<u>Capítulo 6 – Equações Diferenciais Ordinárias</u>

* O Problema de Cauchy ou Problema de Valor Inicial (PVI)

• O problema: Determinar a função $y \in C^1(J)$, onde J denota um intervalo de $\mathbb R$, que satisfaz,

$$\begin{cases} y' = f(t, y(t)), & t \in J \\ y(t_0) = y_0 \end{cases}$$

- Trata-se de um Problema de Cauchy de primeira ordem, por não ocorrerem derivadas de ordem mais elevada.
- À relação $y(t_0) = y_0$ chama-se condição inicial ou condição de valor inicial.

por exemplo: o problema
$$\begin{cases} y' = y(t) \\ y(0) = 1 \end{cases}$$

tem como **solução** a função $y = e^t$.

O Problema de Valor Inicial torna-se equivalente à resolução da equação,

$$y(t) = y_0 + \int_{t_0}^t f(s, y(s)) ds$$

 $\underline{\mathsf{se}}\,\,\mathsf{e}\,\,\mathsf{s\acute{o}}\,\,\mathsf{se}\,f$ for $\mathsf{continua}$ com respeito a t .

* Existência e Unicidade de Solução

• **definição**: A função f(t, y) satisfaz uma **condição de Lipschitz** com respeito a y se existe uma **constante** L > 0 tal que,

$$|f(t, y) - f(t, z)| \le L |y - z|$$

para todo o $t \in J$ e para todos os reais y e z.

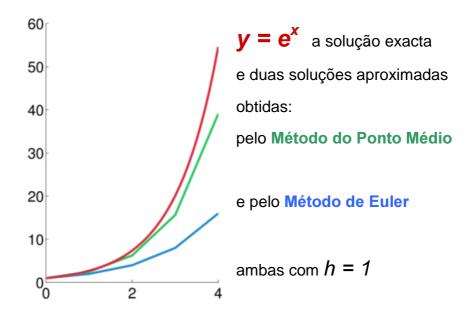
A constante de Lipschitz L é independente de t.

- - (1) f(t, y) é contínua em t e
 - (2) f(t, y) satisfaz uma condição de Lipschitz com respeito a y.

* Resolução Numérica – Discretização

- Serão apenas determinados valores aproximados da função y num conjunto discreto de N pontos.
- Fixe-se $0 < T < \infty$ e seja $J = [t_0, t_0 + T]$ o intervalo de integração.
- Fazendo h = T/N obtemos uma malha uniforme do intervalo J.
- h (amplitude dos subintervalos) chama-se passo de discretização (ou simplesmente passo).

para o mesmo exemplo:



- Vamos representar a solução exacta $y(t_n)$ no nó t_n simplesmente por y_n e a solução numérica aproximada no mesmo nó por u_n ,
- assim, $y_n \equiv y(t_n)$ $u_n \approx y_n$
- Também representaremos, $f_n \equiv f(t_n, u_n)$ e obviamente que $u_0 = y_0$.

⇒ Tipos de Métodos

- definição: Um método numérico para a aproximação do PVI é designado de Passo Simples se $\forall n \geq 0$, u_{n+1} depende só de u_n . Caso contrário é designado um método de Passo Múltiplo (ou Multipasso).
- definição: Um método numérico para a aproximação do PVI designa-se explícito se U_{n+1} pode ser calculado directamente em termos de valores u_k , $k \le n$. Um método diz-se ser implícito se U_{n+1} depende implicitamente de si próprio através de f.

* Alguns Métodos de Passo Simples

Método de Euler Explícito (ou progressivo)

$$u_{n+1} = u_n + hf_n$$

 A estratégia do método consiste em aproximar a derivada pela diferença finita progressiva,

$$y'(t) \approx (y(t+h) - y(t)) / h$$

 $y(t+h) \approx y(t) + h y'(t)$

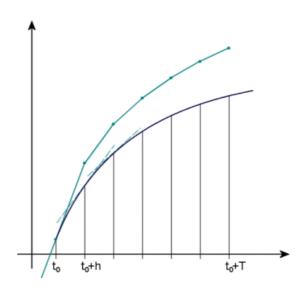
• e como, pela definição de PVI, y'(t) = f(t, y(t)),

$$y(t+h) \approx y(t) + h f(t, y(t))$$

• ou, na representação que usamos para as aproximações,

$$u_{n+1} = u_n + h f_n$$

• Deste modo, partindo de $u_0 = y_0$ e para o passo h estipulado, é gerada uma sucessão de pontos que aproximam a solução exacta.



• para o mesmo exemplo:
$$\begin{cases} y' = y(t) \\ y(0) = 1 \end{cases}$$

obter uma aproximação da solução $y(x) = e^x$ no intervalo [0, 1] com passo h = 0.25 pelo **Método de Euler Explícito**,

$$u_{n+1} = u_n + h f_n$$

 $u_0 = 1$
 $u_1 = u_0 + 0.25 f_0 = 1.00000 + 0.25(1.00000) = 1.25000$
 $u_2 = u_1 + 0.25 f_1 = 1.25000 + 0.25(1.25000) = 1.56250$
 $u_3 = u_2 + 0.25 f_2 = 1.56250 + 0.25(1.56250) = 1.95313$
 $u_4 = u_3 + 0.25 f_3 = 1.95313 + 0.25(1.95313) = 2.44141$

 Comparando com os valores exactos, vemos que os resultados obtidos não são muito satisfatórios ...

n h	u _n	e ^{nh}		
0	1	1		
0.25	1.25	1.28403		
0.5	1.5625	1.64872		
0.75	1.95313	2.117		
1.	2.44141	2.71828		

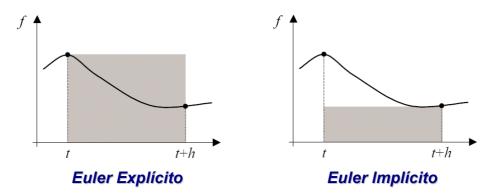
• Podemos conseguir resultados (um pouco) melhores para h = 0.1.

n h	U n	e ^{nh}	
0	1	1	
0.1	1.1	1.10517	
0.2	1.21	1.2214	
0.3	1.331	1.34986	
0.4	1.4641	1.49182	
0.5	1.61051	1.64872	
0.6	1.77156	1.82212	
0.7	1.94872	2.01375	
0.8	2.14359	2.22554	
0.9	2.35795	2.4596	
1.	2.59374	2.71828	

→ Método de Euler Implícito (ou regressivo)

$$u_{n+1} = u_n + h f_{n+1}$$

- Neste caso, a derivada é aproximada pela diferença finita regressiva.
- O método é análogo ao anterior e a precisão dos resultados obtidos é semelhante.
- Os erros verificados em ambos os métodos de Euler, resultam basicamente da aproximação de um integral pela área de um rectângulo.



Método de Crank-Nicolson (ou do trapézio)

$$u_{n+1} = u_n + \frac{h}{2} (f_n + f_{n+1})$$

- Neste caso, o integral é aproximado pela regra do trapézio
- → Método de Heun

$$u_{n+1} = u_n + \frac{h}{2} [f_n + f(t_{n+1}, u_n + hf_n)]$$

• Este método consiste numa variação do anterior. Na regra do trapézio, o termo f_{n+1} é substituído por $f(t_{n+1}, u_n + h f_n)$ que corresponde ao resultado do Método de Euler Explícito.

- Deste modo, um método implícito foi transformado num método explícito.
- Os quatro métodos anteriores são casos particulares dos chamados Métodos de Taylor, por poderem ser deduzidos através do desenvolvimento de Taylor da função pretendida y(t).

* Métodos de Taylor

• Seja a equação diferencial y' = f(t, y(t)), $t_0 \le t \le t_0 + T$, com a condição inicial $y(t_0) = y_0$.

▶ Método de Euler Explícito

• Fazendo h = T/N, consideremos o desenvolvimento de Taylor da função y(t+h) em torno de t,

$$y(t+h) = y(t) + hy'(t) + \frac{h^2}{2}y''(\xi), \xi \in (t, t+h),$$
 $f(t,y)$
 $t, t+h \in [t_0, t_0+T]$

• Tomando apenas os dois primeiros termos e para cada $t = t_n$, temos,

$$u_{n+1} = u_n + hf_n, \ n = 0, 1, 2, \dots, N-1$$

• que é a fórmula do **Método de Euler Explícito**, bem como a informação de que o **erro** cometido depende da segunda derivada e é $O(h^2)$.

exemplo: Resolver pelo Método de Euler Explícito,

$$\begin{cases} y'=t-y+1\\ y(0)=1 \end{cases}$$
 para $0 \le t \le 1$ com $h=0.1$. (A solução é $y(t)=e^{-t}+t$)

Partindo da relação,

$$u_{n+1} = u_n + h f_n$$

= $u_n + h (t_n - u_n + 1)$
= $(1 - h) u_n + h (t_n + 1)$

de onde calculamos,

n h	u _n	e ^{-nh} + nh
0	1	1
0.1	1	1.00484
0.2	1.01	1.01873
0.3	1.029	1.04082
0.4	1.0561	1.07032
0.5	1.09049	1.10653
0.6	1.13144	1.14881
0.7	1.1783	1.19659
0.8	1.23047	1.24933
0.9	1.28742	1.30657
1.	1.34868	1.36788

 A maior vantagem do Método de Euler é a sua simplicidade. Contudo, os resultados obtidos são de fraca precisão, a menos que se utilize um passo muito pequeno, o que torna o processo demasiado lento.

Método de Euler Implícito

• Nas mesmas condições, consideremos agora o desenvolvimento de Taylor da função y(t-h) em torno de t,

$$y(t-h) = y(t) - hy'(t) + \frac{h^2}{2}y''(\xi), \ \xi \in (t-h,t),$$

$$f(t,y) = t - h, t \in [t_0, t_0 + T]$$

• Tomando apenas os dois primeiros termos e para cada $t = t_n$, temos,

$$u_{n+1} = u_n + h f_{n+1}, \quad n = 0, 1, 2, \dots, N-1$$

• que é a fórmula do **Método de Euler Implícito**, bem como a informação de que o **erro** cometido depende da segunda derivada e é $O(h^2)$.

Métodos de Taylor de ordem mais elevada

 Se considerarmos mais termos no desenvolvimento de Taylor, podemos conseguir erros de truncatura de ordem mais elevada. Por exemplo, considerando três termos,

$$y(t+h) = y(t) + hy'(t) + \frac{h^2}{2}y''(t) + \frac{h^3}{6}y'''(\xi)$$
$$\xi \in (t, t+h)$$
$$t, t+h \in [t_0, t_0 + T]$$

- À partida não temos y''(t), mas podemos derivar y'(t).
- Deste modo se define o Método de Taylor de segunda ordem,

$$u_{n+1} = u_n + hf_n + \frac{h^2}{2}f'(t_n, u_n)$$

$$n = 0, 1, \dots, N-1$$

onde,

$$f'(t_n, u_n) = \frac{\partial f}{\partial t}(t_n, u_n) + f_n \frac{\partial f}{\partial y}(t_n, u_n)$$

- O erro cometido depende da terceira derivada e é $O(h^3)$.
- De modo análogo se podem definir métodos de Taylor de ordem mais elevada, mas são muito pouco utilizados.

* Alguns Métodos de Passo Múltiplo (Multipasso)

- Nos métodos anteriores, o cálculo de U_{n+1} dependia apenas de U_n . Contudo, todos os valores $U_0, U_1, ..., U_n$ foram já calculados e podem ser utilizados.
- definição: Um método diz-se de m passos $(m \ge 1)$ se u_{n+1} depender dos m valores u_{n+1-m}, \ldots, u_n .

Método do Ponto Médio

 Neste caso, a estratégia consiste em aproximar a derivada pela diferença finita centrada.

$$y'(t) \approx \frac{u_{n+1} - u_{n-1}}{2h}$$

donde se obtém o método do Ponto Médio,

$$u_{n+1} = u_{n-1} - 2hf_n, \ n \ge 1$$

- Note-se que, à partida temos apenas o valor de $u_0 = y_0$ e não o de u_1 . Este tem de ser calculado por um dos métodos de passo simples.
- O método é **explícito** e de **passo duplo** pois U_{n+1} depende de U_{n-1} e também de $f_n \equiv f(t_n, U_n)$.

Método de Simpson

Partindo da formulação integral do PVI,

$$y(t) = y_0 + \int_{t_0}^{t} f(s, y(s)) ds$$

• e efectuada a discretização, o integral em cada intervalo duplo $[t_{n-1}, t_{n+1}]$ pode ser aproximado pela Regra de Simpson,

$$\int_{t_{n-1}}^{t_{n+1}} f(s, y(s)) ds \approx \frac{h}{3} \left(f_{n-1} + 4f_n + f_{n+1} \right)$$

• donde se obtém o Método de Simpson,

$$u_{n+1} = u_{n-1} + \frac{h}{3} (f_{n-1} + 4f_n + f_{n+1}), \ n \ge 1$$

- que é um método **implícito** pois $f_{n+1} \equiv f(t_{n+1}, u_{n+1})$ e de **passo duplo** pois $f_{n-1} \equiv f(t_{n-1}, u_{n-1})$ e $f_n \equiv f(t_n, u_n)$.
- Note-se que, todo o método de m passos requer uma inicialização para os m valores iniciais U₀, U₁, ..., U_{m-1}.

- Os métodos anteriores tentam, de algum modo, obter uma aproximação do integral da função f(t, y(t)).
- Na seguinte família de métodos, a estratégia consiste não em integrar f
 mas um polinómio interpolador de f.

→ A família de Métodos de Adams

Também partindo da formulação integral do PVI,

$$y(t) = y_0 + \int_{t_0}^{t} f(s, y(s)) ds$$

- e da discretização em nós equidistantes $t_n = t_0 + n h$, $n \ge 1$ com passo h > 0,
- em primeiro lugar é efectuada uma interpolação polinomial em p+1 nós distintos e só depois é integrado o polinómio interpolador de grau p.
- Os métodos da família Adams têm como forma geral,

$$u_{n+1} = u_n + h \sum_{j=-1}^{p} b_j f_{n-j}, \ n \ge p$$

- Quando $b_{-1} = 0$, os nós de interpolação são t_{n-p}, \ldots, t_n , a relação é **explícita** e os esquemas resultantes chamam-se **Métodos de Adams-Bashforth**.
- Quando b₋₁ ≠ 0, os nós de interpolação são t_{n-p}, ..., t_{n+1}, a relação é implícita e os esquemas resultantes chamam-se Métodos de Adams-Moulton.

Métodos de Adams-Bashforth

Têm a forma geral:

$$u_{n+1} = u_n + h \sum_{j=0}^{p} b_j f_{n-j}$$

• Dada a equação y' = f(t, y(t)) a estratégia consiste em aproximar f(t, y(t)) por um polinómio $\Pi_p(t)$ de grau p.

Resta então resolver a equação $y' = \Pi_p(t)$, que consiste apenas na integração de um polinómio.

- Para p = 0, como o polinómio interpolador de **grau zero** $\Pi_0(t_n) = f_n$, temos o **método de Euler Explícito**.
- Para p=1, construindo o polinómio interpolador $\Pi_1(t)$ nos dois pontos t_{n-1} e t_n e integrando no intervalo $[t_n, t_{n+1}]$, não é difícil deduzir a fórmula do Método de Adams-Bashforth de 2 passos,

$$u_{n+1} = u_n + \frac{h}{2} (3f_n - f_{n-1})$$

• De forma análoga, o Método de Adams-Bashforth de 3 passos,

$$u_{n+1} = u_n + \frac{h}{12} \left(23f_n - 16f_{n-1} + 5f_{n-2} \right)$$

• ou ainda o Método de Adams-Bashforth de 4 passos,

$$u_{n+1} = u_n + \frac{h}{24} \left(55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3} \right)$$

•

Dedução da fórmula do Método de Adams-Bashforth de 2 passos

• O polinómio interpolador $\Pi_1(t)$ nos dois pontos t_{n-1} e t_n

$$\Pi_1(t) = f_n + \frac{f_{n-1} - f_n}{t_{n-1} - t_n} (t - t_n)$$

• e integrando $\Pi_1(t)$ no intervalo $[t_n, t_{n+1}]$,

$$\int_{t_n}^{t_{n+1}} \Pi_1(t) dt =$$

$$= \left[f_n t + \frac{f_{n-1} - f_n}{t_{n-1} - t_n} \frac{(t - t_n)^2}{2} \right]_{t_n}^{t_{n+1}}$$

$$= f_n t_{n+1} + \frac{f_{n-1} - f_n}{t_{n-1} - t_n} \frac{(t_{n+1} - t_n)^2}{2}$$

$$- f_n t_n + \frac{f_{n-1} - f_n}{t_{n-1} - t_n} \frac{(t_n - t_n)^2}{2}$$

$$= f_n t_{n+1} - f_n t_n + \frac{f_{n-1} - f_n}{-h} \frac{h^2}{2}$$

$$= f_n(t_{n-1} - t_n) - \frac{h}{2} (f_{n-1} - f_n)$$

$$= f_n h - \frac{h}{2} f_{n-1} + \frac{h}{2} f_n = \frac{3h}{2} f_n - \frac{h}{2} f_{n-1}$$

Métodos de Adams-Moulton

• Têm a forma geral:

$$u_{n+1} = u_n + h \sum_{j=-1}^{p} b_j f_{n-j}$$

onde $b_{-1} \neq 0$.

• A estratégia é análoga. Contudo, como a interpolação polinomial inclui o ponto t_{n+1} , estes métodos tornam-se **implícitos**.

Também por isso (e exceptuando o caso p = -1) cada método de Adams-Moulton de p+1 passos resulta de uma interpolação em p+2 pontos.

- Para p = -1, como o polinómio interpolador de **grau zero** no ponto t_{n+1} é t_{n+1} , temos o **método de Euler Implícito**.
- Para p = 0, se construirmos o polinómio interpolador nos nós t_n e t_{n+1} , obtemos o **método de Crank-Nicolson**.
- O Método de Adams-Moulton de 2 passos é definido por,

$$u_{n+1} = u_n + \frac{h}{12} \left[5f_{n+1} + 8f_n - f_{n-1} \right]$$

• e o Método de Adams-Moulton de 3 passos é definido por,

$$u_{n+1} = u_n + \frac{h}{24} \left(9f_{n+1} + 19f_n - 5f_{n-1} + f_{n-2} \right)$$

• e o Método de Adams-Moulton de 4 passos é definido por,

$$u_{n+1} = u_n + \frac{h}{720} \left(251f_{n+1} + 646f_n - 264f_{n-1} + 106f_{n-2} - 19f_{n-3} \right)$$

• ...

▶ Métodos BDF (Backward Differentiation Formulae)

- Esta classe de métodos segue uma **estratégia inversa** da anterior.

 Uma aproximação de $y'(t_{n+1})$ é obtida por **derivação directa** do **polinómio** de grau p+1 **interpolador** de $y(t_{n+1})$ nos p+1 nós t_{n-p} , ..., t_n , t_{n+1} .
- São portanto métodos implícitos e têm a forma geral:

$$u_{n+1} = \sum_{j=0}^{p} a_j u_{n-j} + h b_{-1} f_{n+1}$$

Para p = 0, 1, ..., 5 os coeficientes são dados por,

p	a_0	a_1	a_2	a_3	a_4	a_5	b_{-1}
0	1	0	0	0	0	0	1
1	$\frac{4}{3}$	$-\frac{1}{3}$	0	0	0	0	$\frac{2}{3}$
2	$\frac{18}{11}$	$-\frac{9}{11}$	$\frac{2}{11}$	0	0	0	$\frac{6}{11}$
3	$\frac{48}{25}$	$-\frac{36}{25}$	$\frac{16}{25}$	$-\frac{3}{25}$	0	0	$\frac{12}{25}$
4	$\frac{300}{137}$	$-\frac{300}{137}$	$\frac{200}{137}$	$-\frac{75}{137}$	$\frac{12}{137}$	0	$\frac{60}{137}$
5	$\frac{360}{147}$	$-\frac{450}{147}$	$\frac{400}{147}$	$-\frac{225}{147}$	$\frac{72}{147}$	$-\frac{10}{147}$	$\frac{60}{147}$

• Portanto, para resolver a equação y'(t) = f(t, y(t)):

➡ Métodos de Adams: - aproximar f(t, y(t)) por um polinómio;
 - integrar polinómio.
 ➡ Métodos BDF: - aproximar y(t) por um polinómio;
 - derivar polinómio.

* A abordagem do tipo Preditor – Corrector

- Estes métodos destinam-se a tirar partido das propriedades dos métodos implícitos, evitando o problema da recursão que lhes é inerente.
- São portanto a combinação de um método explícito com um método implícito:
 - Em primeiro lugar um **método explícito** calcula um U_{n+1}^* , valor aproximado de U_{n+1} .
 - Depois, esse U_{n+1}^* é usado do **lado direito** da expressão de um **método implícito**, gerando um melhor valor para U_{n+1} .
- como por exemplo:

→ Método de Adams Preditor-Corrector de 3ª ordem

- Como preditor é usado o Método de Adams-Bashforth de 3 passos
- Como corrector é usado o Método de Adams-Moulton de 2 passos
- Assim:

 U_0 é dado;

 U_1 e U_2 são calculados por um método de passo simples;

e para
$$n = 2, 3, ...$$

$$u_{n+1}^* = u_n + \frac{h}{12} \left(23f_n - 16f_{n-1} + 5f_{n-2} \right)$$

$$u_{n+1} = u_n + \frac{h}{12} \left(5f \left(t_{n+1}, u_{n+1}^* \right) + 8f_n - f_{n-1} \right)$$

→ Método de Adams Preditor-Corrector de 4ª ordem

- Como preditor é usado o Método de Adams-Bashforth de 4 passos
- Como corrector é usado o Método de Adams-Moulton de 3 passos
- Assim:

```
u_0 é dado; u_1, u_2 e u_3 são calculados por um método de passo simples; e para n = 3, 4, ... u_{n+1}^* = u_n + \frac{h}{24} \left( 55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3} \right) u_{n+1} = u_n + \frac{h}{24} \left( 9f \left( t_{n+1}, u_{n+1}^* \right) + 19f_n - 5f_{n-1} + f_{n-2} \right)
```

 Esta combinação dos dois métodos é geralmente chamada método de Adams-Bashforth-Moulton, tal como no módulo abm.m do MATLAB:

```
for n=4:N
    %Preditor
    yp=Y(n)+(h/24)*(F*[-9 37 -59 55]');
    F=[F(2) F(3) F(4) feval(f,T(n+1),yp)];
    %Corrector
    Y(n+1)=Y(n)+(h/24)*(F*[1 -5 19 9]');
    F(4)=feval(f,T(n+1),Y(n+1));
end
A=[T' Y'];
```

 Seguindo uma abordagem do tipo Preditor – Corrector, várias combinações de métodos podem ser estabelecidas, como por exemplo,

O método Preditor - Corrector Euler - Trapézio onde,

- U^{*}_{n+1} é calculado pelo método de Euler explícito
- e utilizado pelo método implícito do trapézio (Crank-Nicolson)

Aproximando o integral

$$\int_{t_n}^{t_{n+1}} y'(t)dt = \int_{t_n}^{t_{n+1}} f(t, y(t))dt$$

pela regra do trapézio obtém-se

$$y(t_{n+1}) - y(t_n) \approx \frac{h}{2} \left[f(t_{n+1}, y(t_{n+1})) + f(t_n, y(t_n)) \right],$$

onde $h = t_{n+1} - t_n$.

Considere um método preditor-corrector Euler-Trapézio, onde

 u_{n+1}^* (passo preditor) se obtém pelo método de Euler e u_{n+1} (passo corrector) se obtém a partir da fórmula anterior, i.e.

$$u_{n+1} = u_n + \frac{h}{2} (f_n + f_{n+1}), \quad n = 0, 1, 2, \dots,$$

onde $u_n \approx y(t_n)$, $f_n \equiv f(t_n, u_n)$, $n = 0, 1, \dots$

facilmente se conclui,

$$u_{n+1}^* = u_n + hf_n,$$

$$u_{n+1} = u_n + \frac{h}{2} \left[f_n + f(t_{n+1}, u_{n+1}^*) \right]$$

 que corresponde ao método de Heun, por isso também chamado método de Euler melhorado.

* Os Métodos de Runge-Kutta (RK)

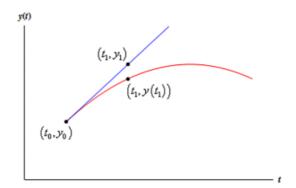
- Retomemos os métodos de um só passo e explícitos.
- Por exemplo o método de Euler explícito é muito simples, mas também muito pouco preciso. Para aumentar a precisão, ou diminuímos a amplitude do passo ou usamos métodos de ordem mais elevada.
- Mas, métodos de ordem mais elevada requerem o cálculo de mais derivadas (mais termos da série de Taylor).
- C. Runge e M.W. Kutta tentaram uma abordagem diferente.
- Consideremos um caso particular ...

⇒ RK4

- Pretendemos resolver: $\begin{cases} y' = f(t, y(t)) \\ y(t_0) = y_0 \end{cases}$
- Comecemos por calcular,

$$K_1 = f(t_n, y_n)$$

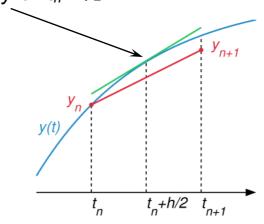
Como y' = f(t, y(t)), o valor de K_1 é o **declive** (da tangente à curva) em t_n , tal como no método de **Euler explícito**.



Calculemos agora,

$$K_2 = f(t_n + \frac{1}{2}h, y_n + \frac{1}{2}h K_1)$$

Neste caso K_2 é o **declive** no **ponto médio** do intervalo, tal como no **método do ponto médio**, mas onde K_1 foi utilizado para determinar o valor de Y em $t_n + \frac{1}{2}h$.



- Sendo K_2 uma aproximação melhor que K_1 , porque não continuar?
- Calculemos então também:

$$K_3 = f(t_n + \frac{1}{2}h, y_n + \frac{1}{2}h K_2)$$

Agora K_3 é o **declive** no **ponto médio** do intervalo, mas onde K_2 foi utilizado para determinar o valor de y em $t_n + \frac{1}{2}h$.

E ainda,

$$K_4 = f(t_n + h, y_n + h K_3)$$

onde K_4 é o **declive** no **extremo direito** do intervalo $t_n + h$, com K_3 utilizado para determinar o respectivo valor de V.

 Por fim, calculamos uma média dos 4 declives, mas uma média pesada de modo a favorecer os valores interiores.

declive =
$$(K_1 + 2 K_2 + 2 K_3 + K_4)/6$$

Com este valor para o declive podemos estabelecer a relação,

$$u_{n+1} = u_n + \frac{h}{6} (K_1 + 2K_2 + 2K_3 + K_4)$$

que define o método de **método de Runge-Kutta de 4ª ordem**, também chamado **O Método de Runge-Kutta**,

onde,
$$K_1 = f_n,$$

$$K_2 = f(t_n + \frac{h}{2}, u_n + \frac{h}{2}K_1),$$

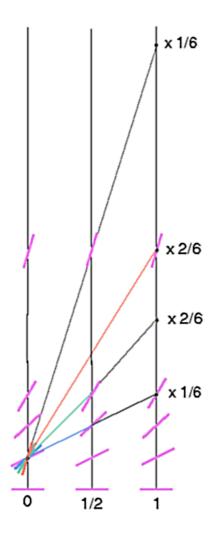
$$K_3 = f(t_n + \frac{h}{2}, u_n + \frac{h}{2}K_2),$$

$$K_4 = f(t_{n+1}, u_n + hK_3).$$

 Como mnemónica das constantes envolvidas nas fórmulas, costuma utilizar-se uma tabela,

• Vejamos por **exemplo** o PVI,
$$\begin{cases} y' = 2 \ y \\ y(0) = \frac{1}{4} \end{cases}$$

e tentemos obter o valor de y(1) com h = 1.



- $K_1 = f(t_n, y_n) = f(t_0, y_0) = 2 \cdot \frac{1}{4} = \frac{1}{2}$ declive da **recta azul** em $(0, \frac{1}{4})$ que encontra o ponto $(\frac{1}{2}, \frac{3}{4})$.
- $K_2 = f(t_n + \frac{1}{2}h, y_n + \frac{1}{2}h K_1)$ $= f(0 + \frac{1}{2}, \frac{1}{4} + \frac{1}{2}\frac{1}{2})$ $= 2 \cdot \frac{1}{2} = 1$ declive da **recta verde** em $(0, \frac{1}{4})$ que encontra o ponto $(\frac{1}{2}, \frac{5}{4})$.
- $K_3 = f(t_n + \frac{1}{2}h, y_n + \frac{1}{2}h K_2)$ = $f(\frac{1}{2}, \frac{1}{4} + \frac{1}{2}) = \frac{3}{2}$ declive da **recta laranja** em $(0, \frac{1}{4})$ que encontra o ponto $(\frac{1}{2}, \frac{7}{4})$.
- $K_4 = f(t_n + h , y_n + h K_3)$ = $f(\frac{1}{2}, \frac{1}{4} + \frac{3}{2}) = \frac{7}{2}$ declive da **recta preta** em $(0, \frac{1}{4})$ que encontra o ponto $(1, \frac{15}{4})$.

Calculando a média pesada dos quatro declives,

$$(K_1 + 2 K_2 + 2 K_3 + K_4) / 6 =$$

 $(1/2 + 2 + 2 \cdot 3/2 + 7/2) / 6 = 9/6 = 3/2$

• e substituindo na relação,

$$u_{n+1} = u_n + h (K_1 + 2K_2 + 2K_3 + K_4)/6$$

= 1/4 + 3/2 = 7/4 = 1.75

- Como o valor exacto é e²/4 = 1.84726 e considerando que foi efectuado apenas um só passo de amplitude h=1, concluímos que a aproximação obtida é bastante boa.
- Prova-se que o **RK4** é $O(h^5)$.
- Através do exemplo anterior, podemos ainda verificar que o mesmo resultado y(1) = 1.75 pode ser interpretado como a média pesada dos sucessivos valores intermédios de y calculados,

$$y(1/2) = 3/4$$
$$y(1/2) = 5/4$$
$$y(1/2) = 7/4$$
$$y(1) = 15/4$$

$$(3/4 + 2 \cdot 5/4 + 2 \cdot 7/4 + 15/4) / 6 = 1.75$$

\Rightarrow Algoritmo RK4 para calcular y(b) com n passos

```
\{ Entrada: f(t, y), a, b, y0 = y(a), n \}
h = b-a/n
t = a
y = y0
para i de 1 até n fazer
       k1 = f(t, y)
       k2 = f(t + 0.5 h, y + 0.5 h k1)
       k3 = f(t + 0.5 h, y + 0.5 h k2)
       k4 = f(t + h, y + h k3)
       y = y + h (k1 + 2 k2 + 2 k3 + k4) / 6
       t = t + h
fimpara
{ Saida : y = y(b) }
```

* Forma Geral dos Métodos de Runge-Kutta

- Vimos o caso do método de Runge-Kutta de 4 passos, que tem 4 etapas (ou estágios) e é explícito. Contudo, os métodos desta classe podem ter um número diferente de etapas e ser explícitos, implícitos ou adaptativos.
- Um método de Runge-Kutta tem a forma,

$$u_{n+1} = u_n + h\mathcal{F}(t_n, u_n, h; f)$$
, $n \ge 0$

onde a função incremento é definida por,

e com,
$$K_i = f\left(t_n,u_n,h;f\right) = \sum_{i=1}^s b_i K_i$$
 $i=1,2,\dots,s$

onde S indica o **número de etapas** do método específico.

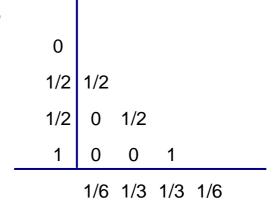
 Cada método de Runge-Kutta é completamente caracterizado pelos valores dos coeficientes {a_{ii}}, {b_i} e {C_i}. Esses coeficientes s\(\tilde{a}\) o geralmente apresentados numa tabela chamada
 Quadro de Butcher.

$$c_1 \mid a_{11} \mid a_{12} \mid \cdots \mid a_{1s} \mid$$
 $c_2 \mid a_{21} \mid a_{22} \mid \cdots \mid a_{2s} \mid$
 $\vdots \mid \vdots \mid \vdots \mid \ddots \mid \vdots \mid$
 $c_s \mid a_{s1} \mid a_{s2} \mid \cdots \mid a_{ss} \mid$
 $b_1 \mid b_2 \mid \cdots \mid b_s \mid$

· Vamos considerar apenas os métodos onde,

$$c_i = \sum_{j=1}^s a_{ij} , \quad i = 1, 2, \dots, s$$

tal como no caso do exemplo anterior,



• Quando os coeficientes a_{ij} são **nulos** para $j \ge i$, cada K_i pode ser calculado em função dos $K_1, ..., K_{i-1}$ anteriores e o método é **explícito**.

Caso contrário, o método é **implícito** e o cálculo dos K_i exige a resolução de um sistema não-linear.

Também existem esquemas **adaptativos**, do tipo preditor-corrector.

→ Métodos de Runge-Kutta de duas etapas (s = 2)

 Consideremos um método de Runge-Kutta com s = 2, explícito e seja y_n uma solução exacta de partida.

Assim,

$$u_{n+1} = y_n + h \left(b_1 K_1 + b_2 K_2 \right)$$

onde,

$$K_1 = f(t_n, y_n)$$

 $K_2 = f(t_n + hc_2, y_n + ha_{21}K_1)$

- Como $a_{22} = 0$ e $c_2 = a_{21} + a_{22}$ temos $a_{21} = c_2$.
- Desenvolvendo K_2 em série de Taylor,

$$K_{2} = f(t_{n}, y_{n}) + hc_{2} \frac{\partial f}{\partial t}(t_{n}, y_{n})$$
$$+ hc_{2} K_{1} \frac{\partial f}{\partial y}(t_{n}, y_{n}) + O(h^{2})$$

Então,

$$u_{n+1} = y_n + hb_1 f(t_n, y_n) + hb_2 f(t_n, y_n) +$$

$$+ h^2 b_2 c_2 \left[\frac{\partial f}{\partial t}(t_n, y_n) + f(t_n, y_n) \frac{\partial f}{\partial y}(t_n, y_n) \right]$$

$$+ O(h^3)$$

$$= y_n + \underbrace{\left(b_1 + b_2\right)} hf\left(t_n, y_n\right) + \\ + h^2 \underbrace{\left(b_2 c_2\right)} \left[\frac{\partial f}{\partial t} \left(t_n, y_n\right) + f\left(t_n, y_n\right) \frac{\partial f}{\partial y} \left(t_n, y_n\right) \right]$$
• Por outro lado,
$$y_{n+1} = y_n + hy_n' + \frac{h^2}{2} y_n'' + O\left(h^3\right)$$

$$= y_n + hf\left(t_n, y_n\right) \\ + \frac{h^3}{2} \left[\frac{\partial f}{\partial t} \left(t_n, y_n\right) + f\left(t_n, y_n\right) \frac{\partial f}{\partial y} \left(t_n, y_n\right) \right]$$

• Donde podemos inferir que,

$$\begin{cases} b_1 + b_2 = 1 \\ b_2 c_2 = \frac{1}{2} \end{cases}$$

 Temos assim uma infinidade de soluções b₁, b₂, c₂ e portanto uma infinidade de métodos de Runge-Kutta de 2 etapas.

$$c_2$$
 a_{21} b_1 b_2

Os mais utilizados são:

O método de Euler Modificado

$$\frac{1}{2}$$
 $\frac{1}{2}$ 0 1

O método do Ponto Médio

$$\begin{array}{c|cc}
1 & 1 \\
\hline
 & \frac{1}{2} & \frac{1}{2}
\end{array}$$

▶ Métodos de Runge-Kutta de três etapas (s = 3)

• De forma análoga se pode estabelecer,

$$K_1 = f(t_n, u_n)$$

$$K_2 = f(t_n + c_2h, u_n + ha_{21}K_1)$$

$$K_3 = f(t_n + c_3h, u_n + ha_{31}K_1 + ha_{32}K_2)$$

$$u_{n+1} = u_n + h(b_1K_1 + b_2K_2 + b_3K_3)$$

em função de valores estabelecidos para os coeficientes,

$$\begin{array}{c|ccccc} c_2 & a_{21} & & & \\ c_3 & a_{31} & a_{32} & & \\ & b_1 & b_2 & b_3 & & \end{array}$$

→ Métodos de Runge-Kutta de quatro etapas (s = 4)

Do mesmo modo,

$$K_1 = f(t_n, u_n)$$

$$K_2 = f(t_n + c_2h, u_n + ha_{21}K_1)$$

$$K_3 = f(t_n + c_3h, u_n + ha_{31}K_1 + ha_{32}K_2)$$

$$K_4 = f(t_n + c_4h, u_n + ha_{41}K_1 + ha_{42}K_2 + ha_{43}K_3)$$

$$u_{n+1} = u_n + h(b_1K_1 + b_2K_2 + b_3K_3 + b_4K_4)$$

• sendo RK4 o mais utilizado, por isso chamado O Método de Runge-Kutta,