University of Waterloo
CS 360: Introduction to the Theory of Computing
Fall 1998

Nine Errors Students Commonly Make When Applying the Pumping Lemma

The pumping lemma for regular languages is the following;:

Lemma.

For all regular languages L, there exists a constant n (depending on L) such that for
all z € L, |z| > n, there exists a decomposition z = wvw, with |uv| < n, |v| > 1, such that
for all i > 0, uwv'w € L.

Note that the pumping lemma states a property of regular languages. Hence one
cannot use it to prove that a language is regular, but one can use the contrapositive (or
proof by contradiction) to prove that a language is non-regular. The contrapositive is:

If for all n, there exists a z € L with |z| > n such that for all decompositions z = uvw
satisfying the conditions |uv| < n and |v| > 1, there exists an i > 0 such that uv'w ¢ L,
then L is non-regular.

The common way to employ the pumping lemma is as follows: you pretend that an
“adversary” has chosen n. You must be prepared in what follows to handle any n. You
then choose your string z € L with |2| > n. Note that your string should depend on n
in some way. Now the adversary gets to pick any decomposition whatsoever z = uvw,
subject to the conditions that |uv| < n, and |v| > 1. Now you get to pick the appropriate
i such that uv'w ¢ L, thereby showing that L is not regular.

The following are the nine errors students commonly make in applying the pumping
lemma:

Error 1. Choosing a string 2z that is not in L. For example, suppose
L={ww : we(atb)}

You might incorrectly choose z = a™b™, which is not in L. At this point it’s easy to get a
“contradiction”: just pick ¢ = 1; then z = uwv'w ¢ L.

Error 2. Not handling all possible decompositions of the string z as uvw.
For example, consider

L={ww : we(atb)'}

again. Suppose the adversary chooses n and you choose z = a?". Then the adversary

is supposed to choose a decomposition z = uwvw. If, by mistake, you do not examine all

1

possible decompositions of z, you might wrongly choose to look only at the decomposition
specified by v = A,v = a,w = a®>"~!. In this case, you could choose i = 0, to get the string
uv'w = a?" "1 ¢ L, to get a “contradiction”. But it isn’t really a contradiction, since you
haven’t examined all possible ways the adversary could decompose z. In particular, the
adversary could choose u = A,v = aa,w = a2, in which case wv'w € L for all ¢ > 0.

Error 3. Choosing a string z that is not specific enough. Remember: you
get to choose any string in L, based on n, that is longer than n in length. Why make the
adversary’s job easy? The adversary wants to defeat you by picking a bad decomposition.
Usually, the more specific you choose your string, the harder time the adversary will have.

For example, in the language L above, you might have been tempted to choose z = zz,
where z was any string of length > n. Then you let the adversary break the string up
as z = wvw = zz. By picking ¢ = 0, you might conclude that uw # zz, and so obtain a
“contradiction”. But this is simply not true! It does not suffice to show that uviw # zx
for a particular x; you must show it for all possible x, since that is the meaning of not
being in L.

In fact, this kind of argument cannot succeed with such a general choice of z. For
if your string was, say, z = a™a”, then the adversary can choose v = A, v = aa, and
w = a®>" "2, In this case, no matter what ¢ you choose, the resulting string uv'w € L, and
you cannot “win”.

Moral of the story: construct your string z with care.

Error 4. Choosing a string » that does not depend on n. For example, in the
language L above, suppose you picked z = abab. The problem is that you don’t know what
n is; you must be able to account to for all possible values of n picked by the adversary. If
the length of the string you picked is not a function of n, you are in trouble.

Error 5. Choosing a negative or fractional :. This is not allowed by the
statement of the pumping lemma. In looking at uwv'w, you must choose an 7 that is an
integer > 0.

Error 6. Applying the pumping lemma to a regular language. For example,
consider

L={0"1Y : 2+ y =0 (mod 4)}.

This language is regular, but you might be tempted to try to prove it is not regular via
the pumping lemma. You might pick, for example, the string z = 0***31. Then let
the adversary decompose z as z = wvw. Hence v = 0%, v = 0%, and w = 0°1, where
a+b+c=4n+ 3. Then you might assert, “We can choose ¢ such that uviw = 04"+3+“’1,
and then clearly for all b we have that ¢ + y = 4n + 3 + ¢b + 1 is not a multiple of 4.”

The problem with this claim is that it is false. For example, if b = 4, then 4n+3+41:b+1
is a multiple of 4 for all 1.

Moral here: be careful about what you assert, and be fairly confident that the language
is indeed non-regular before you begin your proof.

2

Error 7. Assuming that all long strings in a regular language L can be
written as uv'w for some i > 2. This is not necessarily true. For example, if L =
(0 + 1 + 2)*, then you might be tempted to conclude that there exist words u,v,w such
that all sufficiently long strings in L can be written as uv'w for some 7 > 2. This is simply
false, as there exist strings in L that contain no substring of the form vv — this was first
proved by the Norwegian mathematician Axel Thue in the early 1900’s.

Thue’s example also kills the same “theorem” when u, v, and w are allowed to lie in
some finite set.

Error 8. Trying to use the pumping lemma to prove that a language is
regular. The pumping lemma is a statement about a property of regular languages.
It says, “If L is regular, then L has the following property.” Hence one cannot use the
pumping lemma to prove that a language is regular; one can only use it to prove a language
is non-regular.

In fact, there are languages which are non-regular, but nevertheless satisfy the con-
clusions of the pumping lemma! One example is the following language:

L={a't’c" : i=0o0rj=k}.

Suppose z € L is the string chosen to pump. There are two cases.

Case 1: z = bic” for some integers j, k. Pick n = 1; hence we may assume
either 7 > 1 or kK > 1. Then there exists a decomposition z = uvw, where u = A,
v=">(if j > 1) or v = ¢ (if j = 0) w = the rest of the string, and then uv'w € L
for all z > 0.

Case 2: z = a'b’ ¢/, for some integers 7,5 with ¢ > 1. Pick n = 1. Then there
exists a decomposition z = uvw, where v = A, v = a, and w = the rest of the
string, and uviw € L for all i > 0.

The moral of the story is that the ordinary pumping lemma is not powerful enough
to be able to directly prove the non-regularity of certain non-regular languages. Other
techniques are needed.

Error 9. Choosing a string z = 2(n), depending on n, in such a way that
{z(n) : n>1}
is a regular language. This is a rather subtle error, and understanding the error requires
a fairly deep understanding of the pumping lemma itself, so you may wish to skip this one
first time around.
If you choose the string z = z(n) to depend on n in such a way that

L,={z2(n) : n>1}

is itself regular, then the pumping lemma cannot succeed in proving L non-regular. For
suppose it did. Then for each way of decomposing z = uvw with |uv| < n and |v| > 1,

3

there would be a choice of > 0 such that uv'w ¢ L. But since L, C L, uv'w ¢ L. Hence
by the pumping lemma, L, itself would not be regular. But L, is; a contradiction.

Hence one must choose the string z = z(n) in a sufficiently “irregular” way to ensure
that L, itself is not regular. As an example, consider the language

L={ww : we(atb)}

One might be tempted to choose the string z = z(n) = a>", which is certainly in L.

However, the associated language is
L,={a®" : n>1}=(aa)",

which is regular, so this choice for z cannot possibly succeed in proving that L is non-
regular.

