
Acta Mathematica Scientia 2016,36B(1):203–214

http://actams.wipm.ac.cn
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Abstract By the characterization of the matrix Hilbert transform in the Hermitian Clifford

analysis, we introduce the matrix Szegö projection operator for the Hardy space of Hermitean

monogenic functions defined on a bounded sub-domain of even dimensional Euclidean space,

establish the Kerzman-Stein formula which closely connects the matrix Szegö projection

operator with the Hardy projection operator onto the Hardy space, and get the matrix Szegö

projection operator in terms of the Hardy projection operator and its adjoint. Furthermore,

we construct the explicit matrix Szegö kernel function for the Hardy space on the sphere as

an example, and get the solution to a boundary value problem for matrix functions.

Key words Hardy space; Hermitean Clifford analysis; Szegö projection; matrix function
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1 Introduction

The Szegö kernel function (for short Szegö kernel) and the Szegö projection, which were

first introduced by the Hungarian mathematician Gábor Szegö in 1921 (see ref. [1]), played an

important role in the development of the complex analysis. The Szegö kernel is a reproducing

kernel for the Hilbert space of all square integrable holomorphic functions defined on a domain

(see refs. e.g. [2, 3]), which is of importance to reveal the properties of the holomorphic map

between two domains and to solve the boundary value problems. For instance, the conformal

mappings onto the canonical domains, the classical functions, and other important objects of

potential theory can be simply expressed in virtue of the Szegö kernels (seen in refs. e.g. [3–5]).

The Szegö projection operator associates with smooth boundary of a domain is of fundamental

interest in the complex analysis. Its action can often be expressed as an integration against
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a distribution, known as the Szegö kernel, and the study of its is naturally introduced for the

space of square integrable function onto Hardy space defined on the boundaries of a domain

(see refs. e.g. [1, 3]). This allows us to deeper understand the geometric and functional analytic

properties in the complex analysis and the harmonic analysis (see refs. e.g. [2, 3]).

However, it is not feasible to obtain the closed formulas of the Szegö kernels for the general

domains of the complex plane. One of the difficulties lies in that one could not obtain an

estimation for these kernels in terms of the geometrical properties of the considered domains.

Only for the special cases, including the unit circle, the Szegö kernels can be computed explic-

itly. Moreover, it is showed by Kerzman and Stein in ref. [2] that the unit circle is the only

planar region, for which the Szegö kernel and the Cauchy kernel coincide. On the contrary,

for the general domains on the complex plane, they established the well-known Kerzman-Stein

formula (see refs. e.g. [2, 3]), which connects the Szegö projection with the Hardy projection.

Later on, in refs. [6–8], Bernstein, Calderbank, Delanghe and their collaborators generalized

the Kerzman-Stein formula to the higher dimensions, making full use of the methods of the

orthogonal Clifford analysis, seen in Refs. e.g. [12–19]. More related results on the Szegö

kernel and the Szegö projection in the orthogonal Clifford analysis can be also found in refs.

e.g. [9–11].

Offering a refinement of the orthogonal case, the Hermitean Clifford analysis, seen in refs.

e.g. [20–24], emerged as a new and successful branch of Clifford analysis. It focuses on the

simultaneous null-solutions of the two complex Hermitean Dirac operators, which recently in-

vokes new tools for the study of circulant (2 × 2) matrix functions. A Cauchy integral formula

in the Hermitean Clifford was constructed in terms of circulant (2 × 2) matrix functions (see

refs. e.g. [25–28]), and the relationship with holomorphic function theory of several complex

variables was observed, seen in refs. e.g. [24–26]. The Hermitean Cauchy transform, which gave

rise to the Hardy projection to be skew, and the related decomposition problems of continuous

functions were discussed in refs. [27, 28]. The new Hilbert-like matrix operator was revealed

by the non-tangential boundary limits of the Hermitean Cauchy transform in refs. e.g. [25, 26].

Much recent progress can be also seen in refs. [29, 30] or elsewhere. Under this setting it is

natural for us to want to know what is the matricial Szegö projection. But, to our knowledge,

little attention is devoted to up to now. This leads us to further consider the Hardy space for

circulant (2 × 2) matrix functions. In the underlying paper, based on refs. [2, 6, 26, 30], we

will first define a proper inner product on the space of square integral circulant (2 × 2) matrix

functions defined on the boundary of a bounded sub-domain in even dimensional Euclidean

space, and introduce the matrix Szegö projection operator to be orthogonal for the Hardy

space of Hermitean monogenic functions defined on a bounded sub-domain of even dimensional

Euclidean space. Then we will establish the Kerzman-Stein formula, which is closely related to

the matrix Szegö projection operator and the Hardy projection operator onto the Hardy space

of Hermitean monogenic functions defined on a bounded sub-domain, and present the matrix

Szegö projection operator in terms of the Hardy projection operator and its adjoint, explicitly.

Lastly, we will give the explicit matrix Szegö kernel function for the Hardy space on the sphere.

As an application, we get the solution to a boundary value problem for matrix functions.

The paper is organized as follows. In Section 2, we recall some basic facts about Hermitean

Clifford analysis which will be needed in the sequel. In Section 3, we will introduce the matrix
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Szegö projection operator for the Hardy space of Hermitean monogenic functions defined on a

bounded sub-domain, establish the Kerzman-Stein formula which closely connects the matrix

Szegö projection operator, and present the matrix Szegö projection operator in terms of the

Hardy projection operator and its adjoint in the Hermitean Clifford setting. At last we will

construct the explicit matrix Szegö kernel function for the Hardy space, and get the solution

to Hermitean Dirichlet problem.

2 Preliminaries

In this section we recall some basic facts about Clifford algebra and Hermitean Clifford

analysis which will be needed in the sequel. More details can be also seen in refs. e.g. [20–24].

Let (e1, · · · , em) be an orthogonal basis of Euclid space R
m, the complex Clifford algebra

Cm, which is constructed over R
m, its geometric multiplication is governed by the rules ejek +

ekej = −2δjk, j, k = 1, · · · , m. The Cm thus is generated additively by elements of the form

eA = ej1 · · · ejk
, where A = {j1, · · · , jk} ⊂ {1, · · · , m}, j1 < · · · < jk, while for A = ∅, one

puts e∅ = 1, the identity element. Any Clifford number a in Cm may thus be written as

a =
∑

A aAeA, aA ∈ C, and its Hermitean conjugate a† is defined by a† =
∑

A ac
AēA, where the

bar denotes the usual real Clifford algebra conjugation and ·c denotes the standard complex

conjugation. The Euclidean space R
m is embedded in Cm by identifying (x1, x2, · · · , xm) with

the Clifford vector X given by X =
m
∑

j=1

ejxj . Note that the square of a vector X is scalar valued

and equals the norm squared up to a minus sign X2 = −
〈

X, X
〉

= −|X|2. The Fischer dual of

the vector X is the vector valued first order differential operator ∂X =
m
∑

j=1

ej∂xj
is called Dirac

operator. It is precisely this Dirac operator which underlies the notion of monogenicity of a

function, a notion which is the higher dimensional counterpart or holomorphy in the complex

plane. As the Dirac operator factorizes the Laplacian, ∆m = −∂2
X , monogenicity can be

regarded as a refinement of harmonicity.

Hereby, introducing Hermitean Clifford analysis is based on the so-called almost complex

structure on it, i.e., an SO(m)-element J , satisfying J2 = −1m. This forces the dimension m to

be even, whence from now on, we will put m = 2n. In terms of our basis, a particular realization

of the almost complex structure is given by J(e2j−1) = −e2j and J(e2j) = e2j−1, j = 1, · · · , n.

The real Clifford vector and the Dirac operator are denoted by

X =

n
∑

j=1

(e2j−1x2j−1 + e2jx2j), ∂X =

n
∑

j=1

(e2j−1∂x2j−1
+ e2j∂x2j

),

as well as their counterparts

X| =
n
∑

j=1

(e2j−1x2j − e2jx2j−1), ∂X| =
n
∑

j=1

(e2j−1∂x2j
− e2j∂x2j−1

).

The Hermitean Clifford variables Z and Z† then given by

Z =
1

2
(X + iX |), Z† = −

1

2
(X − iX|),

which satisfy

J(Z) = −iZ, J(Z†) = iZ†.
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Hermitean Clifford analysis then focuses on simultaneous null solutions of two Hermitean Dirac

operators ∂Z and ∂Z† , introduced by

∂Z† =
1

4
(∂X + i∂X|), ∂Z = −

1

4
(∂X − i∂X|).

From observation we have (Z)2 = (Z†)2 = 0 and (∂Z)2 = (∂Z†)2 = 0, and ∆2n = 4(∂Z∂Z† +

∂Z†∂Z), Z Z† + Z†Z =
∣

∣Z
∣

∣

2
=
∣

∣Z†
∣

∣

2
=
∣

∣X
∣

∣

2
=
∣

∣X|
∣

∣

2
.

The fundamental solutions of the Dirac operators ∂X , ∂X| are

E(X) =
2

ω2n

X

|X|2n
, E(X |) =

2

ω2n

X|

|X|2n
, X ∈ R

2n\{0},

where ω2n denotes the surface area of the unit sphere in R
2n. We introduce

E(Z) = −(E + iE|) =
2

ω2n

Z

|Z|2n
, E†(Z) = (E − iE|) =

2

ω2n

Z†

|Z|2n
.

For further use, we introduce the oriented surface elements dσZ and dσZ† by

dσZ = −
1

4
(−1)

n(n+1)

2 (2i)n(dσX − idσX|), dσZ† = −
1

4
(−1)

n(n+1)

2 (2i)n(dσX + idσX|),

where dσX =
2n
∑

j=1

ej(−1)j−1
̂dxj and dσX| = J [dσX ] with

̂dxj = dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dx2n.

We denote the outward pointing unit normal vector at X ∈ ∂Ω by ν(X) and dS(X) for the

element on ∂Ω, leading to dσX = ν(X)dS(X), dσX| = ν|(X)dS(X).

In this context the functions under consideration are defined on an open subset Ω of R
2n

and take values in the Clifford algebra C2n. They are of the form f =
∑

A fAeA, where the

functions fA are complex-valued. Whenever a property such as continuity, differentiability, Lp-

integrable and so forth is ascribed to f , it is meant that all the components fA possess the cited

property. Let g1, g2 be C2n-valued functions defined in Ω ⊂ R
2n, we consider the corresponding

circulant (2 × 2) matrix function in the following

G1
2 =





g1 g2

g2 g1



 .

In what follows, the operations of matrices such as addition and multiplication, and the

operations between the complex numbers and the matrices, respectively, keep to the operation

rules of the usual numerical matrices and of multiplication between the complex numbers and

the usual numerical matrices. Let Ω ⊂ R
2n be a bounded sub-domain with smooth boundary

∂Ω. Functions taking values in C2n defined on Ω∪∂Ω will be considered. Notions of continuity,

differentiability and integrability of G1
2 are introduced entry-wise. For instance, the circulant

(2 × 2) matrix function G1
2 ∈ Ck(Ω, C2n),Hµ(Ω, C2n), Lp(Ω, C2n) and so on which mean

each entry of G1
2 belongs to Ck(Ω, C2n), Hµ(Ω, C2n), Lp(Ω, C2n) and so on. We introduce the

particular circulant (2 × 2) matrices

D(Z,Z†) =





∂Z ∂Z†

∂Z† ∂Z



 , E =





E E†

E† E



 , δ =





δ 0

0 δ



 ,
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where δ is the Dirac delta distribution in R
2n, then D(Z,Z†)E = δ(Z), i.e., E is the fundamental

solution of D(Z,Z†) (see refs. e.g. [20–24, 26]).

Definition 2.1 G1
2 ∈ C1(Ω, C2n) is called as (left) H-monogenic in Ω if and only if it

satisfies the system D(Z,Z†)G
1
2 = 0, where 0 denotes the (2 × 2) matrix with zero entries.

For gi ∈ Lp(∂Ω, C2n), 1 < p < +∞, i = 1, 2, we define the orthogonal Cauchy type integrals

as

C[gi](Y ) =

∫

∂Ω

E(X − Y )dσXgi(X), C|[gi](Y ) =

∫

∂Ω

E|(X − Y )dσX|gi(X), Y /∈ ∂Ω,

which are well-defined (see refs. e.g. [12, 13]), where E(X), E|(X) and dσX , dσX| as above.

Then for

∂Y C[gi](Y ) = 0, ∂Y |C|[gi](Y ) = 0, Y /∈ ∂Ω, i = 1, 2.

For G1
2 ∈ Lp(∂Ω, C2n), the Hermitean Cauchy type integral is defined by

[CG1
2](Y ) =

∫

∂Ω

E(Z − V )dΣ(Z,Z†)G
1
2(X), Y /∈ ∂Ω,

where

dΣ(Z,Z†) =





dσZ − dσZ†

−dσZ† dσZ



 .

3 Szegö Projection Operator

In this section we will introduce the matrix Szegö projection operator for the Hardy space of

Hermitean monogenic functions defined on a bounded sub-domain, establish the Kerzman-Stein

formula, and present the matrix Szegö projection operator in terms of the Hardy projection

operator and its adjoint, explicitly.

Inspired by the inner product 〈·, ·〉L2
on L2(∂Ω, C2n), given by

〈g1, g2〉L2
=

[
∫

∂Ω

g
†
1(X)g2(X)dSX

]

0

, ∀ g1, g2 ∈ L2(∂Ω, C2n),

where [·]0 denotes the scale part of any · in C2n. We introduce the following bi-linear form on

the vector space L2(∂Ω, C2n)

〈·, ·〉
L2

: L2(∂Ω) × L2(∂Ω) → C,
〈

F1
2,G

1
2

〉

L2
7→ 〈f1, g1〉L2

+ 〈f2, g2〉L2
,

where F1
2 is defined similarly to G1

2 as Section 2.

Then, by directly calculating, for arbitrary F1
2,G

1
2,H

1
2 ∈ L2(∂Ω, C2n) and λ ∈ C, we can

check that

(i)
〈

F1
2, λG1

2 + H1
2

〉

L2
= λ

〈

F1
2,G

1
2

〉

L2
+
〈

F1
2,H

1
2

〉

L2
,

(ii)
(

〈

F1
2,G

1
2

〉

L2

)†

=
〈

G1
2,F

1
2

〉

L2
,

(iii)
〈

G1
2,G

1
2

〉

L2
≥ 0 and

〈

G1
2,G

1
2

〉

L2
= 0 if and only if G1

2 = 0.

Thus, 〈·, ·〉
L2

is a inner product, which derives the norm on L2(∂Ω, C2n) by

∥

∥G1
2

∥

∥ =
√

〈g1, g1〉L2
+ 〈g2, g2〉L2

. (3.1)
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Hence, (L2(∂Ω), ‖ · ‖) is the Hilbert space, which is different from the space of L2(∂Ω) in refs.

e.g. [26, 30]. Under this setting, we have the following lemma without proof, which was also

stated in [24, 26, 30] in the sense of different topology. For convenience without confusion and

ambiguity, (L2(∂Ω), ‖ · ‖) still denotes by L2(∂Ω).

Lemma 3.1 Let Ω be a non-empty, open and bounded subset of R
2n with smooth bound-

ary ∂Ω. [CG1
2](X) is defined similarly to [CG1

2](Y ) as Section 2. If G1
2(X) ∈ Lp(∂Ω, C2n),

(1 < p < +∞), then, for arbitrary T ∈ ∂Ω,

(i) ∀ X ∈ R
2n\∂Ω, D(Z,Z†)G

1
2(X) = 0, i.e., G1

2(X) is H-monogenic in R
2n\∂Ω;

(ii) [CG1
2]

±(T ) , lim
Ω±∋X→T

[CG1
2](X) = (−1)

n(n+1)

2
(2i)n

2

(

±G1
2(T ) + [HG1

2](T )
)

;

(iii) [CG1
2]

±(T ) ∈ Lp(∂Ω, C2n),

where the limits of (ii) mean the non-tangential limits, which is the same in the following

context,

H =
1

2





H + H| −H + H|

−H + H| H + H|





and

[Hf ](T ) = p.v.2

∫

∂Ω

E(Y − T )dσY f(Y ), T ∈ ∂Ω,

[H|f ](T ) = p.v.2

∫

∂Ω

E|(Y − T )dσY |f(Y ), T ∈ ∂Ω,

which are both Cauchy principle value integrals in the sense of Lp(1 < p < +∞). When the

variables are omitted without confusion and ambiguity, for convenience [Hf ](T ), [H|f ](T ) are

for short of Hf,H|f , respectively, and it is also similar in the following context.

we will consider the Hardy space

H
2(Ω) =

{

G1
2

∣

∣G1
2 is H-monogenic in Ω, and has non-tangential L2(∂Ω)-boundary values

}

,

and H
2(∂Ω) denotes the L2(∂Ω)-closure of the set of boundary values of elements of H

2(Ω).

Remark 3.2 Associating the Hardy space with (ii) of Lemma 3.1, the Hermitean Cauchy

transform C maps L2(∂Ω, C2n) onto H
2(∂Ω) for arbitrary G1

2 ∈ L2(∂Ω, C2n), which is skew

and so-called the Hardy projection.

Associating the definition of the above C-valued inner product on L2(∂Ω), we have the

following lemma which is only stated without proof.

Lemma 3.3 Suppose that H, L2(∂Ω) and H
2(∂Ω) as Lemma 3.1 and Remark 3.2. Then

(i) H2 = I,

(ii) H∗ = νHν,

(iii) for arbitrary G1
2 ∈ L2(∂Ω), HG1

2 = G1
2 if and only if G1

2 ∈ H
2(∂Ω),

(iv) L2(∂Ω) = H
2(∂Ω) ⊕ νH

2(∂Ω), (w.r.t. 〈·, ·〉
L2

),

where I denotes (2 × 2) identity matrix operator, H∗ means the adjoint operators of H on

L2(∂Ω) and

ν =
1

2





ν + ν| −ν + ν|

−ν + ν| ν + ν|





with ν being the outward pointing unit normal vector at X ∈ ∂Ω and J(ν) = ν|.
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Remark 3.4 The results similar to Lemma 3.3 were also mentioned in refs. [24, 26] with

respect to (C2n)2×2-valued inner product, which does not derive a norm and is different from

our C-valued inner product on L2(∂Ω).

Starting with (ii) of Lemma 3.3, the matrix orthogonal projection operator S from L2(∂Ω)

onto H
2(∂Ω), which is so-called the matrix Szegö projection operator, may be Hermitean mono-

genically extended to H
2(Ω) by

S[G1
2(X)] =

∫

∂Ω

SX(Y )G1
2(Y )dSY , (3.2)

where SX(Y ) is so-called the matrix Szegö kernel. That is,

S[G1
2(X)] = G1

2(X) for arbitrary X ∈ Ω.

Remark 3.5 Particularly, when Ω = B(1) the unit ball centered at 0 of R
2n, ∂Ω = S2n

the unit sphere of R
2n and ν(W ) = W, ν|(W ) = W | for arbitrary W ∈ S2n. Then

L2(S
2n) = H

2(S2n) ⊕ ν
∣

∣

S2nH
2(S2n),

where

ν
∣

∣

S2n =
1

2





W + W | −W + W |

−W + W | W + W |



 .

We consider the Dirichlet problem as follows, given the boundary data G1
2 ∈ L2(S

2n, C2n),

find the function F1
2 such that







∆F1
2(X) = 0, X ∈ B(1),

F1
2(W ) = G1

2(W ), W ∈ S2n,
(3.3)

where

∆ =





∆2n 0

0 ∆2n



 .

It is easy to verify that (3.3) is equivalent to the system



























∆2nf1(X) = 0, X ∈ B(1),

f1(W ) = g1(W ), W ∈ S2n,

∆2nf2(X) = 0, X ∈ B(1),

f2(W ) = g2(W ), W ∈ S2n.

(3.4)

In virtue of (iv) in Lemma 3.3, we have

G1
2 = H1

2 + νK1
2,

where H1
2,K

1
2 ∈ H

2(S2n) are defined similarly to G1
2.

Then the above Dirichlet problem (3.3) exists the unique solution. Moreover the solution

is formulated in the following form

G1
2(X) = ˜H1

2 + X ˜K1
2, X ∈ B(1),
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where ˜H1
2,
˜K1

2 ∈ H
2(B(1)) are Hermitean monogenic extension of H1

2,K
1
2, respectively, i.e.,

H1
2,K

1
2 are the non-tangential boundary value limits of ˜H1

2,
˜K1

2 and

X =





X + X| −X + X |

−X + X| X + X |



 .

In what follows, we introduce the matrix Kerzman-Stein operator on L2(∂Ω) by

A = 1
2





A + A| −A + A|

−A + A| A + A|



 , (3.5)

where

A = C − C∗, A| = C| − C|∗ (3.6)

are both well-defined, C∗ and C|∗ denote the adjoint operators of C and C| on the Hilbert space

of L2(∂Ω, C2n), respectively, given by

C∗ =
1

2
(1 + νHν) : L2(∂Ω, C2n) → H2(∂Ω),

C|∗ =
1

2
(1 + ν|H|ν|) : L2(∂Ω, C2n) → H2(∂Ω)

with H2(∂Ω) being L2(∂Ω, C2n)-closure of the set of boundary values of elements of

H2(Ω) =
{

g
∣

∣∂Xg = 0 in Ω and having non-tangential L2(∂Ω)-boundary values
}

,

ν, ν|,H,H| as Section 2, and 1 being the identity operator. More detail can be seen in refs.

[10–12].

Applying Lemma 3.3, we directly get the following lemma.

Lemma 3.6 Let A and A| be as term (3.6), and C be as Remark 3.2. Then

A = C− C∗ = H − H∗, i.e., A = H− νHν, (3.7)

where H∗, seen in Lemma 3.3, and C∗ = 1
2 (I+H∗) mean the adjoint operators of H and C on

L2(∂Ω).

Theorem 3.7 Let S be as term (3.2), and C be as Remark 3.2. Then

S(I + A) = C, (3.8)

where I denotes (2 × 2) identity matrix operator.

Proof Since the matrix operator S is orthogonal projection operator on the Hilbert space

L2(∂Ω), S = S∗. Noticing that the operators S and C are orthogonal and skew projection

operators from L2(∂Ω) to H
2(∂Ω), respectively, then SC and CS are both operators from

L2(∂Ω) to H
2(∂Ω). In particular, operators S and C are both the identical operators on

H
2(∂Ω), respectively. Therefore, we have

SC = C and CS = S. (3.9)

Applying the property of the adjoint operator on the Hilbert space of L2(∂Ω) (see refs. e.g.

[3, 10, 12] or monographs of functional analysis), (SC)∗ is well-defined and (SC)∗ = C∗S∗,
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where C∗ means the adjoint operator of C acting on L2(∂Ω). Taking the adjoint operators

with respect to 〈·, ·〉
L2

, we have

C∗S = (SC)∗ = C∗ and SC∗ = (CS)∗ = S. (3.10)

Hence, associating terms (3.9) with (3.10), we get

SC − SC∗ = C− S.

Therefore, one has

S(I + A) = C.

Thus, the proof of the result is complete. �

Remark 3.8 Theorem 3.7 characterizes the relationship between Hermitean Hardy pro-

jection operator and matrix Szegö projection operator, which is the generalization of the well-

known Kerzman-Stein formula into the setting of Hermitean Clifford analysis.

We define the matrix operator as follows

B = 1
2





(1 + A)−1 + (1 + A|)−1 −(1 + A)−1 + (1 + A|)−1

−(1 + A)−1 + (1 + A|)−1 (1 + A)−1 + (1 + A|)−1



 ,

where 1 denotes the identity operator on L2(∂Ω, C2n).

Observing from term (3.6), the operators 1 + A and 1 + A| are invertible on L2(∂Ω, C2n),

which could be also seen in Lemma 4.5 in [6] or [3], the matrix operator B is well defined on

L2(∂Ω).

Theorem 3.9 Let S and C be as Theorem 3.7. Then the matrix Szegö projection operator

is explicitly formulated by

S = C(I + A)−1, (3.11)

where I denotes (2 × 2) identity matrix operator.

Proof Applying term (3.7), we know that operator A is anti-self conjugate. This implies

that the spectra of operator A are pure imaginary numbers. Hence, operator I+A is invertible.

Moreover, by calculating directly, we get (I + A)−1 = B. It follows the result. �

Remark 3.10 Equation (3.11) is our basic desired formula, which gives a characterization

of the matrix Szegö projection operator. Notice that, for smooth boundary of a bounded

domain, the principal value parts in C − C∗ have disappeared, which leads to the inverse of

operator A. For smooth boundary of general unbounded domains, it is more complicated, which

we do not focus on.

4 Szegö Kernel

In this section we construct the explicit matrix Szegö kernel for the Hardy space H
2(S2n).

As an application of it, we get the solution to a boundary value problem for matrix functions

in terms of integral formula.

We introduce the functions

K(X, Y ) = −
1

ω2n

1 + XY

|1 + XY |2n
, K|(X, Y ) = −

1

ω2n

1 + X |Y |

|1 + X |Y ||2n
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for arbitrary X 6= Y , where ω2n denotes the area of the unit sphere S2n.

Theorem 4.1 For arbitrary SX(Y ), X ∈ B(1), Y ∈ S2n, the reproducing Szegö kernel

has the expression

SX(Y ) =





K K†

K† K



 , (4.1)

where K = −(K + iK|), K† = K − iK|.

Proof Noticing, for arbitrary Y , Y | ∈ S2n,

K(X, Y ) = −
1

ω2n

1 + XY

|1 + XY |2n
=

1

ω2n

Y − X

|Y − X|2n
Y ,

K|(X, Y ) = −
1

ω2n

1 + X |Y |

|1 + X|Y ||2n
=

1

ω2n

Y | − X|

|Y | − X ||2n
Y |,

we have




K K†

K† K



 =





−E + iE| E − iE|

E − iE| −E + iE|





1

2





Y + Y | −Y + Y |

−Y + Y | Y + Y |



 .

Then we get

D(Z,Z†)SX(Y ) = 0, X ∈ B(1). (4.2)

Applying the Cauchy formula in [20, 26], for arbitrary G1
2(Y ) ∈ L2(S

2n), we have

G1
2(X) =

∫

S2n

SX(Y )G1
2(Y )dSY , X ∈ B(1). (4.3)

�

Remark 4.2 Let S = CnI denote the spinor space, where I = I1 · · · In is the primitive

identity element with Ij = fjf
†
j = 1

2 (1 − iejen+j) , S =
n
⊕

j

Sj with Sj = (C∧†
n)(j)I, and the

Grassmann algebra (C∧†
n)(j), j = 1, 2, · · · , n generated by the Witt basis

{

f
†
1, · · · , f†n

}

(see

ref. e.g. [26]). When G0 =

(

g 0

0 g

)

with g taking values in the homogeneous n-space

of spinor space Sn, i.e., g (z1, · · · , zn) = gn (z1, · · · , zn) f
†
1 · · · f

†
nI with gn (z1, · · · , zn) being

complex valued function defined in R
2n ∼= C

n, then by direct calculation, term (4.3) induces to

the term as follows

gn (X) =

∫

S2n

(−1)
n(n+1)+2

2
(n − 1)!

(2πi)n

n
∑

j=1

vc
j − zc

j

|v − z|2n
̂dvc

jgn (Y ) . (4.4)

This implies that the matrix Szegö kernel SX(Y ) reduces to the Martinelli-Bochner kernel

(−1)
n(n+1)+2

2
(n − 1)!

(2πi)n

n
∑

j=1

vc
j − zc

j

|v − z|2n
(4.5)

of holomorphic functions of several complex variables on the unit ball, where

(v1, · · · , vn) ∈

{

(v1, · · · , vn) :
n
∑

j=1

|vj |
2 = 1

}

, (z1, · · · , zn) ∈

{

(z1, · · · , zn) :
n
∑

j=1

|zj |
2 < 1

}

.
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Furthermore, if n = 1, term (4.5) is equal to the case

1

2πi

1

v − z
,

where v ∈
{

v ∈ C : |v| = 1
}

, z ∈
{

z ∈ C : |v| < 1
}

, which is the Szegö kernel for analytic

functions of one complex variable on the disk.

As an application of the matrix Szegö kernel, we get the theorem as follows.

Theorem 4.3 If G1
2 ∈ L2(S

2n), then the solution of system (3.1) is explicitly formulated

by

F1
2(X) =

∫

S2n

(

SX(Y ) + ν|S2nSX(Y )
)

G1
2(Y )dSY , (4.6)

where SX(Y ) as (4.1) and ν|S2n as Remark 3.5.

Proof Applying Lemma 3.3, associating with Theorem 3.11, it follows the result. �

Remark 4.4 Hereby, we only present the explicit solution of the classical Dirichlet prob-

lem on the ball of higher-dimensional space, by means of the matrix Szegö kernel. In fact, this

leads the decomposition of the classical matrix Poisson kernel by




P (X, Y ) 0

0 P (X, Y )



 = SX(Y ) + ν|S2nSX(Y ),

where

P (X, Y ) =
1

ω2n

1 − |X |2

|X − Y |2n
, X 6= Y .

Following the same argument, we could consider the Dirichlet problem for matrix functions on

the general sub-domains of higher-dimensional space, which will be discussed in the forthcoming

paper.
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