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Abstract The aim of this paper is to introduce, in the framework of Clifford
analysis, the notions of ϕ-hyperdifferentiability and ϕ-hyperderivability for ψ-
hyperholomorphic functions where (ϕ,ψ) are two arbitrary orthogonal bases (called
structural sets) of a Euclidean space. In this study we will also show how to exchange
the integral sign and the ϕ-hyperderivative of the ψ-Cliffordian Cauchy-type integral.
Thereby, we generalize, in a natural way, the corresponding quaternionic antecedent
as well as the standard Clifford predecessor.

Keywords Clifford analysis · Hyperderivative · Hyperholomorphy ·
Cauchy-type integral

Mathematics Subject Classification 30G35

1 Introduction

At the heart of one-dimensional complex analysis lies the notion of a holomorphic
function, which can be introduced by different equivalent approaches, for example,
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the derivative of a complex function as a limit of a quotient, the Cauchy–Riemann
conditions, complex differentiability, and others.

Standard Clifford analysis is a higher dimensional generalization of holomorphic
function theory, and a refinement of harmonic analysis, but its main object of interest,
the class of hyperholomorphic functions, is defined, almost always, in terms of the
Cauchy–Riemann conditions.

Recently, a series of works [3,9,13–16,18,19] appeared which dealt with the notion
of a hyperderivative as the limit of a quotient where the numerator and the denominator
represent “increments” of a Clifford algebra-valued function and of the independent
variable, respectively, as well as the directional derivative, where a direction means a
hyperplane in a Euclidean space for a Clifford algebra. In the framework of quater-
nionic analysis, papers [20,26] preceded these developments. The consideration of
D as the hyperderivative of a monogenic function led to an increased interest in the
description of geometric properties of a hyperholomorphic function via the D-operator.
But there are many circumstances where such a description by means of other oper-
ators would be easier to apply. The reason is that the D-operator has a preferential
direction in the real axis, i.e., Du + Du = ∂0u, which is not necessarily the most
interesting one. One could overcome this problem by rotating Du, as in [4], but this
is usually cumbersome. One of the major discussions in this paper is what kind of
operator can replace D as a hyperderivative, where we give the necessary conditions
in terms of structural sets (orthonormal bases) ϕ and ψ . Although we do not discus
the representation of geometric properties by means of the ϕ-hyperderivative, with the
basic setting constructed in this paper, the transfer of the proofs from the classic case
of the D-operator to that case is straightforward. Furthermore, in many applications,
one needs to know how the hyperderivative acts on the Cauchy-type integral operator.
Therefore, we show how to interchange the integral sign and the ϕ-Cauchy–Riemann
operator acting on the ψ-Cliffordian Cauchy-type integral.

It is worth mentioning that the directional derivative becomes crucial when one
wants to realize in which sense the density of the Cauchy-type integral should be
derived if one tries to exchange the integral sign and the hyperderivative of the Cauchy-
type integral as a hyperholomorphic function.

2 Preliminaries

Given m ∈ N, let {e1, e2, . . . , em} be an orthonormal basis of Rm . Consider the 2m-
dimensional real Clifford algebra R0,m generated by e1, e2, . . . , em according to the
multiplication rules ei e j + e j ei = −2δi, j where δi, j is the Kronecker’s symbol. The
elements eA : A ⊆ Nm := {1, 2, . . . ,m} define a basis ofR0,m , where eA = eh1 · · · ehk
if A = {h1, . . . , hk} (1 ≤ h1 < · · · < hk ≤ m) and e∅ = e0 = 1.

Any a ∈ R0,m may, thus, be written as a = ∑
A⊆Nm

aAeA where aA ∈ R or
also as a = ∑m

k=0[a]k , where [a]k = ∑
|A|=k aAeA is a so-called k-vector (k ∈

N
0
m := Nm ∪ {0}). If we denote the space of k-vectors by R

(k)
0,m , it is obvious that

R0,m = ∑m
k=0 ⊕R

(k)
0,m . The conjugate of a is defined by ā = ∑

A⊆Nm
aAēA, where
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ēA := (−1)kehk · · · eh1 = (−1)
k(k+1)

2 eA, if eA = eh1 · · · ehk .

One of the most elementary properties of this conjugation is that for every pair a, b ∈
R0,m we have

ab = b a. (1)

The spaces R and R
m will be identified with R

(0)
0,m and R

(1)
0,m , respectively. Moreover,

each element x = (x0, x1, . . . , xm) ∈ R
m+1 can be written as

x = x0 +
m∑

i=1

xi ei ∈ R
(0)
0,m ⊕ R

(1)
0,m .

For each x ∈ R
(0)
0,m ⊕ R

(1)
0,m it is worth noting that

x x̄ = x̄ x = x20 + x21 + · · · + x2m = |x |2. (2)

The extension of (2) to a norm of a ∈ R0,m is straightforward and leads to

|a|2 = [aā]0 = [āa]0 =
∑

A

a2A.

In this paper, we will consider bounded domains1 � ⊂ R
m+1 with smooth bound-

aries � := ∂�. We will be interested in functions defined on subsets of Rm+1 taking
values in R0,m which might be written as f (x) = ∑

A fA(x)eA with f A being R-
valued. Properties such as continuity, differentiability, integrability, and so on, which
are ascribed to f have to be possessed also by all components f A. In this way, we
obtain the following functions sets, for a suitable subset E of Rm+1.

• Ck(E,R0,m)—the set of all R0,m-valued functions, k-times continuously differ-
entiable in E andC∞(E,R0,m) := ⋂∞

k=0 C
k(E,R0,m). For f ∈ Ck(E,R0,m)we

will write

Dα f = ∂ |α| f
∂xα0

0 · · · ∂xαn
n

, |α| ≤ k,

where α = (α0, . . . , αn) ∈ (N ∪ {0})n+1 is a multi-index and |α| = α0+· · ·+αn .
• C0,μ(E,R0,m), μ ∈ (0, 1]– the set of all μ-Hölder continuous and R0,m-valued
functions in E . By Ck,μ(E,R0,m), k ∈ N, we will denote the set of functions
f ∈ C0,μ(E,R0,m) whose partial derivatives Dα f ∈ C0,μ(E,R0,m) for |α| ≤ k.

Let ψ := {ψ0, ψ1, . . . , ψm} ⊂ R
(0)
0,m ⊕ R

(1)
0,m . For brevity, we let ψ :=

{ψ0, ψ1, . . . , ψm} stand for the conjugate of ψ . On the set C1(�,R0,m) the left
and the right ψ-Cauchy–Riemann operators are defined by

1 Open and connected sets.
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ψ D[ f ] :=
m∑

i = 0

ψ i ∂ f

∂xi
, Dψ [ f ] :=

m∑

i=0

∂ f

∂xi
ψ i . (3)

To fulfill the Laplacian factorization

ψ D ψ D = ψ D ψ D = Dψ Dψ = Dψ Dψ = 	m+1, (4)

the following condition is required

ψ i · ψ j + ψ j · ψ i = 2δi, j , i, j ∈ N
0
m . (5)

Note that this last equality yields

2δi, j = ψ i ·ψ j+ψ j ·ψ i = ψ i ·ψ j+ψ i · ψ j = 2
[
ψ i · ψ j

]

0
= 2

〈
ψ i , ψ j

〉

Rm+1
, (6)

thus, factorization (4) is true if and only if ψ represents an orthonormal basis of
R
m+1 ∼= R

(0)
0,m ⊕ R

(1)
0,m .

A setψ satisfying (5) is called a structural set. It is clear thatψ andψ are structural
sets simultaneously. Basic properties of structural sets can be found in [23,24].

Definition 1 Let ψ be a structural set. A function f ∈ C1(�,R0,m) is called
left-ψ-hyperholomorphic if ψ D[ f ](x) = 0 in �. We set ψM(�,R0,m) :=
ker ψ D. Similarly, f is right-ψ-hyperholomorphic if Dψ [ f ](x) = 0, and we set
Mψ(�,R0,m) := ker Dψ .

One of the most important examples of a two-sided ψ-hyperholomorphic function
is

Kψ(x) = xψ

|Sn| · |x |n+1 ,

where xψ := ∑n
i=0 xiψ

i if x = ∑n
i=0 xi ei and |Sn| is the area of the unit sphere Sn

in Rn+1. This function is known as the ψ-Cauchy kernel.
Left and right ψ-Cauchy–Riemann operators are connected by the relations

ψ D[ f ] = Dψ [ f̄ ] and Dψ [ f ] = ψ D[ f̄ ]. (7)

Hence, it is sufficient to confine the discussion to the theory of left- (or right-) ψ-
hyperholomorphic functions. In this work we will restrict our attention to left-ψ-
hyperholomorphic (ψ-hyperholomorphic for short) functions. In the same way as [2],
it can be proved that

ϕM(�,R0,m) = ψM(�,R0,m) if and only if ϕ0ψ0 = ϕ1ψ1

= · · · = ϕiψ i = · · · = ϕmψm .
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If we denote this common value for every ϕiψ i by h, we can express this relation as
ϕ = hψ . These pairs of structural sets are called equivalent pairs of structural sets.

2.1 Integral Operators

In the following, we need some statements about integral operators resulting from the
Cauchy kernel. For the sake of self-sufficiency of the paper we present them here.

There has been considerable effort (e.g., [5,21]) to establish a very general measure
theoretic version of a Stokes formula. One of themost crucial facts of standard Clifford
analysis is the existence of a version of the Stokes formula in this context. In [17],
see also [10,11], was presented an approach under some mild measure theoretic back-
ground assumptions on the boundaries of the domains. In particular, domains of locally
finite perimeter as well as those with Ahlfors regular boundaries were considered.

We follow [23] in formulating such a Stokes formula for an arbitrary structural
set, in a sufficiently smooth context, but remark, taking into account the above com-
ments, the smoothness conditions can be relaxed. The presented version goes back
to Ryan [22]. It is however, not the aim of the paper to go into a deeper discussion
of these generalizations (the reader is again advised to consult [10,11,17] for more
details); we will use this fact only when the special case of parallelepiped domains are
treated.

Theorem 1 (Strokes formula) Let � be a closed bounded domain with a piecewise
C1-boundary. For f, g ∈ C1(�,R0,m)

∫

�

g(ξ) nψ(ξ) f (ξ) dSξ =
∫

�

(Dψ [g](ξ) f (ξ) + g(ξ) ψ D[ f ](ξ))dVξ , (8)

where dVξ denotes the volume element, dSξ is the surface element in R
m+1 and

nψ(ξ) = ∑n
i=0 ni (ξ)ψ i where ni (ξ) is the i-th component of the outward unit normal

vector on � at the point ξ ∈ �.

The Stokes formula leads immediately to two important consequences, which are
widely known and can be found in many sources.

Theorem 2 (Borel–Pompeiu formula) Let f ∈ C1(�,R0,m). Then

∫

�

Kψ(ξ − x) nψ(ξ) f (ξ) dSξ −
∫

�

Kψ(ξ − x) ψ D[ f ](ξ) dVξ

=
{
f (x) if x ∈ �,

0 if x ∈ R
n+1\�.

(9)

Theorem 3 (Cauchy integral formula) Let f ∈ ψM(�,R0,m) ∩C0(�,R0,m). Then

∫

�

Kψ(ξ − x) nψ(ξ) f (ξ) dSξ =
{
f (x) if x ∈ �,

0 if x ∈ R
n+1\�.
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From the above, we can see that the ψ-Cauchy kernel generates the following two
important integrals:

ψT�[ f ](x) := −
∫

�

Kψ(ξ − x) f (ξ) dVξ , x ∈ R
n+1,

and

ϕ,ψK�[ f ](x) :=
∫

�

Kϕ(ξ − x) nψ(ξ) f (ξ) dSξ , x /∈ �.

While the first is a generalization of the usual Teodorescu transform, the second rep-
resents a boundary “exotic” operator which connects two arbitrary structural sets ϕ

and ψ . When ψ = ϕ, ϕ,ψK� reduces to the usual Cauchy type integral

ψK�[ f ](x) :=
∫

�

Kψ(ξ − x) nψ(ξ) f (ξ) dSξ .

The singular version of ϕ,ψK�[ f ] on �, denoted by ϕ,ψ S�[ f ], is given, as usual, by
ϕ,ψ S�[ f ] := 2trϕ,ψK�[ f ],

where tr denotes the trace operator, i.e., taking the limits of x ∈ � to the boundary.
The integral defining the operator ϕ,ψ S�[ f ] is taken in the sense of the Cauchy

principal value. For ϕ = ψ , a relation between the boundary value of ψK�[ f ] and
ψ S�[ f ] := ψ,ψ S�[ f ] is given, see [23].
Theorem 4 (Sokhotski–Plemelj formulas) Let f ∈ C0,μ(�,R0,m), μ ∈ (0, 1]. Then
we have:

ψK±
� [ f ](t) := lim

�±�x→t∈�

ψK�[ f ](x) = 1

2

[
ψ S�[ f ](t) ± f (t)

]
, (10)

where �+ := � and �− := R
n+1\�.

The following is an immediate consequence of the previous result and it was obtained
in [1].

Corollary 1 If � is a Lyapunov surface, for f ∈ C0,μ(�,R0,m), μ ∈ (0, 1] we have

ϕ,ψK±
� [ f ](t) := lim

�±�x→t∈�

ϕ,ψK�[ f ](x) = 1

2

[
ϕ,ψ S�[ f ](t) ± nϕ(t)nψ(t) f (t)

]
.

The work [25], followed by [6–8,12], initiated the study of the hypercomplex
ϕ,ψ��-operator, which is defined by ϕ,ψ�� := ϕDψT�. One of its essential proper-
ties, which can be seen as a far-reaching generalization of the Borel–Pompeiu formula,
is obtained in [1,2].
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Theorem 5 (Generalized Borel–Pompeiu formula) Let f ∈ C1(�,R0,m). Then:

ϕ,ψ��[ f ](x)=
∫

�

Kϕ(ξ−x) nψ(ξ) f (ξ) dSξ−
∫

�

Kϕ(ξ − x) ψ D[ f ](ξ) dVξ , x /∈ �.

(11)

Remark 2.1 The above formula may be written in an abbreviated form way as:

ϕ,ψ��[ f ](x) = ϕ,ψK�[ f ](x) + ϕT�
ψ D[ f ](x), x /∈ �.

Note that for ϕ = ψ the formula (11) becomes in the classic Borel–Pompeiu formula
(9).

For our purposes, let us reformulate a very important theorem from real analysis in
hypercomplex form: the Whitney extension theorem (see [27])

Theorem 6 Let E ⊂ R
m+1 be a compact subset and let f ∈ Ck(E,R0,m), (k ∈ N).

Then there is a function f̃ ∈ Ck(Rm+1,R0,m) such that

(i) f̃ |E = f ,
(ii) Dα f̃ |E = Dα f for |α| ≤ k,
(iii) f̃ ∈ C∞(Rm+1\E,R0,m).

3 ψ-Hyperdifferentiability, ψ-Hyperderivability and
ψ-Hyperholomorphy in Clifford Analysis

For the sake of simplicity and without any loss of generality in the discussion of the
theory of ψ-hyperderivation we restrict ourselves to structural sets with ψ0 = 1. By
virtue of (5), we have for this case that

ψ i = −ψ i for every i ∈ Nm . (12)

Theψ-hyperderivationwhenψ0 /∈ R can be treated in the sameway after first applying
a rotation given by ψ0.

In what follows we will use the following differential forms: the volume element
in Rm+1 given by the real valued (m + 1)-form

dVx := dx0 ∧ dx1 ∧ · · · ∧ dxm

and the surface element induced by a structural set ψ

σψ,x :=
m∑

i=0

(−1)iψ idx̂i ,

where dx̂i is the differentialm-form obtained from dVx by omitting the factor dxi , for
i ∈ N

0
m .
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Since � is a smooth surface in Rm+1 then we can write

σψ,x = nψ dSx , (13)

where dSx is the elementary surface element in R
m+1. In what follows, we shall not

distinguish between the two expressions of σψ,ξ .
Moreover, we will use the (m − 1)-differential form

τψ,x :=
m∑

i=1

(−1)iψ i dx̂0,i .

Here dx̂0,i denotes the (m − 1)-differential form obtained from dx̂0 by omitting the
factor dxi , i ∈ Nm .

In the preliminarieswe already gave a global definition (bymeans of theψ-Cauchy–
Riemann operator) of ψ-hyperholomorphy associated to an arbitrary structural set ψ .
This is a global definition in the sense that it is related to the whole domain �. Now
let us concentrate on a local version of ψ-hyperholomorphy.

Definition 2 A function f ∈ C1(�,R0,m) is called ψ-hyperholomorphic at x0 ∈ �

if f is ψ-hyperholomorphic in some open neighborhood V (x0) ⊂ � of x0.

Definition 3 Given x ∈ �, a function f ∈ C1(�,R0,m) is called ψ-hyperdifferen-
tiable at x if there is a Clifford number denoted by f ′

ψ(x), such that

d(τψ,x f (x)) = σψ,x f ′
ψ(x). (14)

The Clifford number f ′
ψ(x) is named the ψ-hyperderivative of f at x . The function

f is called ψ-hyperdifferentiable in � if it is ψ-hyperdifferentiable at every x ∈ �.

In quaternionic and standard Clifford cases, the above notions are fully discussed
in [13–16,18–20] and are well known. The following result can be found in the works
cited and it is the basis for the justification of the consideration of ψ D[ f ] as the
ψ-hyperderivative of f .

Proposition 1 Let f ∈ C1(�,R0,m). Then

d(τψ,x f (x)) = 1

2
σψ,x

ψ D[ f ](x) − 1

2
σψ,x

ψ D[ f ](x). (15)

From the relation (15) it is possible to establish the connection between ψ-
hyperholomorphy and ψ-hyperdifferentiability.

Theorem 7 Let f ∈ C1(�,R0,m). Then f is ψ-hyperholomorphic at x0 ∈ � if and
only if f is ψ-hyperdifferentiable at x0 and for such functions we have

f ′
ψ(x0) = 1

2
ψ D[ f ](x0). (16)
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Remark 3.1 When ψ0 /∈ R, formula (16) takes the form

f ′
ψ(x0) = 1

2
ψ D[ψ0 f ](x0).

3.1 The ψ-Hyperderivative as a Limit of a Quotient of Increments

In [13, Sec. 2.4] the hypercomplex derivative (in Standard Clifford analysis) is also
studied in terms of the limit of the quotient of increments both of the function and of
the variable. The task is now to obtain an analogue in our case.

Let us define a non-degenerate m-dimensional parallelepiped with vertex x0 ∈
R
m+1 and edge vectors {v1, . . . , vm} ⊂ R

m+1 (these vectors are linearly independent
over R as vectors of Rm+1) by

� =
{

x0 +
m∑

i=1

tivi ∈ R
m+1 : (t1, . . . , tm) ∈ [0, 1]m

}

,

and its boundary by

∂� =
{

x0 +
m∑

i=1

tivi ∈ R
m+1 : (t1, . . . , tm) ∈ ∂[0, 1]m

}

.

The following result relates the number f ′
ψ(x) ∈ R0,m with a limit of a “quotient of

increments”. It can be proved following standard arguments, see for example [13].

Theorem 8 Let f : � → R0,m be ψ-hyperholomorphic at x0 and let f ′
ψ(x0) be

its ψ-hyperderivative. Then for every sequence {�k}k∈N of non-degenerate oriented
m-parallelepiped with vertex x0 the equality

lim
k→∞

[(∫

�k

σψ,x

)−1 (∫

∂�k

τψ,x · f (x)

)]

= f ′
ψ(x0) (17)

holds if limk→∞ diam �k = 0.

The above theorem can be used to introduce a directional ψ-hyperderivative. The
“directions” to be considered are given by hyperplanes L ⊂ R

m+1 with equation

γ (x) :=
m∑

i=0

ni xi + d = 0,

where (n0, . . . , nm) is the unit normal vector to L and d ∈ R.
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Definition 4 Let x0 ∈ L∩�. A function f : � → R0,m is calledψ-hyperderivable at
x0 along L , if for any sequence {�k}k∈N,�k ⊂ L , and such that limk→∞ diam�k = 0,
of non-degenerate m-parallelepipeds with vertex x0, the limit

lim
k→∞

[(∫

�k

σψ,x

)−1 (∫

∂�k

τψ,x · f (x)

)]

, (18)

exists and does not depend on the choice of the sequence {�k}k∈N. If it exists, this limit
is called the m-dimensional directional ψ-hyperderivative of f along the hyperplane
L and it will be denoted by f ′

ψ,L(x0).

Notice that, this definition works only for families of parallelepipeds �k fully
contained in L , in contrast with the conditions in Theorem 8 where the parallelepipeds
are free to move in Rm+1.

Theorem 9 Let V (x0) be an (m + 1)-dimensional neighborhood of x0 ∈ R
m+1. Let

f ∈ C1
(
V (x0),R0,m

)
. Then, f is ψ-hyperderivable at x0 along any hyperplane

L � x0.

Proof Using standard techniques we obtain

lim
k→∞

[(∫

�k

σψ,x

)−1 (∫

∂�k

τψ,x · f (x)

)]

= 1

2
lim
k→∞

[(∫

�k

σψ,x

)−1

·
(∫

�k

σψ,x

(
ψ D[ f ](x) − n2

ψ

ψ D[ f ](x)
))]

. (19)

Since f ∈ C1
(
V (x0),R0,m

)
the limit on the left side exists and it does not depend on

the choice of {�k}k∈N, which completes the proof. ��
The equality (19) immediately gives the following two results, which contain gen-

eralizations of [14, Corollaries 3.3.1, 3.3.2].

Corollary 2 Under the conditions of Theorem 9 we have

f ′
ψ,L(x0) = 1

2

(
ψ D[ f ](x0) − n2

ψ

ψ D[ f ](x0)
)

. (20)

Corollary 3 Let f ∈ C1
(
V (x0),R0,m

)
. Then f is ψ-hyperholomorphic at x0 if and

only if f ′
ψ,L(x0) does not depend on the hyperplane L.

4 The Notion of ϕ-Hyperderivative for ψ-Hyperholomorphic Functions

In the previous section, we have stated the building blocks of a ψ-hyperderivation
theory which can be obtained directly by means of standard arguments, see [13]. The
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notion of hyperderivative was given, as in the classical case, by the conjugate Cauchy–
Riemann operator. But by using a second structural set ϕ we have more possibilities to
define the notion of hyperderivability for certain kinds of hyperholomorphic functions.
The main goal now is to extend our approach to the notion of ϕ-hyperderivative for
ψ-hyperholomorphic functions for a pair of structural sets (ϕ,ψ). To do this, we need
the following generalization of the differential form τψ,x :

τϕ,ψ,x =
∑

0≤i< j≤m

(−1)i+ j+1
(
ϕiϕ j − ψ iψ j

)
dx̂i, j .

Remark 4.1 Observe that

• We need the condition ϕiϕ j − ψ iψ j �= 0 for at least one pair of 0 ≤ i < j ≤ m.
But this will always hold if the choice of ϕ and ψ is not trivial, i.e., non left-
equivalent structural sets. In fact, if we write ϕiψ i = hi for every i = 0, . . .m, we
obtain from the condition ϕiϕ j = ψ iψ j thatψ i hi h jψ

j = ψ iψ j and equivalently
that hi = h j . Fromnowon,wewill consider only non-equivalent pairs of structural
sets.

• When ϕ = ψ and ψ0 = 1 we have for 0 < i < j that:

ϕiϕ j − ψ iψ j = ψ iψ j − ψ iψ j = −ψ iψ j + ψ iψ j = 0.

And for i = 0 we obtain: ϕ0ϕ j − ψ0ψ j = ψ j − ψ j = −2ψ j . Then,

τψ,ψ,x = 2
m∑

j=1

(−1) jψ j dx̂0, j = 2τψ,x .

The introduction of this new differential form allows us to obtain the following key
result which involves two arbitrary structural sets.

Theorem 10 Let ϕ,ψ be an arbitrary pair of structural sets. Then, for every f ∈
C1(�,R0,m)

d(τϕ,ψ,x f (x)) = σϕ,x
ϕD[ f ](x) − σψ,x

ψ D[ f ](x) (21)

holds.

Proof

d(τϕ,ψ,x f (x)) = (−1)m−1τϕ,ψ,x ∧ d( f (x))

= (−1)m−1

⎛

⎝
∑

0≤i< j≤m

(−1)i+ j+1
(
ϕiϕ j − ψ iψ j

)
dx̂i, j

⎞

⎠ ∧
(

m∑

k=0

∂ f

∂xk
(x) dxk

)

= (−1)m−1
∑

0≤i< j≤m
0≤k≤m

(−1)i+ j+1
(
ϕiϕ j − ψ iψ j

) ∂ f

∂xk
(x) dx̂i, j ∧ dxk .

123

Author's personal copy



R. Abreu Blaya et al.

But dx̂i, j ∧ dxk = 0 for k �= i , k �= j ; and

{
dx̂i, j ∧ dxi = (−1)m−i−1dx̂ j ,

dx̂i, j ∧ dx j = (−1)m− jdx̂i .
Hence, we get

d(τϕ,ψ,x f (x))

= (−1)m−1
∑

0≤i< j≤m

(−1)i+ j+1
(
ϕiϕ j − ψ iψ j

)

×
[

(−1)m−i−1 ∂ f

∂xi
(x)dx̂ j + (−1)m− j ∂ f

∂x j
(x)dx̂i

]

=
m∑

i=0

⎛

⎝
i−1∑

j=0

(−1)i−1
(
ϕ jϕi − ψ jψ i

) ∂ f

∂x j
(x)

+
m∑

j=i+1

(−1)i
(
ϕiϕ j − ψ iψ j

) ∂ f

∂x j
(x)

⎞

⎠ dx̂i

=
m∑

i=0

(−1)i

⎛

⎝
i−1∑

j=0

(
ϕiϕ j − ψ iψ j

) ∂ f

∂x j
(x) +

m∑

j=i+1

(
ϕiϕ j − ψ iψ j

) ∂ f

∂x j
(x)

⎞

⎠ dx̂i

=
m∑

i=0

(−1)i

⎛

⎝ϕi
∑

j �=i

ϕ j ∂ f

∂x j
(x) − ψ i

∑

j �=i

ψ j ∂ f

∂x j
(x)

⎞

⎠ dx̂i

=
m∑

i=0

(−1)i
(
ϕi ϕD[ f ](x) − ψ i ψ D[ f ](x)

)
dx̂i

=
(

m∑

i=0

(−1)iϕi dx̂i

)

ϕD[ f ](x) −
(

m∑

i=0

(−1)iψ i dx̂i

)

ψ D[ f ](x)

= σϕ,x
ϕD[ f ](x) − σψ,x

ψ D[ f ](x).

��
Remark 4.2 Observe that

• (21) is a generalization of (15). In fact, (15) can be obtained from (21) by taking
ϕ = ψ and ψ0 = 1. It also constitutes a generalization of the corresponding
theorems of [26], Mitelman/Shapiro and Gürlebeck/Malonek since (21) is not
only restricted to D and D̄.

• For the conjugation of τϕ,ψ,x we have:

τϕ,ψ,x =
∑

0≤i< j≤m

(−1)i+ j+1
(
ϕ jϕi − ψ jψ i

)
dx̂i, j

=
∑

0≤i< j≤m

(−1)i+ j+1
(
ψ iψ j − ϕiϕ j

)
dx̂i, j = τψ,ϕ,x .
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Applying (21) for the pair of structural sets ψ, ϕ and f = g we obtain,

d(τψ,ϕ,x g(x)) = σψ,x
ψ D[g](x) − σϕ,x

ϕD[g](x).

By conjugation we have:

d(g(x)τϕ,ψ,x ) = Dψ [g](x)σψ,x − Dϕ[g](x)σϕ,x . (22)

Then, using (21) and (22) we obtain:

d
(
g(x)τϕ,ψ,x f (x)

) = d
(
g(x)τϕ,ψ,x

) ∧ f (x) + (−1)m−1g(x)τϕ,ψ,x ∧ d( f (x))

= d
(
g(x)τϕ,ψ,x

)
f (x) + g(x)d

(
τϕ,ψ,x f (x)

)

= Dψ [g](x)σψ,x f (x) − Dϕ[g](x)σϕ,x f (x)

+ g(x)σϕ,x
ϕD[ f ](x) − g(x)σψ,x

ψ D[ f ](x). (23)

Now, we are in a position to introduce the notion of ϕ-hyperderivative for ψ-
hyperholomorphic functions.

Definition 5 A function f ∈ C1(�,R0,m) is called ϕ-hyperdifferentiable in the ψ-
sense in � if for any x ∈ � there is a Clifford number denoted by f ′

ϕ,ψ(x), such
that

d(τϕ,ψ,x f (x)) = σϕ,x f ′
ϕ,ψ(x).

The Clifford number f ′
ϕ,ψ(x) is named the ϕ-hyperderivative in the ψ-sense of f at

x .

Theorem 11 Let f ∈ C1(�,R0,m). Then f is ψ-hyperholomorphic at x0 ∈ � if and
only if f is ϕ-hyperdifferentiable in the ψ-sense at x0 and

f ′
ϕ,ψ(x0) = ϕD[ f ](x0).

Proof The function f is ϕ-hyperdifferentiable in the ψ-sense if and only if
σϕ,x

ϕD[ f ](x) − σψ,x
ψ D[ f ](x) = σϕ,x f ′

ϕ,ψ(x) which is equivalent to,

σϕ,x

[
ϕD[ f ](x) − f ′

ϕ,ψ(x)
]

− σψ,x
ψ D[ f ](x)

=
m∑

i=0

(−1)i
[
ϕi

(
ϕD[ f ](x) − f ′

ϕ,ψ(x)
)

− ψ iψ D[ f ](x)
]
dx̂i = 0.

Hence,

(
ϕD[ f ](x) − f ′

ϕ,ψ(x)
)

− ϕiψ iψ D[ f ](x) = 0, for every i ∈ N
0
m .

But, since ϕ and ψ are not equivalent structural sets we have that ϕiψ i �= ϕ jψ j for at
least one pair 0 ≤ i, j ≤ m. Therefore, ψ D[ f ](x) = 0 and f ′

ϕ,ψ(x) = ϕD[ f ](x). ��
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From (21) it is possible to express the ϕ-hyperderivative in the ψ-sense of a ψ-
hyperholomorphic function in terms of an specific quotient of increments. This follows
by the same methods as in the previous section. Moreover, we can define a notion of a
m-directional ϕ-hyperderivative in theψ-sense with analogous properties to the single
m-directional ψ-hyperderivartive.

5 Hyperderivation of the Cauchy Type Integral

Using our concept of ϕ-hyperdifferentiation in the ψ-sense we can study the operator
ϕDψK� .

As before let � ⊂ R
m+1 be a bounded domain, which is now assumed to be

simply connected and let � := {ξ ∈ R
m+1 : �(ξ) = 0}, where � ∈ C1(Rn+1,R)

and grad �(ξ) �= 0 for each ξ ∈ �. This assumption means that there exists an
outward normal vector at every point ξ ∈ � and as a consequence the tangent plane
is well defined everywhere in �. If we replace g(ξ) by Kϕ(ξ − x) in (23) and assume
f ∈ C1(�,R0,m), we get for each x /∈ � that

dξ

(
Kϕ(ξ − x)τϕ,ψ,ξ f (ξ)

) = Dψ
ξ [Kϕ(ξ − x)]σψ,ξ f (ξ) + Kϕ(ξ − x)σϕ,ξ

ϕD[ f ](ξ)

−Kϕ(ξ − x)σψ,ξ
ψ D[ f ](ξ). (24)

Let us prove now that

∫

�

dξ (Kϕ(ξ − x)τϕ,ψ,ξ f (ξ)) = 0. (25)

In fact, if x ∈ �, we can take ε > 0 such that B[x, ε] ⊂ �, where B[x, ε] is the ball of
the radius ε centered in x . Then, combining Stokes formula with Theorem 6 and taking
into account that the coefficients of the (m−1)-differential form Kϕ(ξ −x)τϕ,ψ,ξ f̃ (ξ)

belong to C2(Rm+1\{� ∪ {x}},R0,m), we have

∫

�

dξ (Kϕ(ξ − x)τϕ,ψ,ξ f (ξ))

=
∫

�\B[x,ε]
d2ξ (Kϕ(ξ − x)τϕ,ψ,ξ f̃ (ξ)) +

∫

∂B[x,ε]
dξ (Kϕ(ξ − x)τϕ,ψ,ξ f̃ (ξ))

=
∫

∂B[x,ε]
dξ (Kϕ(ξ − x)τϕ,ψ,ξ f̃ (ξ)).

But for ξ ∈ ∂B[x, ε] it is clear that Kϕ(ξ − x) = (ξ − x)ϕ
|Sn|εm+1 . Keeping in mind

that the coefficients of the (m − 1)-differential form (ξ − x)ϕ τϕ,ψ,ξ f̃ (ξ) belong to
C2(Rm+1\�,R0,m), we obtain

123

Author's personal copy



On the ϕ-Hyperderivative of the ψ-Cauchy-Type

∫

�

dξ (Kϕ(ξ − x)τϕ,ψ,ξ f (ξ)) = 1

|Sn|εm+1

∫

∂B[x,ε]
dξ ((ξ − x)ϕ τϕ,ψ,ξ f̃ (ξ))

= 1

|Sn|εm+1

∫

B(x,ε)
d2ξ ((ξ − x)ϕ τϕ,ψ,ξ f̃ (ξ)) = 0.

On the contrary, if x /∈ �, we have

∫

�

dξ (Kϕ(ξ − x)τϕ,ψ,ξ f (ξ)) =
∫

�

d2ξ (Kϕ(ξ − x)τϕ,ψ,ξ f (ξ)) = 0.

Then, integrating over � in both sides of (24) and using

Dψ
ξ [Kϕ(ξ − x)] = Dψ

ξ
ϕDξ [θm+1(ξ − x)]

= ϕDξ D
ψ
ξ [θm+1(ξ − x)] = ϕDξ [Kψ(ξ − x)] = −ϕDx [Kψ(ξ − x)],

we obtain

ϕDx

∫

�

Kψ(ξ − x)σψ,ξ f (ξ)

=
∫

�

Kϕ(ξ − x)σϕ,ξ
ϕD[ f ](ξ) −

∫

�

Kϕ(ξ − x)σψ,ξ
ψ D[ f ](ξ). (26)

But from (13) we have that

∫

�

Kϕ(ξ − x)σψ,ξ
ψ D[ f ](ξ) =

∫

�

Kϕ(ξ − x)nψ(ξ)ψ D[ f ](ξ) dSξ

=
∫

�

Kϕ(ξ − x)nϕ(ξ)nϕ(ξ)nψ(ξ)ψ D[ f ](ξ) dSξ .

Then, (26) can be written in the following terms.

Theorem 12 Let � ⊂ R
m+1 be a simply connected domain with boundary � :=

{ξ ∈ R
n+1 : �(ξ) = 0}, where � ∈ C1(Rn+1,R), grad �(ξ) �= 0 for all ξ ∈ �; and

f ∈ C1(�,R0,m). Then for all x /∈ �

ϕDx

∫

�

Kψ(ξ − x)σψ,ξ f (ξ)

=
∫

�

Kϕ(ξ − x)σϕ,ξ

(
ϕD[ f ](ξ) − nϕ(ξ)nψ(ξ)ψ D[ f ](ξ)

)
. (27)

Or, short,

ϕDψK�[ f ](x) = ϕK�

[
ϕD[ f ] − nϕnψ

ψ D[ f ]
]
(x)

= ϕK�
ϕD[ f ](x) − ϕ,ψK�

ψ D[ f ](x), x /∈ �.
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Remark 5.1 When ϕ = ψ and ψ0 = 1, the above result can be interpreted in terms of
the m-directional ψ-hyperderivative introduced in Sect. 3.1: let T (ξ) be the tangent
hyperplane to � at a point ξ ∈ �. From (20), we have that (27) may be rewritten in a
more evident and palpable form as

ψ Dx

∫

�

Kψ(ξ − x) σψ,ξ f (ξ) = 2
∫

�

Kψ(ξ − x) σψ,ξ f ′
ψ,T (ξ)(ξ). (28)

In addition, taking into account Theorem 7, we proved that

(ψK�[ f ])′ψ(x) = ψK�[ f ′
ψ,T ](x). (29)

Formula (29) says that the ψ-hyperderivative of the Cliffordian ψ-Cauchy-type inte-
gral (the latter is a ψ-hyperholomorphic function, hence its ψ-hyperderivative is well
defined) is again a ψ-Cauchy-type integral but now its density is the ψ-directional
hyperderivative along the tangent hyperplanes.

It is obvious that for a ψ-hyperholomorphic function f , the ψ-hyperderivatives
of any order k ≥ 1: f (k)

ψ := ((k−1) fψ)
′
ψ , f (0)

ψ = f are well defined; similarly for
ψ-directional hyperderivatives. Thus, by (28)–(29), the following results are obtained
by induction.

Corollary 4 Let k ∈ N, f ∈ Ck(�,R0,m) and � ∈ Ck(Rn+1,R). Then for each
x /∈ �

ψ Dk
x

(∫

�

Kψ(ξ − x) σψ,ξ f (ξ)

)

= 2k ψK�[ f (k)
ψ,T ](x),

or short

(ψK�[ f ])(k)ψ (x) = ψK�

[
f (k)
ψ,T

]
(x).

Corollary 5 Let f ∈ Ck(�,R0,m), � ∈ Ck(Rn+1,R). Then for t ∈ � the following
two limits exist:

(ψK�[ f ])(k)ψ

±
(t) := lim

x∈�±→t∈�
(ψK�[ f ])(k)ψ (x)

and they are given by

(ψK�[ f ])(k)ψ

±
(t) = 1

2

[
f (k)
ψ,T (t)(t) + ψ S�

[
f (k)
ψ,T

]
(t)

]
.

Remark 5.2 The above results generalize the corresponding ones obtained in [13,20].
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6 An Alternative Proof

In this section, we will provide an alternative proof for Theorem 12 without the neces-
sity of using the hyperderivative approach. In this new approach, the generalized
Borel–Pompeiu formula in Theorem 5 will be the building block. Let us point out
that this proof while less direct depends only on the smoothness assumptions for the
generalized Borel–Pompeiu formula.

Alternative Proof of Theorem 12
Applying our operator ϕD to both sides of the Borel–Pompeiu formula (9), inside of
�, we get that

ϕDψK�[ f ] = ϕD[ f̃ ] − ϕDψT�
ψ D[ f̃ ],

where f̃ ∈ C1(�,R0,m) is the continuous extension of f obtained by Theorem 6.
Next, by virtue of the generalized Borel–Pompeiu formula (11) one has

ϕDψK�[ f ] = ϕD[ f̃ ] − ϕ,ψ��
ψ D[ f̃ ] = ϕD[ f̃ ] − ϕ,ψK�

ψ D[ f ] − ϕT�
ψ Dψ D[ f̃ ]

= ϕD[ f̃ ] − ϕ,ψK�
ψ D[ f ] − ϕT�

ϕDϕD[ f̃ ]
= ϕD[ f̃ ] − ϕ,ψK�

ψ D[ f ] − (ϕD[ f̃ ] − ϕK�
ϕD[ f ])

= ϕK�
ϕD[ f ] − ϕ,ψK�

ψ D[ f ].

If x ∈ R
m+1\�, the proof is similar. ��

Remark 6.1 Theorem 12 says that the left ϕ-Cauchy–Riemann operator acting over
theψ-Cauchy-type integral of the function f is again a Cauchy-type integral, but now
with structural set ϕ and density ϕD[ f ]−nϕnψ

ψ D[ f ]. In the same way as in the case
of a single structural set, this will be the m-dimensional ϕ-directional hyperderivative
in the ψ-sense.

The following statements are simply obtained by induction as a consequence of
Theorem 12.

Corollary 6 Let k ∈ N, f ∈ Ck(�,R0,m), g ∈ Ck(Rn+1,R) and let ψ, ϕ1, . . . , ϕk

be (k + 1) arbitrary structural sets. Then for each x /∈ �

ϕk Dϕk−1D · · · ϕ1D ψK�[ f ](x) = ϕk K�

k∏

i=1

(
ϕi D − nϕi nϕi−1

ϕi−1D
)

[ f ](x)
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or in an equivalent form

k∏

i=1

ϕk Dx

(∫

�

Kψ(ξ − x)nψ(ξ) f (ξ) d�ξ

)

=
∫

�

Kϕk (ξ − x)nϕk (ξ)

k∏

i=1

(
ϕi D − nϕi nϕi−1

ϕi−1D
)

[ f ](ξ) dSξ ,

here ϕ0 denotes the structural set ψ .

Theorems 6 and 12, Plemelj–Sokhotski formulae (10), and Corollary 1 combined
give the following result.

Corollary 7 (Sokhotski-Plemelj formulae for the boundary values of ϕDψK�). Let
� ⊂ R

m+1 be a domain and let � := ∂� be a Lyapunov surface. Then for f ∈
C1,μ(�,R0,m), μ ∈ (0, 1], and t ∈ � the following two limits exist:

(ϕDψK�[ f ])±(t) := lim
x∈�±→t∈�

ϕDψK�[ f ](x)

and they are given by

(ϕDψK�[ f ])±(t) = 1

2
[ϕS�

ϕD[ f ](t) − ϕ,ψ S�
ψ D[ f ](t)

± (ϕD[ f ](t) − nϕ(t)nψ(t)ψ D[ f ](t))]. (30)

Finally, using the equality (30) we obtain an expression for the jump of the function
ϕDψK�[ f ] on �.

(ϕDψK�[ f ])+(t) − (ϕDψK�[ f ])−(t) = ϕD[ f ](t) − nϕ(t)nψ(t)ψ D[ f ](t), t ∈ �.
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