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Abstract. In this paper we discuss different generalizations of the
Cauchy–Riemann system and their connection with the static Maxwell
system. In particular, this allows us to present relations between slice-
monogenic functions and hypermonogenic functions, as well as to pro-
vide a physical interpretation of slice-monogenic functions. Furthermore,
we present an explicit and complete set of basic solutions of a new class
of axial-hypermonogenic functions in R

3. In the end we determine the
symmetry operators for the class of axial-hypermonogenic functions.
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1. Introduction, Preliminaries, and Notations

1.1. Introduction and Preliminaries

In 2010 Khmelnytskaya et al. [20] studied an important class of meridional
electrostatic fields as analytic solutions of the static Maxwell system in axially
symmetric inhomogeneous media in R

3 = {(x0, x1, x2), xj ∈ R, j = 0, 1, 2}
with dielectric permittivity ε = ε(x0,

√
x2
1 + x2

2)
{

div (ε �E) = 0
curl �E = 0,

(1.1)

∗Corresponding author.
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depending on the cylindrical radial variable
√

x2
1 + x2

2 and the independent
variable x0. Hereby, div and curl denote the usual divergence and curl op-
erators. There are several important special cases of system (1.1). First and
foremost one has the well-known Riesz system or static Maxwell system in
homogeneous media in R

3 associated to a dielectric permittivity ε = 1,
whose solutions are the object of study in modern quaternionic analysis (see,
e.g., [18,28]). This particular Riesz system written in terms of its components
becomes (see, e.g., [18,28]):

⎧
⎪⎨

⎪⎩

∂u0
∂x0

− ∂u1
∂x1

− ∂u2
∂x2

= 0
∂u0
∂x1

= −∂u1
∂x0

, ∂u0
∂x2

= −∂u2
∂x0

,
∂u1
∂x2

= ∂u2
∂x1

,

(1.2)

where �E = (E0, E1, E2) := (u0,−u1,−u2).
We say that a scalar C2-function h = h(x0, x1, x2) is a harmonic po-

tential function associated to the C1-vector field �E if u0 = ∂h
∂x0

and uj =
− ∂h

∂xj
, j = 1, 2. More important, these first order systems arise from factoriz-

ing the Laplace operator by the Cauchy–Riemann and its adjoint operator.
In 1992 a modified quaternionic analysis was developed on the basis of

the hyperbolic version of the Laplace equation in R
3 [26,27]

x2Δh − ∂h

∂x2
= 0. (1.3)

In analogy to the previous systems its C2-solutions h were called hyperbol-
ically harmonic functions. If x2 �= 0 then equation (1.3) further reduces
to

x2Δh − ∂h

∂x2
= x2

2div (x−1
2 grad h) = 0. (1.4)

The corresponding first-order system (see, e.g., [26–28]) has the form
⎧
⎪⎨

⎪⎩

x2(∂u0
∂x0

− ∂u1
∂x1

− ∂u2
∂x2

) + u2 = 0
∂u0
∂x1

= −∂u1
∂x0

, ∂u0
∂x2

= −∂u2
∂x0

,
∂u1
∂x2

= ∂u2
∂x1

,

(1.5)

where again grad h = �E := (u0,−u1,−u2) for C1−components uj . More
important, under a simple change of dependent variables this system is a
particular case of the static Maxwell system (1.1) in an inhomogeneous media
with dielectric permittivity ε = x2

−1 [28].
Hereby, Leutwiler gave a new interpretation of the Fueter’s construction

for a class of functions of the reduced quaternionic variable associated with
classical holomorphic functions under the special condition x1

∂h
∂x2

= x2
∂h
∂x1

(see, e.g., [4,5,26,27]). Additionally, he constructed analytic solutions of (1.5)
using properties of analytic functions of reduced quaternionic variables. In the
early 2000 a class of reduced quaternion-valued hypermonogenic functions
corresponding to the class of C1-solutions of (1.5) was described in [11,12].

In this paper we investigate a similar type of Riesz system (or static
Maxwell system in homogeneous media) associated to a dielectric permittivity
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depending on a cylindrical variable. Indeed, the first author (see, e.g., [4–
6]) studied a new axially symmetric generalization of the Cauchy–Riemann
system in R

n+1, with particular emphasis to the case of R3. This new axially
symmetric system takes the form:

⎧
⎪⎨

⎪⎩

(x2
1 + x2

2)(
∂u0
∂x0

− ∂u1
∂x1

− ∂u2
∂x2

) + (x1u1 + x2u2) = 0
∂u0
∂x1

= −∂u1
∂x0

, ∂u0
∂x2

= −∂u2
∂x0

,
∂u1
∂x2

= ∂u2
∂x1

,

(1.6)

and it corresponds to the static Maxwell system in axially symmetric in-
homogeneous media with dielectric permittivity depending on a cylindrical
coordinate, that is, ε = ρ−1 := (x2

1 + x2
2)

−1/2.

Assuming ρ2 = x2
1 + x2

2 �= 0, this system is associated to the axially
symmetric Laplace–Beltrami equation (see, e.g., [6]):

ΔBh := (x2
1 + x2

2)Δh −
(

x1
∂h

∂x1
+ x2

∂h

∂x2

)
= 0, (1.7)

where again h as a potential is linked to the components us, s = 0, 1, 2
via grad h = �E := (u0,−u1,−u2) for some C1-components uj . For ρ =√

x2
1 + x2

2 �= 0 the axially symmetric Laplace–Beltrami equation (1.7) can
be rewritten as

(x2
1 + x2

2)Δh −
(

x1
∂h

∂x1
+ x2

∂h

∂x2

)
= ρ3div(ρ−1grad h) = 0. (1.8)

The axially symmetric system (1.6) allow us to construct, in particular, ana-
lytic solutions of the static Maxwell system in R

3 in axially symmetric inho-
mogeneous media with dielectric permittivity ε = ρ−1.

One must add that both systems, (1.6) and (1.5), represent non-Eucli-
dean modifications of (1.2) [27,28]. But in contrast to classical hyperbolic
metric ds2 = dx0

2+dx1
2+dx2

2

x22 on the half-space (x2 > 0) which is closely
connected with system (1.5) (see, e.g., [27,28]), system (1.6) is now associated
to a new axially symmetric metric (see [6]) given, outside the axis x0, by:

ds2 =
dx0

2 + dx1
2 + dx2

2

ρ2
=

dx0
2 + dρ2

ρ2
=

dr2

r2 − x0
2

=
dr2

r2 sin2 ϕ
. (1.9)

In this paper we will show the connections of system (1.6) with other
classical systems of quaternionic analysis, like slice-monogenic functions. This
will lead to some remarks about the practical applicability of such systems.
Furthermore, using the inherent symmetries of such we are going to construct
basic solutions which allow us to represent all solutions of (1.6).

1.2. Notations

The real algebra of quaternions H is a four dimensional skew algebra over
the real field generated by real unity 1 and three imaginary unities i, j, and
k satisfy to the following multiplication rules

i2 = j2 = k2 = ijk = −1, ij = −ji = k. (1.10)
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An arbitrary quaternion is written as q = x0 + ix1 + jx2 + kx3 and we define
its scalar and vectorial parts as

Sc(q) = x0, V ec(q) = ix1 + jx2 + kx3,

respectively. Moreover, the conjugation of a quaternion is defined as the au-
tomorphism

q �→ q := Sc(q) − V ec(q).

In such way, we obtain the Euclidean norm in R
4

‖q‖2 := qq = x2
0 + x2

1 + x2
2 + x2

3,

and the following identification

q = x0 + ix1 + jx2 + kx3 ∼ (x0, x1, x2, x3)

between H and R
4 is valid. Also, for every non-zero quaternion q a unique

inverse exists, q−1 = q/‖q‖2.
We obtain the space of reduced quaternions by imposing x3 = 0. Thus,

the reduced quaternionic variable is represented by x = x0 + ix1 + jx2 and,
from now on, we identify it with the vector (x0, x1, x2) ∈ R

3.
We consider Ω ⊂ R

3 an open domain (with respect to the Euclidian
metric). A reduced quaternionic function of reduced quaternionic variable
will be represented as

u(x0, x1, x2) = u0(x0, x1, x2) + iu1(x0, x1, x2) + ju2(x0, x1, x2),

where us : Ω ⊂ R
3 → R, s = 0, 1, 2. Moreover, properties such as continuity

will be ascribed to u if and only if all its components us verify it, that is,
u ∈ C2(Ω) iff us ∈ C2(Ω), for s = 0, 1, 2.

We are now in conditions to characterize solutions of system (1.6):

Definition 1.1. Let Ω ⊂ R
3 be an open set. If u = u0 + iu1 + ju2 : Ω → R

3

is in C1(Ω) and its components satisfy (1.6) then we say that u is an axial-
hypermonogenic function in Ω.

We finalize the section with the notation used for our cylindrical coor-
dinates. As seen,

x = x0 + ix1 + jx2 = x0 + iρ cos θ + jρ sin θ,

that is to say,

x0 = x0, x1 = ρ cos θ, x2 = ρ sin θ,

with ρ =
√

x2
1 + x2

2, and θ = arctan x2
x1

(x1 �= 0). Moreover, we denote by

r =
√

x2
0 + x2

1 + x2
2 =

√
x2
0 + ρ2

the norm of our reduced quaternionic variable x.
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2. Two Generalizations of the Cauchy–Riemann System in R
3

in Cylindrical Coordinates and its Connection with the
Class of Slice-Monogenic Functions

The differences and similarities of the above mentioned systems can best
be seen in terms of cylindrical coordinates. This is due to the fact that it is
closely connected with Fueter’s construction [13] and the symmetry of system
(1.6). Indeed, restricting to the meridional plane spanned by (x0, ρ) the Riesz
system (1.2) becomes a Vekua-type system (see, e.g., [21]):

{
ρ(∂u0

∂x0
− ∂uρ

∂ρ ) − uρ = 0,
∂u0
∂ρ = −∂uρ

∂x0
,

(2.1)

where

u0 =
∂h

∂x0
, uρ = −∂h

∂ρ
. (2.2)

In terms of Fueter’s construction we have:

F (x) = u0(x) + iu1(x) + ju2(x) = u0(x0, ρ) + I uρ(x0, ρ), (2.3)

with

u1 =
x1

ρ
uρ(x0, ρ) = uρ(x0, ρ) cos θ,

u2 =
x2

ρ
uρ(x0, ρ) = uρ(x0, ρ) sin θ.

Furthermore, we also recall that the Laplace equation under conditions ∂h
∂θ =

∂2h
∂θ2 = 0 can be represented in the form of the Weinstein equation

ρ

(
∂2h

∂x0
2

+
∂2h

∂ρ2

)
+ κ

∂h

∂ρ
= 0 (2.4)

in the framework of generalized axially symmetric potential theory (GASPT,
see e.g., [10,16,19,31]) with integer parameter κ.

Our system (1.6) can be considered as a Cauchy–Riemann system in
the meridional plane spanned by (x0, ρ):

{
∂u0
∂x0

− ∂uρ

∂ρ = 0,
∂u0
∂ρ = −∂uρ

∂x0
,

(2.5)

where, in terms of Fueter’s construction, we have

F (x) = u0 + iu1 + ju2 = u0(x0, ρ) + I uρ(x0, ρ),

u1 = uρ(x0, ρ) cos θ, u2 = uρ(x0, ρ) sin θ, uρ = −∂h

∂ρ
. (2.6)

Hereby, one can easily see the difference with system (1.5) which does
not have a nice form when restricted to the variables (x0, ρ). For convenience
to the reader we just provided the following hyperbolic version of the Laplace
equation (1.3):

sin2 θ

(
∂2h

∂x0
2

+
∂2h

∂ρ2

)
= 0. (2.7)
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Let us give some remarks on the above systems, in particular about
its connection with slice-monogenic functions in R

3. In 2007 Gentili and
Struppa [9,14] defined Cullen regular functions (nowadays mainly called slice-
monogenic or slice-regular functions, see, e.g. [7,15]). These are defined as
reduced quaternion-valued functions F which fulfill the following equation
DF = ( ∂

∂x0
+I ∂

∂ρ )F = 0 on each slice domain belonging to the plane spanned
by 1 and I ∈ S2. Let us point out that a priori D and F are non-commutative
which allows in fact to define left- and right-slice-monogenic functions [8].

Now, if we additionally impose F being of the form F = u0(x0, ρ) +
Iuρ(x0, ρ) then the above definition can be written as the Cauchy–Riemann
system (2.5) in the meridional plane:

{
∂u0
∂x0

− ∂uρ

∂ρ = 0,
∂u0
∂ρ = −∂uρ

∂x0
,

which corresponds to Fueter’s construction [13]. In 2008 Gürlebeck, Habetha
and Sprößig [17] described basic analytical properties of elementary radially
holomorphic functions in R

n+1, in particular the paravector-valued powers
and the exponential function. Here radially holomorphic functions also cor-
respond to Fueter’s construction and is also another way of looking at slice-
monogenic functions of the special type (2.5).

For us it is important to point out that the class of slice-monogenic
functions can be physically interpreted as the class of solutions of the static
Maxwell system in axially symmetric inhomogeneous medium with dielectric
permittivity ε = ρ−1 in R

3, thus, characterizing meridional electrostatic
fields in terms of [20].

Let us look at some examples generated by specific potentials which are
standard examples in the modeling of electrostatic potentials.

Example 1. The function f(x) = x−1 = grad h, x �= 0, conjugated to
the reduced quaternionic inversion describes the classical inversion trans-
formation in R

3. The inversion transformation can be interpreted as an
electrostatic field of a single isolated positive electric charge in the case of
the static Maxwell system in inhomogeneous medium with dielectric per-
mittivity ε = ρ−1 in R

3. The potential function has the following form:
h(x0, x1, x2) = ln |x| + C = 1

2 ln(x2
0 + x2

1 + x2
2) + C (C is an arbitrary con-

stant).

Example 2. Consider the n-th power as function of the reduced quaternionic
variable F (x) = xn. The restriction to the unit sphere S2 in R

3 can be
characterized as the reduced quaternionic form of the exponential function
eInϕ on S2, instead of the unit circle S1 in classical complex analysis (see,
e.g., [18] in modern quaternionic analysis).
Functions xn and xn map the unit sphere S2 to itself in R

3.
Corresponding meridional electrostatic fields:
F (x) = xn = rn(cos nϕ − i sin nϕ cos θ − j sin nϕ sin θ).
The potential function has the following form:
h(x0, x1, x2) = rn+1 cos(n + 1)ϕ + C (C is an arbitrary constant).
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On the other side, x−n = r−n[cos(−nϕ)+ i sin(−nϕ) cos θ+j sin(−nϕ) sin θ].
Corresponding meridional electrostatic fields:
x−n = r−n(cos nϕ + i sin nϕ cos θ + j sinnϕ sin θ).
Functions xn and xn map the interior of the unit ball B3 to itself in R

3,
whereas functions x−n and x−n map the interior of the unit ball B3 to the
exterior of B3.
The potential function for electrostatic fields x−n, n �= 1, has the following
form: h(x0, x1, x2) = r−n+1 cos(−n + 1)ϕ + C (C is an arbitrary constant).

Example 3. The exponential function of the reduced quaternionic variable
F (x) = eγx = eγx0(cos(γρ) + I sin(γρ)), where γ ∈ R.
Corresponding meridional electrostatic fields:
F (x) = eγx = eγx0(cos(γρ) − I sin(γρ)).
Functions eγx and eγx map the horizontal plane x0 = 0 to the sphere of radius
eγx0 in R

3. Respectively functions eγx and eγx map the plane x0 = a = const
to the sphere of radius eγa in R

3.
The potential function has the following form:
h(x0, x1, x2) = eγx0 cos(γρ) + C (C is an arbitrary constant).

3. Explicit Representations of a General Class of Solutions of
the Static Maxwell System in Inhomogeneous Medium with
Dielectric Permittivity ε = ρ−1

As was mentioned in the beginning in 2010 Khmelnytskaya et al. [20] stud-
ied properties of class of the meridional electrostatic fields, and additionally
studied properties of class of the transverse electrostatic fields as analytic
solutions of the static Maxwell system in axially symmetric inhomogeneous
media.

In the case of meridional fields the vector �E is independent of the angular
coordinate θ, that is, the component Eθ of the vector �E vanishes identically.
This means that the vector of such field belongs to a plane spanned by the
axis x0 and the distance described by the cylindrical radial variable. The
field then is completely described by a two-component vector-function in the
meridional plane.

In the other case we have the condition that the vector �E is independent
of x0 and the first component vanishes. The vector representing such a field
belongs to a plane perpendicular to the axis x0 and the corresponding model
is described by a 2D-vector in the plane (x1, x2).

Thus, the above statement describes the physical meaning of the cylin-
drical radial variable in both cases of system (1.5) and system (1.6). Further-
more, under the special condition x1

∂h
∂x2

= x2
∂h
∂x1

and x2 �= 0 solutions of
the system (1.5) are solutions of the system (1.6) and vice versa.

Our examples of elementary functions of the reduced quaternionic vari-
able, associated with classical holomorphic functions, represent meridional
fields �E = (E0, E1, E2) of the static Maxwell system (1.1) in inhomogeneous
medium with dielectric permittivity ε = ρ−1: In particular, we have to deal
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with meridional fields of positive and negative single charges. Potential func-
tions h = h(x0, x1, x2) have the physical meaning of electrostatic potentials.

More general models of electrostatic fields in inhomogeneous media in
the form of analytical solutions of the static Maxwell system are very in-
teresting in many applications (see, e.g., [23,24]). In particular, problems of
refraction in inhomogeneous dielectric media are actual in geometrical optics
(see, e.g., [3]). This connection with slice-monogenic functions allows to adapt
the ideas of [25] to the present case which we are planning to do in future
work.

To construct basic solutions of system (1.6) we proceed in the usual way
by separation of variables {(x0, ρ)} and {(θ)}(see, e.g., [1,2,29]).

Since the Laplace operator in R
3 in cylindrical coordinates for h(x0, ρ, θ)

= g(x0, ρ)s(θ) is given by

Δh = s(θ)
∂2g

∂x0
2

+ s(θ)
∂2g

∂ρ2
+

s(θ)
ρ

∂g

∂ρ
+

g

ρ2
∂2s

∂θ2
,

we obtain for the axially symmetric Laplace–Beltrami equation (1.7) in R
3

in cylindrical coordinates under condition h(x0, ρ, θ) = g(x0, ρ)s(θ):

s(θ)ρ2
(

∂2g

∂x0
2

+
∂2g

∂ρ2

)
+ g

∂2s

∂θ2
= 0. (3.1)

If g(x0, ρ)s(θ) �= 0 we get

ρ2

g

(
∂2g

∂x0
2

+
∂2g

∂ρ2

)
= − 1

s(θ)
∂2s

∂θ2
= λ2 (λ = const ∈ R). (3.2)

Then Eq. (3.2) is equivalent to the following system of equations
{

∂2g
∂x02 + ∂2g

∂ρ2 − λ2

ρ2 g = 0,
d2s(θ)

dθ2 + λ2s(θ) = 0.
(3.3)

In particular, solutions of the second equation in (3.3) have the well-
known form s(θ) = C1 cos λθ + C2 sinλθ. Additionally, the periodicity of s
implies λ ∈ Z.

For the first equation in (3.3) let us consider solutions in the form:
g(x0, ρ) = eβx0Υ(ρ), β = const ∈ R, then

∂2g

∂x0
2

+
∂2g

∂ρ2
− λ2

ρ2
g = β2eβx0Υ(ρ) + eβx0

∂2Υ(ρ)
∂ρ2

− λ2

ρ2
eβx0Υ(ρ) = 0, (3.4)

or, since Υ(ρ) is a function of one real variable ρ, in the equivalent form:

ρ2
d2Υ(ρ)

dρ2
+ (β2ρ2 − λ2)Υ(ρ) = 0. (3.5)

Changing Υ(ρ) into a function Υ1(ρ1) according to ρ = βρ1
−1, Υ =

β− 1
2 ρ

1
2
1 Υ1 (see, e.g., [22,30]) allows us to transform the linear differential

equation (3.5) to a Bessel equation:

ρ21
d2Υ1(ρ1)

dρ12
+ ρ1

dΥ1(ρ1)
dρ1

+
(

ρ21 − λ2 − 1
4

)
Υ1(ρ1) = 0. (3.6)
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The Static Maxwell System

Its linear independent solutions are Υ1(ρ1) = A1J√
4λ2+1

2

(ρ1) + A2

J−
√

4λ2+1
2

(ρ1) which leads to the solution

Υ(ρ) = A1

√
2β

π

1
ρ
j√

4λ2+1−1
2

(
β

ρ

)
+ A2(−1)n+1

√
2β

π

1
ρ
y√

4λ2+1−1
2

(
β

ρ

)

with jn and yn denoting the spherical Bessel functions of the first kind.
This leads to the following theorem.

Theorem 3.1. Basic solutions of the axially symmetric Laplace–Beltrami equa-
tion (1.8) are given in cylindrical coordinates by

hβ(x0, ρ, θ) =
∞∑

λ=0

eβx0gβ(ρ)sβ(θ),

with

gβ(ρ) =

√
2β

π

1
ρ

(
A1,λj√

4λ2+1−1
2

(
β

ρ

)
+ A2,λy√

4λ2+1−1
2

(
β

ρ

))

and

sβ(θ) = (C1,λ cos(λθ) + C2,λ sin(λθ))

for β ∈ R and A1,λ, A2,λ, C1,λ, C2,λ being constants.

The above theorem allows us to present special solutions for system
(1.6). Since we have

∂ρgβ(ρ) =

√
2β

π

((
− 1

ρ2

)(
A1,λj√

4λ2+1−1
2

(
β

ρ

)
+ A2,λy√

4λ2+1−1
2

(
β

ρ

))

− β

ρ3

(
A1,λ

(
j√

4λ2+1−3
2

(
β

ρ

)
− (n + 1)ρ

β
j√

4λ2+1−1
2

(
β

ρ

))

−A2,λ

(
y√

4λ2+−3
2

(
β

ρ

)
− (n + 1)ρ

β
y√

4λ2+1−1
2

(
β

ρ

))))

we get the following theorem.

Theorem 3.2. Basic solutions of system (1.6) have the form

u0(x0, ρ, θ) = β
∞∑

λ=0

eβx0gβ(ρ)sβ(θ)

u1(x0, ρ, θ) =
∞∑

λ=0

eβx0

√
2β

π

1
ρ2

(

cos(θ)

×
(

−
(

A1,λj√
4λ2+1−1

2

(
β

ρ

)
+ A2,λy√

4λ2+1−1
2

(
β

ρ

))

− β

ρ

(
A1,λ

(
j√

4λ2+1−3
2

(
β

ρ

)
− (n + 1)ρ

β
j√

4λ2+1−1
2

(
β

ρ

))

−A2,λ

(
y√

4λ2+−3
2

(
β

ρ

)
− (n + 1)ρ

β
y√

4λ2+1−1
2

(
β

ρ

))))

× (C1,λ cos(λθ) + C2,λ sin(λθ)))
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− sin θ

((
A1,λj√

4λ2+1−1
2

(
β

ρ

)
+ A2,λy√

4λ2+1−1
2

(
β

ρ

)))

× (−C1,λ sin(λθ) + C2,λ cos(λθ)))

)

u2(x0, ρ, θ) =
∞∑

λ=0

eβx0

√
2β

π

1
ρ2

(

sin(θ)

×
(

−
(

A1,λj√
4λ2+1−1

2

(
β

ρ

)
+ A2,λy√

4λ2+1−1
2

(
β

ρ

))

−β

ρ

(
A1,λ

(
j√

4λ2+1−3
2

(
β

ρ

)
− (n + 1)ρ

β
j√

4λ2+1−1
2

(
β

ρ

))

−A2,λ

(
y√

4λ2+−3
2

(
β

ρ

)
− (n + 1)ρ

β
y√

4λ2+1−1
2

(
β

ρ

))))

× (C1,λ cos(λθ) + C2,λ sin(λθ)))

+ cos θ

((
A1,λj√

4λ2+1−1
2

(
β

ρ

)
+ A2,λy√

4λ2+1−1
2

(
β

ρ

)))

× (−C1,λ sin(λθ) + C2,λ cos(λθ)))

)

.

4. First-Order Symmetries

The construction of basic solutions in the previous chapter raises the question
if these solutions generate all possible solutions. To answer this question we
take a look at the first order symmetries, i.e. at all operators L given by

Lu = A0(x)
∂u

∂x0
+ A1(x)

∂u

∂x1
+ A2(x)

∂u

∂x2
+ B(x),

such that

[ΔB , L]u := (ΔBL − LΔB)u = M(x)ΔBu

with an arbitrary first-order differential operator M(x).
For the first term we get

[ΔB , L]u =
(

2
(
x2
1 + x2

2

) ∂A1

∂x1
− 2x1A1 − 2x2A2

)
∂2u

∂x2
1

+
(

2
(
x2
1 + x2

2

) ∂A2

∂x2
− 2x1A1 − 2x2A2

)
∂2u

∂x2
2

+
(

2
(
x2
1 + x2

2

) ∂A0

∂x0
− 2x1A1 − 2x2A2

)
∂2u

∂x2
2

+ 2
(

∂A1

∂x2
+

∂A2

∂x1

)
∂2u

∂x1∂x2
+ 2

(
∂A0

∂x1
+

∂A1

∂x0

)
∂2u

∂x0∂x1

+
(
x2
1 + x2

2

)
(

2
(

∂A0

∂x2
+

∂A2

∂x0

)
∂2u

∂x0∂x2

)
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+
((

x2
1 + x2

2

) (
ΔA1 + 2

∂B

∂x0

)
− x1

∂A0

∂x1
− x2

∂A0

∂x2

)
∂u

∂x0

+
((

x2
1 + x2

2

) (
ΔA1 + 2

∂B

∂x1

)
− x1

∂A1

∂x1
− x2

∂A1

∂x2
− A1

)
∂u

∂x1

+
((

x2
1 + x2

2

) (
ΔA1 + 2

∂B

∂x2

)
− x1

∂A2

∂x1
− x2

∂A2

∂x2
− A2

)
∂u

∂x2

+
(
x2
1 + x2

2

)
ΔB,

while for the second term we have M(x)((x2
1 +x2

2)(
∂2u
∂x2

0
+ ∂2u

∂x2
1

∂2u
∂x2

2
)−x1

∂u
∂x1

−
x2

∂u
∂x2

).
Solving the system arising from the independence of the partial deriva-

tives of u we get as generators for the corresponding Lie algebra the operators
L1 = ∂

∂x0
and L2 = x1

∂
∂x2

− x2
∂

∂x1
= ∂

∂θ .
In the same way for system (1.6) we get the symmetry operators L1 =

∂
∂x0

and L3 = x1
∂

∂x2
−x2

∂
∂x1

+ij = ∂
∂θ +ij as generators. Since these operators

generated the whole algebra we get that all solutions of system (1.6) and
solutions belonging to the kernel of the axially symmetric Laplace–Beltrami
operator are generated by the basic solutions constructed in the previous
section. Additionally, we would like to remark that in view of our observation
of the correspondence between system (1.6) and slice-monogenic functions the
above symmetry operators also represent the symmetry operators for slice-
monogenic functions.
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Birkhäuser, Boston (2000)

[12] Eriksson-Bique, S.-L., Leutwiler, H.: Hypermonogenic functions and Möbius
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