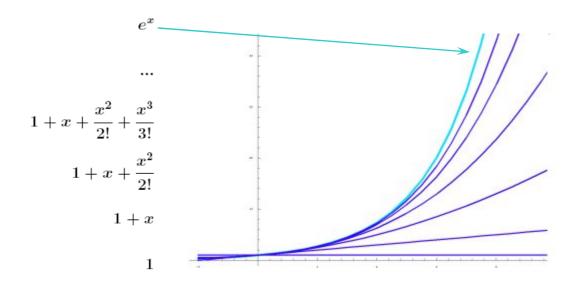
* Séries de potências

- As séries de potências são um caso particularmente importante das séries de funções, com inúmeras aplicações tanto teóricas como práticas.
- Um exemplo típico é a série,

$$\sum_{n=0}^{+\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots = e^x$$

 O cálculo do valor de sucessivas somas parciais é simples de programar e permite obter sucessivas aproximações da exponencial de qualquer número real.



• Chama-se **série de potências centrada em c \in \mathbb{R}** a uma série da forma,

$$\sum_{n=0}^{+\infty} a_n (x-c)^n$$

onde (a_n) é uma sucessão de números reais.

• Quando **c** = **0** é uma série de potências centrada na origem e tem a forma,



• Consideremos a série de funções definidas em \mathbb{R} ,

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n+1} x^n$$

Trata-se de uma série de potências centrada na origem.

Vejamos para que valores de X a série é convergente.

- Para x = 0 a **série nula** é convergente.
- Para x ≠ 0 os termos não se anulam e podemos aplicar o critério de d'Alembert,

$$\lim_{n \to +\infty} \frac{\left| \frac{(-1)^{n+1}}{n+2} x^{n+1} \right|}{\left| \frac{(-1)^n}{n+1} x^n \right|} = \lim_{n \to +\infty} \frac{\left| (-1)^{n+1} \right| |x|^{n+1} (n+1)}{\left| (-1)^n \right| |x|^n (n+2)}$$
$$= \lim_{n \to +\infty} \frac{|x| (n+1)}{n+2}$$
$$= |x|$$

• Então, quando L = |x| < 1 a série é absolutamente convergente quando L = |x| > 1 a série é divergente

e quando L = |x| = 1 nada podemos concluir.

• Analisemos os dois casos para os quais |x| = 1, da série,

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n+1} x^n$$

• Para x = -1 temos a série,

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n+1} (-1)^n = \sum_{n=1}^{+\infty} \frac{1}{n+1}$$

que, por comparação por passagem ao limite com a série harmónica básica, facilmente provamos ser divergente.

• Para x = +1 temos a série.

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n+1}$$

que é uma série alternada.

Estudando a respectiva série dos módulos,

$$\sum_{n=1}^{+\infty} \left| (-1)^n \frac{1}{n+1} \right| = \sum_{n=1}^{+\infty} \frac{1}{n+1}$$

verificamos que é divergente, donde nada podemos concluir.

- Resta tentar aplicar o critério de Leibniz.
- Para todo o $n \in \mathbb{N}$ temos uma sucessão de números reais positivos,

$$\left(\frac{1}{n+1}\right)$$

Será monótona decrescente e de limite zero?

• Efectivamente,
$$a_{n+1}-a_n=\frac{1}{n+2}-\frac{1}{n+1}$$

$$=\frac{-1}{(n+1)(n+2)}<0$$

e é evidente que,
$$\lim_{n \to +\infty} \frac{1}{n+1} = 0$$

- Pelo critério de Leibniz concluímos que a série alternada é convergente.
- Portanto, no caso de x = + 1, a série dada é convergente e como verificámos que a respectiva série dos módulos é divergente, ela é simplesmente convergente.
- E finalmente podemos estabelecer que a série de potências,

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n+1} x^n \qquad \begin{cases} \text{\'e absolutamente convergente se } x \in]-1, \ 1[\\ \text{\'e simplesmente convergente se } x = 1\\ \text{\'e divergente se } x \notin]-1, \ 1] \end{cases}$$

- Chama-se intervalo de convergência de uma série de potências ao interior do seu domínio de convergência.
 - Para o exemplo anterior, como o domínio de convergência é] -1, 1], o intervalo de convergência é] -1, 1[.

• Analisemos finalmente a conhecida série de potências,

$$\sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

- Para x = 0 a série $1 + 0 + 0 + \dots$ é absolutamente convergente.
- Para $x \neq 0$ (termos não nulos) podemos aplicar o critério de d'Alembert,

$$L = \lim_{n \to +\infty} \frac{\left| \frac{x^{n+1}}{(n+1)!} \right|}{\left| \frac{x^n}{n!} \right|} = \lim_{n \to +\infty} \frac{n! |x|^{n+1}}{(n+1)! |x|^n}$$
$$= \lim_{n \to +\infty} \frac{n! |x|}{(n+1)n!}$$
$$= \lim_{n \to +\infty} \frac{|x|}{n+1}$$
$$= 0$$

e concluir que a série é absolutamente convergente também para $x \neq 0$.

 Portanto a série é absolutamente convergente para todo o X ∈ R, sendo o seu domínio de convergência todo o conjunto R.

De modo análogo, analise a série,

$$\sum_{n=0}^{+\infty} n! x^n$$

 Verifique que neste caso o domínio de convergência é apenas o conjunto singular {0}.

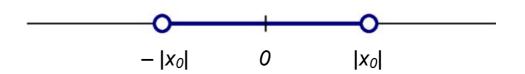
* Propriedades das séries de potências

• Seja $\sum_{n=0}^{+\infty} a_n x^n$ uma <u>série de potências centrada na origem</u>.

Então verificam-se as condições seguintes:

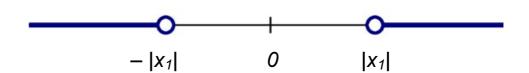
i) se a série
$$\sum_{n=0}^{+\infty} a_n x^n$$
 converge em $x_0 \in \mathbb{R} \setminus \{0\}$, então

converge absolutamente em todo o ponto de $]-|x_0|,|x_0|[$;



ii) se a série
$$\sum_{n=0}^{+\infty} a_n x^n$$
 diverge em $x_1 \in \mathbb{R}$, então

diverge em todo o ponto de $]-\infty,-|x_1|[\cup]|x_1|,+\infty[$.



Recordemos a conclusão obtida do estudo da série de potências,

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n+1} x^n \qquad \begin{cases} \text{\'e absolutamente convergente se } x \in]-1, \ 1[\\ \text{\'e simplesmente convergente se } x = 1\\ \text{\'e divergente se } x \not\in]-1, \ 1] \end{cases}$$

- Vejamos como a propriedade anterior nos pode ajudar.
- Para x = 1, vimos que é **convergente** a série alternada,

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n+1}$$

- Então esta propriedade garante-nos que a série dada é absolutamente convergente em todo o intervalo] -1, 1[
- Para x = -1 vimos que é divergente a série,

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n+1} (-1)^n = \sum_{n=1}^{+\infty} \frac{1}{n+1}$$

- Então esta propriedade garante-nos que a série dada é divergente em todo o intervalo] -∞, -1[U] 1, +∞ [
- E como sabemos o que acontece nos próprios **pontos** x = 1 e x = -1, podemos concluir que o **domínio de convergência** desta série é]-1, 1].
- Esta propriedade é facilmente generalizável a toda a série de potências centrada em C ≠ 0,

$$\sum_{n=0}^{+\infty} a_n (x-c)^n$$

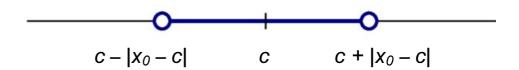
Basta efectuar uma **mudança de variável**, de modo a transformar X^n em $(X - C)^n$.

• Numa a série de potências centrada em C ≠ 0,

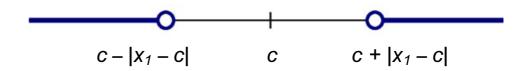
$$\sum_{n=0}^{+\infty} a_n (x-c)^n$$

Verificam-se as condições seguintes:

i) Se a série converge em $X_0 \in \mathbb{R} \setminus \{C\}$ então converge absolutamente em todo o ponto de $]C - |X_0 - C|$, $C + |X_0 - C|$



ii) Se a série **diverge** em $X_1 \in \mathbb{R} \setminus \{C\}$ então **diverge** em todo o ponto de $]-\infty$, $C-|X_1-C|$ [U] $C+|X_1-C|$, $+\infty$ [



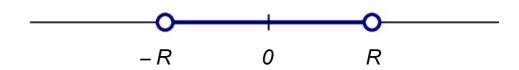
- De modo análogo, todas as propriedades das séries de potências centradas na origem podem ser generalizáveis a séries de potências centradas em c ≠ 0.
- A proposição seguinte descreve a propriedade mais importante das séries de potências. Efectivamente, só três casos podem acontecer: a série converge absolutamente para todos os reais, ou só na origem, ou num intervalo centrado.

• Seja $\sum_{n=0}^{+\infty} a_n x^n$ uma série de potências centrada na origem.

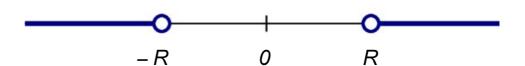
Então verifica-se uma e uma só das condições seguintes:

- (i) a série converge absolutamente apenas em x = 0 e diverge se $x \neq 0$;
- (ii) a série converge absolutamente para todo o $x \in \mathbb{R}$;
- (iii) existe R > 0 tal que a série converge absolutamente

para todo o $x \in]-R,R[$



 $e \underline{diverge} \ para \ todo \ o \ x \in]-\infty, -R[\cup]R, +\infty[.$



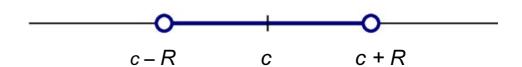
- O comportamento nos próprios **pontos** x = R e x = -R tem de ser analisado para cada caso.
- Naturalmente, ao número R chama-se raio de convergência da série de potências.
- Assim, a questão fundamental do estudo de uma série de potências é a determinação do seu raio de convergência: 0, +∞, ou um número real.

- E generalizando para toda a série de potências centrada em $C \neq 0$, ...
- Numa a série de potências centrada em C ≠ 0,

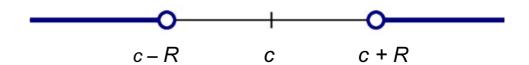
$$\sum_{n=0}^{+\infty} a_n (x-c)^n$$

Verifica-se <u>uma e uma só</u> das condições seguintes:

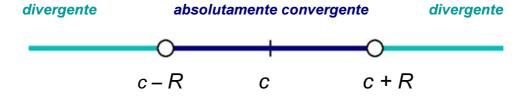
- i) a série converge absolutamente apenas em X = C e diverge se $X \neq C$.
- ii) a série converge absolutamente para todo o $X \in \mathbb{R}$
- iii) existe um R > 0 tal que a série converge absolutamente para todo o $X \in \] C R, \ C + R \ [$



e diverge para todo o $X \in]-\infty$, c-R[U]c+R, $+\infty[$



Nada é dito sobre o comportamento da série nos próprios pontos X = C + R
 e X = C - R



* Determinação do raio de convergência

Para uma dada série de potências centrada em C (C = 0 ou C ≠ 0),

$$\sum_{n=0}^{+\infty} a_n (x-c)^n$$

calculemos o seu raio de convergência.

- Para x = c a série é absolutamente convergente e tem soma a_0 .
- Para $x \neq c$ e assumindo que os a_n não se anulam, teremos para todo o $n \in \mathbb{N}$,

$$a_n|x-c|^n\neq 0$$

Nestas condições, podemos aplicar o critério de d'Alembert e calcular,

$$\lim_{n \to +\infty} \frac{\left| a_{n+1}(x-c)^{n+1} \right|}{|a_n(x-c)^n|} = \lim_{n \to +\infty} \frac{\left| a_{n+1} \right| |x-c|^{n+1}}{|a_n| |x-c|^n}$$

$$= \lim_{n \to +\infty} \left(\frac{|a_{n+1}|}{|a_n|} |x-c| \right)$$

- Chamemos, $L := \lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|}$
- Então, para $|x c| \neq 0$,

$$\lim_{n \to +\infty} \frac{\left| a_{n+1}(x-c)^{n+1} \right|}{|a_n(x-c)^n|} = L|x-c|$$

• E agora, apenas **três casos** podem ocorrer, de acordo com os três possíveis valores de *L* : **nulo**, **infinito** ou **finito** n**ão nulo**.

• No caso de L = 0 temos,

$$\lim_{n \to +\infty} \frac{\left| a_{n+1}(x-c)^{n+1} \right|}{|a_n(x-c)^n|} = 0$$

 então, pelo critério de d'Alembert e a série de potências converge absolutamente, desde que X ≠ C.

Mas já vimos que também converge absolutamente para X = C.

- Portanto, quando L = 0, a série de potências é absolutamente convergente para todo o X ∈ R e o seu raio de convergência é +∞.
- $R = +\infty$

• No caso de $L = +\infty$ temos,

$$\lim_{n \to +\infty} \frac{\left| a_{n+1}(x-c)^{n+1} \right|}{\left| a_n(x-c)^n \right|} = +\infty$$

 então, pelo critério de d'Alembert e a série de potências diverge, desde que X ≠ C.

Mas já vimos que converge absolutamente para X = C.

- Portanto, quando $L = +\infty$, o domínio de convergência da série de potências é apenas $\{C\}$ e o seu raio de convergência é nulo.
- R = 0

• No caso de $L \neq 0$ e $L \neq +\infty$ temos.

$$\lim_{n \to +\infty} \frac{\left| a_{n+1}(x-c)^{n+1} \right|}{|a_n(x-c)^n|} = L|x-c|$$

 então, pelo critério de d'Alembert e a série de potências converge absolutamente, para todo o X ≠ C, quando,

$$L|x-c| < 1 \Longleftrightarrow |x-c| < \frac{1}{L}$$

e diverge, para todo o $x \neq c$, quando,

$$|x - c| > \frac{1}{L}$$

e já vimos que converge absolutamente para X = C.

 Portanto, quando L é finito e não nulo, a série de potências é absolutamente convergente em todos os pontos do intervalo,

$$\left] -\frac{1}{L} + c, \frac{1}{L} + c \right[$$

e divergente para todo o,

$$x \in \left] -\infty, -\frac{1}{L} + c \left[\cup \right] \frac{1}{L} + c, +\infty \right[$$

- Então, o raio de convergência é R = 1 / L.
- Para determinar completamente o domínio de convergência da série, será ainda necessário analisar o seu comportamento nos dois pontos,

$$x = -\frac{1}{L} + c \qquad \qquad x = \frac{1}{L} + c$$

$$\left(\sum_{n=0}^{+\infty} a_n (x-c)^n\right)$$

Juntando os três casos, e assumindo as convenções habituais, 1/+∞ = 0 e
 1/0 = +∞, podemos estabelecer uma fórmula para o cálculo do raio de convergência de uma série de potências,

$$R = \frac{1}{\lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|}} = \lim_{n \to +\infty} \frac{|a_n|}{|a_{n+1}|}$$

desde que os a_n não se anulem e o **limite exista**, mesmo que infinito.

- Note que, todo este estudo pode igualmente ser feito com base no critério de Cauchy.
- Desse estudo, e assumindo as mesmas convenções, resulta outra fórmula para o cálculo do raio de convergência de uma série de potências,

$$R = \frac{1}{\lim_{n \to +\infty} \sqrt[n]{|a_n|}} = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{|a_n|}}$$

desde que os a_n não se anulem e o **limite exista**, mesmo que infinito.

- Deste modo, para analisar uma dada série de potências, podemos seguir o processo de aplicação de um dos dois critérios, ou utilizar directamente uma das duas fórmulas.
- Os dois pontos extremos do intervalo têm de ser analisados separadamente.

 Para cada uma das seguintes séries de potências, determine o domínio de convergência, indicando os pontos onde a convergência é simples ou absoluta.

$$\bullet \quad \sum_{n=0}^{+\infty} \frac{n!}{5^n} x^n$$

- Para todo o $n \in \mathbb{N}$, $\frac{n!}{5^n} \neq 0$
- Então podemos calcular,

$$\lim_{n \to +\infty} \frac{\left| \frac{n!}{5^n} \right|}{\left| \frac{(n+1)!}{5^{n+1}} \right|} = \lim_{n \to +\infty} \frac{n! 5^{n+1}}{(n+1)! 5^n}$$
$$= \lim_{n \to +\infty} \frac{5}{n+1}$$
$$= 0.$$

• Portanto, R = 0, o domínio de convergência da série de é apenas $\{0\}$ onde converge absolutamente.

$$\bullet \quad \sum_{n=0}^{+\infty} \frac{10^n}{n!} \left(x - \frac{7}{2} \right)^n$$

- Para todo o $n \in \mathbb{N}$, $\frac{10^n}{n!} \neq 0$
- Então podemos calcular o limite,

$$\lim_{n \to +\infty} \frac{\left| \frac{10^n}{n!} \right|}{\left| \frac{10^{n+1}}{(n+1)!} \right|} = \lim_{n \to +\infty} \frac{(n+1)! \ 10^n}{n! 10^{n+1}}$$
$$= \lim_{n \to +\infty} \left(\frac{n+1}{10} \right)$$
$$= +\infty.$$

• Portanto, $R = +\infty$, o domínio de convergência da série de é todo o \mathbb{R} , sendo absolutamente convergente em todos os pontos.

•
$$\sum_{n=1}^{+\infty} \frac{1}{3^n \sqrt{n+1}} (x+1)^n$$

- Para todo o $n \in \mathbb{N}, \quad \frac{1}{3^n \sqrt{n+1}} \neq 0$
- Então podemos calcular,

$$\lim_{n \to +\infty} \frac{\left| \frac{1}{3^n \sqrt{n+1}} \right|}{\left| \frac{1}{3^{n+1} \sqrt{n+2}} \right|} = \lim_{n \to +\infty} \frac{3^{n+1} \sqrt{n+2}}{3^n \sqrt{n+1}} = 3$$

• Então, R = 3, e a série é absolutamente convergente para,

$$|x+1| < 3 \iff -3 < x+1 < 3 \iff x \in]-4,2[$$

• Resta estudar o seu comportamento nos **pontos** -4 e 2.

• Para X = -4, temos a série numérica,

$$\sum_{n=1}^{+\infty} \frac{1}{3^n \sqrt{n+1}} (-3)^n = \sum_{n=1}^{+\infty} (-1)^n \frac{1}{\sqrt{n+1}}$$

- que é uma série alternada pois, para todo o $n \in \mathbb{N}, \quad \frac{1}{\sqrt{n+1}} > 0$
- Analisemos a sucessão,

$$\left(\frac{1}{\sqrt{n+1}}\right)$$

- que é decrescente, pois, $\frac{1}{\sqrt{n+2}} < \frac{1}{\sqrt{n+1}}$
- e tende para zero, $\lim_{n \to +\infty} \frac{1}{\sqrt{n+1}} = 0$
- Então, pelo critério de Leibniz, a série alternada é convergente.
- Por outro lado, a respectiva série dos módulos,

$$\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n+1}}$$

• é divergente pois, por comparação por passagem ao limite,

$$\lim_{n \to +\infty} \frac{\frac{1}{\sqrt{n+1}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to +\infty} \frac{\sqrt{n}}{\sqrt{n+1}} = 1$$

tem a mesma natureza da série harmónica,

$$\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}}$$

- por isso, a série alternada é simplesmente convergente,
- e então, a série de potências dada é simplesmente convergente no ponto X = -4.
- Para X = 2, temos a série numérica,

$$\sum_{n=1}^{+\infty} \frac{1}{3^n \sqrt{n+1}} 3^n = \sum_{n=1}^{+\infty} \frac{1}{\sqrt{n+1}}$$

- que acabámos de ver que é divergente.
- e então, a série de potências dada é divergente no ponto x = 2.
- Portanto, a série de potências dada tem como domínio de convergência o intervalo [4, 2 [sendo absolutamente convergente em] 4, 2 [, mas simplesmente convergente no ponto X = 4.

•
$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n \cdot 10^n} (x+4)^n$$

- Para todo o $n \in \mathbb{N}$, $\frac{(-1)^{n+1}}{n \cdot 10^n} \neq 0$
- Então podemos calcular,

$$\lim_{n \to +\infty} \frac{1}{\sqrt[n]{\left|\frac{(-1)^{n+1}}{n \cdot 10^n}\right|}} = \lim_{n \to +\infty} (10 \sqrt[n]{n})$$

$$= 10.$$

• Então, R = 10, e a série é absolutamente convergente para,

$$|x+4| < 10 \iff -14 < x < 6$$

e divergente para,

$$|x+4| > 10 \iff (x < -14 \lor x > 6)$$

- Resta estudar o seu comportamento nos pontos 14 e 6.
- Para X = -14, temos a série numérica,

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n \cdot 10^n} (-10)^n = \sum_{n=1}^{+\infty} \frac{(-1)^{2n+1}}{n}$$
$$= \sum_{n=1}^{+\infty} \frac{-1}{n}$$

- que é divergente, por ser o produto da série harmónica básica por 1.
- Para X = 6, temos a série numérica,

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n \cdot 10^n} (10)^n = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n}$$

- que é simplesmente convergente, por ser uma série harmónica alternada com p = 1.
- Portanto, a série de potências dada tem como domínio de convergência o intervalo] 14, 6] sendo absolutamente convergente no intervalo] 14, 6 [e simplesmente convergente no ponto X = 6.

E que fazer quando o valor do centro não aparece explicitamente na fórmula?
 Como por exemplo na série de potências,

$$\sum_{n=0}^{+\infty} \frac{1}{n^4 + 16} (2x - 1)^n$$

- Podemos começar por tentar manipular algebricamente a fórmula.
 - Neste caso, notamos que $(2x-1)^n = 2^n \left(x \frac{1}{2}\right)^n$

e transformamos a série dada numa série de potências centrada em 1/2,

$$\sum_{n=0}^{+\infty} \frac{2^n}{n^4 + 16} \left(x - \frac{1}{2} \right)^n$$

- Verifique que o domínio de convergência é o intervalo [0, 1] onde é absolutamente convergente em todos os pontos.
- Noutras situações, poderá ser necessário fazer uma mudança de variável,
 - Como por exemplo, 2x 1 = z, convertendo a série dada numa série de potências centrada na origem.

$$\sum_{n=0}^{+\infty} \frac{z^n}{n^4 + 16}$$

- Verifique que, para esta série, o domínio de convergência é o intervalo de Z,
 [-1, 1] onde é absolutamente convergente em todos os pontos.
- Regressando à variável X, naturalmente recuperamos o intervalo [0, 1].

 Em qualquer dos casos, podemos sempre aplicar directamente um dos critérios, Cauchy ou d'Alembert, à série dada.

$$\sum_{n=0}^{+\infty} \frac{1}{n^4 + 16} (2x - 1)^n$$

- Começamos por identificar o ponto, x = 1/2, para o qual a série se anula.
- E para todo o $x \neq 1/2$ e todo o $n \in \mathbb{N}$ podemos calcular, por exemplo,

$$\lim_{n \to +\infty} \frac{\left| \frac{1}{(n+1)^4 + 16} (2x-1)^{n+1} \right|}{\left| \frac{1}{n^4 + 16} (2x-1)^n \right|} = \lim_{n \to +\infty} \left| \frac{n^4 + 16}{(n+1)^4 + 16} (2x-1) \right|$$
$$= |2x-1|.$$

- Assim, para o **critério de d'Alembert** temos L = |2 x 1|, sendo a série absolutamente convergente para os valores de x tais que |2 x 1| < 1.
- Combinando com facto de que a série (nula) é absolutamente convergente em x = 1/2, confirme o resultado já conhecido.

• Mostre que a série,
$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{2n-1} x^{2n}$$

é absolutamente convergente apenas em] -1, 1[.

* Convergência uniforme de séries de potências

- Para que possamos derivar e integrar séries de potências termo a termo é vital conhecer os intervalos e o tipo de convergência.
- Seja $\sum_{n=0}^{+\infty} a_n x^n$ uma série de potências com raio de convergência não nulo e seja \mathbf{I} o seu intervalo de convergência.

 Então a série converge uniformemente em qualquer intervalo fechado e limitado de \mathbf{I} .
 - Sendo [a, b] um intervalo fechado e limitado de l, tomando $r = max \{ |a|, |b| \}$ temos,

$$[a, b] \subset [-r, r] \subset I$$

• Provemos que a convergência é uniforme em [- r, r].

Para todo o $X \in [-r, r]$ e todo o $n \in \mathbb{N}_0$ temos $|X^n| \le r^n$ e,

$$|a_n x^n| \leq |a_n| r^n$$

 Por outro lado, como a série é absolutamente convergente no seu intervalo de convergência, então é convergente a série dos módulos,

$$\sum_{n=0}^{+\infty} |a_n r^n| = \sum_{n=0}^{+\infty} |a_n| r^n$$

 Ou seja, a série dos módulos é majorada por uma série numérica convergente. Então, pelo critério de Weierstrass, a série de potências é uniformemente convergente em [-r, r].

E como [a, b] \subset [-r, r], a série de potências é portanto uniformemente convergente em [a, b].

- Generalizando,
- Qualquer série de potências, $\sum_{n=0}^{+\infty} a_n (x-c)^n$

com raio de convergência não nulo, **converge uniformemente**em qualquer **intervalo fechado** contido no seu **intervalo de convergência**.

• Por exemplo a série anterior, $\sum_{n=0}^{+\infty} \frac{1}{n^4 + 16} (2x - 1)^n$

como vimos, tem como domínio de convergência o intervalo [0, 1] e sendo o intervalo de convergência]0, 1[, é portanto uniformemente convergente em qualquer intervalo fechado contido em]0, 1[.

• Por exemplo a série, $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n \cdot 10^n} (x+4)^n$

se tem como domínio de convergência o intervalo] -14, 6] e como intervalo de convergência o intervalo] -14, 6 [, é então uniformemente convergente em qualquer intervalo fechado contido em] -14, 6 [.

- Note-se que, a propriedade anterior não relaciona directamente a convergência uniforme com o domínio de convergência.
- A propriedade seguinte, garante-nos que uma série de potências de raio de convergência não nulo é uniformemente convergente em todo o seu domínio de convergência.
- O Teorema de Abel.

Seja
$$\sum_{n=0}^{+\infty} a_n x^n$$
 uma série de potências centrada na origem de raio de convergência $R > 0$.

Então verificam-se as condições seguintes:

i) se a série de potências
$$\sum_{n=0}^{+\infty} a_n x^n \underline{converge\ em\ x = R}$$
,

então ela converge uniformemente no intervalo [0,R] e tem-se que

$$\lim_{x \to R^{-}} \left(\sum_{n=0}^{+\infty} a_n x^n \right) = \sum_{n=0}^{+\infty} a_n R^n$$

ii) se a série de potências
$$\sum_{n=0}^{+\infty} a_n x^n \underline{converge\ em\ x = -R}$$
,

então ela converge uniformemente no intervalo [-R,0] e tem-se que

$$\lim_{x \to -R^+} \left(\sum_{n=0}^{+\infty} a_n x^n \right) = \sum_{n=0}^{+\infty} a_n (-R)^n$$

- Generalizando,
- Seja $\sum_{n=0}^{+\infty} a_n (x-c)^n$ uma série de potências centrada em $c \neq 0$, com raio de convergência R > 0.

Então verificam-se as condições seguintes,

i) Se a série **converge** em x = R + c, então ela **converge uniformemente** no intervalo [c , R + c] e tem-se,

$$\lim_{x \to (R+c)^{-}} \left(\sum_{n=0}^{+\infty} a_n (x-c)^n \right) = \sum_{n=0}^{+\infty} a_n (R+c-c)^n$$

ii) Se a série **converge** em x = -R + c, então ela **converge uniformemente** no intervalo [-R + c, c] e tem-se,

$$\lim_{x \to (-R+c)^+} \left(\sum_{n=0}^{+\infty} a_n (x-c)^n \right) = \sum_{n=0}^{+\infty} a_n (-R+c-c)^n$$

• Por exemplo a série, $\sum_{n=0}^{+\infty} \frac{1}{n^4 + 16} (2x - 1)^n$

é então uniformemente convergente em todo o seu domínio de convergência [0, 1].

• e por exemplo a série, $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n \cdot 10^n} (x+4)^n$

é uniformemente convergente no domínio de convergência] -14, 6]

* Derivação e primitivação de séries de potências

• Seja $\sum_{n=0}^{+\infty} a_n x^n$ uma série de potências de raio de convergência $R \neq 0$.

Então as séries de potências

$$\sum_{n=1}^{+\infty} n a_n x^{n-1} e \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1} t \hat{e}m raio de convergência R.$$

- Generalizando,
- Seja $\sum_{n=0}^{+\infty} a_n (x-c)^n$ uma série de potências centrada em x=c, com raio de convergência R>0.

Então a série das derivadas, $\sum_{n=1}^{+\infty} na_n(x-c)^{n-1}$

e a série das primitivas, $\sum_{n=0}^{+\infty} \frac{a_n}{n+1} (x-c)^{n+1}$

têm também raio de convergência R.

- Como consequência, tanto a série das derivadas como a série das primitivas, convergem uniformemente em qualquer sub-intervalo fechado e limitado do seu intervalo de convergência que é] ¬R + c, R + c [.
- E com base neste facto, a proposição seguinte garante-nos que efectivamente podemos derivar e integrar séries de potências termo a termo.

• Seja $\sum_{n=0}^{+\infty} a_n (x-c)^n$ uma série de potências centrada em x = c.

Então verificam-se as condições seguintes,

- i) a série de potências define uma função contínua em todo o intervalo fechado contido no seu intervalo de convergência.
- ii) a série de potências **pode integrar-se termo a termo** em todo o intervalo fechado contido no seu intervalo de convergência.
- iii) a série de potências **pode derivar-se termo a termo** em todo o intervalo fechado contido no seu intervalo de convergência.
- Conjugando o primeiro destes resultados com o Teorema de Abel, pode provar-se que a continuidade se verifica em todo o domínio de convergência.
- Seja $\sum_{n=0}^{+\infty} a_n (x-c)^n$ uma série de potências centrada em x=c, com raio de convergência não nulo,

e seja f(x) a sua **soma**,

$$f(x) = \sum_{n=0}^{+\infty} a_n (x - c)^n$$

Então,

 a) a soma da série de potências é uma função contínua no domínio de convergência da série considerada.

- Por exemplo a função soma da série, $\sum_{n=0}^{+\infty} \frac{1}{n^4 + 16} (2x 1)^n$ é contínua em todo o seu domínio de convergência [0, 1].
- e por exemplo a função soma da série, $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n \cdot 10^n} (x+4)^n$ é contínua em todo o seu domínio de convergência] 14, 6]

• Seja $\sum_{n=0}^{+\infty} a_n (x-c)^n$ uma série de potências centrada em x=c. com raio de convergência não nulo.

Seja I o seu intervalo de convergência

e seja f(x) a sua **soma**,

$$f(x) = \sum_{n=0}^{+\infty} a_n (x - c)^n$$

Então,

b) a função soma da série é diferenciável em I
 e para todo o X ∈ I temos,
 +∞

$$f'(x) = \sum_{n=1}^{+\infty} na_n(x-c)^{n-1}$$

• Por aplicações sucessivas do mesmo resultado, temos também para todo o $X \in I$ e todo $K \in \mathbb{N}$,

$$f^{(k)}(x) = \sum_{n=k}^{+\infty} n(n-1)\cdots(n-k+1)a_n(x-c)^{n-k}$$

c) a função F(x) definida por,

$$F(x) = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} (x-c)^{n+1}$$

é a primitiva de f(x) em I tal que F(c) = 0.

 d) a função f(x) é integrável em todo o intervalo [a, b] contido no seu domínio de convergência e tem-se,

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \left(\sum_{n=0}^{+\infty} a_n (x - c)^n \right) dx$$
$$= \sum_{n=0}^{+\infty} \int_{a}^{b} \left(a_n (x - c)^n \right) dx$$

· donde podemos calcular,

$$\begin{split} \int_{a}^{b} f(x) \, dx &= \sum_{n=0}^{+\infty} \frac{a_n}{n+1} (x-c)^{n+1} \bigg]_{a}^{b} \\ &= \sum_{n=0}^{+\infty} \left(\frac{a_n}{n+1} (b-c)^{n+1} - \frac{a_n}{n+1} (a-c)^{n+1} \right) \\ &= \sum_{n=0}^{+\infty} \left(\frac{a_n}{n+1} ((b-c)^{n+1} - (a-c)^{n+1}) \right). \end{split}$$

Recordemos a série de funções,

$$\sum_{n=0}^{+\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots$$

- A série é apenas pontualmente convergente no intervalo] -1, 1[, mas é uniformemente convergente em qualquer intervalo fechado de] -1, 1[.
- sendo uma série geométrica, a sua função soma é dada por,

$$f(x) = \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$$

e sendo] −1, 1[o intervalo de convergência então, pela propriedade das derivadas, temos para todo o X ∈] −1, 1[,

$$\left(\frac{1}{1-x}\right)' = \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1} = \sum_{n=0}^{+\infty} (n+1)x^n$$

- Por outro lado, a função $F(x) = -\ln(1-x)$ é a **primitiva** de f(x) que se anula em x = 0.
- Então, pela **propriedade dos integrais**, temos para todo o $X \in]-1, 1[$,

$$-\ln(1-x) = \sum_{n=0}^{+\infty} \frac{1}{n+1} x^{n+1}$$

ou seja,

$$\ln \frac{1}{1-x} = \sum_{n=0}^{+\infty} \frac{1}{n+1} x^{n+1} = \sum_{n=1}^{+\infty} \frac{1}{n} x^n$$

 Assim, no intervalo] -1, 1[, as três funções seguintes são representáveis por séries de potências,

(1)
$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

(2)
$$-\ln(1-x) = \sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1} = x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots$$

(3)
$$\frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1} = 1 + 2x + 3x^2 + \cdots$$

- A partir destas, por ou integrações, outras representações por séries de potências podem ser construídas.
- Como por exemplo,

(a)
$$f(x) = \frac{1}{1+2x}$$

(b) $f(x) = \ln(1+2x)$
(c) $f(x) = \frac{2}{(1-x)^3}$

a)
$$f(x) = \frac{1}{1 + 2x}$$

• Podemos utilizar a série (1), substituindo X por -2X,

$$\frac{1}{1+2x} = \sum_{n=0}^{+\infty} (-1)^n \ 2^n x^n$$
$$= 1 - 2x + 2^2 x^2 - 2^3 x^3 + \cdots$$

 Não esquecendo de ajustar o intervalo de convergência, que passará a ser] -1/2, 1/2[.

- Ou podemos verificar directamente que se trata da fórmula da soma de uma série geométrica, com primeiro termo 1 e razão r = -2x.
- Naturalmente, a série geométrica será convergente apenas para os valores de |-2x| < 1, donde calculamos o **intervalo de convergência**]-1/2, 1/2[.

b)
$$f(x) = \ln(1 + 2x)$$

Uma possível solução consiste em notar que,

$$(\ln(1+2x))' = \frac{2}{1+2x}$$

 e então, ou multiplicando por 2 a representação obtida em a), ou notando que se trata de da soma de uma série geométrica, com primeiro termo 2 e razão r = -2x, obtemos,

$$\frac{2}{1+2x} = \sum_{n=0}^{+\infty} (-1)^n 2^{n+1} x^n$$
$$= 2 - 2^2 x + 2^3 x^2 - 2^4 x^3 + \cdots$$

cujo intervalo de convergência é] -1/2, 1/2[.

- Por outro lado, a função $\ F(x) = \ln(1+2x)$ é a **primitiva** de $\ f(x) = \frac{2}{1+2x}$ que se **anula** em x = 0.
- Resta então integrar cada termo, $(-1)^n \ 2^{n+1} x^n$

 E, pela propriedade dos integrais, temos para todo o intervalo de convergência] -1/2, 1/2[,

$$\ln(1+2x) = \sum_{n=0}^{+\infty} (-1)^n 2^{n+1} \frac{x^{n+1}}{n+1}$$
$$= 2x - 2^2 \frac{x^2}{2} + 2^3 \frac{x^3}{3} - \dots$$

c)
$$f(x) = \frac{2}{(1-x)^3}$$

Uma possível solução consiste em notar que,

$$\left(\frac{1}{(1-x)^2}\right)' = \frac{2}{(1-x)^3}$$

Mas já sabemos de (3) que,

$$\frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1} = 1 + 2x + 3x^2 + \cdots$$

- Então, derivando a termo esta série e sendo] -1, 1[o intervalo de convergência
- temos, pela propriedade das derivadas para todo o $X \in]-1, 1[$,

$$\frac{2}{(1-x)^3} = \sum_{n=2}^{+\infty} n(n-1)x^{n-2}$$
$$= 2 + 2 \times 3 \ x + 3 \times 4 \ x^2 + \cdots$$

• A partir da representação, $-\ln(1-x)=\sum_{n=0}^{+\infty}\frac{x^{n+1}}{n+1}$ que é válida para todo o $x\in]-1$, 1[,

procuremos agora uma representação em série de potências para,

$$f(x) = \ln\left(\frac{1-x}{1+x}\right)$$

com indicação do maior intervalo aberto no qual é válida.

Comecemos por calcular,

$$\ln\left(\frac{1-x}{1+x}\right) = \ln(1-x) - \ln(1+x)$$

• Então, por um lado sabemos que para todo o $x \in]-1, 1[$,

$$\ln(1-x) = -\sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1}$$

• e por outro lado verificamos que para todo o $-x \in]-1, 1[$

$$\ln(1+x) = -\sum_{n=0}^{+\infty} \frac{(-x)^{n+1}}{n+1} = -\sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{n+1} x^{n+1}$$

ou seja, para todo o $x \in]-1, 1[$.

Resta então subtrair,

$$\ln\left(\frac{1-x}{1+x}\right) = \ln(1-x) - \ln(1+x)$$

$$= -\sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1} + \sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{n+1} x^{n+1}$$

$$= \sum_{n=0}^{+\infty} \frac{-1 + (-1)^{n+1}}{n+1} x^{n+1}$$

• Esta expressão pode ser simplificada pois,

para
$$n$$
 par, $-1 + (-1)^{n+1} = -1 - 1 = -2$
para n impar, $-1 + (-1)^{n+1} = -1 + 1 = 0$

ou seja, anulam-se todos os termos para os quais n é ímpar (ou n+1 par)

• Deste modo obtemos a representação em série de potências,

$$\ln\left(\frac{1-x}{1+x}\right) = \sum_{n=0}^{+\infty} \frac{-2}{2n+1} x^{2n+1}$$

que é válida para o intervalo]-1, 1[.

 Pode também ocorrer o problema inverso, isto é, dada uma representação em série de potências calcular a função soma.

• Por exemplo, a partir da representação
$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$$
 que é válida para todo o $x \in]-1$, 1[.

calcular a **função soma** da série
$$\displaystyle \sum_{n=1}^{+\infty} n \frac{x^n}{2^n}$$

indicando o maior intervalo em que essa representação é válida.

• Partindo de,
$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$$

e **substituindo** X por X/2 obtemos,
$$\frac{1}{1-\frac{x}{2}} = \sum_{n=0}^{+\infty} \left(\frac{x}{2}\right)^n$$

$$\frac{2}{2-x} = \sum_{n=0}^{+\infty} \frac{x^n}{2^n}$$

- E se a expressão inicial era válida para todo o x ∈] −1, 1[,
 esta é válida para x / 2 ∈] −1, 1[, ou seja, para todo o x ∈] −2, 2[.
- Para relacionar esta com a série pretendida $\sum_{n=1}^{+\infty} n \frac{x^n}{2^n}$ basta notar que $(x^n)' = n x^{n-1}$.
- Assim, pela propriedade das derivadas das séries de potências temos,

ou seja,
$$\left(\frac{2}{2-x}\right)' = \sum_{n=1}^{+\infty} n \frac{x^{n-1}}{2^n}$$

$$\frac{2}{(2-x)^2} = \sum_{n=1}^{+\infty} n \frac{x^{n-1}}{2^n}$$

para todo o $x \in]-2, 2[$.

• E multiplicando ambos os membros por X, temos a soma pretendida,

$$\sum_{n=1}^{+\infty} n \frac{x^n}{2^n} = x \sum_{n=1}^{+\infty} n \frac{x^{n-1}}{2^n} = \frac{2x}{(2-x)^2}$$

que é **válida** para todo o $x \in]-2, 2[$.