. Their solutions are given in terms of discrete Cauchy transforms for the
upper and lower half space while the study of their solvability is based on the discrete
Hardy decomposition for the half lattice. We end the paper with the study of the
convergence of the solution of the discrete Hilbert problem to the solution of its
continuous counterpart.

2. Preliminaries
2.1 Notations

For the grid hZ", where 0 < h < 1 denotes the lattice constant, or mesh size, the standard

forward and backward differences a;f’ are given by

o 1 L
0, f(hm) = = 5 U (hm = hep) = f(hm)] = = (T, = 1)f(hm), (1

S| =

where {e;, j=1,2,---,n} denotes an orthonormal basis, T,fj denotes the translation
operators and hm = hz;; \mje; € hZ". Based on the forward and backward differences
one obtains the star-Laplacian

n n
A= 00,7 = 0,70, 2)
j=1 j=1

By splitting each basis element e; into two new basis elements (each corresponding to the
forward and backward directions) e;’ and ¢; satisfying to ¢; = e;' +e; we obtain new
basis elements satisfying to

T 4 oo ottt 4t — Fom 4ot — s,
e e tee =ee tege =0, ee +epel =~y 3)

where Oj is the delta — Kronecker symbol. These elements generate a free algebra which
is isomorphic to the complexified Clifford algebra C, (see, e.g. [8,10,11]).

In what follows we consider functions defined on (J #)Q C hZ" with values in C,,.
Properties like /,-summability (1 = p < o), etc., are defined for a C,-valued function by
ascribing it to each component. The corresponding spaces of functions are denoted by
£p(Q,C,)(1 = p < 400), and so on. If no ambiguity arises we shall omit the range space,
e.g. /,(hZ",C,) = /,(hZ"). Otherwise, it will be explicitly stated.

For more details we refer the reader to the existent literature, e.g. [3,8,11,14,13,4].

The discrete Dirac operator D1~ and its adjoint D~ are given by

n n
Dim =3 el 0, Dyt =30, +e 0y, @
j=1 j=1
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and they factorize the star-Laplacian, i.e. (D]J{_)zz (D;+)2: —A;. A function f € /;(Q)
is said to be a (left) discrete monogenic function in Q if D*7f =0, in Q.
Also of importance is the discrete Fourier transform

F: /2(}11")—’112([—%,%1’1)7

given pointwisely as

ez " hmh", x € [= 57
f(hm) — Fif(x) = z
h

0, x €& [~

with (hm, x) := hz 1m;x;. The discrete Fourier transform F, has an inverse given by
R, F, the restriction Rh to the lattice of the (standard) continuous Fourier transform

1

— T odx
m e X s
2m) J ((— (/). /)"

Ff(& =

g .X) —(m/h),m, ”(x)dx =
2 )nJ FOOXic— i mimy

acting on functions f with support in the hyper-cube [—(7/h), 7/h]".
The fundamental solution Eh_Jr of Dh_+, that is, the discrete Cauchy kernel, is given in
terms of its Fourier transform as

E, " Rh}'( ) ie*Rh ( >+e R,J—'(gD), 5)

with §2j =+h"Ye¥™h5 — 1), and where &P = > 16 §_] +e; ﬁj and d? =
4/ hzz ', sin?(&h/2) denote the symbol of the discrete Dirac operator D~ and of the
negative of the star-Laplacian (that is to say, Fu(—Auf) = d>Ff), respectively. The

discrete Cauchy kernel has the following properties:

LEMMA 2.1. The discrete Cauchy kernel E, * satisfies

(i) D, "E, T(hm) = 6;1(hm)7 hm € hZ",
(i) E,* €/,(ZY, p>t

nl’

where 8, denotes the discrete delta of Dirac function in hZ" defined as

" if hm=0,
WM =00 i o,

The proof will be omitted, as it follows the same argument of Lemma 2.7 adapted to
dimension 7 (also, cf. [13], [19]).

2.2 Discrete Hardy spaces

In the section, we provide a short overview on discrete Hardy spaces. For the proofs we
refer to [6]. Although in that paper the proofs are given only for the special case of n = 3
their adaptation to the general case is straightforward.
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Let m = m+ m, € Z". We define the upper/lower half spaces as

hZ', ={hm € hZ" : m, > 0}, W2’ o ={hm € hZ" : m, = 0},

hZ" ={hm € hZ" : m, <0}, hZ' y= {hm € hZ" : m, =< 0}.
Based on the Stokes’ formula and our Cauchy kernel we have the following result.

THEOREM 2.2. Let f be a discrete left monogenic function (D,T* f= 0). Then, the upper
discrete Cauchy formula

S Bt — i, —ma))e fn, 1) + By — m, L= my)e, f(hn, 0)] !

ﬂezrﬁl

0, if m=0,
= ~fm), if m, >0,

respectively, the lower discrete Cauchy formula

> [ n = m =1 = mef £0m, 0) + By (h(n — m, —my)e, f(h(n, 1) !

nezrrl

0, i m=0,
:{ﬂhm), if m, <0,

hold provide that the involved series converge.

Since the boundary value of a function defined on the upper half lattice consists of its
values in two specific layers we shall denote the boundary data of f € /,( hZ"_, ), or
flm,=o+» as the pair (e, f% eff"), where fO(hm) = f(h(m,0)) and f'(hm) = f(h(nt, 1)).
Given f|,, =0+ = (en’fo, e 1) (a pair of functions in 7, (hZ”_l, C,,)), its upper discrete
Cauchy transform is given by

Ctle, f% e f '] (hm)

== 3 B0 — m = ma el f ) + By i = m = mye, O [

nezlrl

6)

forallm e 7"
In a similar way, the boundary data of f € /), (hZ'iD), or f Imn:()—, will be the pair
(eff% e f7"), where fO(hm)=f(h(m,0)) and f~'(hm)=f(h(m,~1) Given

n ' n
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Sfln=0- = (e;ff 0 e, f ’1), its lower discrete Cauchy transform is given by
CHeif0 e, f~ "] (hm)

== 7[BT0~ —1 = mef ) + B, h(n — m, —mye,

ﬂezn 1
)

for all m € 7"

This unusual concept of boundary data is motivated on the one hand by the fact that the
discrete setting requires two discrete derivatives — backward and forward — each acting on
two layers of f, and on the second hand by the fact that ¢}, ¢ are nilpotent elements which
in turns implies only these parts of the boundary data functions are indeed relevant for our
discrete Cauchy transforms.

For the upper and lower discrete Cauchy transforms the following properties are valid.

THEOREM 2.3. The upper and lower Cauchy transforms, (6) and (7), respectively, satisfy

(i) Ctle, fOeff'] € ,(n2"), [Ceff% e f7] € L,(hZ"), for all 1 =p <
+00;
(i) D~ C*[e, fO eif']|(hm) =0, for all m = (m,m,) € hZ" satisfying to m, > 1;
(iiiy D C~ [e;[fo, e;f_l](hm) =0, for all m= (m,m,) € hZ" satisfying to
< —1.

Based on the Fourier symbols of the fundamental solution in the (—1)-, 0- and 1-layers
the authors obtained the discrete upper and lower Hilbert transforms (cf. [6] for more
details)

\/m
Hif =Fy Lf < m ®
_ _ 12,42
Hf=—f;1l§(e;f - %hzdﬁe;}’d 2 hd)]ﬂﬂ ©)

where F, denotes the (n — 1)— dimensional discrete Fourier transform and both §D ,d
denote the symbols of the n — 1 dimensional discrete Dirac and star-Laplacian,
respectively. This allows us to give the following definition of discrete Hardy spaces.

DEFINITION 2.4. We deﬁne the discrete Hardy spaces h as the spaces of all discrete
Sfunctions f € £,(hZ"~ Y satisfying to

N 1
Pf=50+HIf =1,

respectively.

These conditions can be thought of as the discrete equivalents of the continuous
Plemelj—Sokhotzki formulae. However, due to the fact that the discrete boundary data
consists of two layers the Hardy space decomposition is slightly different in the sense that
we have to take into account discrete complementary Hardy spaces.
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DEFINITION 2.5. We define the discrete complementary Hardy spaces h as the spaces of
all discrete functions f € {,(hZ"~ Yy satisfying

. 1
Qf =50 -H)f =f.

The following decomposition is straightforward.
LEMMA 2.6. /,(hZ""") = hf®h, = h ©h,, 1=p < oo.

Proof. Immediate, since P*,Q" are projectors with Pt 4+ Q%+t =1 and
POt = Q'P*T =0. Similar for P~,0". O

Moreover, we remark that when 71— 0 we get P™, 0~ — Pand P~ ,Q" — Q, where
P, O denote the continuous Hardy projectors on the upper half plane.

Also of importance is the connection between the 0- and I-layers of a discrete
monogenic function f on the upper half space, respectively, between the 0- and (—1)-
layers of a discrete monogenic function f on the lower half space. For that, we resort again
to their description in Fourier domain.

First of all, let us denote by F/ the discrete Fourier transform of f/, j= —1, 0, 1.
Second, using the isomorphism C, = (Dn 1®rCy we decompose the resulting function
into its components in the 1,¢;", e, el e basis, that is

n’n’nn

Fiufl =F =P +efFy+e, Fy+efe, F,, F €(,(hi7" " Cimi), s=12,34

In addition to this, we emphasize the upper (respectively lower) case by adding an extra
upper index +, (respectively, —). That is to say, F ! will denote the discrete Fourier
transform of f ! taken as (partial) boundary data for the upper half case. In accordance with
these notations,

fe /p( +0>, then
(i) the components F ™! = F,f! satisfy to

@O It (e “£0 et ') is boundary data of a discrete upper monogenic function

— 2 D
hd \/4+h2d F+1 —‘r%F;l =0,
(10)
2

hd—+/4+h2d’ F+'+ (F“ F“)

(ii) by [6] — relation (36), it is proved that F ! can be uniquely writen in
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terms of the values of F 0 = F,£°. Namely, we get

N

+1
Fr = 2

N R
( 3 _> F;’O’

F+"1 _ 1/4+1125127th+10

2 Jatiedvnd %

5 an

+1 & [ \farn2d—hd +0 0
Fi _d(z ><F1 F; )

1 _ & (A —nd\ 40 JAR2E—hd (40 +.0
Fo=a\= )0~ g P T F)-

(II) In a similar way, if (e;’f O,e; f~1) is boundary data of a discrete lower
monogenic function f € 7, Zio , then
() F~ 1= Fuf 7! satisfy

— 2 R
hd «/421+h24 Fy 1_§"F1, I—,

d
. » (12)
hd—J4+h*d [ — —1 | & ——-1_ Q.
B E— 7(Fl _F4 )_EF3 —O’
(ii) by [6] — relation (40), F ~~! can be uniquely writen in terms of the values

of F~0 = F,f% as

——1 _ JAtn2d—hd
Fol = € Mp

4+h2d>+hd

——1 _ _ & (2l —hd\ -0
F, -4 ( 2 )Fl )

=0
1 I

. (13)
F;,—l _ A+ —th;,o

4+h2d’+hd

4+h2d*+hd 2

F;,—l _ \/4+l12427h4F17,0 _'_% <«/4+h2glhc_1)F3‘o.

3. Discrete Hilbert BYP

We aim to solve discrete Hilbert problems in higher dimensions. In the following sections,
we will considered three particular types of such problems. However, before we start two
observations must be made: the first is the fact that boundary data in the discrete setting
depends on three distinct layers: two layers for the inner boundary and another two for the
outer boundary (with the O-layer in common). The second observation is the fact that
whenever the boundary data belongs to a monogenic function then it is possible to relate
the values from the two associated layers. Hence, we start with the explicit calculation of
such relations. From these, we establish the upper and lower trace operators which, in turn,
allow us to relate the Hardy projections with the discrete Cauchy transforms.
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3.1 Boundary data relations
For the boundary behaviour of a discrete monogenic function in the layer m, = 1

(resp. m, = —1) we have in the Fourier domain (cf. [6] — relations (31) and (32),
generalized to dimension n)

& 242>  hd e (! hd
s (_erhid _ndy  -(L__ hd
d \2\/4 +n2d> 2 "\2 24+ n2d

e:F+’l(§) +F+"1(§)

(14)
_ &£ 1 1 hd T
d\/4+h2d2 “\2 narnmd ’
as well as
2+ h2d? h 1 h
G 2rnd _id) d @ -F @
d \2\/4+hn2d> 2 2 2\/4+h2d2
(15)

B e 1 hd G
d \Jitnd 2 2/htned ’

where

ec[-54

Now, the question of solvability of both (14) and (15) remains. We start with (14).
First, we observe that

& 2402 hd e ! hd o
e e e e
d \2\/4+h2d* 2 "\2 2va+n?)| "

is not invertible but has a left inverse given by

oo AR & 2+ - hdA R
"ohd+A+Red hd + /4 + 2 "
hd — /4 + h2d* o
md+arnd )"
Hereby, we recall that Per = —e &, (ef)’=0, efefe; = (—1—ete; ey = —e;,

and (&)* =
Hence, we get the equation relating the values of the function on the 1-layer with the
function values on the 0-layer as

f 2 _
F 1 .0
) (g) [ hd + 4—|—h2d2 e" F* (g) (16)

In a similar way, we need to solve Equation (15) for the connection between layers —1 and 0.
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Again, the term

& & 2412  nd 1 hd -
= |75 T 5 T e |5 e
d \2\/4+h2d*> 2 2 2\/4+h2d’

has a left inverse given by

ool WAt & <2+h26_12 — hd 4+h20_12> B
_ .

D a4 A+l d hd + /4 + i2d®

N —VA4+h2d _ .
hd+\/4+h2d2 on n

Hence, the connection between the values of the —1- and the O-layers is now

F o= efF09). (17)

gD 2 _
—e
hd + /4 + h2d®

One remark must be made with respect to Equations (16) and (17). Since in both cases

the boundary data at the 0-layer is multiplied by a zero divisor one has (e, e,"e, = —e, )

e, F* 0=, [FI* — F[+efFi°] and efF " =ef [F" +e,F; .

Hence, the term e, F +0 = =e, Fif O depends only on the components F +0 FI’O and
F, +0 . They are obtalnable from system (11) by

w1 _ & [ fan2d—nd \ 40 +,0 +0 _ & +.1
Fy _E( 2 )Fz Fy7 —Fy —3(4/—4%;2_,“1)[73
=
FHl— & [ Jarn2d—nd FrO _ o FrO— & 2 ol
3 T 4 2 1 4 2 T 4 JArhd —hd 1o

where /4 + h242 — hd never vanishes. In addition, system (11) also ensures that the
obtained boundary data is associated with a discrete monogenic function on hZ’,.
Therefore,

Fulenf®) = ey Fuf* = e, 0= ¢, [(FT° = F1°) +e1F7")

_ i Jr+§D 2 F+.1
d m VAT IE ~ hd

=S ([ Ft e F]
d( 4+h242—h4>[ ’

2
) - +[F+l+e F+l—|—€ F+1—|—e efFH

n-n
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Hence, we have

D
2
e;fo = .7:,?1 (% ( >ene;L [Ff’l —i—e:[F;r"l —i—e;F;’] +e:enFI’l}>

V4 +h2d* — hd

(18)

Analogous, for the lower case the term eF 0 =¢FF,f° depends only on the
components F 17,0 and Fy 2 From system (13) we get

-1 44h2d*—hd \ ~—.0 -0 A4h2d’+hd \ —,—1
F,' =" |F, F =Y |F
4+h2d*+hd 4+h2d*—hd

=

-1 A4h2d*—hd \ ~—.0 -0 A4h2d’+hd \ —,—1
Fyr = = |3 F3 =—— | F3y’
d+h2d*+hd | - - 4+h2d*—hd ) °

%

o
]

Then,
FuleffO) =et Fif =efF 0 =¢f [(F;’O + e;F;’O}

_ V4 + h2d* + hd (F_7_1
"I\VA+h2d —hd) !

+enF;v“).1 =:efo/ _[F .

which results in

€+f0 _ f_l €+ % 4+h2¢2 +hd (F*,*l +€_F7’71)
n — Y h n 9 1 n®3 .
VA+h2d® — hd

=t/ [f7'].

19)
In the above calculations appear certain terms which we designated by ./, and .o7 . Since

we are going to use them later we are going to give an explicit definition.

DEFINITION 3.1. We define the operators </ + and < —, respectively, as

() oy Ly(hZ" ) — £,(hZ"™Y), given by

L€ 2
AL f) =T, | = Fif |
=i |G ()]

(i) o~ : Ly(hZ"" )= £, (hZ" ), given by

2
o = | (VAL A
0= | (Yt )y
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Due to the construction these operators characterize the O-layer values of upper/lower
discrete monogenic functions.

These considerations mean that the values on the 1-layer or the —1-layer are enough to
describe our discrete monogenic functions and, consequently, we propose the following
definition of a discrete trace operator.

DEFINITION 3.2. (Upper and lower trace operator). Given f € £,(hZ"), we define the

(i) upper trace operator try. : {,(hZ") — ,/p(hZ“_l) X ,/p(hZ“_l) as
wlf) = (e o [~ i),

with f'(hm) := f(h(m, 1)).
(i) lower trace operator tr— : {,(hZ") — /,,(hZ”fl) X /,,(hZ”fl) as

w-[f1:= (ef /-1 Ny, f ),

with f = (hm) = f(h(m, —1)).

The upper/lower trace operators generate a pair of boundary data which can be
monogenically extended by the Cauchy transform to the upper/lower half lattice.
In particular, we get the following discrete version of the projection properties of the trace
of the Cauchy transform.

LEMMA 3.3. Let f € /,(hZ"). Then
(1) C+tr+ C+tr+[f] = C+tr+ [f],
(i) C tr— &C_tr_ [f]]] = Ctr_[f];

As we can see in the above lemma C*try and C ~tr_ project the function f into the
space of functions which can be monogenically extended to the upper half space and the
lower half space, respectively.

The upper/lower trace operator acts on a function defined in the upper/lower half
space. However, we have also to consider the case when the function is given only on
either the 1- or —1-layer, respectively. For this propose we introduce the upper and lower
boundary generators.

DErINITION 3.4. (Upper and lower boundary generators). Given g € / p(hZ"_l) we define
the

(1) upper boundary generator G : [,,(hZ”fl) — [,,(hZ”fl) X {p(hZ"*l) as
Gilgl = (e, /+[—eyg],er8).
(2) lower boundary generator G_ : /,,(hZ"il) — /,,(hZ"il) X /,,(hZ"il) as

G-lgl:= (e [gl.e, g).

Let us remark that the above definition of boundary generators is something particular
to the discrete case. In the limit 4 — O these operators converge to the identity operator and
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one does not make a real distinction between the boundary data G [g] and the boundary
function g.

Obviously, we have that tr, [f] = G, [f'], where f!(hm) := f(h(m, 1)). Analogous for
the lower case.

Moreover, from the above construction we obtain the following description for the
Hardy projectors.

THEOREM 3.5. Let g € / p(hZ"_l). Then one gets

P g(hm) = C*G.[gl(h(m, 1)), P-g(hm) = C~G_[gl(h(m, —1)), (20)

for allm € h7"".

Proof. As the two statements are similar, we prove only the upper case. Given a function
g € £,(hZ"™"), we have G [g] = (e, /1 [—efgl.eg).
Let f := CTG,[g]. Then, its restriction to the 1-layer, f'(hm) := f(h(m, 1)), satisfy
exg=ef' and Gilf'1= (e, o[ —eif'],eif") = Gilel.
Hence,
2
C*G.lgl = CTG.[f'1=CTG,[CTG.Iglh(-, 1))] = (CTG4) [gl,
that is to say, C*tG, is a projector, and C*G [g](h(-,1)) = P*[g]. O

3.2 Boundary value problems

As a starting point we consider the Hilbert problem of reconstructing a monogenic
function in the discrete upper half plane from its boundary data.

Problem I. Given g € /p(hl”_l), (1 =p < +o0), we want to determine f : hZ", — C,
such that

D;f~ f(hm) = 0, me 7",

Flh(m, 1) = ghm), m € 7", @D

As in the continuous case this problem has an almost immediate solution.

THEOREM 3.6. The boundary value problem (21) is uniquely solvable if and only if the
(partial) boundary data g is in h;'.
Moreover, its solution is given by

f(hm) = C*G[g](hm), (22)

form= (m,m,) € 7" ' X Z,.
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Proof. Assume that g & h; Obviously, a discrete monogenic function f such that its
values on the 1-layer fulfil the given boundary condition does not exist. Therefore, g € h;
is a necessary condition for the existence of a solution to problem (21).

Next, we prove that a solution exists in this case. Given g € h;' one applies the
boundary generator, i.e.

Gilgl= (6’,;9/+ [_eig]ae;g)-

Hence, we have that f = C*tG,[g] is a discrete monogenic function on the upper half
lattice satisfying to f(h(m, 1)) = g(m). Its uniqueness is guaranteed by the maximum
principle (cf. [6], Corollary 2.12). |

COROLLARY 3.7. A similar result holds for the corresponding problem in the lower half
lattice 7", with g € h, . where its unique solution is given by

fhm) = C~G_[gl(hm), m = (m,m,) € Z"" ' X 7. (23)

Remark 3.8.

() In Theorem 3.6 the boundary value problem is studied for a given partial boundary
data on the 1-layer. Obviously, a similar discussion could be made for a partial
boundary data given on the O-layer. However, as C* [en’ 7O, el 1](@, 0) = 0 for any
boundary data ("’; 1O et 1) of an upper discrete monogenic function f this problem
must be stated in terms not of the values of the resulting function on the 0-layer, but in
terms of the first component of its trace operator. An analogous remark holds for
Corollary 3.7.

(II)  When n = 2 and A tends to O then, problem (21) reduces to the Hilbert boundary
value problem for analytic functions on the upper half of the complex plane. We remark
that this particular type of Hilbert boundary value problems were already discussed in
[7, 19].

3.3 Jump problem 1

Let us formulate the discrete equivalent to the classic Hilbert boundary value problem.
Due to the fact that in the discrete case the boundary actually consists of three interlinked
layers one has a certain freedom in imposing jump conditions, a freedom which does not
exist in the continuous case. Let us start with the case in which the jump condition is given
in terms of values on the O-layer. Due to Theorem 2.2 a discrete monogenic function on
hZ"\{m,, = 0} takes the value zero on the 0-layer. Therefore, a jump condition on the 0-
layer only makes sense when it is assumed as the difference between the first components
of the upper and the lower traces of the function.
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Problem I1. Given a function g € 7 p(hZ'“l), (1 = p < n), we want to determine a discrete
monogenic f : hZ" — C, subjected to a jump condition, that is

D,Tif(hm) =0, me Zn\{mn =0},
e, f+(hm,0) = e} f-(hm,0) = e,g(hm), me 7" "

For the solvabilty of this problem we can state the following theorem.

THEOREM 3.9. For an arbitrary function g=g'+ e,'l"g2 + e;g3 +efer gt e

n-n

/p(Z”_l), (1 = p < n), the Hilbert boundary value problem with jump condition

D} f(hm) =0, m € Z"\{m, = 0},
erf(hm,0) = & f—(hm,0) = e,g(hm),  meE 2", @9
is uniquely solvable with
C*Gilg+l(hm),  my, = +1,
T =1 c=g_1-g 10m), my=—1. @)

where g_ = g' +en_g37 gy = g' - g4 +e:g2.

Proof. First, we observe that ¢, is invertible. Moreover,

— (,* (o1 +,2 =03 4 b

n8 = (en +€n)(g +eng +€ng +€”€ng )

=e¢f(g'+e,8")+te, (g +efg” —g*)=¢fg +e, 2.

Hence, we get as first components of the upper, resp. lower, trace of f
ef =6 (¢ +efg? —gt) = e gr, V= (g e 8) = —efg

By relations (11) and (13) we obtain the remaining values of the upper and lower traces,
namely ¢, f 7! and e, f 1. Moreover, these traces coincide with G, [g], and G_[—g—],
resp. By applying the upper (resp., lower) Cauchy transform to these pairs we obtain the

discrete monogenic function

C+g+[g+](hm), my, = +1,

f(hm) = {C‘Q[—g](th S

which satisfies to
e, f+(hm,0) — e f_(hm,0) = e, f °(hm,0) — e} f ~°(hm,0)

= e, g+(hm) + e, g (hm) = e,g(hm).
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The above considerations allow us to look now at the jump problem relating the
boundary values in the 1- and —1-layer.

Problem III. Given a function g € /p(hZ”_'),(l = p <n), we want to determine a
discrete monogenic function f : hZ" — C,, subject to the following jump condition

D;f~f(hm) = 0, m € Z"\{m, = 0},
e, A ¢ [f1(h(n, 1) = e}/ _[f1(h(n, = 1)) = g(hm), mez""

Several interpretations are possible for this jump condition. Again, notice that since the
boundary data is in fact given by a pair of functions the jump condition can be expressed
either in terms of the values on the 1- and — 1-layer of the discrete function f, or in terms of
their connection at the O-layer. Here, we assume this link is given by the difference of their
respective extensions to the O-layer.

However, let us point out that in both cases as 4 — 0 the functions f; and - given in
the layers will converge to the continuous boundary values from above, resp. below, of the
continuous function f.

Let us take a closer look at the boundary condition o7 [f](h(n,1)) — .o
[f1(h(n, —1)) = g(hm). Since 1 = —eﬁ we can rewrite g as

g(hm) = —e*g(hm) = e/ (—e,8) + €, (—e,g).

Keep in mind that this algebraic decomposition is unique. Since both .¢/; and .7 _ are
invertible with their inversion formulae being given by (11) and (13), respectively, we can
take e f = ef(—e,g) and e f° = e, (—e,g). From this we get

62']”71 = ei‘&/il[eng] and e;f1 = e;,sz/?[—eng].

By applying now the Cauchy transform we arrive at the following theorem.

THEOREM 3.10. For an arbitrary function g € /p(hZ”*l)7 (1 =p <n), the Hilbert
boundary value problem with jump condition

Dy f(hm) =0, m € Z"\{m, = 0},
e S+ [f)(h(n, 1) = ef o -[f)(h(n, ~1) = g(hm),  mE 2", (26)
has an unique solution given by
ct [e:eng7e;&{;l[_eng]:l(hm), m, = —}—1,
S(hm) = o)

Cc™ [e;eng, e;ﬁ'esz{:l[eng]](hm), m, = —1.

We end up this section with the remark that problems (26) and (24) are equivalent, as
expected. Therefore, in the following Hilbert problems we shall consider only the case in
which the jump condition is expressed in terms of the values of the function in the 1- and
—1-layers.
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3.4  Jump problem 2
The previous problem can be easily extended to the following setting.

Problem 1V. Given g € /,,(hZ"il),(l =p<n) and a constant A € C, with a right
inverse A, ! we want to find f : hZ" — C, such that

D}~ f(hm) =0, m € Z"\{m, = 0},

e A [f 1, 1) — ¢/ [f1hn, — DA = g(hm),  m€E 2 (28)

The solution is almost again immediate.

THEOREM 3.11. For an arbitrary g € /p(hZ'rl),(l =p <n), and A € C, with a right
inverse /\;1, the boundary value problem (28) is uniquely solvable. It solution is given by

Ctlefeng. e, 47 [—engl](hm), m, = +1,

fChm) = Cc- [e;eng, e/} [e,,g/\fl]](hm), m, = —1.

(29)

Since the proof of this theorem is an adaptation of the one of Theorem 3.10 we shall
omit it here. However, we have to point out that .o/ " [e,g), '] belongs to /, since this
space is a right linear module.

4. Convergence results

While discrete Hilbert problems have direct applications (see, e.g. [7,18]), nevertheless
they can also be considered as discretizations of continuous Hilbert problems. This leads
to the question of convergence when the lattice constant 2(0 < h < 1) goes to zero. In this
section, we are going to deal with this problem, i.e. we study the convergence of the
previous discrete problems to their continuous counterparts.

4.1 Convergence results for the Hilbert problems

In order to fix notations, we recall the continuous Hilbert problem. Let
fEeL, ([R:’L),(l < p < +00), be a solution of the problem

Dfx)=0, x€R:,

- 30
fi@ =gk, xR (30)

n

Here, f denotes the non-tangential limit of f when x € R/, goestox € R Of g belongs
to the the continuous Hardy space H, that is to the space of all functions in L,(R""")
which are boundary values of monogenic functions on R’i (see also [16,20]), then f is
given in terms of the continuous Cauchy transform

J) = Cilglln) = Jw*‘ E(y —0)(—e)g(y)dly, x &R, €1V}
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where E denotes the fundamental solution for the Dirac operator D = > " ¢;d,,. Hence,
we first investigate the convergence of the discrete solution (22), i.e. C TG, [g](hm), to the
continuous solution (31) restricted to the lattice. Since

CHGulglthm) = = 3 [Ey (hn = m, —maef gt + E; ¥ (hn = m, | = moe; o [ =e; glthm)| "™,
neL" !
we begin by decomposing the boundary out-normal in (31) into —e, = — (e;lL +e, )

Second, we remark that if g € L,,([R"_l, Cn) N C“(Rn_l, Cn), where 0 < o = 1 and
1 < p < oo, then, we have (see [9])

IRsgll,,... .., = Cllgll,.

thus, ensuring that the function g has a meaningful £, (,— /) projection after its restriction
to the lattice. Hence forward, and whenever it is clear from the context, we will denote by g
both the function g and its restriction R;g to the lattice.

Lemva 4.1. Let g € Hf N C*(R"',C,) NW)(R"',C,), with0 < a=1,1<p<n
Then, we have

| B0 (e, = Y B = m-my (e ot
R nez! (32)

= @n" +Bliglly,,

for all hm € hZ’,, where A,B> 0 are constants independent of h and g, and
(I/p)+(1/g) = 1.

Proof. The restriction of g € H; to the lattice does not necessarily belong to h;. However,
Theorem 3.5 ensures CTG, [Q%g]=0. Hence, CtG,[g] = CTG. [(P+ + 0)gl=
C+g+[P+g], with P+g S I’l;_
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Now, let W(hn) be a hypercube on R"! centred in hm and with size-length h. For an
arbitrary m € 7', we have

JRH E = hin, —hmy) (=) g0)dly = 3 B, (A —m, —m) (e ) ghph” ™!

nez"™!

I

(J Ey — hm, —hmy)e g)dT, — E(h(n — m, —mn»e:g(hn)h"‘>
W(hm) - - -

nezn*]

| 2 (Bt =, =ma) = B, (h(n =, —m) ) e gl

nezrrl

IA

> (J E(y — hm, —hmy)e; g(y)dl'y — E(h(n — m, —my))e; g(hn)h”_'>
W(hm) - - -

ﬂeznfl

+ 3 | (Bt = m, —m) = B, ¥ i = m, —my)|lgthmla !

T]EZ"il

(33)

with ¢2 = 21/, Now, we apply Holder’s inequality with 1/s + 1/(p+(n—1/a) =1
to this last term. This leads to

S |Et 0 = m,—m) = Bl = m, =) lgGrp !

nez"!

1/s
. - (34)
= 3 |E = m—ma) = Ehn = m—ma)[ B | gl

Eezrﬁ]

= C Vgl

L p+in—1)/a?

where C; > 0 is a constant independent of 2 and of g (cf. Lemma 2.8, [6]). Since
p+m—1D/a>1+®m—1)=nwegetl/s>1-—1/nand, therefore, | + (n — 1)/s >
14+ @m—1)(1—1/n)=n>—n+1)/n>n— 1. This implies #'T"D/s < p"~! when
0 < h <1 and, therefore, (34) can be further estimated by

Cih =D gl,

p+in—1)/a

= Cih" gl
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For the remaining term in (33) we have

> J E(y — hm, —hmy)e;; g(y)dTy — E(h(n — m, —my))e; g(hmh" ™!
e \Jwam = - - -

=| | = mme st - g,
yez Wi ]

# | EG = m = m) = B~ b~ )le} gl
Jer Iwam '

For the estimation of the first term we use the fact that

|EG)| = x#0

together with 1/p + 1/q = 1. Then, we get

3 J Eh(n — m, —ma)e [g(hm) — g)1dT,
W(nh) -

ﬂEzrﬁl

1/4 1/p

= Y (| st - m-mtars ) (] et - gl

nez"! W(nh) W(nh) -

1/q ol 1/p
=ct| D |EG@ —m,my))h" P > (J |g(hm) — g(X)Per)
HEZH ﬂezn—l w(nh)
1/p

. no el
=a| Y (J > J0|ajg()’ T 00y — /’lﬂ))|pdehpdry>
ﬂezn*]

w(ﬂh) j=1
(35)
by taking p=p, and §=¢q > 1 because of E(- —m,—m,) € lq(hZ’Z*l) for any
m = (m,m,). Since g € W},(R”_]) we get
| B = —mae; et — T | = b gl
W (nh) -

HEZ’FI

where all constants are independent of & and g. For the second term we apply Holder’s
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inequality (1/p + 1/g = 1) two times and use a Taylor expansion for the kernel. Indeed,

3 J [ECh(n — m, —my)) = E(y = hm, —hm,)le; g)dT'y
W(hﬂ)

nez"!

=c Y <J |E(h(n — m, —my)) — E(y — hm, —hmn)llg(X)IdFy>
W(hﬂ) -

nezn*]

Va 1/p
= Z (J |E(h(nq — m, —my)) — E(y — hm, _hmn)lqdry> (J 8@)|pdry)
Whn) - - - s R

Eeznfl

n—1 q Vg , 1/p
= C4 Z <J Z |avAE(X - hm)ly:hnlyk - hnkl dr)) <J |g(X)|pdr)>
nez™! W(hn) - - W(hn) -

k=1
1/q 1/p
n—1 q
=ci| 2 | IS bnE - el hndar, | Y [ letar,
Eezn—l W(hn) | k=1 - - Eezn—l W(hn) -
1/q
hC4 n—1 q
D> J S 10, EQ — hmdlyg| Ty | el o
ﬂEzn—l W(hn) | k=1
(36)

with C4 > 0 a constant independent on / and g. Now, we have

n—1 n—1
yji — hm; —hmy, S yi — hm; him,,
EGy—nh = j n— n€ — n€n
v ;@—mwﬁ@—mw (-w—mﬁ'w—mﬁ

so that
n—1 n—1 2
1 (x — hmy) Vi — hmy
[0y, ECy — hm)|y—pyy = ey — N -5 ek + nhm, ————
20 = Il = 9 | s ™y g ]
n—1 1 n(n — Dh|m,| 2n — 1 n(n — D)|hmy,|

= ntn n n+1 - n n+1*
ly = hml" = " ly =mml" |y — g™ | Nk = hm[" |y — Bl
= y=hn — L)

Substituting in (36) we obtain

Y
2 W(hn)

nez"™!

1/q
q

dry ”g”Lp([R"*l)

n—1
> oy By = hm)ly—iy

k=1

= Csh'llgll,, g, (37
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where again Cs > 0 is a constant independent on 4 and g. This completes the proof of the
lemma. 0

Remark 4.2. The error estimate (32) remains true if (—e;L ) is replaced by (—en_ )
Based on the above lemma we get the following estimate:

LEMMA 4.3. Let g € H; N C“(R"il,Cn), with 0 < a = 1,1 < p < n. Then, we have

JRH E(y — hm)(=e, )g)dTy = > E; " (h(n = m,1 = m))(—e, )/ 4 [~} g](hmh"™!

nezn*l

= (An""' 4+ Bn)ligll,,,
(38)

for all hm € hZ", where again A,B > 0 are constants independent of h and g, and
l/p+1/g=1

Proof. For an arbitrary m € Z', we estimate this difference by

JR,,-. EG — hm)(—¢; )smdly — S Eyt(h(n = m, 1 = m)(—ey ) o4 [~ g] (hmph™™!

neznfl

=

Z (J E(y — hm, —hmy)e, g0)dl'y, — E(h(n — m, —m,))e, g(hn)h"l)
nez! W(hn) -

+ 7 | (Boin = m, =) = B i = m 1= ma) e gthmp|p!

nez"!

+ 0 |0 = mo = mae, (s = o7 [=ee) ) [

nez"™!

(39)

where W(hn) is the hypercube on R"! centred in hm and with size-length A. Since the first
two expressions are estimated as in the previous lemma these estimates will be omitted
here.

Before proceeding with the estimate for the last sum, we remark that when restricted to
the lattice, g satisfies g € A so it holds the identity g = H. g, and

D 2
hd — /4 + h2d 2
Fng=FiH g = £ e — e +e, s | [Fng-
2 hd — \/4 + h2d

d
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Hence,

292 D
(6 o ete]) = 7 { PR CE S < R B
d 2 d \Ja+n2d® - hd

_ \/4+h2d2 2 i
e L’( > i o)) T T e

Replacing this expression in the last sum of (39), and using the fact that the inverse of the
discrete Fourier transform F ,1_1(2 JF, the continuous Fourier transform restricted to
functions in the hypercube [—(m/h), 7/ h1"™") has finite operator norm, we get

Z ‘E;+(h(ﬂ —m,1 —my)e, (g(hﬂ) — ol [—e:g] (hﬂ)) '
ﬂEZ'FI
= ot Z 5 = m, 1 = ma))|| 75 [ Fag) !
2 (40)

= czhHEh‘*(h( S L= m)lll 7 el
= C3hHE;+”/A”]:th/,,Hn,WaS Cshllgllz, ,

by arguments similar to the ones in (34), with 1/s 4+ 1/p(n — 1/a) = 1, and where all the
constants involved are positive and independent of h and g (recall,

&=3" 11(1 —e™5 /el — (1 — e~ /h)e;). This completes our proof. O
Both Lemmas 4.1 and 4.3 can now be combined in our main result:

THEOREM 4.4. Let g € HY N C*(R"™',C,) N WI(R"',C,), for0 < a=1,1 <p<n.
Then, the following estimate for the point-wise error between the discrete solution f, of
(21) and the continuous solution f of (30) holds:

| f(hm) = fu(hm)l = |C[g(mh) — C*Gilglmh)| = (A+h" " +Bih)llgll,, (41

forallm € 7", with Ay, By > 0 constants independent of h and g.

Remark 4.5. From the previous proofs we can see that if we lower the conditions in the
above theorem to g € H, N C*(R",C,), O<a=1,1<p<n), we still get
convergence but there is no convergence order with respect to the mesh size 4. The
same can be said about subsequent theorems.

A similar statement can be formulated in the case of lower half space. Let f € L, (R”_ )
be a solution of

D) =0, x€ER",

f =g, xeR, (42)

withR” =x € R" : x, <0and 1 < p < 400. Again, f_ denotes the non-tangential limit
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of f wheny € R” goestox ER" ' Ifg € H,, , the Hardy space for the lower half plane,
then f is given by

f(x) =C_[flx) = JR"*‘ E(y = x)(—en)g(y)dly, x € R"™. (43)
Similar to Theorem 4.4 the following result holds.

THEOREM 4.6. Let g € H, N C*(R"',C,) N W) (R"',C,), for0 < a=1,1<p<n.
Then, the following estimate for the point-wise error between the discrete solution f, of the
corresponding problem in the lower half lattice and the continuous solution f of (42)
holds:

| f(hm) = fi(hm)| = |C-[g)(mh) — C~G-[glmh)| = (A-h""' + B_h)llgll,, ~ (44)

forallm € 7", with A_, B_ > 0 constants independent of h and g.

4.2 Convergence of related jump problems

Now, we take a closer look at the jump problems. Here, we consider f € L, ([RR’j_ U [R”_),
with 1 < p < 400, to be a solution of

Df(x) =0, xERLUR",

efi) —e f-@)=egx), xeER (45)

with f,f_ denoting the non-tangential limits of f as in the previous section. For g €
Lp([R?”fl) the solution f can be written as

Cilg+l®), x>0
S = (46)

C-[—-1), % <0’

where we recall e,g = e g + e, 8+ = ¢ (g' +¢,8%) +e, (¢' —g* +¢g?).
Applying Theorems 4.4 and 4.6, we immediately get the convergence results for
Problem II.

TueorREM 4.7. Given g€ L,(R"™',C,) N C*(R"",C,) N W) (R"',C,),0<a =
1,1 < p < n, we have the discrete solution f, of Problem Il given by

C+g+[g+](hm)7 m, = +1,

Fulhm) = {C‘Q[—g](hm), my = —1.

Moreover, the error between the solution f of the continuous problem (45) and the discrete
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solution f, can be estimated pointwise by
| f(hm) = fu(hm)| = (AR"~" + Bh)llgllL, ,

forallm € 7", U Z" , where A,B > 0 are constants independent of h and g.
Finally, let us consider the convergence results for Problem III.

TheoreEM 4.8. If g€L,(R"',C,)NnCc*R",C,)NW(R"',C,),0<a=
1,1 < p <mn, then we have the following point-wise estimate between the solution f, of
Problem III and the solution f of Problem (45)

| f(mh) — fr(mh)| = Cligll,,h"~", (47)
where C > 0 is a constant independent of h and g.
Proof. From Theorem 3.10 we know that the solution to Problem III is given by

c* [@IenRhg7 e;'%;l [_enRth (hm), m, = —i—l,

hm) =
S (m) C™ e, enRig, e 4~ [e,Rygl|(hm), m, = —1’

(48)

where the upper and lower Cauchy transforms are given by

ClefenRig, e, 2 [=enRigl|(hm) = — > [E;*(h(y—m, —mn))e;ﬁ;‘[—eng]](hg)

nez"!

E, (h(n = m, 1 = my)ereaghm]|[n",

C e, eaRigs e/ " lewRigl]Gm) = 3 B, (h(m — i, =1 = mu)e, eag(hm)

nezn*l

+E; (h(n = m, —my)e o~ engl | "7

and the operators .o/ ;l have the representation

= (8 g, g g (VAL )
* "\d Jarn2d +na) " \/4—|—h2d2+hd

Now, let us start again with W(y) being a square with centre y and edge length 4. We only
present the estimate for the upper Cauchy transform since the estimate for the lower



Downloaded by [b-on: Biblioteca do conhecimento online UA] at 05:16 06 November 2015

Journal of Difference Equations and Applications 25

Cauchy transform is similar. For the upper Cauchy transform we have

JRH E(y — mh)(—e,)g(y)dl’y — Z {Eﬁ(h(g = m, —my))e, /' [—engll(hn)

T]EZ”"

+E; (= m, | = ma)ef eagnm]| 7|

=

le E(y = mh)(=e; )g)dTy = > By (h(n — m, —m,))(—e, )gChn, "™

nez""!

+

JW. E(y = mh)(=ef)gwdly = Y E,F(h(n = m, 1 = m))(—ef)glhmh™™" '

nez"™!

= D0 E (= my—me, oA (el + Yy (h(n — m, —my)(—e, ) gthn, k"
nez"! nez"!
Y E (= m 1= m))efengthmh" T 4 Y E (b = m 1= my))(—e) g(hmh" .
EEZWI ﬂEZ”’l
(49)
For the first two terms of formula (49), by Lemma 4.1 we have
J B~ mi)(—e; )g0dTy — S Ey*htn — m,~m)(—e; )glhm ™!
R" ﬂezn—l
= Ar""" + Bh)ligll;,,
(50)
and
J E(y — mh)(—¢;)gdly = > E*(h(n = m, 1 = m)(—ef)glhmh"™!
R T gz 1)

= (AR""" 4+ Bh)llgll, """

For the third term in formula (49) we can proceed like in the proof of Lemma 4.3. Using
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Holder’s inequality with 1/p+1/q =1 and ¢ > n/n — 1 (hence, 1 < p < n) we obtain

= Y By — m,—ma)e, o [—engl(hm) + Y Ey(h(n — m, —my)(—e, )g(hn, h)h""

ﬂezn*] ﬂezn*]

> = m—ma) (—e, o/ = englhm) + (=, )gthm) )"

nezn*l

= 2B —hm)l | = e /5 T=eng) + (=€ )], -

(52)
Using g = H, g we get for the second term
=,/ =eng + (=e, sl
R & 2 & \/A+n>d® — hd -
= en en - — = v @ - @ @@= ng
"I \d arnid +na d 2
=0 ‘s
Therefore, this term vanishes.
For the last term in formula (49)
(D= E; (h(n—m, 1 = m))efeng(hmh™" + > E; (h(n —m, 1 — m))(—e)gthmh™™" |,
EEZ”" ﬂezn—l
we have the estimate
O =1{ > E(h(n—m1—m)(efe,+ (—e)))ghmh"™
Eezn*]

= 2"[[E, - (= ma)ll Nl (eve, g = er9) |,

= 2||E - h1 = mo)l et e (1 & 2 )J—' g

— h "y - My L, N€R €y - _—2 h

d hd — \/4 + h2d /

= 2"|[E, 7 h = m)llyllee, 207]|, = 0.

Collecting all the estimates together we get our result. (|

5. Conclusion

In this paper, we introduced the notion of discrete Hilbert problems in higher dimensions
as analogues to the continuous Hilbert problems with respect to null-functions of the Dirac
operator. Their solutions are constructed using discrete Cauchy transforms and Hardy
decompositions. In the end we show that these discrete Hilbert problems converge to the
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corresponding continuous Hilbert problems when the mesh constant goes to zero and we
provide estimates for the convergence order.
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