
Ordered Structures and Applications: Positivity VII

Trends in Mathematics, 79–110
c© 2016 Springer International Publishing

Script Geometry

P. Cerejeiras, U. Kähler, F. Sommen and A. Vajiac

Abstract. In this paper we describe the foundation of a new kind of discrete
geometry and calculus called Script Geometry. It allows to work with more
general meshes than classic simplicial complexes. We provide the basic defi-
nitions as well as several examples, like the Klein bottle and the projective
plane. Furthermore, we also introduce the corresponding Dirac and Laplace
operators which should lay the groundwork for the development of the corre-
sponding discrete function theory.
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1. Introduction

In the last two decades one can observe an ever increasing interest in the analysis
of discrete structures. On one hand the fact that nowadays everybody can harness
large computational power, but the computer is restricted to work with discrete
values only, created an increased interest in working with discrete structures. This
is true even for persons who are originally unrelated to the field. An outstanding
example can be seen in the change of the philosophy of the Finite Element Method.

From the classical point of view the finite element method is essentially a
method for discretization of partial differential equations via a variational for-
mulation, i.e., one first establishes the variational formulation and discretizes the
problem by creating ansatz spaces via introducing a mesh (normally by triangular-
ization) and (spline) functions defined over the mesh. One of the major problems
with this approach is that there is no a priori connection between the choice of
the mesh and the variational formulation. The modern approach lifts the problem
and, therefore, the finite element modelation directly on to the mesh, resulting in
the so-called Finite Element Exterior Calculus [1, 14]. Hereby, one chooses first the
mesh and introduces a boundary operator given by the mesh which induces the
corresponding discrete variational formulation. From a practical point of view this
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is even more interesting since finite element meshes are also widely being applied
in other fields, such as computer graphics [13], [14]. In this framework notions
of discrete vector fields and operators acting on them, e.g., discrete divergence
and curl, appear in a rather canonical way instead of being introduced artificially
by additional discretizing a continuous formulation. This also leads to immediate
applications such as the problem of discrete Hodge decompositions of 3D vector
fields on irregular grids. In this context one can also study the notion of a Dirac
operator [27].

Yet, if we look at the literature the existing theory is based on working with
simplicial complexes and triangularizations [13].

But the meshes in FEM or in computer graphics are not just restricted to
meshes coming from triangularization and representing simplicial complexes. Al-
ready discretizations based on quadrilaterals hexagons are not in this class. There-
fore, a more general geometrical approach than the one based on simplicial com-
plexes is needed. Furthermore, there are problems in other fields (like physics)
which are traditionally modeled in a continuous ways. Nowadays, such problems
are more and more studied directly on the discrete level, the principal example
being the Ising model from statistical physics as opposed to the continuous Heisen-
berg model. But also here one is not just limited to classic lattices or triangulariza-
tions, yet for more general lattices which are not just simplicial complexes a corre-
sponding geometrical theory is missing. These models require a discrete function
theory to work with them, similar to the 2D-case where discrete complex analysis
plays a major role. In fact most of the recent advances on the 2D-Ising model by
S. Smirnov and his collaborators are based on a clever interaction between classic
and discrete complex analysis [29]. This is possible since discrete complex analysis
is under (more or less) constant development since the forties [25, 28].

Unfortunately, the same cannot be said about the higher-dimensional case.
While lately one can observe several approaches to create a discrete function theory
in higher dimensions based on lattice discretizations of the Dirac operator (see [32,
26, 21, 18, 19, 4, 8]) they are closer in spirit to finite difference methods than finite
element methods ([5, 22, 23, 2, 6]). Nevertheless, these approaches lead to a well-
established function theory [17, 9, 10, 11, 12, 20, 7]. For a function theory in
connection with the above-mentioned finite element exterior calculus we do not
want to be restricted to meshes coming from simplicial complexes. Therefore, one
needs a new kind of geometry which allows to work directly with general meshes.

In this paper we are going to lay the foundations of a new type of discrete
geometry called script geometry which is not restricted to simplicial complexes.
After a short review of simplicial topology we define the principal objects as well
as introducing the corresponding Dirac and Laplace operators as discrete versions
of the abstract Hodge–Dirac operator. Furthermore, to give a more clear under-
standing of what we are aiming at we are going to present several examples, such
as the Möbius strip, the Klein bottle, the torus, and the projective plane. It is
our modest hope that the presented framework will be interesting enough to be
explored by many mathematicians in the future.
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2. Brief review of simplicial topology

An abstract simplicial complex is a collection S of finite non-empty sets, such that if
A is an element of S, then every non-empty subset of A is also an element of S. An
element A of S is called a simplex of S; its dimension is one less than the number
of its elements, and each non-empty subset of A is called a face of A. Vertices of
S are the one-point elements v of S, and {v} is by definition a 0-simplex.

If K is a topological simplicial complex and V its vertex set, then the col-
lection of all subsets {a0, . . . , an} of V such that the vertices a0, . . . , an span a
simplex of K, is called the vertex scheme of K. The vertex scheme of a topological
simplicial complex is an example of abstract simplicial complex. In fact, every ab-
stract complex S is isomorphic to the vertex scheme for some simplicial complex
K, called also the geometric realization of S, uniquely determined up to a linear
isomorphism.

Let σ be an abstract simplex. Two orderings of its vertex set are equivalent if
they differ by an even permutation. There are two equivalence classes (in dimen-
sions bigger than 1), each one of them called an orientation of σ. For 0-simplexes,
there is only one orientation.

If K is a simplicial complex, then a p-chain on K is a function c from the set
of oriented p-simplices of K to Z, such that: (a) c(σ) = −c(−σ); and (b) c(σ) = 0
for all but finitely many oriented p-simplices σ. Addition of oriented p-chains is
done by adding their integer values. The resulting group is denoted by Cp(K).

If σ is an oriented simplex, the elementary chain c corresponding to σ is the
function defined as follows: (a) c(σ) = 1, (b) c(−σ) = −1, and (c) c(τ) = 0 for
all other oriented simplices. The usual convention denotes by σ both the oriented
simplex and its elementary p-chain c. This allows the notation −σ for the simplex
with opposite orientation than σ.

A well-known result is that Cp(K) is a free Abelian group, a basis is obtained
by orienting each p-simplex and using the corresponding elementary chains as a
basis. Therefore, with the exception of C0(K), the groups Cp(K) have no natural
basis, as one must orient the p-simplices in K in an arbitrary fashion to obtain a
basis.

The homomorphism of groups:

∂p : Cp(K) → Cp−1(K)

is called the boundary operator, defined by

∂p[v0, . . . , vp] :=

p∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vp],

where the hat means deletion from the array. The operator ∂p is well defined and
it has the property

∂p(−σ) = −∂p(σ),
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for all simplices σ. For example:

∂1[v0, v1] = v1 − v0, ∂2[v0, v1, v2] = [v1, v2]− [v0, v2] + [v0, v1].

It can be proved that

∂p−1 ◦ ∂p = 0,

so the kernel of ∂p, denoted by Zp(K) is the group of p-cycles, and the image of
∂p+1, denoted by Bp(K), is the group of p-boundaries. The pth homology group
of K is then defined as

Hp(K) := Zp(K)/Bp(K).

Cohomology is usually defined using the Hom functor. That makes cocycles
to be “picket fences” inside triangularizations of manifolds.

3. Script geometry

Let us start with the definition of our most basic object, the notion of a script.

Definition 3.1. A script is a collection

S := {S−1,S0,S1, . . . ,Sk, . . . ,Sm} (3.1)

of sets Sk, the elements of which are called k-cells. In particular,

S−1 := {∞}, S0 := {p1, . . . , pj , . . . , pn0},
S1 := {l1, . . . , lj , . . . , ln1}, S2 := {v1, . . . , vj , . . . , vn2}, . . . ,
Sk := {ck1 , . . . , ckj , . . . , cknk

} .
Traditionally 0, 1 and 2-cells are called points, lines and planes, respectively.

Definition 3.2. A linear combination over Z of k-cells is called a k-chain:

Ck :=
∑

j
λk
j c

k
j , λk

j ∈ Z , (3.2)

and we denote the module of k-chains by Ck. The support of a k-chain Ck is the
set of k-cells ckj that are involved in the linear combination (3.2), i.e., for which

λk
j �= 0.

Definition 3.3. The boundary map ∂ from Sk into Ck−1, the module of (k − 1)-
chains, is defined by:

∂ckj :=
∑

s
μk,s
j ck−1

s , μk,s
j ∈ Z (3.3)

which naturally extends to the module Ck, and it is subject to ∂2 = 0.

Let us remark that the coefficients μk,s
j in (3.3) are uniquely determining the

boundary operator ∂. For example, if P0 is a 0-chain, then if P0 =
∑

j
λ0
jpj , we

have:

∂pj = 1 · ∞, ∂P0 =
(∑

j
λ0
j

)
· ∞ ,
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therefore ∂P0 = 0 if and only if
∑

j
λ0
j = 0. For a generic k-cell ckj , since ∂2 = 0

by definition, we have:

0 = ∂2ckj = ∂
(∑

s
μk,s
j ck−1

s

)
=

∑
�

(∑
s
μk,s
j μk−1,�

s

)
ck−2
�

therefore: ∑
s
μk,s
j μk−1,�

s = 0,

for all �.

Definition 3.4. A k-chain Ck for which ∂Ck = 0, it is generally called a k-cycle. A
k-chain

Ck =
∑

j
λk
j c

k
j

for which λk
j = ±1 is called an oriented surface, or simply a surface. A surface Ck

for which ∂Ck = 0 is a closed surface.

Definition 3.5. A script S for which every cell boundary ∂ckj is a closed surface is
called a geoscript.

Definition 3.6. A closed surface Ck is called tight if and only if for every closed
surface C′

k with suppC′
k ⊂ suppCk, it follows that C

′
k = ±Ck, i.e., Ck is the only

closed surface, up to sign, with support inside suppCk.
A tight cell c is a cell for which ∂c is a closed tight surface. A geoscript is

called tight if all its cells have a boundary which is a tight surface, i.e., all its cells
are tight cells.

Any point pj is obviously tight. A line l is tight if and only if ∂l = pj−pk, i.e.,
every tight line connects two points. Every plane v which is tight has a boundary

∂v =
t∑

j=1

λj lj , λj = ±1,

which forms a polygon, i.e., λj∂lj = pj − pj+1 whereby pt+1 = p1, and all points
p1, . . . , pt are different.

In Figure 1, we have drawn two examples of tight scripts and the far right one
is a non-tight script. Please note that the “loop” script in Figure 1 is defined by:

S0 = {p0, p1}, S1 = {l1, l2}, S2 = {v},
∂l1 = p1 − p0, ∂l2 = p0 − p1, ∂v = l1 + l2.

Note that a tight geoscript of dimension ≤ 2 is always topologically equivalent
to a CW-complex. For higher-dimensional geoscripts the situation can be more
general than CW-complexes.

The cells in a geoscripts are oriented cells and can each come in two states of
orientation that are determined by the boundary map ∂(ckj ), i.e., if one replaces c

k
j

by dkj = −ckj then also ∂(dkj ) = −∂(ckj ). But in general there could be more than
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Figure 1. Examples of scripts

two orientations on (closed surfaces inside) supp ∂(ckj ) and so the mere knowledge

of supp ∂(ckj ) does not determine the orientations ±∂(ckj ). The tightness condition

however ensures that on supp ∂(ckj ) there can only be two states of closed orienta-

tion given by ±∂(ckj ), so that the state of orientation on each cell ckj can be fully
identified with the state of orientation on the boundary. The tightness condition
also implies a number of interesting geometric properties for scripts, such as a line
has two endpoints or a 2-cell is a polygon. In a forthcoming paper we prove that
using tightness one can determine when a two-dimensional script corresponds to
an oriented two-dimensional manifold.

Definition 3.7. A k-cell c is called a k-simplex if either c is a point (the case k = 0),
or the boundary ∂c of c is a tight (k− 1)-surface that is the sum (with coefficients
±1) of k + 1 different (k − 1)-cells that are also (k − 1)-simplexes. A simplicial
script is a tight geoscript for which all cells are simplexes.

Definition 3.8. A geomap G : S → S′ between two tight geoscripts S and S′ is a
collection of linear maps

gk : Sk → S′
k

with the following two properties:

(a) the image of every k-surface Ck ∈ Sk is a k-surface C′
k ∈ S′

k, e.g., on a k-cell
ckj we have:

gk(c
k
j ) =

∑
μk,s
j c

′k
s , μk,s

j ∈ {−1, 1}.
(b) for each k, the natural extension of gk to a set of k-chains fulfills the relation:

∂gk(Ck) = gk−1(∂Ck).

Moreover, gk is called tight if it maps tight surfaces to tight surfaces.
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The notion of geomap can be used to define when two geoscripts are isomor-
phic. Let S = {S−1,S0,S1, . . . } and T = {T−1,T0,T1, . . . } be two geoscripts
and suppose we have a geomap given by gk : Sk → C(T)k, from Sk to the chains
of Tk, that is such that for every cell ckj ∈ Sk,

gk(c
k
j ) = ±dkj ,

where dkj ∈ Tk, i.e., suppose that gk is a bijection up to the sign between Sk and
Tk. Then we say that script S is isomorphic to script T. It means essentially that
one can change the signs of the cells provided one makes the necessary adjustments
for the boundary map ∂, and these adjustments are determined by the relations
∂gk = gk−1∂.

Definition 3.9. A geoscript S′ is called a refinement of a given geoscript S if there
exists an injective geomap G = {gk}k : S → S′. A refinement is called tight if
every gk is tight and if for each k, there exists only one surface C′

k inside the image
gk(c

k
j ) for which

∂C′
k = ∂gk(c

k
j ).

Theorem 3.10. Any tight geoscript S admits a refinement to a simplicial script S.

Proof. The proof is done by induction over k, and it is left as an exercise for the
avid reader. �

We define the analog of the homology groups of a tight script S, due to the
fact that the boundary operators ∂ : Ck+1 → Ck obey ∂2 = 0 in all dimensions k.
We define:

Hk(S) =: Zk(S)/Bk(S),

where Zk(S) is the group of (closed oriented) k-cycles, and Bk(S) is the group of
boundaries of (k + 1)-chains of S.

Definition 3.11. We define the inner product of k-chains by〈∑
s
αsc

k
s ,
∑

s
βsc

k
s

〉
:=

∑
αsβs.

Then the exterior derivative d on chains is defined by

dckj :=
∑
�

μk,�
j ck+1

� ,

naturally extended to the module of chains, and subject to the condition

〈dckj , ck+1
� 〉 = 〈ckj , ∂ck+1

� 〉 .
Similarly for the differential operators d, one can define the corresponding

cohomology groups Hk(S) of a tight script:

Hk(S) =: Zk(S)/Bk(S),

where Zk(S) is the group of (k+1)-chains closed with respect to d, and Bk(S) is
the group of coboundaries (in the image of d) of k-chains of S.
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Note that in the case of a simplicial script S being built by making use of
usual (triangular) simplexes, it is similar to the usual notion of a simplicial com-
plex. From dimension 3 and up a non-simplicial script does not uniquely determine
the topology of the supporting space, though. Therefore, in a certain sense, scripts
are a more loose concept than the traditional abstract simplexes.

4. The discrete Dirac and Laplace operators on scripts

Let f be a function defined on a tight script S with integer, real, complex, or
Clifford algebra values. For example, if S is has dimension 2, f is defined by

f = f0 + f1 + f2,

f0 =
∑
j∈S0

f0jpj, f1 =
∑
j∈S1

f1j lj , f2 =
∑
j∈S2

f2jvj .

Definition 4.1. The discrete Hodge–Dirac operator for a tight script S is defined
as

/∂ = ∂ + d,

acting on the corresponding parts of a function f .

For example, in the case n = 2, we have:

/∂f = ∂f1 + (df0 + ∂f2) + df1

=
∑
j∈S1

f1j∂lj +

⎛
⎝ ∑

j∈S0

f0jdpj +
∑
j∈S2

f2j∂vj

⎞
⎠+

∑
j∈S1

f1jdlj .

Definition 4.2. The discrete Laplace operator on a tight script S is defined by:

Δ =
1

2
(∂d+ d∂) =

1

2
(∂ + d)

2
=

1

2
/∂
2
. (4.1)

For example, for f as above, we have:

2Δf = ∂(df0) + (∂(df1) + d(∂f1)) + d(∂f2)

=
∑
j∈S0

f0j∂(dpj) +
∑
j∈S1

f1j (∂(dlj) + d(∂lj)) +
∑
j∈S2

f2jd(∂Pj).

Note that the Laplace operator defined above acts on all of S, not only on
vertices (points). Let us remark that the above definition can be seen as a con-
cretization of the abstract Hodge–Laplace operator [27]. Normally, the abstract
definition is given in terms of the exterior derivative d and its adjoint d�, but in
our context we do not need to formally introduce the operator d∗. Furthermore,
one of the requirements for the discretization of the abstract Hodge–Dirac opera-
tor in [27] is that the exterior derivative commutes with bounded (or smoothed)
projections. This is not a trivial study and restricts their approach to simplicial
complexes. While this is natural in the context of looking at simplicial decompo-
sition of domains our setting is more general.
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5. Classic examples of scripts

We give below concrete descriptions and computations of scripts obtained from
classical examples of topological spaces.

5.1. A Möbius strip

As a topological space, the Möbius strip is obtained from a rectangle, identifying
one pair of opposite edges in reverse orientation. In order to make it a tight geo-
script, denoted by SM , we obtain the same result by gluing two rectangles along
one edge, as described in Figure 2. The script containes four points, six lines and

p

l
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l l

l

p

pp

pp l

5

2 2 33
1

1

2441

1 6
v1 v2

Figure 2. The Möbius script

two planes:

S0 = {p1, p2, p3, p4}, S1 = {l1, l2, l3, l4, l5, l6}, S2 = {v1, v2}.
The boundary operator ∂ acts on the Möbius script as follows:

∂l1 = p2 − p1, ∂l2 = p2 − p3,

∂l3 = p3 − p1, ∂l4 = p4 − p2,

∂l5 = p1 − p4, ∂l6 = p3 − p4.

Note that ∂(l2 + l3 + l4 + l5) = 0, so l2 + l3 + l4 + l5 is a tight closed curve.
Next, we have:

∂v1 = −l1 + l2 − l5 + l6,

∂v2 = −l1 + l3 − l4 − l6.

Note that all linear combinations of the boundaries above have coefficients
±1. Also, one can easily check that the boundary operator squares to 0, as desired.
For example:

∂ (∂v1) = −∂l1 + ∂l2 − ∂l5 + ∂l6

= −(p2 − p1) + (p2 − p3)− (p1 − p4) + (p3 − p4) = 0.
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Similarly ∂ (∂v2) = 0. Therefore, the Möbius script is a tight geoscript. Topo-
logically is equivalent to a CW-complex consisting of one 2-cell: (v1 + v2), three
1-cells: l1, (l2 + l3), (l4 + l5), and two 0-cells: p1, p2.

The script homology of SM is obtained in a similar fashion as one computes
the homology of a CW-complex. In more detail, consider the sequence of chains:

0
∂→ C2

∂→ C1
∂→ C0

∂→ 0.

We note that

∂(v1 + v2) = −2l1 + (l2 + l3)− (l4 + l5),

so the image of the boundary of the sum of the two planes is non-empty. Its kernel
is 0, so H2(SM ) = 0. Next,

∂l1 = p2 − p1, ∂(l2 + l3) = p2 − p1, ∂(l4 + l5) = p1 − p2,

therefore up to a sign, (l2+l3)−l1 and (l4+l5)−l1 are homologous cycles. The kernel
is two-dimensional (three line generators and the image is one-dimensional), so iso-
morphic to Z

2. It follows that H1(SM ) = Z. Similarly, one obtains H0(SM ) = Z.

The differential operator d acts on the script SM as follows:

dp1 = −l1 − l3 + l5,

dp2 = l1 + l2 − l4,

dp3 = −l2 + l3 + l6,

dp4 = l4 − l5 − l6,

and

dl1 = −v1 − v2, dl2 = v1, dl3 = v2, dl4 = −v2,

dl5 = −v1, dl6 = v1 − v2.

For the cohomology of the script SM , we study the sequence:

0
d→ C0

d→ C1
d→ C2

d→ 0.

Note that

4∑
j=1

dpj = 0, therefore H0(SM ) = Z. Because

−dl1 = d(l2 + l3) = −d(l4 + l5) = v1 + v2,

therefore d(2l1 + (l2 + l3)− (l4 + l5)) = 0, so the kernel of d on lines is 3− 2 = 1-
dimensional. Moreover, the image of d on lines and the kernel of d on planes are
both generated by v1 + v2. Summarizing, the script cohomology of the Möbius
strip is indeed, as expected:

H0(SM ) = H1(SM ) = Z, H2(SM ) = 0.
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Since the discrete Dirac operator is defined as /∂ = ∂ + d, using

f = f0 + f1 + f2, f0 =

4∑
j=1

f0jpj , f1 =

6∑
j=1

f1j lj , f2 =

2∑
j=1

f2jvj ,

we have:
/∂f = ∂f1 + (df0 + ∂f2) + df1.

Computations yield to:

∂f1 =

⎡
⎢⎢⎣

−1 0 −1 0 1 0
1 1 0 −1 0 0
0 −1 1 0 0 1
0 0 0 1 −1 −1

⎤
⎥⎥⎦ [f1j]

t[pj],

where [f1j]
t is the column vector of the corresponding 6 inputs, and [pj] is the row

vector of the four points. Similarly we obtain:

df0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0
0 1 −1 0
−1 0 1 0
0 −1 0 1
1 0 0 −1
0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎦
[f0j ]

t[lj ],

where we notice that the matrix above is the transpose of the previous one for
∂f1, as it should. Next we get:

∂f2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 −1
1 0
0 1
0 −1
−1 0
1 −1

⎤
⎥⎥⎥⎥⎥⎥⎦
[f2j ]

t[lj ],

and

df1 =

[ −1 1 0 0 −1 1
−1 0 1 −1 0 −1

]
[f1j]

t[vj ],

Put together, the Dirac operator in matrix form is given as:

/∂M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −1 0 −1 0 1 0 0 0
0 0 0 0 1 1 0 −1 0 0 0 0
0 0 0 0 0 −1 1 0 0 1 0 0
0 0 0 0 0 0 0 1 −1 −1 0 0
−1 1 0 0 0 0 0 0 0 0 −1 −1
0 1 −1 0 0 0 0 0 0 0 1 0
−1 0 1 0 0 0 0 0 0 0 0 1
0 −1 0 1 0 0 0 0 0 0 0 −1
1 0 0 −1 0 0 0 0 0 0 −1 0
0 0 1 −1 0 0 0 0 0 0 1 −1
0 0 0 0 −1 1 0 0 −1 1 0 0
0 0 0 0 −1 0 1 −1 0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with eigenvalues −2, 0, 2 of multiplicities 5, 2, 5, respectively.
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The discrete Laplace operator is given by:

2Δf = ∂(df0) + (∂(df1) + d(∂f1)) + d(∂f2)

=

3∑
j=0

f0j∂(dpj) +

8∑
j=1

f1j (∂(dlj) + d(∂lj)) +

4∑
j=1

f2jd(∂vj).

In matrix form we obtain:

2ΔMf =

⎡
⎢⎢⎣

3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

⎤
⎥⎥⎦ [f0j ]

t[pj ]

+

⎡
⎢⎢⎢⎢⎢⎢⎣

4 0 0 0 0 0
0 3 −1 −1 −1 0
0 −1 3 −1 −1 0
0 −1 −1 3 −1 0
0 −1 −1 −1 3 0
0 0 0 0 0 4

⎤
⎥⎥⎥⎥⎥⎥⎦
[f1j ]

t[lj ]

+

[
4 0
0 4

]
[f2j]

t[vj ] .

In matrix form, the Laplacian of the Möbius script SM is given by the square of
the Dirac matrix:

ΔM =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −1 −1 −1 0 0 0 0 0 0 0 0
−1 3 −1 −1 0 0 0 0 0 0 0 0
−1 −1 3 −1 0 0 0 0 0 0 0 0
−1 −1 −1 3 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 3 −1 −1 −1 0 0 0
0 0 0 0 0 −1 3 −1 −1 0 0 0
0 0 0 0 0 −1 −1 3 −1 0 0 0
0 0 0 0 0 −1 −1 −1 3 0 0 0
0 0 0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 0 0 0 0 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

5.2. The torus

Consider the torus T equipped with the script defined as in Figure 3. Topologi-
cally it is obtained by identifying the opposite sides of a rectangle with the same
orientation. The boundary operator acts as follows:

∂l1 = p1 − p0, ∂l2 = p0 − p1,

∂l3 = p0 − p2, ∂l4 = p2 − p0,

∂l5 = p3 − p2, ∂l6 = p2 − p3,

∂l7 = p1 − p3, ∂l8 = p3 − p1,
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Figure 3. Torus script

and

∂v1 = l5 + l7 − l1 − l3,

∂v2 = l6 + l3 − l2 − l7,

∂v3 = l1 + l8 − l5 − l4,

∂v4 = l2 + l4 − l6 − l8.

All 0, 1 and 2-cells are tight cells, so the script ST above is a tight geoscript.

For the script homology of the torus, we consider the sequence of chains:

0
∂→ C2

∂→ C1
∂→ C0

∂→ 0,

and we note that:

4∑
j=1

∂lj = 0,

4∑
j=1

∂vj = 0,

so, if we denote the line sums l12 := (l1 + l2) and l34 := (l3 + l4), and γ the sum
of all vj , we have:

∂(l12) = ∂(l34) = 0, ∂γ = 0.

It turns out that l12 and l34 are a basis of H1(ST ) and γ is the generator of
H2(ST ), i.e., we capture the script homology of the torus:

H0(ST ) = Z, H1(ST ) = Z⊕ Z, H2(ST ) = Z.
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At the differential operator level, we obtain:

dp0 = −l1 + l2 + l3 − l4,

dp1 = l1 − l2 + l7 − l8,

dp2 = −l3 + l4 − l5 + l6,

dp3 = l5 − l6 − l7 + l8,

and

dl1 = −v1 + v3, dl2 = −v2 + v4,

dl3 = −v1 + v2, dl4 = −v3 + v4,

dl5 = v1 − v3, dl6 = −v4 + v2,

dl7 = v1 − v2, dl8 = v3 − v4.

Note that

3∑
j=0

dpj = 0,

8∑
j=1

lj = 0, and using the notation for the sum of two

lines, lij := li + lj, we have:

d(l15 − l26) = 0, d(p0 + p2) = −d(p1 + p3) = −(l15 − l26),

d(l37 − l48) = 0, d(p0 + p1) = −d(p2 + p3) = (l37 − l48).

Therefore each H0(ST ) and H2(ST ) have one generator, and H1(ST ) has
two generators. Summarizing, we obtain the script cohomology groups of ST is
given by:

H0(ST ) = Z, H1(ST ) = Z⊕ Z, H2(ST ) = Z.

Since the discrete Dirac operator is defined as /∂ = ∂ + d, using

f = f0 + f1 + f2, f0 =

3∑
j=0

f0jpj , f1 =

8∑
j=1

f1j lj , f2 =

4∑
j=1

f2jvj ,

we have:

/∂f = ∂f1 + (df0 + ∂f2) + df1.

Computations yield to:

∂f1 =

⎡
⎢⎢⎣

−1 1 1 −1 0 0 0 0
1 −1 0 0 0 0 1 −1
0 0 −1 1 −1 1 0 0
0 0 0 0 1 −1 −1 1

⎤
⎥⎥⎦ [f1j]

t[pj ],
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where [f1j ]
t is the column vector the corresponding 8 inputs, and [pj ] is the row

vector of the four points. Similarly we obtain:

df0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0
1 −1 0 0
1 0 −1 0
−1 0 1 0
0 0 −1 1
0 0 1 −1
0 1 0 −1
0 −1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[f0j ]

t[lj ],

where we notice that the matrix above is the transpose of the previous one for
∂f1. Next we get:

∂f2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 1 0
0 −1 0 1
−1 1 0 0
0 0 −1 1
1 0 −1 0
0 1 0 −1
1 −1 0 0
0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[f2j ]

t[lj ],

and

df1 =

⎡
⎢⎢⎣

−1 0 −1 0 1 0 1 0
0 −1 1 0 0 1 −1 0
1 0 0 −1 −1 0 0 1
0 1 0 1 0 −1 0 −1

⎤
⎥⎥⎦ [f1j ]

t[vj ],

Put together, the Dirac operator on the torus script in matrix form is given as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −1 1 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 −1 1 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0
−1 1 0 0 0 0 0 0 0 0 0 0 −1 0 1 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 −1 0 1
1 0 −1 0 0 0 0 0 0 0 0 0 −1 1 0 0
−1 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 1
0 0 −1 1 0 0 0 0 0 0 0 0 1 0 −1 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 1 0 −1
0 1 0 −1 0 0 0 0 0 0 0 0 1 −1 0 0
0 −1 0 1 0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 −1 0 −1 0 1 0 1 0 0 0 0 0
0 0 0 0 0 −1 1 0 0 1 −1 0 0 0 0 0
0 0 0 0 1 0 0 −1 −1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 1 0 −1 0 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with eigenvalues −2
√
2,−2, 0, 2, 2

√
2 of multiplicities 2, 4, 4, 4, 2, respectively.
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The discrete Laplace operator is given by:

2ΔT f = ∂(df0) + (∂(df1) + d(∂f1)) + d(∂f2)

=
3∑

j=0

f0j∂(dpj) +
8∑

j=1

f1j (∂(dlj) + d(∂lj)) +
4∑

j=1

f2jd(∂vj).

We obtain:

ΔT f =

⎡
⎢⎢⎣

2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2

⎤
⎥⎥⎦ [f0j ]

t[pj ]

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 −1 0 0 0
−1 2 0 0 0 −1 0 0
0 0 2 −1 0 0 −1 0
0 0 −1 2 0 0 0 −1
−1 0 0 0 2 −1 0 0
0 −1 0 0 −1 2 0 0
0 0 −1 0 0 0 2 −1
0 0 0 −1 0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[f1j ]

t[lj ]

+

⎡
⎢⎢⎣

2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2

⎤
⎥⎥⎦ [f2j ]

t[vj ] .

In matrix form, the Laplacian of the script for the torus T is given by the square
of the Dirac matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 2 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 2 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 −1 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 −1 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 2 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 2 −1 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 −1 2 0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0 2 −1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 −1 2 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 2 −1 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 −1 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 −1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 2 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 2 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

5.3. The Klein bottle

Consider the Klein bottle equipped with the script SK defined as in Figure 4. It
is obtained from a rectangle identifying one pair of opposite sides with the same
orientations, and the other pair is identified with opposite line orientations. We
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Figure 4. Klein script

obtain the following script geometry of the Klein script:

∂l1 = p1 − p0, ∂l2 = p0 − p1,

∂l3 = p2 − p0, ∂l4 = p0 − p2,

∂l5 = p3 − p2, ∂l6 = p2 − p3,

∂l7 = p1 − p3, ∂l4 = p3 − p1,

and

∂v1 = l5 + l7 − l1 − l4,

∂v2 = l6 − l3 − l2 − l7,

∂v3 = l1 + l8 − l5 − l3,

∂v4 = l2 − l4 − l6 − l8.

Note again that this is a tight script, and we have:

4∑
j=1

∂vj = −2(l3 + l4) .

If we denote the line sum l12 := (l1 + l2) and l34 := (l3 + l4), and γ is the
sum of all vj , then l12 is a generator for H1(SK) modulo torsion, and l34 is a
torsion element of H1(SK). But γ is not a cycle anymore, as ∂γ = −2l34, i.e., we
recapture the script homology of the Klein bottle:

H0(SK) = Z, H1(SK) = Z⊕ Z2, H2(SK) = 0.
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At the differential operator level, we obtain:

dp0 = −l1 + l2 − l3 + l4,

dp1 = l1 − l2 + l7 − l8,

dp2 = l3 − l4 − l5 + l6,

dp3 = l5 − l6 − l7 + l8,

and

dl1 = −v1 + v3, dl2 = −v2 + v4,

dl3 = −v2 − v3, dl4 = −v1 − v4,

dl5 = v1 − v3, dl6 = −v4 + v2,

dl7 = v1 − v2, dl8 = v3 − v4.

Note that

3∑
j=0

dpj = 0 and d((l1 − l2) + (l3 − l4)) = 0. Therefore H1(SK) is

generated by one element. Next, we have:

dl12 = −(v1 + v2) + (v3 + v4), dl34 = −(v1 + v2)− (v3 + v4),

therefore, because d(l12 + l34) = −2(v1 + v2), we obtain that H2(SK) = Z2. This
yields the script cohomology groups of SK :

H0(SK) = Z, H1(SK) = Z, H2(SK) = Z2.

The discrete Dirac operator for the Klein script above is given by the formula:

/∂f = ∂f1 + (df0 + ∂f2) + df1,

where

f = f0 + f1 + f2, f0 =

3∑
j=0

f0jpj , f1 =

8∑
j=1

f1j lj , f2 =

4∑
j=1

f2jvj .

Computations yield the following results:

∂f1 =

⎡
⎢⎢⎣

−1 1 −1 1 0 0 0 0
1 −1 0 0 0 0 1 −1
0 0 1 −1 −1 1 0 0
0 0 0 0 1 −1 −1 1

⎤
⎥⎥⎦ [f1j]

t[pj ],

df0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0
1 −1 0 0
−1 0 1 0
1 0 −1 0
0 0 −1 1
0 0 1 −1
0 1 0 −1
0 −1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[f0j ]

t[lj ].
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Next we get:

∂f2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 1 0
0 −1 0 1
0 −1 −1 0
−1 0 0 −1
1 0 −1 0
0 1 0 −1
1 −1 0 0
0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[f2j ]

t[lj ],

and

df1 =

⎡
⎢⎢⎣

−1 0 0 −1 1 0 1 0
0 −1 −1 0 0 1 −1 0
1 0 −1 0 −1 0 0 1
0 1 0 −1 0 −1 0 −1

⎤
⎥⎥⎦ [f1j ]

t[vj ],

In matrix form, the Dirac operator for the Klein script is:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −1 1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0
−1 1 0 0 0 0 0 0 0 0 0 0 −1 0 1 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 −1 0 1
−1 0 1 0 0 0 0 0 0 0 0 0 0 −1 −1 0
1 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 −1
0 0 −1 1 0 0 0 0 0 0 0 0 1 0 −1 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 1 0 −1
0 1 0 −1 0 0 0 0 0 0 0 0 1 −1 0 0
0 −1 0 1 0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 −1 0 0 −1 1 0 1 0 0 0 0 0
0 0 0 0 0 −1 −1 0 0 1 −1 0 0 0 0 0
0 0 0 0 1 0 −1 0 −1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 −1 0 −1 0 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with eigenvalues −2
√
2,−2,−√

2, 0,
√
2, 2, 2

√
2 of multiplicities 2, 3, 2, 2, 2, 3, 2, re-

spectively.
The Laplace operator is given by:

ΔKf =

⎡
⎢⎣

2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2

⎤
⎥⎦ [f0j ]

t[pj ] +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 −1 0 0 0
−1 2 0 0 0 −1 0 0
0 0 2 −1 0 0 1 −1
0 0 −1 2 0 0 −1 1
−1 0 0 0 2 −1 0 0
0 −1 0 0 −1 2 0 0
0 0 1 −1 0 0 2 −1
0 0 −1 1 0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
[f1j ]

t[lj ]

+
1

2

⎡
⎢⎣

4 −1 −2 1
−1 4 1 −2
−2 1 4 −1
1 −2 −1 4

⎤
⎥⎦ [f2j ]

t[vj ].
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5.4. The real projective plane

We investigate several scripts for the projective plane RP
2. The simplest one is

given in Figure 5, but it is not a geoscript. Indeed, this script, denoted by SRP2,1

pp

p

p

1

1

22

l12l

l1
l2

v

Figure 5. Simplest projective script

is characterized by

S0 = {p1, p2}, S1 = {l1, l2}, S2 = {v},
∂l1 = p2 − p1, ∂l2 = p1 − p2, ∂v = 2l1 + 2l2.

Therefore the boundary of the 2-chain v is not a geochain, as it contains coefficients
different than ±1.

Denoting the line sum l12 := (l1 + l2) then l12 is a representing the non-zero
element of H1(SRP2), and v is not a cycle, as ∂v = 2l12, i.e., we obtain the script
homology of the RP

2:

H0(SRP2) = Z, H1(SRP2) = Z2, H2(SRP2) = 0.

For the differential operator d we get:

dp1 = −(l1 − l2), dp2 = l1 − l2,

dl1 = dl2 = v.

Note that the kernel of d on points is generated by p1+p2, so H0(SRP2) = Z.
Next, the kernel of d on lines and the image of d on points are both generated
by l1 − l2, which yields to H1(SRP2) = 0. The image of d(l1 + l2) = 2v, therefore
H2(SRP2) = Z2.

We compute the Dirac and Laplace operators on this script, yielding:

/∂RP2 =

⎛
⎜⎜⎜⎜⎝

0 0 −1 1 0
0 0 1 −1 0
−1 1 0 0 2
1 −1 0 0 2
0 0 2 −2 0

⎞
⎟⎟⎟⎟⎠

with eigenvalues −2
√
2,−2, 0, 2, 2

√
2, all having multiplicities 1.
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The Laplacian operator for this script depicting RP
2 is:

ΔRP2 =
1

2

⎛
⎜⎜⎜⎜⎝

1 −1 0 0 0
−1 1 0 0 0
0 0 3 1 0
0 0 1 3 0
0 0 0 0 4

⎞
⎟⎟⎟⎟⎠ .

In order to obtain a tight geoscript for the projective plane, we add one more
point p0 and four lines to the script above, as in Figure 6. We obtain:
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Figure 6. A tight geoscript for RP2

∂l1 = p2 − p1, ∂l2 = p1 − p2,

∂l3 = p2 − p0, ∂l4 = p1 − p0,

∂l5 = p2 − p0, ∂l6 = p1 − p0,

and

∂v1 = l2 − l6 + l5,

∂v2 = l1 − l3 + l6,

∂v3 = l2 − l4 + l3,

∂v4 = l1 − l5 + l4.

At the differential operator level, we obtain:

dp0 = −l3 − l4 − l5 − l6,

dp1 = −l1 + l2 + l4 + l6,

dp2 = l1 − l2 + l3 + l5,
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and

dl1 = v2 + v4, dl2 = v1 + v3,

dl3 = −v2 + v3, dl4 = −v3 + v4,

dl5 = v1 − v4, dl6 = v2 − v1.

The homology and cohomology of this real projective plane script is computed
in a similar way as in the case of the first RP2 script, yielding, of course, the same
result.

The discrete Dirac operator for the script above is given by:

/∂f = ∂f1 + (df0 + ∂f2) + df1,

where

f = f0 + f1 + f2, f0 =
2∑

j=0

f0jpj , f1 =
6∑

j=1

f1j lj , f2 =
4∑

j=1

f2jvj .

Computations yield the following results:

∂f1 =

⎡
⎣ 0 0 −1 −1 −1 −1

−1 1 0 1 0 1
1 −1 1 0 1 0

⎤
⎦ [f1j]

t[pj],

df0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −1 1
0 1 −1
−1 0 1
−1 1 0
−1 0 1
−1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
[f0j ]

t[lj ],

∂f2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 1
1 0 1 0
0 −1 1 0
0 0 −1 1
1 0 0 −1
−1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
[f2j ]

t[lj ],

and

df1 =

⎡
⎢⎢⎣

0 1 0 0 1 −1
1 0 −1 0 0 1
0 1 1 −1 0 0
1 0 0 1 −1 0

⎤
⎥⎥⎦ [f1j ]

t[vj ],
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In full matrix form we obtain

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −1 −1 −1 −1 0 0 0 0
0 0 0 −1 1 0 1 0 1 0 0 0 0
0 0 0 1 −1 1 0 1 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0 1 0 1
0 1 −1 0 0 0 0 0 0 1 0 1 0
−1 0 1 0 0 0 0 0 0 0 −1 1 0
−1 1 0 0 0 0 0 0 0 0 0 −1 1
−1 0 1 0 0 0 0 0 0 1 0 0 −1
−1 1 0 0 0 0 0 0 0 −1 1 0 0
0 0 0 0 1 0 0 1 −1 0 0 0 0
0 0 0 1 0 −1 0 0 1 0 0 0 0
0 0 0 0 1 1 −1 0 0 0 0 0 0
0 0 0 1 0 0 1 −1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The eigenvalues are: −√
6,−√

2, 0,
√
2,
√
6 with multiplicities 3, 3, 1, 3, 3, re-

spectively.
In matrix form, the Laplacian is given by the square of the Dirac matrix:

1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 −2 −2 0 0 0 0 0 0 0 0 0 0
−2 4 −2 0 0 0 0 0 0 0 0 0
−2 −2 4 0 0 0 0 0 0 0 0 0 0
0 0 0 4 −2 0 0 0 0 0 0 0 0
0 0 0 −2 4 0 0 0 0 0 0 0 0
0 0 0 0 0 4 0 2 0 0 0 0 0
0 0 0 0 0 0 4 0 2 0 0 0 0
0 0 0 0 0 2 0 4 0 0 0 0 0
0 0 0 0 0 0 2 0 4 0 0 0 0
0 0 0 0 0 0 0 0 0 3 −1 1 −1
0 0 0 0 0 0 0 0 0 −1 3 −1 1
0 0 0 0 0 0 0 0 0 1 −1 3 −1
0 0 0 0 0 0 0 0 0 −1 1 −1 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A third script for RP
2 is in the spirit of the torus and the Klein bottle, as

given in Figure 7.
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Figure 7. A third projective script
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We obtain:

∂l1 = p1 − p0, ∂l2 = p4 − p1,

∂l3 = p2 − p4, ∂l4 = p0 − p2,

∂l5 = p3 − p2, ∂l6 = p2 − p3,

∂l7 = p1 − p3, ∂l4 = p3 − p1,

and

∂v1 = l5 + l7 − l1 − l4,

∂v2 = l6 − l3 − l2 − l7,

∂v3 = −l2 + l8 − l5 − l3,

∂v4 = −l1 − l4 − l6 − l8.

We obtain

4∑
j=1

∂vj = −2(l1 + l2 + l3 + l4).

Denoting the line sum l1234 := (l1+ l2+ l3+ l4) and γ the sum of all vj , then
l1234 is a representing the non-zero element of H1(SRP2), and γ is not a cycle, as
∂γ = −2l1234, i.e., we get again:

H1(SRP2)  Z2, H2(SRP2) = 0.

The cohomology is calculated in a similar way.
Similar to the computations above for the Klein bottle, we obtain the follow-

ing matrix form for the discrete Dirac operator on RP
2:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −1
0 −1 0 0 1 0 0 0 0 0 0 0 0 0 −1 −1 0
0 0 1 0 −1 0 0 0 0 0 0 0 0 0 −1 −1 0
1 0 −1 0 0 0 0 0 0 0 0 0 0 −1 0 0 −1
0 0 −1 1 0 0 0 0 0 0 0 0 0 1 0 −1 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 0 1 0 −1
0 1 0 −1 0 0 0 0 0 0 0 0 0 1 −1 0 0
0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 −1 0 0 −1 1 0 1 0 0 0 0 0
0 0 0 0 0 0 −1 −1 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 0 −1 −1 0 −1 0 0 1 0 0 0 0
0 0 0 0 0 −1 0 0 −1 0 −1 0 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with eigenvalues −2
√
2, −

√
5 +

√
5, −

√
5−√

5, −2, −√
2, 0,

√
2, 2,

√
5−√

5,√
5 +

√
5, 2

√
2 with multiplicities 1, 2, 2, 3, 1, 3, 2, 2, 1, respectively.
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The Laplacian for this script depicting RP
2 is given by:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 4 0 −2 1 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 4 −2 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 −2 4 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 −1 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 4 −1 0 1 −1 1 0 0 0 0 0 0
0 0 0 0 0 −1 4 1 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 4 −1 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 0 −1 4 0 0 −1 1 0 0 0 0
0 0 0 0 0 −1 1 0 0 4 −2 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 −2 4 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 0 4 −2 0 0 0 0
0 0 0 0 0 0 0 −1 1 0 0 −2 4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 4 −1 −1 2
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 4 2 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 2 4 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 2 −1 −1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Finally, we can obtain an RP
2 by adding a rectangle v3 to a Möbius strip M

(see Subsection 5.1) with boundary

∂v3 = l2 + l3 + l4 + l5 ,

as in Figure 8. It follows that
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Figure 8. Projective plane obtained from a Möbius strip

∂(v1 + v2 + v3) = 2(l2 + l3 − l1),

which is the generator of H1(SRP2) = Z2.
The differential operator d acts on this script as follows:

dp1 = −l1 − l3 + l5,

dp2 = l1 + l2 − l4,

dp3 = −l2 + l3 + l6,

dp4 = l4 − l5 − l6,
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and

dl1 = −v1 − v2, dl2 = v1 + v3, dl3 = v2 + v3, dl4 = −v2 + v3,

dl5 = −v1 + v3, dl6 = v1 − v2.

The resulting Dirac operator matrix for this script is:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −1 0 −1 0 1 0 0 0 0
0 0 0 0 1 1 0 −1 0 0 0 0 0
0 0 0 0 0 −1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 1 −1 −1 0 0 0
−1 1 0 0 0 0 0 0 0 0 −1 −1 0
0 1 −1 0 0 0 0 0 0 0 1 0 1
−1 0 1 0 0 0 0 0 0 0 0 1 1
0 −1 0 1 0 0 0 0 0 0 0 −1 1
1 0 0 −1 0 0 0 0 0 0 −1 0 1
0 0 1 −1 0 0 0 0 0 0 1 −1 0
0 0 0 0 −1 1 0 0 −1 1 0 0 0
0 0 0 0 −1 0 1 −1 0 −1 0 0 0
0 0 0 0 0 1 1 1 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

with eigenvalues −2, 0, 2 of multiplicities 6, 1, 6, respectively. The Laplacian of this
script is given by:

1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −1 −1 −1 0 0 0 0 0 0 0 0 0
−1 3 −1 −1 0 0 0 0 0 0 0 0 0
−1 −1 3 −1 0 0 0 0 0 0 0 0 0
−1 −1 −1 3 0 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0 0 0 0
0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 4 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 4 0 0 0 0
0 0 0 0 0 0 0 0 0 4 0 0 0
0 0 0 0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 0 0 0 0 0 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

5.5. Connected sum of two projective planes

First, we construct the following tight script S2RP2 for a connected sum of two
RP

2, as in Figure 9. Topologically it is obtained from two circles, then one cuts
a third “small” circle from each initial ones and glue them along their boundary
(with the same orientation) to form the connected sum. In Figure 9 the two initial
circles are: first (l1 + l2) from upper left corner identified with l1 + l2 from bottom
left corner – that gives a circle around the point p1; the second circle is l4+ l3 from
the upper right corner identified with l4 + l3 from lower right corner – a second
circle around p1. Finally, the gluing circle is (l6 + l5), also around p1. It is well
known that topologically RP

2
RP2 is equivalent to a Klein bottle. We obtain the
following script geometry:

∂l1 = p2 − p1, ∂l2 = p1 − p2,

∂l3 = p1 − p3, ∂l4 = p3 − p1,

∂l5 = p1 − p0, ∂l6 = p0 − p1,

∂l7 = p0 − p1, ∂l8 = p1 − p0,
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Figure 9. Connected sum of two projective planes

and

∂v1 = l1 + l2 − l6 + l7,

∂v2 = l1 + l2 − l5 − l7,

∂v3 = l3 + l4 + l6 + l8,

∂v4 = l3 + l4 + l5 − l8 .

Therefore,
2∑

j=1

∂vj = 2(l1 + l2 + l3 + l4),

which lead to H1(S2RP2)  Z ⊕ Z2 and H2(S2RP2) = 0, same script holomology
of a Klein bottle.

At the differential operator level, we obtain:

dp0 = −l5 + l6 + l7 − l8,

dp1 = −l1 + l2 + l3 − l4 + l5 − l6 − l7 + l8,

dp2 = l1 − l2, dp3 = l4 − l3,

and

dl1 = v1 + v2, dl2 = v1 + v2,

dl3 = v3 + v4, dl4 = v3 + v4,

dl5 = −v2 + v4, dl6 = −v1 + v3,

dl7 = v1 − v2, dl8 = v3 − v4.
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In matrix form, the Dirac operator for the RP
2
RP2 script is:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 −1 1 1 −1 0 0 0 0
0 0 0 0 −1 1 1 −1 1 −1 −1 1 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 1 −1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 1 0 −1 0 0 0 0 0 0 0 0 0 0 1 1
0 −1 0 1 0 0 0 0 0 0 0 0 0 0 1 1
−1 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 1
1 −1 0 0 0 0 0 0 0 0 0 0 −1 0 1 0
1 −1 0 0 0 0 0 0 0 0 0 0 1 −1 0 0
−1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 1 1 0 0 0 −1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 −1 0 −1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with eigenvalues

−
√
7 +

√
17,−

√
6,−

√
7−

√
17,−2,−

√
2, 0,

√
2, 2,

√
7−

√
17,

√
6,

√
7 +

√
17

of multiplicities 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, respectively.
The Laplace operator is given by:

2Δ2RP2f =

⎡
⎢⎢⎣

4 −4 0 0
−4 8 −2 −2
0 −2 2 0
0 −2 0 2

⎤
⎥⎥⎦ [f0j ]

t[pj ]

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 −1 1 −2 0 1 −1
0 4 1 −1 0 −2 −1 1
−1 1 4 0 2 0 −1 1
1 −1 0 4 0 2 1 −1
−2 0 2 0 4 −2 −1 1
0 2 0 2 −2 4 1 −1
1 −1 −1 1 −1 1 4 −2
−1 1 1 −1 1 −1 −2 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[f1j]

t[lj]

+
1

2

⎡
⎢⎢⎣

4 1 −1 0
1 4 0 −1
−1 0 4 1
0 −1 1 4

⎤
⎥⎥⎦ [f2j ]

t[vj ] .

A different method of obtaining the connected sum RP
2
RP2 is done by

attaching two Möbius bands on the same boundary, as the projective plane RP
2

minus a disk is topological equivalent to a Möbius strip. Looking back at Figure 2,
we attach to it a second Möbius band as in Figure 10. The two strips glued together
on the same four points p1, p2, p3, p4, containing two more lines l7, l8 and two more
planes v3, v4 as in Figure 10. To the computations of Subsection 5.1 we add the
following boundaries:

∂l7 = p1 − p2, ∂l8 = p4 − p3,

∂v3 = −l2 + l5 − l7 + l8, ∂v4 = −l3 + l4 − l7 − l8.
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Figure 10. Connecting two Möbius strips

Here we note that

∂(v1 + v2 − v3 − v4) = 2(l7 − l1),

is the generator of the H1(SRP2) = Z2 homology. Note that we obtain the same
script (different labelling) as the Klein bottle (see Figure 4), for which we per-
formed all the necessary computations in subsection 5.3.

6. Outlook

In [13, 15] the authors present an approach to discrete differential modeling, which
includes notions of discrete differential forms on simplexes and discrete manifolds,
discrete boundary and co-boundary operators, discrete Hodge decomposition, and
a discrete version of the Poincaré lemma. The same can and will be studied in
the case of Script Geometry although some of necessary tools need to be devel-
oped since Script Geometry is a more loose concept than working with simplicial
complexes.

In [14] the authors describe their approach to the theory of discrete exterior
calculus (DEC). They introduce notions of discrete vector fields and operators
acting on them, e.g., discrete divergence and curl, which has applications such as
a discrete Hodge decomposition of 3D vector fields on irregular grids. A closely
related work is discrete mechanics, where the main idea is to discretize the varia-
tional principle itself rather than the Euler–Lagrange equations. The discretization
is not intended on time only, DEC methods are used in spatially extended mechan-
ics, i.e., classical field theory. Furthermore, this theory is also widely applied in
discrete electromagnetism which is another field were we see applications of Script
Geometry in the future. This is also closely linked with a principal question in finite
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element exterior calculus. Up to now the commutativity of the exterior derivative
with bounded projections to sub-meshes was only being shown for simplicial de-
compositions of domains. From our point of view this is still a major drawback
for applying this calculus to more general type of meshes. Here, Script Geometry
could be the basis for a more general approach.

In [10, 11, 12] a complete function theory has been established for a Dirac
type operator on the grid Z

n, including Taylor series, Fueter polynomials, and a
discrete Cauchy–Kovalevskaya theorem. We look forward to relate this work to
script geometry.
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