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To K. Gürlebeck

Abstract. In this paper, we study generating functions for the standard
orthogonal bases of spherical harmonics and spherical monogenics in
R

m. Here spherical monogenics are polynomial solutions of the Dirac
equation in R

m. In particular, we obtain the recurrence formula which
expresses the generating function in dimension m in terms of that in di-
mension m−1. Hence we can find closed formulæ of generating functions
in R

m by induction on the dimension m.
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1. Introduction

It is well-known that classical orthogonal polynomials can be defined by gen-
erating functions. This close relationship allows for an indirect study of a
given family of orthogonal polynomials by means of formal manipulations of
its generating function. A classical example is the shifted Newtonian potential
which is the generating function of spherical harmonics (see [30]). Not only
one obtains several properties and recursion formulas of spherical harmonics
by manipulation of the generating function but it also allows to establish
new relationships with other families of orthogonal polynomials (see, for in-
stances, [2], [25]). For example, the Gegenbauer polynomials Cν

k are uniquely
determined by the generating function

1
(1− 2xh + h2)ν

=
∞∑
k=0

Cν
k (x)hk (1)

where ν > 0, x, h ∈ R, |x| ≤ 1 and |h| < 1 (see e.g. [16, p. 18] or [27,
p.173]). The classic approach to generating functions for spherical harmonics
is to separate the angular part and construct the generating function of the
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associated Legendre polynomials [32, 1]. As will be clear in the sequel this
approach to the generating function is not suitable for our purposes and we
will present a different construction.

In [27], a general framework is developed for a study of properties of
polynomial sequences, including the Appell property and generating func-
tions. One of the principal advantages of a generating function is that instead
of studying the action of an operator on each basis function one only needs to
study the action of said operator on the generating function. This was used
to great effect in many areas, such as Umbral calculus, quantum mechanics,
and others [27, 30, 28]. Furthermore, generating functions form a bridge be-
tween analysis and discrete mathematics, by providing a really efficient tool
for solving difference equations [31].

In this paper, we deal with generating functions for the standard orthog-
onal bases of spherical harmonics and spherical monogenics in R

m. Possible
applications of this theory lie in the study of monogenic operators, non-
commutative combinatorics, and structural mechanics. Also, studying differ-
ence equations over the set of monogenic functions or their boundary values
is closely linked with the study of problems in image processing by means of
the so-called monogenic signal.

Orthogonal bases of spherical harmonics are well-known and have been
studied for a long time. Spherical harmonics are useful in many theoretical
areas and on applications such as structural mechanics, etc. In Clifford analy-
sis, a similar role is played by spherical monogenics. Monogenic functions are
defined as Clifford algebra valued solutions f of the equation ∂f = 0 where ∂
is the Dirac operator on R

m. Spherical monogenics are polynomial solutions
of the Dirac equation. Since the Dirac operator ∂ factorizes the Laplace op-
erator Δ in the sense that Δ = −∂2 Clifford analysis can be understood as
a refinement of harmonic analysis. On the other hand, monogenic functions
are at the same time a higher dimensional analogue of holomorphic functions
of one complex variable. See [5, 15, 19, 18] for an account of Clifford analysis.

The first construction of orthogonal bases of spherical monogenics valid
for any dimension was given by F. Sommen, see [29, 15]. In dimension 3, ex-
plicit constructions using the standard bases of spherical harmonics were
done also by K. Gürlebeck, H. Malonek, I. Cação and S. Bock (see e.g.
[3, 8, 9, 10, 11, 12, 13]). From the point of view of representation theory,
the standard bases of spherical harmonics are nothing else than examples
of the so-called Gelfand-Tsetlin bases, see [26]. V. Souček proposed study-
ing these bases in Clifford analysis. In particular, in [4], it is observed that
the complete orthogonal system in R

3 of [3] and F. Sommen’s bases [29, 15]
can be both considered as Gelfand-Tsetlin bases. Actually, it turns out that
Gelfand-Tsetlin bases in all cases so far studied in Clifford analysis are, by
construction, uniquely determined and orthogonal and, in addition, they pos-
sess the so-called Appell property, see [24] for a recent survey, [21, 22] for the
classical Clifford analysis, [14, 23] for Hodge-de Rham systems and [6, 7] for
Hermitian Clifford analysis. Therefore we call them the standard orthogonal
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bases in the sequel. For a detailed historical account of this topic, we refer to
[4].

In this paper, we study generating functions for the standard orthogonal
bases of spherical harmonics and spherical monogenics in R

m. We obtain the
recurrence formula which expresses the generating function in dimension m in
terms of that in dimension m−1, see below Theorem 1 for spherical harmonics
and Theorem 2 for spherical monogenics. Using the recurrence formula, we
can obtain closed formulæ of generating functions in R

m by induction on the
dimension m. This is based on the generating function (1) for the Gegenbauer
polynomials. It seems that analogous results can be obtained also for Hodge-
de Rham systems [23] and even in Hermitian Clifford analysis [7]. But, in the
hermitian case, the generating function for the Jacobi polynomials should be
used instead of (1).

2. Spherical Harmonics

In this section, we study generating functions for spherical harmonics in R
m.

Denote by Bm the unit ball in R
m. Let us recall the standard construction

of an orthogonal basis in the complex Hilbert space L2(Bm,C) ∩ Ker Δ of
L2-integrable harmonic functions g : Bm → C.

One proceeds by induction on the dimension m. Of course, in R
2 the

polynomials harm±
k2

, k2 ∈ N0, given by

harm±
k2

(x) = (x1 ± ix2)k2/(k2!), x = (x1, x2) ∈ R
2, (2)

form an orthogonal basis of the space L2(B2,C) ∩Ker Δ.
Now let m ≥ 3. To construct the bases in higher dimensions, we need

to introduce the following embedding factors. For k, j ∈ N0, we define

F
(k)
m,j(x) = |x|km C

m/2+j−1
k (xm/|x|m), x = (x1, . . . , xm) ∈ R

m (3)

where |x|m =
√
x2
1 + · · ·+ x2

m. Then, it is well-known that in R
m an or-

thogonal basis of the space L2(Bm,C) ∩Ker Δ is formed by the polynomials
harm±

k , k = (k2, . . . , km) ∈ N
m−1
0 , given by

harm±
k (x) = harm±

k2
(x1, x2)

m∏
r=3

F
(kr)
r,k∗r−1

(x1, . . . , xr) (4)

where x = (x1, . . . , xm) ∈ R
m and k∗r = k2 + · · · + kr. See e.g. [16, p. 35]

or [22]. In difference to [22], we use another normalization of the embedding
factors F

(km)
m,j and we also change the notation for indices which in turns

provides a more elegant expression for generating functions.

Definition 1. We define the generating function H±
m of the orthogonal basis

harm±
k , k ∈ N

m−1
0 of spherical harmonics in R

m by

H±
m(x, h) =

∑
k∈N

m−1
0

harm±
k (x) hk
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whenever the series on the right-hand side converges absolutely. Here x ∈ R
m,

h = (h2, . . . , hm) ∈ R
m−1 and hk = hk2

2 · · ·hkm
m .

Obviously, the following result follows easily from (1).

Lemma 1. For x ∈ R
m and hm ∈ R, we have that

∞∑
km=0

F
(km)
m,j (x) hkm

m =
1

(1− 2xmhm + h2
m|x|2m)

m
2 −1+j

whenever |x|m ≤ 1, |hm| < 1 and j ∈ N0.

Now we prove basic properties of the generating functions H±
m.

Theorem 1. For each m ≥ 2 there is a neighborhood Um of 0 in R
m−1 such

that the following statements hold true.

(i) The generating functions H±
m(x, h) are defined if |x|m ≤ 1 and h ∈ Um.

Here x = (x1, . . . , xm) ∈ R
m and h = (h2, . . . , hm) ∈ R

m−1.
(ii) For each k = (k2, . . . , km) ∈ N

m−1
0 , we have that

harm±
k (x) =

1
k!

∂kH±
m(x, h)|h=0, |x|m ≤ 1

where k! = (k2!) · · · (km!) and ∂k = ∂k2

h2
· · · ∂km

hm
.

(iii) For m ≥ 3, |x|m ≤ 1 and h ∈ Um, we have that

H±
m(x, h) = d

1−m
2

m H±
m−1(x, h/dm)

where dm = 1 − 2xmhm + h2
m|x|2m, x = (x1, . . . , xm−1) and h/dm =

(h2/dm, . . . , hm−1/dm).

Proof. We prove this theorem by induction on the dimension m. It is easily
seen that the theorem is true for m = 2. Indeed, we have that

H±
2 (x1, x2, h2) =

∞∑
k2=0

(x1 ± ix2)k2

k2!
hk2
2 = exp((x1 ± ix2)h2).

Now assume that the theorem is true for m − 1. Let H±
m−1(x, h) be defined

for h ∈ Um−1 = (−δ2, δ2) × · · · × (−δm−1, δm−1) and |x|m−1 ≤ 1 and let
|x|m ≤ 1. It is easy to see that

H±
m(x, h) =

∑
k

( ∞∑
km=0

F
(km)
m,k∗m−1

(x) hkm
m

)
harm±

k (x) hk (5)

where the first sum is taken over all k = (k2, . . . , km−1) ∈ N
m−2
0 . By Lemma

1, we have that
∞∑

km=0

F
(km)
m,k∗m−1

(x) hkm
m = d

1−m
2 −(k2+···+km−1)

m

if |hm| < 1. Using this formula and (5), we have that

H±
m(x, h) = d

1−m
2

m

∑
k

harm±
k (x) (h/dm)k = d

1−m
2

m H±
m−1(x, h/dm)
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whenever h ∈ Um = (−δ2/4, δ2/4)× · · · × (−δm−1/4, δm−1/4)× (−1/2, 1/2).
Indeed, dm ≥ (1− hm|x|m)2 > 1/4 if |hm| < 1/2. Hence, if h ∈ Um we have
that h/dm ∈ Um−1 and, by (5), we can easily see that some rearrangement of
the power series defining H±

m(x, h) converges at h. Then Abel’s Lemma [20,
Proposition 1.5.5, p. 23] proves that this power series converges absolutely
on the whole Um, which finishes the proof of the theorem. �

Using the recurrence formula (iii) of Theorem 1, we can find closed
formulæ of generating functions for spherical harmonics in R

m by induction
on the dimension m.

Corollary 1. In particular, we have the following formula

H±
3 (x, h) =

1
(1− 2x3h3 + h2

3|x|23)1/2
exp

(
(x1 ± ix2)h2

1− 2x3h3 + h2
3|x|23

)
.

Here x = (x1, x2, x3) ∈ R
3 and h = (h2, h3) ∈ R

2.

Remark 1. It is well-known that an orthogonal basis of real valued spherical
harmonics in R

m is formed by the polynomials �harm+
k , �harm+

k , k ∈ N
m−1
0 .

Here �z and �z are the real and imaginary part of the complex number z.
Hence the corresponding generating functions are �H+

m, �H+
m.

Remark 2. If one replaces in the definition of the orthogonal basis (4) the
polynomials harm±

k2
(x1, x2) = (x1 ± ix2)k2/(k2!) with

harm
±
k2

(x1, x2) = (x1 ± ix2)k2 , (6)

the corresponding generating functions H
±
m are definitely different from H ±

m

but they obviously satisfy again Theorem 1. In particular, we have that

H
±
2 (x, h2) =

∞∑
k2=0

(x1 ± ix2)k2hk2
2 =

1− (x1 ∓ x2i)h2

1− 2x1h2 + h2
2|x|22

.

Here x = (x1, x2) ∈ R
2 and h2 ∈ R.

3. Spherical Monogenics

In this section, we introduce and investigate generating functions for spherical
monogenics. For an account of Clifford analysis, we refer to [5, 15, 19, 18].
Denote by C�m either the real Clifford algebra R0,m or the complex one Cm,
generated by the elements e1, . . . , em such that e2j = −1 for j = 1, . . . ,m.
As usual, a vector x = (x1, . . . , xm) ∈ R

m corresponds to the element x =
x1e1 + · · · + xmem of the Clifford algebra C�m. Let G ⊂ R

m be open. Then
a continuously differentiable function f : G → C�m is called monogenic if it
satisfies the equation ∂f = 0 on G where the Dirac operator ∂ is defined as

∂ = e1∂x1 + · · ·+ em∂xm . (7)

Denote by L2(Bm, C�m) ∩ Ker ∂ the space of L2-integrable monogenic
functions g : Bm → C�m. It is well-known that L2(Bm, C�m)∩Ker ∂ forms the
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right C�m-linear Hilbert space. Let us recall a construction of an orthogonal
basis in this space which is quite analogous to the harmonic case described
in the previous section, see [22] for more details.

It is easy to see that in R
2 the polynomials monk2

, k2 ∈ N0, given by

monk2
(x) = (x1 − e12x2)k2/(k2!), x = (x1, x2) ∈ R

2, (8)

form an orthogonal basis of the space L2(B2, C�2)∩Ker ∂. Here we write e12 =
e1e2 as usual. Now let m ≥ 3. To construct the bases in higher dimensions,
we need to introduce the embedding factors X

(k)
m,j for k, j ∈ N0, defined as

X
(k)
m,j(x) =

m− 2 + k + 2j
m− 2 + 2j

F
(k)
m,j(x) + F

(k−1)
m,j+1(x) xem (9)

where x = (x1, . . . , xm) ∈ R
m and x = x1e1 + · · ·+xm−1em−1. Here F

(k)
m,j are

given in (3) and we put F (−1)
m,j+1 = 0. Then it is well-known that an orthogonal

basis of the space L2(Bm, C�m) ∩Ker ∂ is formed by the polynomials

monk(x) = X
(km)
m,k∗m−1

X
(km−1)
m−1,k∗m−2

· · ·X(k3)
3,k∗2

monk2
(x1, x2), x ∈ R

m (10)

where k = (k2, . . . , km) ∈ N
m−1
0 and k∗r = k2 + · · ·+ kr. Here

X
(kr)
r,k∗r−1

= X
(kr)
r,k∗r−1

(x1, . . . , xr)

for r = 3, . . . ,m. Let us remark that due to non-commutativity of the Clifford
multiplication the order of factors in the product (10) is important. See [22]
for more details. In comparison with [22], we use another normalization of
the embedding factors X

(km)
m,j and we also change the notation for indices to

get a nice expression for generating functions.

Definition 2. We define the generating function Mm of the orthogonal basis
monk, k ∈ N

m−1
0 of spherical monogenics in R

m by

Mm(x, h) =
∑

k∈N
m−1
0

monk(x) hk

whenever the series on the right-hand side converges absolutely. Here x ∈ R
m

and h = (h2, . . . , hm) ∈ R
m−1.

In particular, it is easily seen that

M2(x1, x2, h2) =
∞∑

k2=0

(x1 − e12x2)k2

k2!
hk2
2 = exp((x1 − e12x2)h2).

Here exp((x1 − e12x2)h2) = exp(x1h2)(cos(x2h2) − e12 sin(x2h2)). To study
the generating functions in higher dimensions we need to know the generating
function of the embedding factors X

(km)
m,j .

Lemma 2. For x ∈ R
m and hm ∈ R, we have that

∞∑
km=0

X
(km)
m,j (x)hkm

m =
1 + hmxem

(1− 2xmhm + h2
m|x|2m)m/2+j
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whenever |x|m ≤ 1, |hm| < 1 and j ∈ N0. Here x = x1e1 + · · ·+ xmem.

Proof. Put ν = m/2− 1+ j. By (9), the series we want to sum up is equal to
∞∑

km=0

km + 2ν
2ν

F
(km)
m,j (x)hkm

m +
∞∑

km=1

F
(km−1)
m,j+1 (x)hkm

m xem = Σ1 + Σ2.

Obviously, by Lemma 1, we get that

Σ2 =
hmxem

(1− 2xmhm + h2
m|x|2m)ν+1

.

Moreover, using Lemma 1 again, we have that

Σ1 =
hm

2ν

∞∑
km=1

F
(km)
m,j (x)kmhkm−1

m +
1

(1− 2xmhm + h2
m|x|2m)ν

and hence

Σ1 =
hm

2ν
d

dhm

1
(1− 2xmhm + h2

m|x|2m)ν
+

1
(1− 2xmhm + h2

m|x|2m)ν
,

which gives

Σ1 =
1− xmhm

(1− 2xmhm + h2
m|x|2m)ν+1

.

Finally, using x = x + xmem we conclude that

Σ1 + Σ2 =
1 + hmxem

(1− 2xmhm + h2
m|x|2m)m/2+j

,

which finishes the proof. �

Now we can prove basic properties of the generating functions Mm quite
similarly as in the harmonic case if, in this case, we use Lemma 2 instead of
Lemma 1. Then we obtain the following result.

Theorem 2. For each m ≥ 2 there is a neighborhood Um of 0 in R
m−1 such

that the following statements hold true.

(i) The generating functions Mm(x, h) are defined if |x|m ≤ 1 and h ∈ Um.
Here x = (x1, . . . , xm) ∈ R

m and h = (h2, . . . , hm) ∈ R
m−1.

(ii) For each k ∈ N
m−1
0 , we have that

monk(x) =
1
k!

∂kMm(x, h)|h=0, |x|m ≤ 1

where k! = (k2!) · · · (km!) and ∂k = ∂k2

h2
· · · ∂km

hm
.

(iii) For m ≥ 3, |x|m ≤ 1 and h ∈ Um, we have that

Mm(x, h) = (1 + hmxem) d−
m
2

m Mm−1(x, h/dm)

where dm = 1 − 2xmhm + h2
m|x|2m, x = (x1, . . . , xm−1) and h/dm =

(h2/dm, . . . , hm−1/dm).

Using the recurrence formula (iii) of Theorem 2, we can find closed
formulæ of generating functions for spherical monogenics in R

m by induction
on the dimension m.
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Corollary 2. In particular, we have the following formula

M3(x, h) =
1 + h3xe3

(1− 2x3h3 + h2
3|x|23)3/2

exp
(

(x1 − e12x2)h2

1− 2x3h3 + h2
3|x|23

)
.

Here x = (x1, x2, x3) ∈ R
3 and h = (h2, h3) ∈ R

2.

Remark 3. If one replaces in the definition of the orthogonal basis (10) the
polynomials monk2

(x1, x2) = (x1 − e12x2)k2/(k2!) with

monk2
(x1, x2) = (x1 − e12x2)k2 , (11)

the corresponding generating functions Mm are different from Mm but they
obviously satisfy again Theorem 2. In particular, we have that

M2(x, h2) =
∞∑

k2=0

(x1 − e12x2)k2hk2
2 =

1− (x1 + e12x2)h2

1− 2x1h2 + h2
2|x|22

.

Here x = (x1, x2) ∈ R
2 and h2 ∈ R.
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Basel, 1992.
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