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Abstract In this paper we present error estimates for a continuous coupling of an
analytical and a numerical solution for a boundary value problem with a singularity. A
solutionof theLamé–Navier equationwith a singularity causedby a crack is considered
as an example. The analytical solution near a singularity is constructed by using
complex function theory and coupled continuously with the finite element solution.
The objective of this paper is to estimate the coupling error, which cannot be covered
by the classical theory of the finite element method.
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1 Introduction

Daily tasks of engineering practice very often lead to problems containing different
types of singularities (like for instance cracks, gaps, corners, interfaces between differ-
ent materials, etc.). To get high quality results for such problems one needs to consider
them very carefully due to the singularity. Particularly, if one keeps inmind an applica-
tion of numerical methods (like finite element method, finite difference method, etc.),
then this would lead to the necessity of adapting the numerical scheme. For instance,
in mesh-based methods it means one needs to refine the mesh in the region near a
singularity.

Another way is to construct an analytical solution near the singularity. Methods of
complex function theory are a powerful tool to construct exact solutions for problems
of linear elasticity. The Kolosov–Muskhelishvili formulae allow us to describe the
near-field solution of a crack tip problem in terms of two holomorphic functions �(z)
and �(z), z ∈ C [16]. The analytical solution based on complex function theory gives
us a high accuracy of the solution in the neighbourhood of the singularity. Because of
using exact solutions of the partial differential equations all details of themathematical
model are preserved. Particularly, in [14] one can find a remarkable series of results
in fracture mechanics, where the important physical quantities are calculated exactly
by help of complex function theory.

The disadvantage of the complex analytic approach is that such problem can be
solved explicitly only for some elementary (simple) domains. Domains coming from
practical engineering problems usually are more complicated. Therefore, a combina-
tion of both types of methods is expected to give better results. The problem of such a
combination comes from the following facts: on the one hand, the analytical solution
which is constructed by complex function theory is given by a series of holomorphic
functions, but on the other hand, the standard finite element solution is based on spline
functions. Due to this fact the coupling process has to be considered more carefully.

While there are several ways to introduce a coupling between analytical solution
and FEM solution possible (see e.g. [10,17–19]), we focus on a continuous coupling in
this paper. This coupling was proposed in [1,13]. To obtain the continuous coupling a
special element is introduced. This element contains an exact solution to the differential
equationwith the correct singularity and so-called coupling elements. The requirement
for these coupling elements is to insure C0 continuity for the displacements. In this
case we can expect the solution to have a higher regularity than in the case of a simple
discrete coupling.

The results obtained in [12] show that an error estimate for the case of a fixed size
of the special element can be constructed only by studying the so-called coupling
error. The coupling error takes place at the interaction interface between analytical
and numerical solutions. This error represents the interpolation error coming from the
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difference between exact boundary data (ideal case, if the finite element solution has
no error in the remaining part of the domain) and disturbed boundary data (including
error of finite element approximation). In this paper we present an explicit estimate of
the coupling error. To make clear where appears the considered interpolation problem
we briefly recall the idea of the coupling method.

The proposed two-dimensional coupling is considered as a preliminary study for
an extension of such a coupling to three-dimensional problems. This extension is
possible due to recently [2–4] introduced spatial analogues of the classical Kolosov–
Muskhelishvili formulae. In this case an analytical solution is constructed in terms
of monogenic functions used in representations for components of the displacement
field and the stress tensor. But to understand important steps in the coupling process
the two-dimensional case has to be studied at first.

2 The Method of Coupling of an Analytical and a Finite Element
Solution

In this section we briefly recall the main ideas of the coupling method: the general
description of a domain and its decomposition, construction of the analytical solu-
tion for the crack tip problem, interpolation problem at the interaction interface, and
geometrical properties of coupling elements. For more details we refer to [1,10,13].

2.1 Geometrical Settings and Boundary Value Problem in a Domain

Let us consider a bounded simply connected domain� ⊂ Cwith a Lipschitz boundary
� containing a crack. To describe the behaviour of the continuum near the crack-tip
we are going to model more precisely the near-field domain, called �SE (see Fig. 1).
The domain�SE is called a special element in the triangulationFh over the domain�.
The special element is always located at the crack tip, i.e. at the origin of a Cartesian
coordinate system.

In the domain �SE we distinguish two sub-domains: the discrete “numerical”
domain�D and the “analytical” domain�A. A mesh over�D is made of two types of
elements: the standard triangular elements (elements A–H in Fig. 2) and the coupling

Fig. 1 Domain � with a crack
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Fig. 2 Special element
�SE = �A ∪ �D
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elements (elements I–I V in Fig. 2). The coupling elements serve to couple contin-
uously solutions in �D and �A. We call the sub-domain �A analytical in the sense
that the constructed solutions are exact solutions to the differential equation in �A.
The principle idea behind the special element is to obtain the continuous connection
through the whole interaction interface �AD by introducing a special interpolation
operator (see for example [10,11]).

Finally, we introduce a triangulation Fh over the domain � as follows

Fh = FA
h ∪ FT

h ∪ FT
h ,

where FA
h is the set of elements based on the analytical solution in �A, FT

h is the set
of the coupling elements, and FT

h is the set of the classical elements. These three sets
are mutually disjoint and connections between their elements A, T and T are defined
by common sets of degrees of freedom. Additionally, the connection between A and
T is supplemented by the continuous coupling through the interface �AD.

In Fig. 1 the domain � represents a volume which is occupied by a solid body. We
consider a classical problem of linear elasticity, which is given by the Lamé–Navier
equation together with boundary conditions as follows

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−μ�u − (λ + μ)grad div u = f in �,

u = 0 on �0,
3∑

j=1

σi j (u)n j = gi on �1, 1 ≤ i ≤ 3,
(2.1)

where λ and μ are material constants, and f is the density of volume forces, �u is
the unknown displacement vector, gi are components of density of surface forces, n j

are components of the unit outer normal vector, and σi j are components of the stress
tensor, �0 and �1 are part of the boundary with Dirichlet and Neumann boundary
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conditions, respectively. In this article we concentrate ourselves to the plane strain
state, i.e. u3 = 0, ε3 j = 0, j = 1, . . . , 3, for more details we refer to [15].

2.2 Analytical Solution and Interpolation Problem

To construct the analytical solution to the crack tip problem we use the Kolosov–
Muskhelishvili formulae in polar coordinates (see [16]), which are given by

2μ(ur + i uϕ) = e−iϕ
(
κ �(z) − z �′(z) − �(z)

)
,

σrr + σϕϕ = 2
[
�

′
(z) + �

′
(z)
]
,

σϕϕ − σrr + 2i σrϕ = 2e2i ϕ
[
z̄ �

′′
(z) + �

′
(z)
]
.

where�(z) and�(z), z ∈ C, are two holomorphic functions, and the factor κ ∈ (1, 3)
represents Kolosov’s constant.

The functions �(z) and �(z) can be written in terms of power series expansion

�(z) =
∞∑

k=0

akz
λk , �(z) =

∞∑

k=0

bkz
λk ,

where ak and bk are unknown coefficients which are determined through the boundary
conditions for the global problem and the powers λk describe the behaviour of the
displacements and stresses near the crack tip and are determined through the boundary
conditions on the crack faces.

In the case of traction free boundary conditions on the crack faces the displacement
field can be written as follows (for more details see [14])

2μ(u1 + i u2) =
∞∑

n=0,2,...

r
n
2

[
an
(
κ eiϕ

n
2 + e−iϕ n

2

)

+ n

2
ān
(
e−iϕ n

2 − e−iϕ( n2−2)
)]

+
∞∑

n=1,3,...

r
n
2

[
an
(
κ eiϕ

n
2 − e−iϕ n

2

)

+n

2
ān
(
e−iϕ n

2 − e−iϕ( n2−2)
)]

. (2.2)

The displacement field (2.2) satisfies all the conditions on the crack faces. The asymp-
totic behaviour at the crack tip is controlled by half-integer powers [14].

To get a continuous displacement field through the boundary �AD we introduce a
special interpolation operator. The unique solvability of the corresponding interpo-
lation problem is proved in [10,11]. How to get a continuous coupling is presented
in [13], and we will not repeat it here. Let us consider n nodes on the interface �AD
belonging to the interval [−π, π ] (see Fig. 3).
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Fig. 3 Nodes and coupling
elements
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To interpolate at the interface �AD we truncate the analytical solution (2.2). There-
fore we obtain the interpolation function fn(ϕ) restricted to the interface�AD (r = rA)
in the following form

fn(ϕ) =
N1∑

k=0,2,...

r
k
2
A

[

ak
(
κ eiϕ

k
2 + e−iϕ k

2

)
+ k

2
āk
(
e−iϕ k

2 − e−iϕ( k2−2)
)]

+
N2∑

k=1,3,...

r
k
2
A

[

ak
(
κ eiϕ

k
2 − e−iϕ k

2

)
+ k

2
āk
(
e−iϕ k

2 − e−iϕ( k2−2)
)]

, (2.3)

where the numbers of basis functions N1 and N2 are related to n as follows:

N1 = n − m, with

{
m = 2 for even n,

m = 1 for odd n,

N2 = n − m, with

{
m = 1 for even n,

m = 2 for odd n.

To obtain the basis functions for finite element approximation we interpolate the
unknown displacements U j , j = 0, . . . , n − 1 at the interface �AD.

2.3 Geometry of the Coupling Elements

In this section we briefly introduce the basic properties of the coupling elements.
Geometrically we define a single coupling element T as a triangle with three vertices
v1, v2, v3 which has a curved edge 〈v3, v1〉. As it can be seen in Fig. 4 the vertex v2 is
located at the circle of a radius R, which is defined by

R = rA + l

cosα
,
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Fig. 4 Geometry of a coupling
element
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where α is an angle between the line Ov2, which is the bisector of � (v1v2v3), and x1
axis, and n is the number of interpolation nodes. To have a general description of a
geometry of a coupling element we perform a rotation of each coupling element in a
way to get the orientation shown in Fig. 4.

The angle α in general can vary from element to element depending on a given
distribution of nodes. For example, for the equidistant nodes it is given by

α = π

n − 1
.

In a general case for a given triangulation Fh geometry of all coupling elements is
defined by a set of all angles α = {α1, α2, . . . , αn−1}. In this case we can define an
element mesh size of the coupling element h(i)

T
= diam (Ti ) as follows

h(i)
T

=
√

(rA + l)2 tan2 (αi ) + l2. (2.4)

The parameter h in Fig. 4 represents a characteristic size of standard elements neigh-
bouring the coupling element. This characteristic size can be expressed in terms of
angles αi as follows

hi = tan (αi ) (rA + l), i = 1, . . . , n − 1. (2.5)

For purpose of a global error estimation we assume that the triangulation Fh over the
domain � is constructed in a way that the characteristic size of standard elements in
the far field of the special element can be expressed by

h = C max (hi ) , i = 1, . . . , n − 1, (2.6)

where C is an arbitrary constant.
The increasing number of nodes at the interface �AD leads to a greater number

of coupling elements, see Fig. 3. To avoid numerical problems caused by too narrow
coupling elements we use the shape parameter criteria according to [20]. The idea is
that with the increasing number n we decrease the length of l, like it is shown in Fig. 3.
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In that casewe can say that the characteristic sizes hT and h tend to zerowith increasing
the number of the interpolation nodes at the interface�AD. Expressions (2.4) and (2.5)
for mesh sizes can be used for both strategies of error estimation, which are introduced
in the next section.

3 Estimation of Interpolation Error

In this section we construct the error estimate for an interpolation problem with basis
functions in the form (2.3). Due to the flexibility provided by the construction of the
coupling two different strategies for a numerical realisation are possible:

(i) classical realisation of the FEM with a global refinement;
(ii) numerical calculations with a fixed radius of the analytical domain �A.

These two strategies require different approaches to convergence analysis and error
estimation of the proposed method.

First strategy leads to a convergence analysis in the framework of the classical
theory of the finite element method developed in [5]. But for the proposed method
this theory cannot be applied directly due to the following problems: the regularity of
basis functions is restricted by the singular term in the analytical solution (2.2) and
the coupling elements are not affine-equivalent to each other. We refer to [12] for a
complete discussion on how to overcome these problem.

The objective of the this paper is to estimate the coupling error appearing in the
second strategy. The idea of the second strategy of a fixed radius rA is motivated
by a practical reason, because if rA tends to zero we loose the advantage of the
correct approximation of the singular solution. Contrary to it from fixed radius and
greater number of the coupling elements one can expect “better” approximation of
the boundary values for the analytical solution which could lead to higher quality of
results near the singularity.

In this case the error over the coupling elements can be obtainedbydirect application
of the results from [5] since the coupling elements are free of singular functions. For
the details we refer again to [12]. But construction of the error estimate in the analytical
element A is more complicated, since the radius of �A is fixed and cannot approach
zero. To get the desired estimatewe consider the task of approximation by interpolation
in our settings:

What is the interpolation error?
To study this question let us consider the following interpolation problem at the

interface �AD
fn(ϕ j ) = U j , j = 0, . . . , n − 1, (3.1)

where ϕ j ∈ [−π, π ] are interpolation nodes, which can be arbitrary but mutually
different, U j are displacements at the interpolation nodes.

Interpolation problem (3.1) represents the ideal case when the right hand side is
calculated exactly, i.e. U j = u(rA, ϕ j ), where u(rA, ϕ) is the exact solution in �A
restricted to the interface�AD. Since the displacements U j are determined through the
solution of a global boundary value problem in�, it means that they are approximated

Author's personal copy



Error Estimates for the Coupling of Analytical… 1229

by the finite element solution. Thus in reality we have the following interpolation
problem

f̃n(ϕ j ) = Ũ j , j = 0, . . . , n − 1, (3.2)

where Ũ j denotes the approximated displacement values.
In the sequel we will refer to interpolation problem (3.1) as to the “exact” interpo-

lation problem, and to interpolation problem (3.2) as to the “disturbed” interpolation
problem. We will denote by fn(ϕ) and f̃n(ϕ) the “exact” and the “disturbed” interpo-
lation solution, correspondingly. Our goal here is to estimate the error between exact
and “disturbed” interpolation solutions, i.e.

|u(rA, ϕ) − f̃n(ϕ)|.

Let us rewrite this error as follows

|u(rA, ϕ) − f̃n(ϕ)| ≤ |u(rA, ϕ) − fn(ϕ)| + | fn(ϕ) − f̃n(ϕ)|,

where |u(rA, ϕ)− fn(ϕ)| is the interpolation error, and | fn(ϕ)− f̃n(ϕ)| is the coupling
error. The coupling error represents the difference between interpolationwith exact and
disturbed values which we have in reality. Following ideas from [6,9] the interpolation
error has been constructed in [12] in the following form

|u(rA, ϕ) − fn(ϕ)| ≤ M(rA + j h)

j h − 2ε

(
2rA
j h

)n+1

, (3.3)

where j > 1 is a scaling factor, ε > 0 is a parameter for estimate, for more details we
refer to [12].

Themain concern of the next section is a construction of the coupling error | fn(ϕ)−
f̃n(ϕ)|.

3.1 Coupling Error

Our interest now is to estimate the difference | fn(ϕ)− f̃n(ϕ)|between the “approximat-
ed” and the “exact” interpolation function. Let us denote by � = {�1,�2, . . . , �n}
a vector of the basis functions corresponding to (2.3), then the “approximated” and
the “exact” interpolation functions are given by

fn(ϕ) = [a]T �, f̃n(ϕ) = [ã]T �,

where [a] and [ã] are the vectors of unknown coefficients corresponding to the inter-
polation problems (3.1)–(3.2), respectively. These vectors of the unknown coefficients
can be expressed as follows

a = [
�k(ϕ j )

]−1 U, ã = [
�k(ϕ j )

]−1 Ũ,
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where U and Ũ are vectors of the “exact” and the “disturbed” displacements. Let us
introduce the following notation

G = [G]k j = [
�k(ϕ j )

]−1

for the inverse of the interpolation matrix. Now we can write

| fn(ϕ) − f̃n(ϕ)| =
∣
∣
∣[a]T � − [ã]T �

∣
∣
∣ =

∣
∣
∣[G U]T � − [G Ũ]T �

∣
∣
∣

=
∣
∣
∣UT GT � − ŨT GT �

∣
∣
∣ =

∣
∣
∣(UT − ŨT )GT �

∣
∣
∣ .

Let us introduce the constant δ∗ as follows

|U j − Ũ j | ≤ δ∗, j = 0, . . . , n − 1.

This inequality implies that the coupling error explicitly depends only on the quality
of approximation for the displacements at the interface �AD, which is seems to be
natural. We have

| fn(ϕ) − f̃n(ϕ)| ≤ δ∗
∣
∣
∣GT �

∣
∣
∣ , (3.4)

where we identify vectors with complex numbers. Thus we need to estimate the trans-
posed inverse of interpolation matrix GT , the vector of the basis functions �, and the
error δ∗.

We start the construction of the coupling estimate by considering the matrix [G]k j .
As an estimate we will use the spectral or Frobenius norm of the matrix. The matrix
[�k(ϕ j )]−1 obtained from the basis function in the form (2.3) is not diagonally dom-
inant and, therefore, its Gerschgorin disks will not give us the isolated regions for the
eigenvalues. To overcome this problem we will work with the modified interpolation
function in the form

fn(ϕ) =
n−1∑

k=0

cke
iϕ k

2 .

In [11] it was shown that the modified interpolation function can be obtained from the
original function (2.3) via an almost diagonal transformation matrix M . Components
of the transformation matrix M in the real form are given explicitly by

M1,1 = M2,2 = κ + 1, M7,3 = −1

2
r

1
2
A ,

M3,3 = M4,4 = κ r
1
2
A , M8,4 = 1

2
r

1
2
A ,

M5,5 = rA(κ − 1), M3,7 = −3

2
r

1
2
A ,
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M6,6 = rA(κ + 1), M4,8 = 3

2
r

1
2
A ,

Mj, j = Mj+1, j+1 = κ r
j−4
2

A , j = 7, 9, . . . , n,

Mj+1, j+1 = Mj+2, j+2 = κ r
j−5
2

A , j = 8, 10, . . . , n, (3.5)

while other entries are zero. The transformation matrix allows us to calculate uniquely
the coefficients ak and āk from the new coefficients ck . Therefore, as it was shown in
[11], we can work with the equivalent interpolation problem

n−1∑

k=0

cke
iϕ j

k
2 = U j , j = 0, . . . , n − 1. (3.6)

The matrix of this interpolation problem is a Vandermonde matrix, which we denote
by F . This allows us to work instead of the matrix [�k(ϕ j )]−1 with the transformation
matrix M and the Vandermonde matrix F . In this case the coefficients ak and ãk can
be calculated as follows

a = M−1 F−1 U, ã = M−1 F−1 Ũ,

and estimate (3.4) has the following form

| fn(ϕ) − f̃n(ϕ)| ≤ δ∗|M−1 F−1 �| ≤ δ∗‖M−1‖2‖F−1‖2 ‖�‖2 ,

and the remaining task is to estimate the spectral norms of M−1 and F−1 as well as
the norm of �.

3.1.1 Spectral Norm of the Transformation Matrix

Let us at first study the matrix M . The spectral norm of the inverse matrix can be
calculated as follows

‖M−1‖2 =
√
(

min
1≤ j≤n

|λ j |
)−1

,

where λ1, λ2, . . . , λn are the eigenvalues of M MT .
Taking into account the structure of thematrixM (3.5) one can verify by straightfor-

ward calculations, that the matrix M MT has an almost diagonal structure. Elements
of the matrix M MT are explicitly given as follows

[M MT ] j, j = (Mj, j )
2 for j = 1, 2, 11, 12, . . . , 2 n,

[M MT ]3,3 = [M MT ]4,4 = 1

4
rA(4κ2 + 9r2A),
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1232 K. Gürlebeck et al.

[M MT ]5,5 = r2A(κ2 − 2κ + 1 + 4r2A),

[M MT ]6,6 = r2A(κ2 + 2κ + 1 + 4r2A),

[M MT ]7,7 = [M MT ]8,8 = 1

4
rA(1 + 4κ2 r2A),

[M MT ]9,9 = [M MT ]10,10 = r4Aκ2,

[M MT ]7,3 = [M MT ]3,7 = −1

2
κ rA(1 + 3r2A),

[M MT ]8,4 = [M MT ]4,8 = 1

2
κ rA(1 + 3r2A),

[M MT ]9,5 = [M MT ]5,9 = −2κ r4A,

[M MT ]10,6 = [M MT ]6,10 = 2κ r4A. (3.7)

Thus the 2n − 8 eigenvalues of matrix (3.7) are given by

λ j = (
Mj j

)2
, j = 1, 2, 11, 12, . . . , 2 n,

or by taking into account the form of elements Mj j

λ1,2 = (κ + 1)2, λ j =

⎧
⎪⎪⎨

⎪⎪⎩

κ2 r
j−1
2

A , if j is odd,

κ2 r
j−2
2

A , if j is even,

j = 11, . . . , 2 n.

The remaining eight eigenvalues are the eigenvalues of the non-diagonal sub-matrix
of matrix (3.7) for j, k = 3, . . . , 10. As we can see the eigenvalues λ j , j = 1, . . . , 2 n
depend on the only two parameters rA and κ . Since the parameter rA is the radius of
the analytical domain �A for practical calculations we can always use a normalised
radius, i.e. rA = 1. For the reader interested in dependence of the eigenvalues on rA
we refer to [13]. For the normalised radius all possible eigenvalues have the following
form

λ1,2 = (κ + 1)2,

λ3 = κ2 + κ + 5

2
+ 1

2

√
20κ2 + 20κ + 25,

λ4 = κ2 + κ + 5

2
− 1

2

√
20κ2 + 20κ + 25,

λ5 = κ2 − κ + 5

2
+ 1

2

√
20κ2 − 20κ + 25,

λ6 = κ2 − κ + 5

2
− 1

2

√
20κ2 − 20κ + 25,

λ7,9 = 5

4
+ κ2 + 1

8

√
256κ2 + 64,
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λ8,10 = 5

4
+ κ2 − 1

8

√
256κ2 + 64,

λ j = κ2, j = 11, . . . , 2 n.

Taking into account that κ is a material constant depending on Poisson’s ratio, it’s
easy to check that these eigenvalues are ordered as follows

λ6 < λ8,10 < λ4 < λ j < λ1,2,5,7,9 < λ3.

Therefore the smallest eigenvalue for κ ∈ (1, 3) is λ6. Thus the spectral norm of M−1

is given by

‖M−1‖2 =
√

λ−1
6 = 1

√

κ2 − κ + 5
2 − 1

2

√
20κ2 − 20κ + 25

.

The obtained estimate for the spectral norm of M−1 is uniform, i.e. it is independent
on the number of interpolation nodes n.

3.1.2 Spectral Norm of the Vandermonde Matrix

Now we will construct the estimate for the spectral norm of F−1, where the matrix F
is a Vandermonde matrix. If we consider the interpolation problem (3.6) for arbitrary
interpolation nodes ϕ j ∈ [−π, π ] then the entries of the matrix F can be written as

Fϕ j k = e
1
2 i

2π
n−1ϕ j k, j = −n − 1

2
, . . . ,

n − 1

2
, k = 0, . . . , n − 1.

To construct the estimate for the spectral norm of F−1 wewill work with the conjugate
of the interpolation matrix and, additionally, we rescale the entries of the matrix as
follows

Tjk := 1√
n
e− 1

2 i
2π
n−1ϕ j k .

This matrix is also a Vandermonde matrix, and it can be considered as a Fourier matrix
for a signal x . Let x̂ be its Fourier transform, defined by x̂ = T x . We will use this
relation to the Finite Fourier Transform later on in the construction of the estimate.

Our goal here is to get estimates for the eigenvalues of the matrix T T ∗, so we have

(
T T ∗)

jk =
n−1∑

m=0

Tϕ j m T ∗
mϕk

= 1

n

n−1∑

m=0

ω
1
2 (ϕ j−ϕk )m,

where

ω = e−i 2π
n−1 .
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Following [8] we rewrite the matrix T T ∗ as follows

N = [
Npq

]n−1
p,q=0 = [

s(ϕp − ϕq)
]n−1
p,q=0 ,

where

s(x) = 1

n

n−1∑

k=0

ω
1
2 k x .

The introduced matrix N is not diagonally dominant, therefore, its Gershgorin
disks are not suitable for estimating for the eigenvalues. To overcome this problem
we introduce additionally to the matrix N and function s(x) two functions s+(x) and
s−(x), such that their Finite Fourier Transforms ŝ+(x), ŝ−(x) satisfy the following
conditions

ŝ−(x) ∈ R, ŝ+(x) ∈ R, 0 ≤ ŝ−(x) ≤ ŝ(x) ≤ ŝ+(x). (3.8)

The matrices corresponding to ŝ−(x) and ŝ+(x) are defined by

N+ = [N+
pq ]n−1

p,q=0 = [s+(ϕp − ϕq)]n−1
p,q=0,

N− = [N−
pq ]n−1

p,q=0 = [s−(ϕp − ϕq)]n−1
p,q=0.

The matrices N−, N , and N+ are positive semi-definite and they can be ordered as
follows

0 ≤ N− ≤ N ≤ N+.

This means that we can get estimates for the greatest and the smallest eigenvalues of
the matrix N by

λmax(N
−) ≤ λmax(N ) ≤ λmax(N

+),

λmin(N
−) ≤ λmin(N ) ≤ λmin(N

+). (3.9)

The Gerschgorin discs of the matrix N are given by

Dj = {
z ∈ C : |z − N j j | ≤ R j (N )

}
,

where

N j j = s(0) = n, R j (N ) =
n−1∑

k=0,
k �= j

|N jk |.
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As we have mentioned above the matrix N is not diagonally dominant, therefore
instead of working with its Gershgorin disk we will work with the Gerschgorin disks
of N− and N+. Using the bounds (3.9) we can estimate

λmax(N ) ≤ λmax(N
+) ≤ s+(0) + max

j
R j (N

+),

λmin(N ) ≥ λmin(N
−) ≥ s−(0) − max

j
R j (N

−).

An important task now is to choose two functions s+(x) and s−(x) such that the con-
ditions (3.8) are satisfied. Following [8] we introduce a family of signals V (k; a, b, t),
periodic in k with period n, whose Finite Fourier Transforms V̂ (k; a, b, t) are real and
trapezoidal

V̂ (k; a, b, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

k − a + t

t
, k ∈ [a − t + 1, a − t],

1, k ∈ [a, b],
t − k + b

t
, k ∈ [b + 1, b + t − 1].

(3.10)

The inverse Finite Fourier Transform of the trapezoidal function (3.10) is given by the
expression

V (k; a, b, t) = 1√
n

n−1
2∑

j=− n−1
2

V̂ ( j; a, b, t) e
1
2 i

2π
n−1 jk

= ei
π k

2(n−1) (a+b)
sin
(

π k t
2(n−1)

)
sin
(

π k
2(n−1) (b − a + t)

)

t
√
n sin2

(
π k

2(n−1)

) .

As functions s+(k) and s−(k) we choose the following functions

s+(k) = 1√
n
V

(

k;−n − 1

2
,
n − 1

2
, t

)

=
sin
(

π k t
2(n−1)

)
sin
(

π k
2(n−1) (n − 1 + t)

)

t n sin2
(

π k
2(n−1)

) ,

s−(k) = 1√
n
V

(

k;−n−1

2
+t,

n−1

2
−t, t

)

=
sin
(

π k t
2(n−1)

)
sin
(

π k
2(n−1) (n−1−t)

)

t n sin2
(

π k
2(n−1)

) ,

and

s+(0) = n − 1 + t

n
, s−(0) = n − 1 − t

n
.
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Let us denote by D the maximum distance between two nodes, and by d the mini-
mum distance, i.e.

d ≤ |ϕp − ϕq | ≤ D, p �= q.

To obtain the estimates for the eigenvalues of the original matrix, at first we need to
get the Gerschgorin disks for the matrix associated with the function V (k; a, b, t). For
this matrix we have the following estimate

n−1∑

p=0,
p �=q

1√
n
|V (ϕp − ϕq; a, b, t)|

=
n−1∑

p=0,
p �=q

∣
∣
∣
∣
∣
∣
ei

π k
2(n−1) (a+b)

sin
(

π(ϕp−ϕq )t
2(n−1)

)
sin
(

π(ϕp−ϕq )

2(n−1) (b − a + t)
)

n t sin2
(

π(ϕp−ϕq )

2(n−1)

)

∣
∣
∣
∣
∣
∣

≤
n−1∑

p=0,
p �=q

∣
∣
∣
∣
∣
∣

sin
(

π(ϕp−ϕq )t
2(n−1)

)
sin
(

π(ϕp−ϕq )

2(n−1) (b − a + t)
)

n t sin2
(

π(ϕp−ϕq )

2(n−1)

)

∣
∣
∣
∣
∣
∣

=
n−1∑

p=0,
p �=q

∣
∣
∣
∣
∣
∣

1
2

(
cos

[
π(ϕp−ϕq )

2(n−1) (b − a)
]

− cos
[

π(ϕp−ϕq )

2(n−1) (b − a + 2t)
])

n t sin2
(

π(ϕp−ϕq )

2(n−1)

)

∣
∣
∣
∣
∣
∣
.

Expanding the numerator in the last fraction into its Taylor series and taking into
account that the higher order terms are decreasing with order n2k+1 for an increasing
value of n, we obtain the following estimate

n−1∑

p=0,
p �=q

∣
∣
∣
∣
∣
∣

1
2

(
cos

[
π(ϕp−ϕq )

2(n−1) (b − a)
]

− cos
[

π(ϕp−ϕq )

2(n−1) (b − a + 2t)
])

n t sin2
(

π(ϕp−ϕq )

2(n−1)

)

∣
∣
∣
∣
∣
∣

≤
n−1∑

p=0,
p �=q

∣
∣
∣
∣
∣
∣
∣

t
(

π(ϕp−ϕq )

2(n−1)

)2
(b − a + t)

n t sin2
(

π(ϕp−ϕq )

2(n−1)

)

∣
∣
∣
∣
∣
∣
∣

+ o(t),

and, finally, we obtain

n−1∑

p=0,
p �=q

1√
n
|V (ϕp − ϕq; a, b, t)| ≤ d2 γ 2(b − a + t)

n D2 sin2(γ )
+ o(t),
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where γ = π D
2(n−1) . This leads to the following estimates for the eigenvalues

λmax(N ) ≤ n − 1 + t

n
+ d2 γ 2(n − 1 + t)

n D2 sin2(γ )
+ o(t),

λmin(N ) ≥ n − 1 − t

n
− d2 γ 2(n − 1 − t)

n D2 sin2(γ )
− o(t).

Minimizing the first expression or maximizing the second with respect to t we get

λmax(N ) ≤ n − 1

n
+ d2 γ 2(n − 1)

n D2 sin2(γ )
,

λmin(N ) ≥ n − 1

n
− d2 γ 2(n − 1)

n D2 sin2(γ )
.

Studying the asymptotic behaviour of the estimate for the smallest eigenvalue
λmin(N ) we see that

lim
n→∞

[
n − 1

n

(

1 − d2 γ 2

D2 sin2(γ )

)]

= D2 − d2

D2 .

It follows that for the case of non-equidistant nodes, i.e. D > d, one has a more
specific estimate for the smallest eigenvalue. In the case of the equidistant nodes, i.e.
D = d, the estimate tells only that the smallest eigenvalue is greater or equal to zero,
which is true by definition of a semi-positive definite matrix.

Coming back to the original matrix F−1 we get the following estimate:

‖F−1‖2 =
√

λmin(N )−1 ≤
√

n D2 sin2(γ )

(n − 1)(D2 sin2(γ ) − d2γ 2)
.

3.1.3 Final Estimate for the Coupling Error

Finally, estimate (3.4) has the form

| fn(ϕ) − f̃n(ϕ)|

≤ δ∗
√
√
√
√

n D2 sin2(γ )

(n − 1)(D2 sin2(γ ) − d2γ 2)
(
κ2 − κ + 5

2 − 1
2

√
20κ2 − 20κ + 25

) ‖�‖2 .

It remains to estimate the norm of the vector of the basis functions �k . Taking into
account that they are of the form

�k(x) = e
1
2 i k x ,
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we get

| fn(ϕ) − f̃n(ϕ)|

≤ √
n δ∗

√
√
√
√

n D2 sin2(γ )

(n − 1)(D2 sin2(γ ) − d2γ 2)
(
κ2 − κ + 5

2 − 1
2

√
20κ2 − 20κ + 25

) .

To obtain the final estimate we need to notice that the error δ∗ represents the L2 error
for displacements at the curved boundary of a coupling element Ti , i = 1, . . . , n − 1,
which we denote by ∂T∗

i , while the whole boundary of Ti is denoted in the standard
way by ∂Ti . According to the trace theorem for Lipschitz domains presented in [7]
this error can be estimated as follows

‖u‖L2(∂T∗
i )

≤ ‖u‖L2(∂Ti ) ≤ C ‖u‖W 1,2(Ti )
,

where a constant C depends only on Ti . As it was shown in [12] over the coupling
element Ti one can obtain the error estimate in W 1,2(Ti ) by an extension of ideas
from [5]. For the norm this error can be estimated as follows

‖v − vh‖1,2,Ti ≤ C h(i)
T

|v|2,2,Ti ,

where h(i)
T

is a characteristic mesh constant of the specific coupling element define
in (2.4) (see Fig. 4). Since we have made a rescaling of the interpolation nodes by 1√

n

for the estimate of the spectral norm for the matrix F−1, we need also to apply this
rescaling to the characteristic mesh constant. Making the normalisation of the radius
rA and l we obtain

h(i)
T

= 1√
n

√
(

1 + l

n

)2

tan2 (αi ) +
(
l

n

)2

.

Thus we get the following estimate for δ∗

δ∗ ≤
n−1∑

i=1

⎡

⎣Ci
1√
n

√
(

1 + l

n

)2

tan2 (αi ) +
(
l

n

)2

|v|2,2,Ti

⎤

⎦ ,

where constants Ci depend only on Ti .
Finally, the estimate for the coupling error is given in the following theorem:

Theorem 3.1 The coupling error at the interface �AD can be estimated as follows

| fn(ϕ) − f̃n(ϕ)|

≤
n−1∑

i=1

√
√
√
√
√

Ci n D2 sin2(γ )
[(
1+ l

n

)2
tan2 (αi )+

( l
n

)2
]

(n − 1)(D2 sin2(γ )−d2γ 2)
(
κ2−κ+ 5

2 − 1
2

√
20κ2−20κ+25

) |v|2,2,Ti ,

(3.11)
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where n is a number of interpolation nodes, D is the maximum distance between two
nodes, d is the minimal distance between two nodes, αi , i = 1, . . . , n − 1 are angles
defined by geometry of each coupling element, and γ = π D

2(n−1) .

The estimate (3.11) covers the general case of nodes distribution. In practice it
means, that for a given triangulationFh we obtain a specific estimate from this general
case, i.e. for a fixed set of angles α1, α2, . . . , αn−1.

Studying the asymptotic behaviour of the estimate (3.11) for a general α and taking
into account that with an increasing number n this angle decreases proportionally due
to construction, as well as a size of T decreases, i.e. the semi-norm vanishes, we see
that

lim
n→∞

√
√
√
√
√

n D2 sin2(γ )
[(
1 + l

n

)2
tan2 (α) + ( l

n

)2
]

(n − 1)(D2 sin2(γ ) − d2γ 2)
(
κ2 − κ + 5

2 − 1
2

√
20κ2 − 20κ + 25

) = 0.

The constructed estimate for the coupling error converges to zero approximately as
O( 1n ) for all possible values of the material parameter κ ∈ (1, 3).

4 Conclusions

In this paper we have presented error estimates for a continuous coupling of an ana-
lytical and a finite element solution. The question of quality of the coupling remained
open from previous research on such types of coupling. The coupling error plays an
important role in a numerical realisation of the method, especially if an analytical
element A of a fixed size is considered. In this case a refinement with a global scaling
factor is not possible, and due to a fixed size of the analytical element the classical
theory of the finite element method cannot be used. To obtain the error estimate in
A we have considered the question of approximation by interpolation, which leads
to the estimate in two parts: the interpolation error and the coupling error. Such an
approach allows to underline clearly the effect of the coupling error. The estimation of
this coupling error is based on the estimation of the spectral norm of the corresponding
interpolation matrix. The constructed estimate converges to zero with an increasing
number of the interpolation nodes at the coupling interface�AD, i.e. with an increasing
number of coupling elements.

Finally we would like to mention the following important questions for future
research:

(i) Finding the optimal position of interpolation nodes at the coupling interface �AD
in order to get a sharper estimate for the coupling error | fn(ϕ) − f̃n(ϕ)|. This
question leads us directly to a relation between local and global error estimates,
because by using a non-equidistant node distribution on one hand we improve the
quality of the coupling error (local estimate), but on another hand we disturb the
symmetry of the finite element mesh, which in general leads to higher error in the
finite element approximation (global estimate).
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(ii) Find the optimum ratio between a number of the interpolation nodes and a size
of the radius of the analytical element, this ratio is expected to be a domain
dependent.
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