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1. Introduction

Riemann boundary value problems for poly-analytic and meta-analytic func-
tions in the complex plane are important for applications in mathematical
physics and engineering such as the theory of elasticity, special problems for
Maxwell equations, and general relativity theory. They are widely discussed
(see, for instance, references [1–5] or elsewhere). Making full use of complex
analytic methods explicit integral representations of solutions to these bound-
ary value problems were given (see, e.g., [3–5] or elsewhere).

As an elegant generalization of analytic functions from the complex plane
to higher-dimensions, Clifford analysis (see e. g. [6–8]) concentrates on the
study of the so-called monogenic functions, i.e. null solutions to the Dirac
or the generalized Cauchy–Riemann operator (see Definition 2.1 in Sect. 2),
which represent higher-dimensional generalizations of the classic Cauchy–
Riemann operator. It can be seen as a refinement of classic harmonic anal-
ysis due to fact that these differential operators factorize the Laplacian. Using
methods of Clifford analysis different kinds of partial differential equations
over the various domains and their corresponding boundary value problems
were investigated, e.g. in [9–23] and [24–31]. In references [9–16] and [17–23]
solutions to such partial differential equations on bounded and unbounded
domains of R

n and R
n+1 were given, respectively, in virtue of integral repre-

sentations and Taylor series. In references [24–29], a kind of Riemann boundary
value problem for monogenic functions and poly-monogenic functions, i.e. null
solutions to iterated Dirac operator or generalized Cauchy–Riemann operator
(see Definition 2.2 in Sect. 2), on bounded subdomains and half space of R

n,
were studied. In references [30,31], by applying Almansi/Fischer-type decom-
position theorems (decompositions of poly-monogenic functions into mono-
genic functions) and integral representation formulae, we established explicit
expressions of solutions to a kind of Riemann boundary value problems for the
polynomially monogenic functions over the sphere and half space of R

n+1, i.e.
functions which are annihilated by a polynomial generalized Cauchy–Riemann
operator. In this paper, based on ideas of the higher order Cauchy-type inte-
gral in complex analysis contained in [5,3], we first introduce the poly-Cauchy
type integral operator, and then consider some kind of Riemann boundary
value problems for the poly-monogenic functions on the sphere of R

n+1. Using
potential-theoretical arguments which is new and different from the approach
in reference [30], we also present explicit expressions of solutions to Riemann
boundary value problems on the sphere of R

n+1. As special cases we derive
solutions to Riemann boundary value problems for poly-analytic functions
and meta-analytic functions in the complex plane (see references e.g. [1–5]),
correspondingly.

The paper is organized as follows. In Sect. 2 we recall some basic facts
about Clifford analysis which will be required in the sequel. In Sect. 3 we intro-
duce the poly-Cauchy type integral operator and study its boundary behaviour
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including Plemelj–Sokhotski formulae. In the last section we consider a kind of
Riemann boundary value problems for null solutions to the iterated generalized
Cauchy–Riemann operator Dk, the operator (D − λ)k with λ ∈ C and a poly-
nomially generalized Cauchy–Riemann operator p(D) on the sphere of R

n+1.
We give explicit integral representations of solutions to the boundary value
problems on the sphere of R

n+1, respectively. As special cases we also derive
the solutions to the corresponding Riemann boundary value problems for poly-
analytic, meta-analytic (see e.g. [3–5]) and polynomially analytic functions in
the complex plane.

2. Preliminaries and Notations

In this section we recall some basic facts about Clifford analysis which will be
needed in the sequel. More details can be found in the literature, for instance
[6–8,15–17,20–22,32,33].

Let {e1, e2, . . . , en} be an orthogonal basis of the Euclidean space R
n. Let

R
n be endowed with a non-degenerate quadratic form of signature (0, n). We

denote by R0,n the 2n-dimensional real Clifford algebra constructed over R
n

with basis {eA : A = {h1, . . . , hr} ∈ PN , 1 � h1 < hr � n}, where N stands
for the set {1, 2, . . . , n} and PN denotes for the family of all order-preserving
subsets of N . We denote e∅ as the identity element 1 and eA as eh1···hr

for
A = {h1, . . . , hr} ∈ PN . The product in R0,n is defined by{
eAeB = (−1)N(A∩B)(−1)P (A,B)eAΔB, if A,B ∈ PN ,
λμ =

∑
A,B∈PN

λAμBeAeB, if λ =
∑

A∈PN
λAeA, μ =

∑
B∈PN

μBeB,

where N(A) is the cardinal number of the set A and P (A,B) =
∑

j∈B P (A, j),
P (A, j) = N(Z) and Z = {i : i ∈ A, i > j}. It follows that in particular
e2i = −1 if i = 1, 2, . . . , n and eiej + ejei = 0 if 1 � i < j � n. Thus the
real Clifford algebra R0,n is a real linear, associative, but non-commutative
algebra.

For arbitrary a ∈ R0,n we have a =
∑n

k=0

∑
N(A)=k aAeA =

∑n
k=0[a]k,

aA ∈ R, where [a]k =
∑

N(A)=k aAeA is the so-called k-vector part of a (k =
1, 2, . . . , n). The Euclidean space R

n+1 is embedded in R0,n by identifying
(x0, x1, x2, . . . , xn) with the Clifford vector x given by x =

∑n
j=0 ejxj . The

conjugation in R0,n is defined by ā =
∑

A aAēA, ēA = (−1)
k(k+1)

2 eA, N(A) =
k, aA ∈ R, and hence ab = b̄ā for arbitrary a, b ∈ R0,n.

The complexified Clifford algebra Cn = R0,n ⊗ C is given by having
complex-valued coefficients, i.e. Cn = R0,n ⊕ iR0,n. Arbitrary λ ∈ Cn may
be written as λ = a + ib, a, b ∈ R0,n, leading to the conjugation λ̄ = ā − ib̄,
where the bar denotes the usual Clifford conjugation in R0,n. This leads to
the inner product and its associated norm in Cn given by (λ, μ) =

[
λ̄μ

]
0
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and
∣∣λ∣∣ =

√[
λ̄λ

]
0

=
(∑

A
∣∣λA

∣∣2) 1
2
. This leads to xx̄ = |x|2 for arbitrary

x ∈ R
n+1.
The first-order differential operator D =

∑n
j=0 ej∂xj

is called the gener-
alized Cauchy–Riemann operator and DD = Δn+1, where Δn+1 is the Laplace
operator in the space of R

n+1.
Let Ω be a bounded subdomain of R

n+1 with smooth boundary ∂Ω.
In what follows, we denote the interior of Ω by Ω+, the exterior of Ω by
Ω−. Continuity, Hölder-continuity, continuous differentiability and so on, are
defined for a Cn-valued function φ =

∑
A φAeA : Ω(⊂ R

n+1) → Cn where
φA : Ω(⊂ R

n+1) → C, by being ascribed to each component φA. The corre-
sponding spaces are denoted, respectively, by C(Ω,Cn), H

μ(Ω,Cn)(0 < μ � 1),
C1(Ω,Cn) and so on.

Definition 2.1. Null solutions to the generalized Cauchy–Riemann operator D,
that is, Dφ = 0, are called (left-) monogenic functions. They are called right-
monogenic functions in case where the generalized Cauchy–Riemann operator
is applied from the right. The set of left-monogenic functions in Ω forms a
right-module, denoted by M(r)(Ω,Cn).

Definition 2.2. Null solutions to the iterated generalized Cauchy–Riemann
operator Dk, that is, Dkφ = 0(k � 2, k ∈ N), are called poly-monogenic
functions.

3. Poly-Cauchy Type Integral Operator

In this section we introduce the poly-Cauchy type integral operator and state
several of its properties. In particular, we study its boundary behaviour includ-
ing the Plemelj–Sokhotski formula.

In the following for arbitrary k � 2, k ∈ N, we introduce the functions

Ej
λ(x)=eλx0

1
wn+1

xj
0x

j!|x|n+1
(j=0, 1, 2, . . . , k − 1), x ∈ R

n+1\{0}, λ ∈ C, (1)

when λ=0, Ej(x)=
1

wn+1

xj
0x

j!|x|n+1
(j=0, 1, 2, . . . , k − 1), x ∈ R

n+1\{0}, (2)

where wn+1 is the surface area of the unit sphere in R
n+1 and Eλ � E0

λ, E �
E0. We will show that these functions can be used as kernels for an integral
operator, the so-called poly-Cauchy type integral operator. Let us first remark
that for j = 0 and λ = 0 we have the usual Cauchy kernel, i.e. the fundamental
solution of the generalized Cauchy–Riemann operator.

These functions have the following properties which can be easily checked
by direct calculation.
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Lemma 3.1. Suppose the functions Ej
λ(x)(j = 0, 1, 2, . . . , k − 1) and λ ∈ C as

above. Then⎧⎨
⎩

(DλEλ)(x) = Eλ(x)Dλ = 0, x ∈ R
n+1\{0},

(DλE
j+1
λ )(x) = Ej+1

λ (x)Dλ = Ej
λ(x), x ∈ R

n+1\{0}, 0 � j < k − 1,
(Dk

λE
k−1
λ )(x) = Ek−1

λ (x)Dk
λ = 0, x ∈ R

n+1\{0},
when λ = 0,⎧⎨

⎩
(DE)(x) = E(x)D = 0, x ∈ R

n+1\{0},
(DEj+1)(x) = Ej+1(x)D = Ej(x), x ∈ R

n+1\{0}, 0 � j < k − 1,
(DkEk−1)(x) = Ek−1(x)Dk = 0, x ∈ R

n+1\{0},
where Dλ � D − λ, (Dk

λE
k−1)(x) � Dk−1

λ (DλE
k−1(x)) and Ek−1(x)Dk

λ �
Dk−1

λ (Ek−1(x)Dλ), (DkEk−1)(x) � Dk−1(DEk−1(x)) and Ek−1(x)Dk �
Dk−1(Ek−1(x)D). Again, we would like to point out that the second prop-
erty means that these functions are fundamental solutions of the respective
operators.

In reference [21], the iterated generalized Cauchy–Riemann equation
Dkφ = 0, k � 2, k ∈ N on the unbounded subdomains of R

n+1 with the
condition k < n+1 was discussed. In fact, all of the related results in [21] still
hold when the condition k < n+ 1 is cut.

Let us now introduce the poly-Cauchy type integral operators for k �
2, k ∈ N,

Φλ(x) =
k−1∑
j=0

∫
∂Ω

Ej
λ(y − x)dσye

−λy0fj(y), x /∈ ∂Ω, λ ∈ C, (3)

with λ �= 0, while, when λ = 0, we consider the operator

Φ(x) =
k−1∑
j=0

∫
∂Ω

Ej(y − x)dσyfj(y), x /∈ ∂Ω, (4)

where function fj ∈ C(∂Ω,Cn) for l = 1, 2, . . . , k − 1. For these integral oper-
ators we can get the following properties, immediately.

Lemma 3.2. The above defined function Φλ is well-defined in R
n+1\∂Ω. More-

over, for l = 0, 1, 2, . . . , k − 1, we have

(Dl
λΦλ)(x) =

k−l−1∑
j=0

∫
∂Ω

Ej
λ(y − x)dσye

−λy0fj+l(y), x /∈ ∂Ω, (5)

(DlΦ)(x) =
k−l−1∑

j=0

∫
∂Ω

Ej(y − x)dσyfj+l(y), x /∈ ∂Ω. (6)

For the case l = k we have

Dk
λΦλ(x) = 0, x /∈ ∂Ω, i.e. Φλ is a solution to Dk

λφ(x) = 0 in R
n+1\∂Ω,

DkΦ(x) = 0, x /∈ ∂Ω, i.e. Φ is a solution to Dkφ(x) = 0 in R
n+1\∂Ω.
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Proof. Remember that Ω is a bounded subdomain with smooth boundary ∂Ω.
By applying the properties of the functions Ej

λ(x)(j = 0, 1, 2, . . . , k − 1) in
Lemma 3.1 we get the terms (5) and (6). �
Lemma 3.3. Suppose fj ∈ H

μ(∂Ω,Cn)(j = 0, 1, 2, . . . , k − 1). Then we get for
the above defined function Φλ the following properties

(i)
k−l−1∑

j=0

∫
∂Ω

Ej+l
λ (y − t)dσye

−λy0fj+l(y) is well-defined on ∂Ω,

(ii) Moreover,
(Dl

λΦλ

)±(t) � lim
x→t∈∂Ω

(Dl
λΦλ)(x)

= ±1
2
fl(t) +

k−l−1∑
j=0

∫
∂Ω

Ej+l
λ (y − t)dσye

−λy0fj+l(y), x /∈ ∂Ω,

(7)

where for j = 0 the related singular integral in (i) exists in the sense of the
Cauchy principle value. Especially, when λ = 0 we have

(iii)
k−l−1∑

j=0

∫
∂Ω

Ej+l(y − t)dσyfj+l(y) is well-defined on ∂Ω,

(iv) Moreover, (DlΦ)±(t) � lim
x→t∈∂Ω

(DlΦ)(x)

= ±1
2
fl(t) +

k−l−1∑
j=0

∫
∂Ω

Ej+l(y − t)dσyfj+l(y), x /∈ ∂Ω,

(8)

where again for j = 0 the related singular integral in (iii) exists in the sense
of the Cauchy principle value.

Proof. It is sufficient to consider the case of (i) and (ii). The case of (iii) and
(iv) follows immediately as a special case.

For (i) we can first state that when j = 0, since e−λt0f0 ∈ H
μ(∂Ω,Cn),

the singular integral operator∫
∂Ω

Eλ(y − t)dσye
−λy0f0(y),

t ∈ ∂Ω exits in the sense of the Cauchy principle value.

Furthermore, when j = 1, 2, . . . , k − 1, the integral operator∫
∂Ω

Ej
λ(y − t)dσye

−λy0fj+l(y) only has a weak singularity.

Hence, for l = 0, 1, 2, . . . , k − 1, we obtain that
k−l−1∑

j=0

∫
∂Ω

Ej+l
λ (y − t)dσye

−λy0fj+l(y), is well-defined on ∂Ω.
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For (ii), when l = 0, it is necessary to prove that for arbitrary x ∈
R

n+1\∂Ω, it holds

Φ±
λ (t) = lim

x→t∈∂Ω
Φλ(x) = ±1

2
f0(t) +

k−1∑
j=0

∫
∂Ω

Ej
λ(y − t)dσye

−λy0fj(y).

For arbitrary x /∈ ∂Ω, we have

Φλ(x) =
∫

∂Ω

Eλ(y − x)dσye
−λy0f0(y) +

k−1∑
j=1

∫
∂Ω

Ej
λ(y − x)dσye

−λy0fj(y)

= Φλ,0(x) + Φ̂λ(x).

On the one hand, associating e−λt0f0 ∈ H
μ(∂Ω,Cn), we get

Φ±
λ,0(t) = lim

x→t∈∂Ω
Φλ,0(x) = ±1

2
f0(t) +

∫
∂Ω

Eλ(y − t)dσye
−λy0f0(y), x /∈ ∂Ω.

On the other hand, by the Lebesgue dominated convergence theorem, we have

lim
x→t∈∂Ω

Φ̂λ(x) =
k−1∑
j=1

∫
∂Ω

Ej
λ(y − t)dσye

−λy0fj(y), x /∈ ∂Ω.

Hence

Φ±
λ (t) = ±1

2
f0(t) +

k−1∑
j=0

∫
∂Ω

Ej
λ(y − t)dσye

−λy0fj(y).

Similarly, for l = 1, 2, . . . , k − 1, associating Lemma 3.2, we get for arbitrary
x ∈ R

n+1\∂Ω,

(Dl
λΦλ)±(t) = lim

x→t∈∂Ω
(Dl

λΦλ)(x)

= ±1
2
fl(t) +

k−l−1∑
j=0

∫
∂Ω

Ej+l
λ (y − t)dσye

−λy0fj+l(y).

�

Lemma 3.4. [30,31] Suppose φ ∈ Ck(Ω,Cn) is a solution to the equation
Dk

λφ(x) = 0, λ ∈ C, then there exist the unique monogenic functions φj ∈
C1(Ω,Cn) such that

φ(x) = φ0(x) + x0e
λx0φ1(x) + · · · + xk−1

0 eλx0φk−1(x). (9)

Lemma 3.5. [30,31,22] Dk
λφ(x) = 0, x ∈ R

n+1 with λ ∈ C and for j =
0, 1, 2, . . . , k − 1 with k ∈ N, k � 2,

lim inf
R→+∞

M(R,Djφλ)
Rr−j

= Lj < +∞, r � k − 1,
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where M(R,Djφλ) = max
|x|=R

∣∣Djφλ(x)
∣∣,D0φλ(x) = φλ(x) with φλ(x) =

e−λx0φ(x) and r is a non-negative integer, then φ(x) = eλx0Pr(x) where func-
tion Pr(x) is a polynomial function of total degree no greater than r on the
variables xi(i = 0, 1, . . . , n). Moreover, when r = 0, we have φ(x) = deλx0 ,
where d is a Cn-valued constant.

4. Boundary Value Problems

In this section we consider a kind of Riemann boundary value problem for
null solutions to a polynomially generalized Cauchy–Riemann operator, which
includes the cases of powers of the generalized Cauchy–Riemann operator and
(D − λ)k(k ∈ N, k � 2, λ ∈ C), on the ball centred at the origin with bound-
ary values given by Hölder-continuous functions in Clifford analysis. Applying
the poly-Cauchy type integral operator from the previous section, we get the
explicit integral representations of their solutions. As special cases we also
derive the solutions to Riemann boundary value problems for polyanalytic,
metaanalytic (see e.g. [3–5]) and polynomially analytic functions in the com-
plex plane.

In the sequel we denote the open unit ball centered at the origin by B(1),
for short B+, whose closure is B(1), its boundary by Sn and B− = R

n+1\B(1).
We remark that ω ∈ Sn is the outward pointing unit normal vector of Sn. Fur-
thermore, while we will only consider the Riemann boundary value problem
on the ball centred at the origin the approach works for all bounded Lipschitz
domains. For the case of half space of R

n+1, it could be seen more details in
Reference e.g. [31].

We are first interested in the following boundary value problem.

RBVP I. Given the boundary data fj ∈ H
μ(Sn,Cn)(j = 0, 1, 2, . . . , k−1) with

k ∈ N, k � 2, find a function φ ∈ Ck(B±,Cn) such that Dlφ(l = 1, 2, . . . , k−1)
and φ are continuously extendable from B± to Sn and it holds

(i)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dkφ(x) = 0, x ∈ B±,
φ+(t) = φ−(t), t ∈ Sn,
(Dφ)+(t) = (Dφ)−(t), t ∈ Sn

...
...

(Dlφ)+(t) = (Dlφ)−(t), t ∈ Sn

...
...

(Dk−1φ)+(t) = (Dk−1φ)−(t), t ∈ Sn.

The problem (i) is also called jump problem.

For this boundary value problem we can state the following theorem.
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Theorem 4.1. Boundary value problem (i) is solvable and the solution is given
by

φ(x) =
k−1∑
j=0

+∞∑
lj=0

xj
0Plj (x), x ∈ B±, (10)

where function Plj (x) is an inner spherical monogenic polynomial of order
lj(lj = 0, 1, 2, . . .) on the variable x ∈ R

n+1.

Proof. Our approach is to transfer boundary value problem (i) into k mutually
independent boundary value problems. Since Dkφ(x) = 0, x ∈ B± by apply-
ing Lemma 3.4, we get the following decomposition into unique monogenic
functions φj ∈ C1(Ω,Cn)(j = 0, 1, 2, . . . , k − 1), satisfying

φ(x) = φ0(x) + x0φ1(x) + · · · + xk−1
0 φk−1(x).

Since D(xj
0φj) = jxj−1

0 φj , j = 1, 2, . . . , k− 1, one can easily show that bound-
ary value problem (i) is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dφj(x) = 0, x ∈ B±, j = 0, 1, 2, . . . , k − 1,
φ+

0 (t) = φ−
0 (t), t ∈ Sn,

φ+
1 (t) = φ−

1 (t), t ∈ Sn

...
...

φ+
l (t) = φ−

l (t), t ∈ Sn, 2 � l � k − 2,
...

...
φ+

k−1(t) = φ−
k−1(t), t ∈ Sn.

Using Lemma 3.4 we have that the function φ satisfies the equation Dkφ(x) = 0
in R

n+1.
Moreover, by Theorem 11.3.4 in [6] we can use the expansion of monogenic

functions into inner spherical monogenics to obtain our expression (10). �

By combining Theorem 4.1 with Lemma 3.5, we directly get the following
corollary

Corollary 4.1. Consider boundary value problem (i). If for j = 0, 1, 2, . . . , k−1
with k ∈ N, k � 2,

lim inf
R→+∞

M(R,Djφ)
Rr−j

= Lj < +∞, r � k − 1,

where M(R,Djφ) = max
|x|=R

∣∣Djφ(x)
∣∣,D0φ(x) = φ(x) and r is a non-negative

integer, then the solution to boundary value problem (i) is φ(x) = Pr(x) where
Pr(x) is a polynomial function of total degree no greater than r on the variable
x ∈ R

n+1. Moreover, when r = 0, the solution to boundary value problem (i)
is φ(x) = d, where d ∈ Cn is a constant.

Next, we will consider the following boundary value problem.
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RBVP II. Given the boundary data fj ∈ H
μ(Sn,Cn)(j = 0, 1, 2, . . . , k−1) with

k ∈ N, k � 2, find a function φ ∈ Ck(B±,Cn) such that Dlφ(l = 1, 2, . . . , k−1)
and φ are continuously extendable from B± to Sn and satisfy

(ii)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dkφ(x) = 0, x ∈ B±,
φ+(t) = φ−(t)G+ f0(t), t ∈ Sn,
(Dφ)+(t) = (Dφ)−(t)G+ f1(t), t ∈ Sn,

...
...

(Dlφ)+(t) = (Dlφ)−(t)G+ fl(t), t ∈ Sn,
...

...
(Dk−1φ)+(t) = (Dk−1φ)−(t)G+ fk−1(t), t ∈ Sn,

where G ∈ Cn is a constant and has an inverse denoted by G−1.

Theorem 4.2. Boundary value problem (ii) is solvable and the solution can be
expressed via

φ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k−1∑
j=0

∫
Sn E

j(y − x)dσyfj(y) +
k−1∑
j=0

+∞∑
lj=0

xj
0Plj (x), x ∈ B+,

k−1∑
j=0

∫
Sn E

j(y − x)dσyfj(y)G−1 +
k−1∑
j=0

+∞∑
lj=0

xj
0Plj (x)G

−1, x ∈ B−.

where function Plj (x) is an inner spherical monogenic polynomial of order
lj(lj = 0, 1, 2, . . .) on the variable x ∈ R

n+1.

Proof. Using the poly-Cauchy type integral operator we can reduce boundary
value problem (ii) into (i). By applying Lemmas 3.2 and 3.3 we have that

Φ(x) =
k−1∑
j=0

∫
Sn

Ej(y − x)dσyfj(y), x ∈ B±

is a solution to boundary value problem (ii).
Now, consider the function

ψ(x) =
{
φ(x) − Φ(x), x ∈ B+,
φ(x)G− Φ(x), x ∈ B−.

Then boundary value problem (ii) reduces to the previous case⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dkψ(x) = 0, x ∈ B±,
ψ+(t) = ψ−(t), t ∈ Sn,
(Dψ)+(t) = (Dψ)−(t), t ∈ Sn,

...
...

(Dl
λψ)+(t) = (Dl

λψ)−(t), t ∈ Sn,
...

...
(Dk−1ψ)+(t) = (Dk−1ψ)−(t), t ∈ Sn,

By virtue of Theorem 4.1 we obtain Theorem 4.2. �
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Corollary 4.2. Consider boundary value problem (i). If for j = 0, 1, 2, . . . , k−1
with k ∈ N, k � 2,

lim inf
R→+∞

M(R,Djφ)
Rr−j

= Lj < +∞, r � k − 1,

where M(R,Djφ) = max
|x|=R

∣∣Djφ(x)
∣∣,D0φ(x) = φ(x), and r is a non-negative

integer, then the solution to boundary value problem (ii) is given by

φ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k−1∑
j=0

∫
Sn E

j(y − x)dσyfj(y) + Pr(x), x ∈ B+,

k−1∑
j=0

∫
Sn E

j(y − x)dσyfj(y)G−1 + Pr(x)G−1, x ∈ B−,

where function Pr(x) is a polynomial function of total degree no greater than
r on the variable x ∈ R

n+1. Moreover, when r = 0, the solution to boundary
value problem (ii) is as follows

φ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k−1∑
j=0

∫
Sn E

j(y − x)dσyfj(y) + d, x ∈ B+,

k−1∑
j=0

∫
Sn E

j(y − x)dσyfj(y)G−1 + dG−1, x ∈ B−,

where d ∈ Cn is a constant.

RBVP III. Given the boundary data fj ∈ H
μ(Sn,Cn)(j = 0, 1, 2, . . . , k − 1)

with k ∈ N, k � 2, find a function φ ∈ Ck(B±,Cn) such that Dl
λφ(l =

1, 2, . . . , k − 1), λ ∈ C\{0} and φ are continuously extendable from B± to Sn

and satisfy

(iii)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dk
λφ(x) = 0, x ∈ B±,

φ+(t) = φ−(t)G+ f0(t), t ∈ Sn,
(Dλφ)+(t) = (Dλφ)−(t)G+ f1(t), t ∈ Sn,

...
...

(Dl
λφ)+(t) = (Dl

λφ)−(t)G+ fl(t), t ∈ Sn,
...

...
(Dk−1

λ φ)+(t) = (Dk−1
λ φ)−(t)G+ fk−1(t), t ∈ Sn,

where G ∈ Cn is an invertible constant.

Theorem 4.3. Boundary value problem (iii) is solvable and its solution is
expressed by
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φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

k−1∑
j=0

∫
Sn E

j
λ(y − x)dσye

−λy0fj(y) +
k−1∑
j=0

+∞∑
lj=0

eλx0xj
0Plj (x), x ∈ B+,

k−1∑
j=0

∫
Sn E

j
λ(y − x)dσye

−λy0fj(y)G−1

+
k−1∑
j=0

+∞∑
lj=0

eλx0xj
0Plj (x)G

−1, x ∈ B−.

where function Plj (x) is an inner spherical monogenic polynomial of order
lj(lj = 0, 1, 2, . . .) on the variable x ∈ R

n+1.

Proof. Our method is to reduce boundary value problem (ii) to the previous
case. Since λ ∈ C\{0} and e−λt0fj ∈ H

μ(Sn,Cn)(j = 0, 1, 2, . . . , k − 1), by
applying Lemmas 3.2 and 3.3 we obtain

Φλ(x) =
k−1∑
j=0

∫
Sn

Ej
λ(y − x)dσye

−λy0fj(y), x ∈ B±

is a solution to boundary value problem (iii). Consider the function

Ψ(x) =
{
φ(x) − Φλ(x), x ∈ B+,
φ(x)G− Φλ(x), x ∈ B−.

Then boundary value problem (iii) reduces to the case

(iv)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dk
λΨ(x) = 0, x ∈ B±,

Ψ+(t) = Ψ−(t), t ∈ Sn,
(DλΨ)+(t) = (DλΨ)−(t), t ∈ Sn,

...
...

(Dl
λΨ)+(t) = (Dl

λΨ)−(t), t ∈ Sn,
...

...
(Dk−1

λ Ψ)+(t) = (Dk−1
λ Ψ)−(t), t ∈ Sn.

Moreover, boundary value problem (iv) is equivalent to the case⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Dke−λx0Ψ)(x) = 0, x ∈ B±,
(e−λt0Ψ)+(t) = (e−λt0Ψ)−(t), t ∈ Sn,
(De−λx0Ψ)+(t) = (De−λx0Ψ)−(t), t ∈ Sn,

...
...

(Dle−λx0Ψ)+(t) = (Dle−λx0Ψ)−(t), t ∈ Sn,
...

...
(Dk−1e−λx0Ψ)+(t) = (Dk−1e−λx0Ψ)−(t), t ∈ Sn,

Now, by using Theorem 4.1, we obtain

Ψ(x) = eλx0

k−1∑
j=0

+∞∑
lj=0

xj
0Plj (x), x ∈ B±,
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where function Plj (x) is an inner spherical monogenic polynomial of order
lj(lj = 0, 1, 2, . . .) on the variable x ∈ R

n+1. Thus we get Theorem 4.3. �

Corollary 4.3. Consider boundary value problem (iii). If for j = 0, 1, 2, . . . , k−
1 with k ∈ N, k � 2,

lim inf
R→+∞

M(R,Djφλ)
Rr−j

= Lj < +∞, r � k − 1,

where M(R,Djφλ) = max
|x|=R

∣∣Djφλ(x)
∣∣,D0φλ(x) = φλ(x) with φλ(x) =

e−λx0φ(x), and r is a non-negative integer, then the solution to boundary value
problem (iii) is given by

φ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k−1∑
j=0

∫
Sn E

j
λ(y − x)dσye

−λy0fj(y) + eλx0Pr(x), x ∈ B+,

k−1∑
j=0

∫
Sn E

j
λ(y − x)dσye

−λy0fj(y)G−1 + eλx0Pr(x)G−1, x ∈ B−,

where function Pr(x) is a polynomial function of total degree no greater than
r on the variable x ∈ R

n+1. Moreover, when r = 0, the solution to boundary
value problem (iii) is given by

φ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k−1∑
j=0

∫
Sn E

j(y − x)dσyfj(y) + eλx0d, x ∈ B+,

k−1∑
j=0

∫
Sn E

j(y − x)dσyfj(y)G−1 + eλx0dG−1, x ∈ B−,

where d ∈ Cn is a constant.

Remark 1. When n = 2, boundary value problems (ii) and (iii) correspond to
transmission problems for poly-monogenic functions and null solutions to iter-
ated perturbed generalized Cauchy–Riemann operator Dλ, λ ∈ C\{0} on unit
ball of R

3, respectively. When n = 1 we have R
2

� C, i.e., z = x0 + x1e1 ∈ C

and ∂z̄ = ∂x0 + ∂x1e1 with e21 = −1. D = {|z| = 1 : z ∈ C} denotes the unit
disk in C with its boundary ∂D = {|z| = 1 : z ∈ C}. In this case boundary
value problems (ii) and (iii) reduce to the following cases, respectively,

(�)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂k
z̄φ(z) = 0, z ∈ D,
φ+(t) = φ−(t)G+ f0(t), t ∈ ∂D,[
∂z̄φ

]+(t) =
[
∂z̄φ

]−(t)G+ f1(t), t ∈ ∂D,
...

...[
∂l

z̄φ
]+(t) =

[
∂l

z̄φ
]−(t)G+ fl(t), t ∈ ∂D,

...
...[

∂k−1
z̄ φ

]+(t) =
[
∂k−1

z̄ φ
]−(t)G+ fk−1(t), t ∈ ∂D,

lim inf
R→+∞

M(R,∂j
z̄φ)

Rr−j = Lj < +∞, j = 0, 1, 2, . . . , k − 1,
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with fl ∈ H
μ(∂D,C)(l = 0, 1, 2, . . . , k − 1), M(R, ∂l

z̄φ) = max
|z|=R

∣∣∂l
z̄φ(z)

∣∣, and

(��)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂z̄ − λ)kφ(z) = 0, z ∈ D,
φ+(t) = φ−(t)G+ f0(t), t ∈ ∂D,[
(∂z̄ − λ)φ

]+(t) =
[
(∂z̄ − λ)φ

]−(t)G+ f1(t), t ∈ ∂D,
...

...[
(∂z̄ − λ)lφ

]+(t) =
[
(∂z̄ − λ)lφ

]−(t)G+ fl(t), t ∈ ∂D,
...

...[
(∂z̄ − λ)k−1φ

]+(t) =
[
(∂z̄ − λ)k−1φ

]−(t)G+ fk−1(t), t ∈ ∂D,

lim inf
R→+∞

M(R,∂j
z̄φλ)

Rr−j = Lj < +∞, j = 0, 1, 2, . . . , k − 1,

where fl ∈ H
μ(∂D,C) and M(R, ∂l

z̄φλ) = max
|z|=R

∣∣∂l
z̄e

−λx0φ(z)
∣∣. [

∂l
z̄φ

]±(t) and[
(∂z̄ − λ)lφ

]±(t) with λ ∈ C\{0} are defined analogously to φ±(t), t ∈ ∂D as
above for l = 0, 1, 2, . . . , k− 1. Moreover, when k = 2, problems (�) and (��)
further reduce to the cases for bi-analytic functions in [4].

This implies the corresponding classical Riemann boundary value prob-
lems for classic poly-analytic functions and meta-analytic functions on the unit
disk in the complex plane(see references e.g. [2–5] or elsewhere) can be solved
by the way of the poly-Cauchy type integral operator, which is different from
the method in the reference [30].

In what follows we take a polynomial p(λ) = λk + a1λ
k−1 + · · · + ak(ai ∈

C, i = 1, 2, . . . , k) with k ∈ N, k � 2, and consider a polynomially generalized
Cauchy–Riemann operator

p(D) = Dk + a1Dk−1 + · · · + akI

where I denotes the identity operator. We call the polynomial p(λ) the char-
acteristic polynomial of p(D). The solutions to the polynomially generalized
Cauchy–Riemann equation p(D)φ = 0 are the so-called polynomially mono-
genic functions. In the following we denote

ker p(D) = {φ : Ω ⊂ R
n+1 → Cn

∣∣p(D)φ = 0}.
Since p as a complex polynomial can be decomposed into

p(λ) = (λ− λ1)n1(λ− λ2)n2 · · · (λ− λm)nm ,

where
∑m

i=1 ni = k, ni ∈ N (i = 1, 2, · · · ,m), λi ∈ C (i = 1, 2, . . . ,m) are
the zeros of the characteristic polynomial p(λ) = 0, the associated polynomial
operator p(D) has the following decomposition

p(D) = Dn1
λ1

Dn2
λ2

· · · Dnm

λm
. (11)

Hereby, the operators Dni

λi
� (D − λi)ni(i = 1, 2, . . . ,m) commute with each

other.
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RBVP IV. Find a function φ ∈ Ck(B±,Cn) such that all functions

φ,Ds
λi

(
ni∑

j=1

ci,j li,j(D)φ
)

can be continuously extended to Sn from B±, respec-

tively, and

(v)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p(D)φ(x) = 0, x ∈ B±,[
Ds

λi

(
ni∑

j=1

ci,j li,j(D)φ
)]+

(t)

=
[
Ds

λi

(
ni∑

j=1

ci,j li,j(D)φ
)]−

(t)G+ fi,s(t), t ∈ Sn,

where
[
Ds

λi

(
ni∑

j=1

ci,j li,j(D)φ
)]±

(t) is defined similarly to φ±(t), t ∈ Sn, as

above and

p(D) = (D − λ1)n1(D − λ2)n2 · · · (D − λm)nm ,

i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, ci,j =
1

(ni − j)!

[
dni−j

dλni−j

(λ− λi)ni

p(λ)

]∣∣∣∣
λ=λi

,

li,j(D)φ � (D − λ1)n1((D − λ2)n2

· · · (D − λi)ni−j(D − λi+1)ni+1 · · · (D − λm)nmφ),

Ds
λi
φ(s = 0, 1, 2, . . . , ni − 1) is defined similarly to Dk

λφ for pairwise different
λi ∈ C with Dλi

� D − λi, fi,s ∈ H
μ(Sn,Cn), G is an invertible constant of

Cn.

Theorem 4.4. Boundary value problem (v) is solvable and its solution can be
expressed in the form

φ(x) =
m∑

i=1

φi(x), x ∈ B±,

where the function φi are given as

φi(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ni−1∑
s=0

∫
Sn E

s
λi

(y − x)dσye
−λiy0fi,s(y)

+
ni−1∑
s=0

+∞∑
li,s=0

eλix0xs
0Pli,s

(x), x ∈ B+,

ni−1∑
s=0

∫
Sn E

s
λi

(y − x)dσye
−λiy0fi,s(y)G−1

+
ni−1∑
s=0

+∞∑
li,s=0

eλix0xs
0Pli,s

(x)G−1, x ∈ B−,

with function Pli,s
(x) being an inner spherical monogenic polynomial of order

li,s on the variable x ∈ R
n+1.
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Proof. Applying Lemma 4 in [13] or [22,21,30], we obtain

φ(x) =
m∑

i=1

ni∑
j=1

1
(ni − j)!

[
dni−j

dλni−j

(λ− λi)ni

p(λ)

]∣∣∣∣
λ=λi

li,j(D)φ(x) �
m∑

i=1

φi(x),

where li,j(D)φ(x) is defined as above and p(λ) =
∏m

i=1(λ−λi)ni is the charac-
teristic polynomial of p(D) with λi, ni(i = 1, 2, . . . ,m) as above. Let us remark
that by construction we have Dni

λi
φi(x) = 0 for i = 1, 2, . . . ,m. Therefore, in

view of Theorem 6 in [13] or [21,22,30], boundary value problem (v) is equiv-
alent to the following m boundary value problems

(vi)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dni

λi
φi(x) = 0, x ∈ B±, i = 1, 2, . . . ,m

φ+
i (t) = φ−

i (t)G+ fi,0(t), t ∈ Sn,[Dλi
φi

]+(t) =
[Dλi

φi

]−(t)G+ fi,1(t), t ∈ Sn,
...

...[Ds
λi
φi

]+(t) =
[Ds

λi
φi

]−(t)G+ fi,s(t), t ∈ Sn,
...

...[Dni−1
λi

φi

]+(t)
=

[Dni−1
λi

φi

]−(t)G+ fi,ni
(t), t ∈ Sn,

where
[Ds

λi
φi

]±(t) is defined similarly to φ±(t), t ∈ Sn, as above for s =
0, 1, 2, . . . , ni − 1.

As λi ∈ C(i = 1, 2, . . . ,m) and fi,j ∈ H
μ(Sn,Cn)(i = 1, 2, . . . ,m, j =

1, 2, . . . , ni), using Theorems 4.2,4.3 we get the solution to boundary value
problem (vi) as

φ(x) =
m∑

i=1

φi(x), x ∈ B±,

where the function φi given by

φi(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ni−1∑
s=0

∫
Sn E

s
λi

(y − x)dσye
−λiy0fi,s(y)

+
ni−1∑
s=0

+∞∑
li,s=0

eλix0xs
0Pli,s

(x), x ∈ B+,

ni−1∑
s=0

∫
Sn E

s
λi

(y − x)dσye
−λiy0fi,s(y)G−1

+
ni−1∑
s=0

+∞∑
li,s=0

eλix0xs
0Pli,s

(x)G−1, x ∈ B−.

and function Pli,s
being an inner spherical monogenic polynomial of order li,s

on the variable x ∈ R
n+1. �
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Corollary 4.4. Consider boundary value problem (v). If it holds

lim inf
R→+∞

M(R,Dsφi)
Rr−s

= Li,s < +∞, r � s− 1, s = 0, 1, 2, . . . , ni − 1,

i = 1, 2, . . . ,m,

where M(R,Dsφi) � max
|x|=R

∣∣∣Ds(e−λix0φi(x))
∣∣∣(s = 0, 1, 2, . . . , ni − 1) and r is a

non-negative integer, then the solution to problem (v) can be written as

φ(x) =
m∑

i=1

φi(x), x ∈ B±,

where

φi(x) =

⎧⎪⎪⎨
⎪⎪⎩

ni−1∑
s=0

∫
Sn E

s
λi

(y − x)dσye
−λiy0fi,s(y) + eλix0Pr(x), x ∈ B+,

ni−1∑
s=0

∫
Sn E

s
λi

(y − x)dσye
−λiy0fi,s(y)G−1 + eλix0Pr(x)G−1, x ∈ B−,

and function Pr being a polynomial function of total degree no greater than r
on the variable x ∈ R

n+1. Moreover, when r = 0, the solution to boundary
value problem (v) takes the form

φ(x) =
m∑

i=1

φi(x), x ∈ B±,

where

φi(x) =

⎧⎪⎪⎨
⎪⎪⎩

ni−1∑
s=0

∫
Sn E

s
λi

(y − x)dσye
−λiy0fi,s(y) + eλix0d, x ∈ B+,

ni−1∑
s=0

∫
Sn E

s
λi

(y − x)dσye
−λiy0fi,s(y)G−1 + eλix0dG−1, x ∈ B−,

and d ∈ Cn is a constant.

Remark 2. When n = 1, R
2

� C, i.e., z = x0 +x1e1 ∈ C and ∂z̄ = ∂x0 +∂x1e1
with e21 = −1 and D = {|z| < 1 : z ∈ C} denotes the unit disk in C with
boundary ∂D =

{|z| = 1 : z ∈ C}, boundary value problem (v) reduces to
the corresponding Riemann boundary value problem for classic poly-analytic
and meta-analytic functions (see references e.g. [2–5] or elsewhere) on the unit
disk in the complex plane, respectively. Therefore, problem (v) provides a gen-
eralization of Riemann boundary value problems for classic poly-analytic and
meta-analytic functions.

When n = 2, the considered problem (v) corresponds exactly to the
transmission problem for null solutions to polynomially generalized Cauchy–
Riemann operator on the sphere of R

3. This means that all of the boundary
value problems are solved by the way of the poly-Cauchy type integral opera-
tor, which is new and different from the ideas presented in [30]. Moreover, the
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considered RBVPs have important applications in elasticity, fluid mechanics,
electromagnetic field theory and so on.

Remark 3. In this paper all of the results about RBVPs are given for bound-
ary data in spaces of Hölder-continuous functions. In fact the corresponding
results about the same RBVPs still hold for boundary data in the Sobolev
spaces.

References

[1] Vekua, I.N.: Generalized Analytic Functions. Nauka, Moscow (1959)

[2] Balk, B.M.: On Polyanalytic Functions. Akademie Verlag, Berlin (1991)

[3] Jinyuan, D., Yufeng, W.: On Riemann boundary value problems of polyana-
lytic functions and metaanalytic functions on the closed curves. Complex Vari-
ables 50(7–11), 521–533 (2005)

[4] Begehr, H., Chaudharyb, A., Kumarb, A.: Boundary value problems for bi-poly-
analytic functions. Complex Variables Elliptic Equ. 55(1–3), 305–316 (2010)

[5] Begehr, H., Hile, N.G.: A hierarchy of integral operators. Rocky Mountain
J. Math. 27(3), 669–706 (1997)

[6] Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis, Research Notes in
Mathematics, vol. 76. Pitman Publication, Boston-London-Melbourne (1982)

[7] Delanghe, R., Sommen, F., Soucek, V.: Clifford Algebra and Spinor-Valued
Functions. Kluwer Academic, Dordrecht (1992)
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