<u>Capítulo 5 –</u> <u>Equações e Sistemas de Equações Não Lineares</u>

Resolução Numérica de Equações Não Lineares

o problema: Determinar os valores de X que satisfazem a equação,

$$f(x) = 0$$

Equações Diofantinas

Equações polinomiais, apenas com soluções inteiras.

Diofanto de Alexandria [sec. III]

Caminhante! Aqui jaz Diofanto.
Os números dirão a duração da sua vida.
Cuja sexta parte foi ocupada por uma doce infância.
Decorrida mais uma duodécima parte da sua vida, o seu rosto cobriu-se com barba. Passado mais um sétimo da sua vida casou. Cinco anos depois, nasceu-lhe o seu único filho, que apenas durou metade da vida do pai. Triste com a morte do seu filho, Diofanto viveu ainda quatro anos. Diz-me, Caminhante, que idade tinha Diofanto quando a morte o levou?

As equações diofantinas nem sempre têm solução. Por exemplo,

$$x^n + y^n = z^n$$

não tem solução para n > 2.

(Último teorema de Fermat, só demonstrado em 1995)

- **▶** Equações polinomiais lineares, quadráticas, cúbicas e quárticas
 - Equações polinomiais que têm fórmulas resolventes, umas mais complicadas do que outras...

• Vamos considerar apenas o caso de f(x) ser uma função real de variável real.

Equações transcendentes

 As equações algébricas, como por exemplo as polinomiais, envolvem apenas as operações aritméticas básicas. As equações transcendentes envolvem também funções trigonométricas, exponenciais, logarítmicas,...

$$f(x) = x - e^{-x} = 0$$

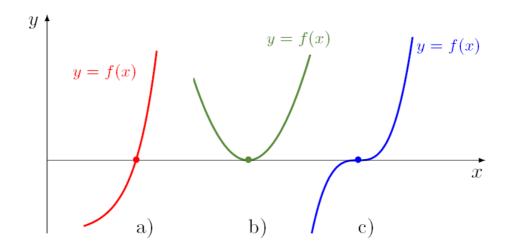
$$f(x) = x + \ln(x) = 0$$

$$f(x) = (2x + 1)^2 - 4\cos(\pi x) = 0$$

 As soluções das equações transcendentes podem obter-se apenas recorrendo a métodos numéricos.

* Raízes, Zeros e Multiplicidade

• Se $f(\alpha) = 0$ diz-se que α é uma raiz da equação f(x) = 0 ou que α é um zero da função f(x):



a) zero simples : $f(\alpha) = 0$

b) zero duplo : $f(\alpha) = f'(\alpha) = 0$

c) zero triplo : $f(\alpha) = f'(\alpha) = f''(\alpha) = 0$

definição: A multiplicidade de um zero α da função f(x) é o supremo m dos valores k tais que,

$$\lim_{x \to \alpha} \frac{|f(x)|}{|x - \alpha|^k} = c < \infty$$

Se m = 1 o zero diz-se **simples**, se m = 2 o zero diz-se **duplo**, ...

exemplo1: $\alpha = 0$ é um zero **simples** da função $f(x) = \sin x$ porque,

$$\lim_{x \to 0} \frac{|\sin x|}{|x|} = 1$$

exemplo2: $\alpha = 0$ é um zero **duplo** da função $f(x) = 1 - \cos x$ porque,

$$\lim_{x \to 0} \frac{|1 - \cos x|}{|x|^2} = \frac{1}{2}$$

nota: a multiplicidade de um zero pode não ser um número inteiro, nem sequer finita.

teorema: Se α for um zero da função f(x) e se f(x) for m vezes diferenciável em α então a **multiplicidade** de α é m se e só se,

$$f(\alpha) = f'(\alpha) = \dots = f^{(m-1)}(\alpha) = 0$$

$$\max \quad f^{(m)}(\alpha) \neq 0$$

exemplo1: para $f(x) = \sin x$, f(0) = 0 mas $f'(0) \neq 0$, portanto m = 1

exemplo2: para $f(x) = 1 - \cos x$, f(0) = f'(0) = 0 mas $f''(0) \neq 0$, portanto m = 2

Vamos utilizar apenas métodos iterativos ou de aproximações sucessivas.

* Métodos Iterativos, Convergência e Erro

• Os **métodos iterativos** para aproximar uma raiz α da equação f(x) = 0, partem do conhecimento de S valores aproximados $X_0, X_1, \ldots, X_{S-1}$ da raiz α e com estes constroem uma **nova aproximação** X_K :

$$x_k = g_k(x_{k-s}, \dots, x_{k-1}), \qquad k = s, s+1, \dots$$

 Este processo iterativo gera uma sucessão de aproximações X_k, cada uma com erro associado.

$$e_k = \alpha - x_k$$

O método iterativo é convergente se,

$$\lim_{k \to \infty} x_k = \alpha$$

ou seja,
$$\lim_{k\to\infty}e_k=0$$

definição: Seja $\{X_k\}$ uma sucessão convergente para α .

Se existirem duas constantes positivas p e c tais que

$$\lim_{k \to \infty} \frac{|\alpha - x_{k+1}|}{|\alpha - x_k|^p} = c$$

então diz-se que a sucessão $\{X_k\}$ é convergente para α de ordem p com uma constante de convergência assimptótica igual a C.

Se p = 1 a convergência diz-se de primeira ordem ou linear (0 < c ≤ 1).
 Se p > 1 a convergência diz-se supralinear.
 Se p = 2 a convergência é de segunda ordem ou quadrática,

...

 Quanto maior for a ordem de convergência de um método iterativo menor será, em princípio, o número de iterações necessárias para atingir uma dada precisão.

No entanto a rapidez depende também do **esforço computacional** requerido em cada iteração.

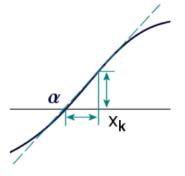
 Independentemente do método utilizado, muitas vezes é possível obter um majorante para o erro:

teorema: Seja α a raiz exacta e X_k um valor aproximado da raiz da equação $f(x) = 0 \quad \text{com } \alpha, X_k \in [a, b].$

Se f(x) for differenciável em [a, b] e $|f'(x)| \ge m > 0$. $\forall x \in [a, b]$

então,

$$|\alpha - x_k| \le \frac{|f(x_k)|}{m}$$



demonstração: Pelo teorema do Valor Médio,

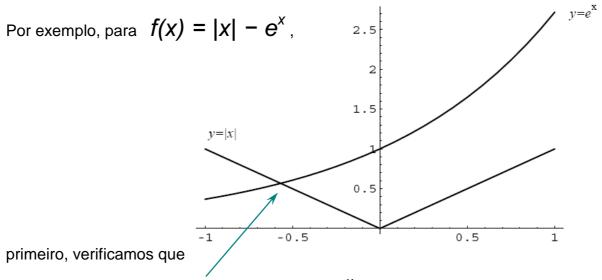
$$\frac{f(\alpha) - f(x_k)}{\alpha - x_k} = f'(\xi), \ \xi \in inter(\alpha, x_k)$$

aplicando módulos,
$$|\alpha - x_k| = \frac{|f(x_k)|}{|f'(\xi)|}$$

e portanto,
$$|\alpha - x_k| \leq \frac{|f(x_k)|}{m}$$

* Localização e Separação das Raízes

- Antes de aplicar um método iterativo para resolver a equação f (x) = 0, é
 necessário obter uma aproximação inicial, o que exige a separação das
 possíveis raízes em intervalos tão pequenos quanto possível.
- O método mais prático consiste em analisar a **representação gráfica** de f(x), ou da combinação dos termos que formam a sua expressão analítica.



existe um ponto de intersecção de |X| com e^{X} no intervalo (-1, 0)

Depois, confirmamos essa observação, com base em dois resultados:

- 1. Se f(x) é uma função real e contínua entre x = a e x = b, sendo a e b números reais, tendo f(a) e f(b) sinais contrários, então existe pelo menos uma raiz real entre a e b.
- 2. Se a derivada de f(x) existe, é contínua e mantém o sinal no intervalo (a, b), então a raiz é única.

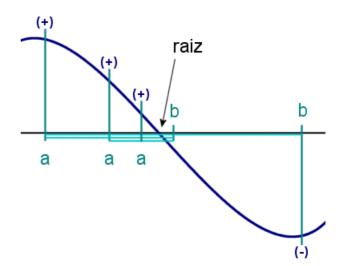
Para o exemplo:
$$f(x) \in C((-1, 0))$$

 $f(-1) = 0.632 > 0$ e $f(0) = -1 < 0$
 $f'(x) = -1 - e^x < 0$ em todo o intervalo $(-1, 0)$

* Métodos Intervalares

→ Método das Bissecções Sucessivas

 Partindo de um intervalo (a, b) que contém a raiz, construir uma sucessão de subintervalos, sendo cada um deles o semi-intervalo do anterior que contém a raiz.



• Algoritmo:

$$\{ \ \alpha \in (a,b) \ \land \ \varepsilon \in \mathbb{R}^+ \ \land \ f(a) \ f(b) < 0 \ \}$$

$$fa \leftarrow f(a)$$

$$enquanto \quad |a-b|/2 \ge \varepsilon \quad fazer$$

$$meio \leftarrow (a+b)/2$$

$$fm \leftarrow f \ (meio)$$

$$se \ (fa > 0) = (fm > 0)$$

$$então \quad \{ \ \alpha \in (meio,b) \} \quad a \leftarrow meio$$

$$senão \quad \{ \ \alpha \in (a,meio) \} \quad b \leftarrow meio$$

$$fim \ enquanto$$

$$\{ \ \alpha \in (a,b) \land |a-b|/2 < \varepsilon \ \}$$

- note que:
- Só é necessário calcular o valor de f(x) uma vez por iteração.
- Não é necessária uma multiplicação para comparar os sinais.
- Em aritmética de reais é extremamente improvável atingir o valor exacto da raiz, pelo que não vale a pena testar a igualdade.
- A sequência de subintervalos $\{(a_k, b_k)\}$ foi representada pelos sucessivos valores das variáveis $a \in b$.
- ullet Para um dado **erro absoluto máximo** ${oldsymbol{\mathcal{E}}}$, em cada iteração ${oldsymbol{k}}$, utilizámos o **teste**:

$$\frac{|b_k - a_k|}{2} \le \varepsilon$$

de modo a que o erro cometido seja inferior à semi-amplitude do intervalo.

Deste modo, sendo C_k os sucessivos pontos médios,

$$|c_1 - \alpha| \le \frac{b - a}{2}; \ |c_2 - \alpha| \le \frac{b - a}{2^2}; ...; \ |c_n - \alpha| \le \frac{b - a}{2^n}$$

o que nos permite estimar o **número** n **de iterações** necessárias, para garantir uma aproximação da raiz com um erro absoluto máximo de \mathcal{E} :

$$\frac{b-a}{2^n} \le \varepsilon$$

ou seja,

$$2^n \ge \frac{b-a}{\varepsilon} \Rightarrow n \ge \frac{\ln \frac{b-a}{\varepsilon}}{\ln 2}$$

para o mesmo exemplo:
$$f(x) = |x| - e^x$$
, com $\varepsilon = 10^{-6}$

$$\frac{k \quad a_k \quad b_k}{1}$$

$$\frac{1 \quad -1.000000 \quad 0.000000}{2 \quad -1.000000 \quad -0.500000}$$

$$\frac{2 \quad -1.000000 \quad -0.500000}{3 \quad -0.750000} \quad -0.500000}$$

$$\frac{4 \quad -0.625000 \quad -0.500000}{4 \quad -0.625000 \quad -0.562500}$$

$$\frac{5 \quad -0.625000 \quad -0.562500}{6 \quad -0.593750 \quad -0.562500}$$

$$\frac{6 \quad -0.593750 \quad -0.562500}{7 \quad -0.578125 \quad -0.562500}$$

$$\frac{8 \quad -0.570313 \quad -0.562500}{9 \quad -0.570313 \quad -0.562500}$$

$$\frac{9 \quad -0.570313 \quad -0.562500}{9 \quad -0.570313 \quad -0.566406}$$

$$\frac{10 \quad -0.567383 \quad -0.566406}{11 \quad -0.567383 \quad -0.566406}$$

$$\frac{11 \quad -0.567383 \quad -0.566406}{12 \quad -0.567383 \quad -0.567139}$$

$$\frac{14 \quad -0.5677261 \quad -0.567139}{15 \quad -0.5677200 \quad -0.567139}$$

$$\frac{15 \quad -0.567200 \quad -0.567139}{15 \quad -0.567146 \quad -0.567139}$$

$$\frac{16 \quad -0.567146 \quad -0.567139}{17 \quad -0.567146 \quad -0.567142}$$

$$\frac{17 \quad -0.567146 \quad -0.567142}{20 \quad -0.567144 \quad -0.567142}$$

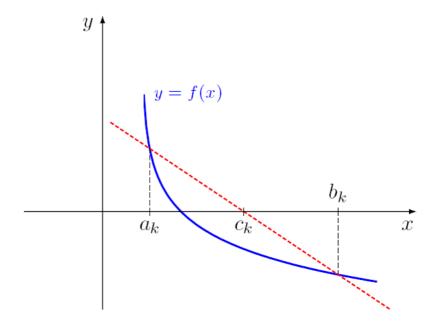
$$n \ge \frac{\ln \frac{b-a}{\varepsilon}}{\ln 2} = 19.931569$$

- Uma vantagem do método das bissecções sucessivas é que converge sempre (desde que exista raiz no intervalo inicial).
- Outra vantagem é a possibilidade de prever um majorante para o erro cometido ao fim de um certo número de iterações.
- O custo computacional de cada iteração é muito baixo.
- A pior desvantagem reside no facto da sua convergência ser muito lenta (muitas iterações) quando comparada com a dos outros métodos.

Verifique que o método das bissecções sucessivas é **linear**, com **constante de convergência** igual a **1/2**.

Método da Corda Falsa

- O Método da Corda Falsa pode ser encarado como um melhoramento do Método das Bissecções Sucessivas.
- Em vez do ponto médio, um ponto C_k é determinado como a **intersecção** da secante que passa pelos pontos $(a_k, f(a_k))$ e $(b_k, f(b_k))$ com o eixo dos xx.



A partir da equação da secante,

$$y - f(b_k) = \frac{f(b_k) - f(a_k)}{b_k - a_k} (x - b_k)$$

e fazendo y = 0 obtemos,

$$c_k = b_k - \frac{f(b_k)}{f(b_k) - f(a_k)} (b_k - a_k)$$

 Note-se que os sucessivos cálculos desta fórmula não provocam efeitos de cancelamento subtractivo pois f (b_k) e f (a_k) têm sinais contrários.

* Métodos iterativos dependentes de um só ponto

• Em cada iteração, a nova aproximação depende apenas da anterior.

→ Método Iterativo do Ponto Fixo

• Pretendemos **determinar a solução** α de uma equação não linear da forma,

$$x = g(x)$$

• Dada uma equação na forma f(x) = 0 é sempre possível fazer,

$$x = \underbrace{x + f(x)}_{g(x)}$$

• Mais geralmente podemos considerar,

$$g(x) = x + c(x)f(x)$$

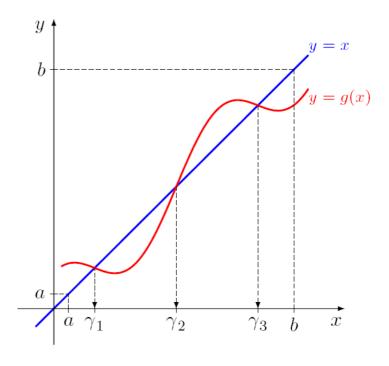
onde C(X) é uma função contínua, **não nula** e **limitada** no intervalo I = [a, b] que contém a raiz α de f(x) = 0.

definição: Um ponto fixo de uma função g(x) é um número real α tal que $\alpha = g(\alpha)$.

• Dada uma aproximação inicial $X_0 \in I$, o método iterativo do ponto fixo consiste numa sucessão de aproximações $\{X_k\} \to \alpha$ tal que,

$$x_{k+1} = g(x_k), k = 0, 1, 2, \dots$$

• Geometricamente, os **pontos fixos** de uma função y = g(x) são os pontos de intersecção de y = g(x) com y = x



• Assim, se $f(x) = 0 \Leftrightarrow x = g(x)$, determinar a raiz de f(x) = 0 em [a, b] é o mesmo que procurar o ponto fixo de g(x) em [a, b].

➡ Exemplo: Método Babilónico (1800 - 1600 AC) para calcular a Raiz Quadrada de um número

- 0. Começar com uma estimativa
- 1. Dividir o número pela estimativa
- 2. Calcular a média entre essa divisão e a estimativa
- 3. Fazer desta média a nova estimativa
- 4. e voltar a 1.

• Ou seja, o cálculo de \sqrt{a} consiste na sucessão de aproximações:

$$x_{k+1} = \frac{1}{2} \left(\frac{a}{x_k} + x_k \right)$$

Experimentemos para a = 16,
 começando com x₀ = 10 :

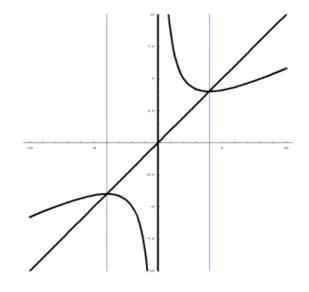
- 0 10.00000000 1 5.80000000 2 4.27931034 3 4.00911529 4 4.00001036 5 4.00000000
- O método utilizado tem por base a equação,

$$x = \underbrace{\frac{1}{2} \, \left(\frac{a}{x} + x\right)}_{g(x)}$$

obviamente equivalente a $x^2 = a$

e consiste na **pesquisa de um ponto fixo** da função g(x)

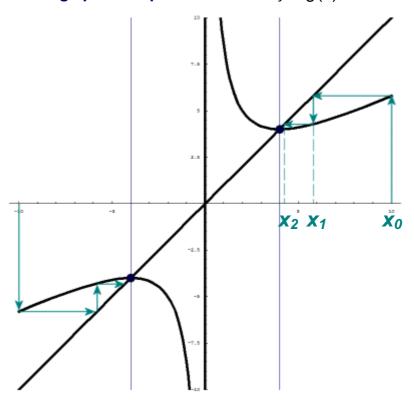
Para a = 16 a função g(x)tem **dois pontos fixos**, em x = 4 e x = -4



- E de facto, se partirmos de uma estimativa inicial negativa, o método babilónico encontra a raiz negativa de 16.
- 0 -10.00000000 1 -5.80000000 2 -4.27931034
- 2 -4.27931034 3 -4.00911529
- 4 -4.00001036
- 5 -4.00000000

Como funciona?

A partir de uma aproximação inicial X_0 , uma sucessão de aproximações da forma $X_{k+1} = g(X_k)$ converge para um ponto fixo da função g(x).



Porque funciona?

teorema: Seja g(x) uma função contínua e $\{x_k\}$ uma sucessão gerada pelo método iterativo do ponto fixo $x_{k+1} = g(x_k)$.

Se $\lim_{k\to\infty} X_k = \alpha$ então α é um **ponto fixo** de g(x).

demonstração: Se $\lim_{k\to\infty} x_k = \alpha$ então também $\lim_{k\to\infty} x_{k+1} = \alpha$ e como g(x) uma função contínua,

$$g(\alpha) = g(\lim_{k \to \infty} x_k) = \lim_{k \to \infty} g(x_k) = \lim_{k \to \infty} x_{k+1} = \alpha$$

portanto α é um **ponto fixo** de g(x).

Quando existe ponto fixo?

teorema: Seja $g(x) \in C([a, b])$.

Se para todo o $x \in [a, b]$, se verifica que $g(x) \in [a, b]$ (isto é, se g for uma contracção)

então g tem pelo menos um ponto fixo em [a, b].

demonstração: Se g(a) = a ou g(b) = b então o ponto fixo é óbvio. Caso contrário defina-se a função auxiliar h em [a, b], h(x) = x - g(x)

Como h é contínua em [a, b] e

$$g(a) \in [a, b] \Rightarrow h(a) = a - g(a) < 0$$

 $g(b) \in [a, b] \Rightarrow h(b) = b - g(b) > 0$

então existe **pelo menos** um valor $\alpha \in (a, b)$ tal que $h(\alpha) = 0$. Logo $\alpha = g(\alpha)$ e α é um **ponto fixo**.

Quando é único o ponto fixo?

teorema: Se g'(x) está definida em [a, b] e existe uma constante positiva L < 1, com $|g'(x)| \le L < 1$ para todo o $x \in [a, b]$, então g(x) tem um único ponto fixo em [a, b].

demonstração: Suponhamos que existiam dois pontos fixos α_1 , $\alpha_2 \in [a, b]$. Então, pelo Teorema do Valor Médio, existiria um $c \in (\alpha_1, \alpha_2) \subseteq (a, b)$ tal que,

$$g'(c) = \frac{g(\alpha_2) - g(\alpha_1)}{\alpha_2 - \alpha_1}$$

mas nesse caso, sendo α_1 e α_2 pontos fixos,

$$\frac{g(\alpha_2) - g(\alpha_1)}{\alpha_2 - \alpha_1} = \frac{\alpha_2 - \alpha_1}{\alpha_2 - \alpha_1} = 1$$

donde g'(c) = 1, contradizendo a hipótese de |g'(x)| < 1 para todo o $x \in [a, b]$.

Logo não é possível existirem dois pontos fixos.

Quando converge o método do ponto fixo?

Teorema do Ponto Fixo:

Sejam
$$g(x)$$
, $g'(x) \in C([a, b])$:
$$g(x) \in [a, b] \text{ para todo o } x \in [a, b],$$
$$|g'(x)| < 1 \text{ para todo o } x \in [a, b],$$
$$x_0 \in [a, b].$$

Então a sucessão $\{X_k\}$ gerada por $X_{k+1} = g(X_k)$, k = 0, 1, 2, ... converge para o único ponto fixo $\alpha \in [a, b]$.

demonstração: Nas condições da hipótese e pelo teorema anterior, **existe e é único** um **ponto fixo** α da função α no intervalo α .

Resta demonstrar que o método converge para ele.

Consideremos o **erro absoluto** na iteração *k*+1 :

$$|e_{k+1}| = |\alpha - x_{k+1}| = |g(\alpha) - g(x_k)|$$

Pelo Teorema do Valor Médio, existe $\xi_k \in \mathrm{inter}(\alpha, x_k)$ tal que,

$$g'(\xi_k) = \frac{g(\alpha) - g(x_k)}{\alpha - x_k}$$

Consideremos o número positivo L, tal que |g'(x)| = L < 1 para todo o $x \in [a, b]$. Assim,

$$|g(\alpha) - g(x_k)| \le L |\alpha - x_k|$$

ou seja,
$$|e_{k+1}| \le L |e_k|$$
 para $k = 0, 1, 2, ...$

Aplicando esta relação indutivamente, temos,

$$|e_k| \le L^k |e_0|$$

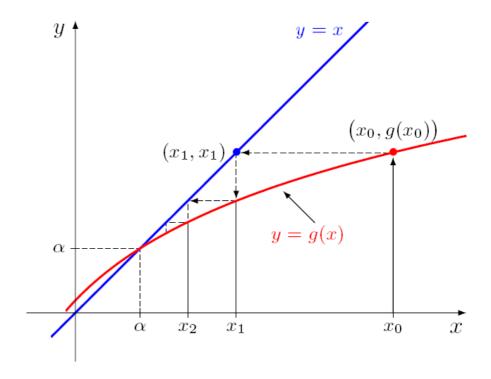
e uma vez que L < 1, então,

$$\lim_{k \to \infty} |e_k| = 0$$

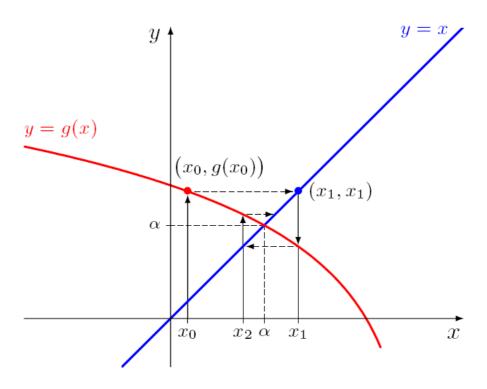
Assim, desde que a aproximação inicial $X_0 \in [a, b]$, o método iterativo de ponto fixo é **convergente**.

Como converge o método do ponto fixo?

Convergência **monótona** quando $0 < g'_0(x) < 1$:



Convergência oscilante quando $-1 < g'_0(x) < 0$:



Quando diverge o método do ponto fixo?

teorema: Seja
$$g:D\subseteq\mathbb{R}\to\mathbb{R}$$
 .

Se:
$$g, g' \in C(D)$$

g(x) tem um ponto fixo $\alpha \in [a, b] \subset D$,

$$|g'(x)| > 1$$
 para todo o $x \in D$,

$$x_0 \in [a, b] (com x_0 \neq \alpha)$$
.

Então a sucessão $\{X_k\}$ gerada por $X_{k+1} = g(X_k), k = 0, 1, 2, ...,$ **não converge** para o ponto fixo $\alpha \in [a, b]$.

demonstração: De modo análogo ao anterior,

considerando o **erro absoluto** na iteração *k*+1 :

$$|e_{k+1}| = |\alpha - x_{k+1}| = |g(\alpha) - g(x_k)|$$

Pelo Teorema do Valor Médio, existe $\xi_k \in \operatorname{inter}(\alpha, x_k)$ tal que,

$$g'(\xi_k) = \frac{g(\alpha) - g(x_k)}{\alpha - x_k}$$

Ou seja,
$$\left|e_{k+1}
ight|=\left|g'(\xi_k)
ight|\left|e_k
ight|$$

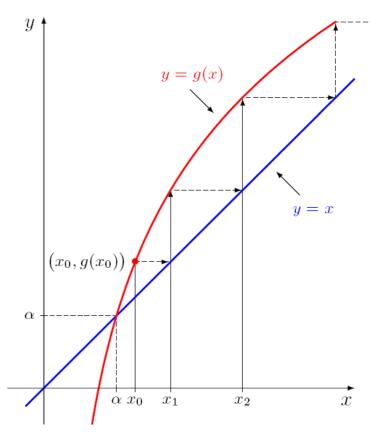
Contudo, neste caso
$$|g'(\xi_k)|>1$$

e portanto
$$|e_{k+1}| > |e_k|$$

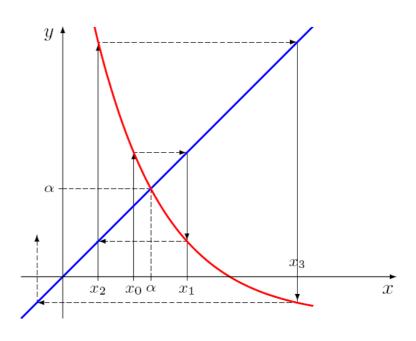
Assim, o método iterativo de ponto fixo é divergente.

• Como diverge o método do ponto fixo?

Divergência **monótona** quando g'(x) > 1:



Divergência oscilante quando g'(x) < -1:



Quando converge, qual a ordem de convergência do método do ponto fixo?

Consideremos que g(x), $g'(x) \in C([a, b])$ e que o método do ponto fixo é **convergente** para α .

1) No caso de
$$g'(\alpha) \neq 0$$

Como vimos,
$$|e_{k+1}| = |g'(\xi_k)| |e_k|, \ \xi_k \in inter(\alpha, x_k)$$

ou seja,
$$\lim_{k\to\infty}\frac{|e_{k+1}|}{|e_k|}=\lim_{k\to\infty}\left|g'(\xi_k)\right|=\left|g'(\alpha)\right|$$

Portanto, no caso de $g'(\alpha) \neq 0$, e como $|g'(\alpha)| < 1$, então o método do ponto fixo apresenta **ordem de convergência linear** sendo $|g'(\alpha)|$ a **constante assimptótica** de convergência.

2) No caso de
$$g'(\alpha) = 0$$
 e $g''(\alpha) \neq 0$

Assumindo que $g(x) \in C^2([a, b])$, consideremos o desenvolvimento de Taylor de ordem 1 em torno de α :

$$g(x) = g(\alpha) + g'(\alpha)(x - \alpha) + \frac{g''(\xi)}{2!}(x - \alpha)^{2}$$
$$\xi \in inter(x, \alpha)$$

Para $X = X_k$ e como $g'(\alpha) = 0$, com $g''(\alpha) \neq 0$,

$$x_{k+1} = g(x_k) = g(\alpha) + \frac{g''(\xi_k)}{2} (x_k - \alpha)^2$$
$$\xi_k \in inter(x_k, \alpha)$$

e uma vez que $\alpha = g(\alpha)$,

$$|e_{k+1}| = \frac{|g''(\xi_k)|}{2} |e_k|^2$$

Assim, se o método for convergente,

$$\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k^2|} = \lim_{k \to \infty} \frac{|g''(\xi_k)|}{2} = \frac{|g''(\alpha)|}{2}$$

Portanto, no caso de $g'(\alpha) = 0$ e $g''(\alpha) \neq 0$, o método do ponto fixo apresenta **ordem de convergência quadrática** sendo $|g''(\alpha)|/2$ a **constante assimptótica** de convergência.

3) De um modo geral, assumindo que $g(x) \in C^n([a, b])$, se

$$g'(\alpha) = g''(\alpha) = \dots = g^{(n-1)}(\alpha) = 0$$

$$\max \quad g^{(n)}(\alpha) \neq 0$$

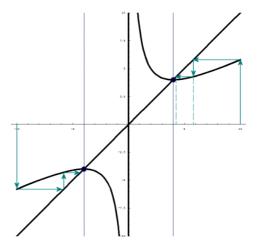
prova-se que o método iterativo do ponto fixo apresenta **ordem de convergência** *n* .

→ Voltando ao Método Babilónico

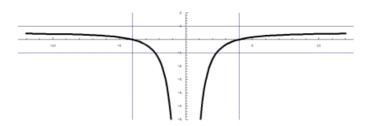
para calcular a Raiz Quadrada de a = 16

$$\bullet \quad \text{Onde,} \quad g(x) = \frac{1}{2} \; (\frac{a}{x} + x)$$

tem uma descontinuidade em x = 0



• Derivando, $g'(x) = \frac{1}{2} (1 - \frac{a}{x^2})$ e g'(4) = 0



verificamos que, na maior parte dos casos, |g'(x)| < 1

• A segunda derivada,
$$g''(x) = \frac{a}{x^3}$$
 e $g''(4)$ / 2 = 0.125

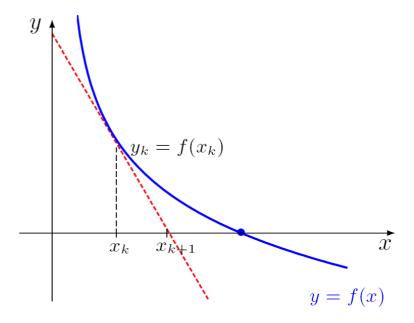
• Portanto a convergência é quadrática, com,

k	\boldsymbol{x}_k	$ e_k $	$ e_{k+1} / e_k ^2$
0	10.0000000	6.00000000	
1	5.80000000	1.80000000	0.05000000
2	4.27931034	0.27931034	0.08620690
3	4.00911529	0.00911529	0.11684126
4	4.00001036	0.00001036	0.12471579
5	4.00000000	0.00000000	0.12499660

* Método de Newton-Raphson (ou Método da Tangente)

Interpretação Geométrica

• Em cada iteração X_k , a curva y = f(x) é aproximada pela sua **tangente** e a **intersecção** desta com o eixo dos XX é a nova aproximação X_{k+1} .



• A equação da tangente à curva no ponto $(x_k, f(x_k))$ é,

$$y = f(x_k) + f'(x_k)(x - x_k)$$

e a sua intersecção com o eixo dos XX determina a nova aproximação,

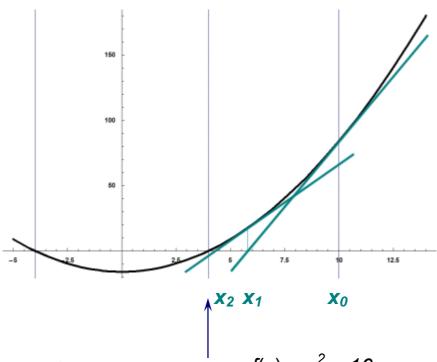
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

A partir de uma aproximação inicial X₀ esta fórmula gera uma sucessão
 { X_k } que, em certos casos, deverá convergir para um zero da função.

• Por exemplo, para a função $f(x) = x^2 - a$,

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^2 - a}{2 x_k} = \frac{1}{2} \left(\frac{a}{x_k} + x_k \right)$$

e para o caso particular de a=16, com a aproximação inicial $x_0=10$,



a sucessão das aproximações tende para um zero de $f(x) = x^2 - 16$.

k	$k \qquad x_k$			
0	10.00000000			
1	5.80000000			
2	4.27931034			
3	4.00911529			
4	4.00001036			
5	4.00000000			

o que já não era novidade na antiga Babilónia ...

Newton-Raphson como caso particular do Método do Ponto Fixo

• Dada uma equação f(x) = 0, podemos passar para a forma x = g(x) através da relação,

$$g(x) = x + c(x)f(x)$$

onde C(x) é uma função contínua, **não nula** e **limitada** no intervalo [a, b] que **contém a raiz** α de f(x) = 0.

- Pretendemos definir C(X) de modo a que o método do ponto fixo (no caso de convergir) tenha uma ordem de convergência pelo menos quadrática.
- Assumindo que f(x) e C(x) são diferenciáveis em [a, b],

$$g'(x) = 1 + c'(x)f(x) + c(x)f'(x)$$

e calculando no ponto α ,

$$g'(\alpha) = 1 + c'(\alpha)f(\alpha) + c(\alpha)f'(\alpha)$$

• Para que a convergência seja quadrática, devemos ter $g'(\alpha) = 0$.

E como $f(\alpha) = 0$ então,

$$c(\alpha) = -\frac{1}{f'(\alpha)}$$

Assim, basta escolher,

$$c(x) = -\frac{1}{f'(x)}$$

assumindo que $f'(x) \neq 0$ em todo o intervalo [a, b].

Substituindo, temos a nova forma,

$$g(x) = x - \frac{f(x)}{f'(x)}$$

que corresponde ao Método de Newton-Raphson,

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \qquad k = 0, 1, 2, \dots$$

e que, por esta construção, se convergir é quadrático.

O Método de Newton-Raphson a partir da série de Taylor

• Suponha-se que $f \in C^2([a, b])$, que o Método de Newton-Raphson é convergente e considere-se o desenvolvimento de Taylor de ordem 1 em torno de X_k :

$$f(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{f''(\xi_k)}{2}(x - x_k)^2$$
$$\xi_k \in inter(x, x_k)$$

Calculando em $X = \alpha$,

$$0 = f(\alpha) = f(x_k) + f'(x_k)(\alpha - x_k) + \frac{f''(\xi_k)}{2}(\alpha - x_k)^2$$
$$\xi_k \in inter(\alpha, x_k)$$

donde.

$$\alpha = x_k - \frac{f(x_k)}{f'(x_k)} - \frac{f''(\xi_k)}{2f'(x_k)} (\alpha - x_k)^2$$

e assim obtemos a nova aproximação (X_{k+1}) e o erro cometido.

• Note-se que assumimos que $|\alpha - X_k|$ é pequeno, para todo o k, incluindo a aproximação inicial k = 0.

→ Ordem de Convergência do Método de Newton-Raphson

Pela expressão anterior,

$$\alpha - x_{k+1} = -\frac{f''(\xi_k)}{2f'(x_k)} (\alpha - x_k)^2$$

donde, tomando módulos,

$$\frac{|\alpha - x_{k+1}|}{|\alpha - x_k|^2} = \frac{|f''(\xi_k)|}{2|f'(x_k)|}$$

Assim, no caso de o método convergir,

$$\lim_{k \to \infty} \frac{|\alpha - x_{k+1}|}{|\alpha - x_k|_{\wedge}^2} = \frac{|f''(\alpha)|}{2|f'(\alpha)|}$$

e a convergência é quadrática

com constante de convergência assimptótica igual a $\frac{|f''(\alpha)|}{2|f'(\alpha)|}$

• Observação:

Se o zero de f não for simples a ordem do método degrada-se. Mostra-se que, no caso dos **zeros de multiplicidade 2** a convergência é apenas **linear**.

→ Um Majorante do Erro Absoluto

Pela expressão anterior,

$$\alpha - x_{k+1} = -\frac{f''(\xi_k)}{2f'(x_k)} (\alpha - x_k)^2, \quad \xi_k \in \text{inter}(\alpha, x_k)$$

temos.

$$|e_{k+1}| = \frac{|f''(\xi_k)|}{2|f'(x_k)|} |e_k|^2$$

 Se identificarmos um majorante da segunda derivada e um minorante da primeira derivada, para todo o intervalo,

$$M_2 \ge |f''(x)|, \ \forall x \in [a, b]$$

$$0 < m_1 \le |f'(x)|, \ \forall x \in [a, b]$$

é simples calcular:

$$|e_{k+1}| \le \frac{M_2}{2m_1} |e_k|^2$$

→ Uma estimativa do Erro Absoluto

Assumindo que $f \in C([a, b])$ e que o Método de Newton-Raphson é convergente, pelo Teorema do Valor Médio,

$$\frac{f(x_k) - f(\alpha)}{x_k - \alpha} = f'(\xi_k), \ \xi_k \in inter(\alpha, x_k)$$

Donde, assumindo ainda que $f'(x) \neq 0, \ \forall x \in inter(\alpha, x_k)$

$$x_k - \alpha = \frac{f(x_k)}{f'(\xi_k)}$$

Por outro lado, da expressão do próprio método,

$$x_k - x_{k+1} = \frac{f(x_k)}{f'(x_k)}$$

• Para ${\it k}$ suficientemente grande, $x_{k+1} pprox \alpha$, donde, $\xi_k pprox x_k$ e portanto,

$$x_k - x_{k+1} \approx x_k - \alpha$$

Assim, podemos estimar,

$$|e_k| \approx |x_{k+1} - x_k|$$

Em termos algorítmicos, é mais cómodo calcular,

$$e_{k-1} \approx |x_k - x_{k-1}|$$

De facto, para o exemplo anterior,

k	\mathbf{X}_{k}	$ e_k $	$ e_{k-1} $	$ \mathbf{x}_k - \mathbf{x}_{k-1} $
0	10.00000000	6.00000000		
1	5.80000000	1.80000000	6.00000000	4.20000000
2	4.27931034	0.27931034	1.80000000	1.52068966
3	4.00911529	0.00911529	0.27931034	0.27019506
4	4.00001036	0.00001036	0.00911529	0.00910492
5	4.00000000	0.00000000	0.00001036	0.00001036

Critério de Convergência do Método de Newton-Raphson

teorema: Seja
$$f \in C^2([a,b])$$
. Se

(i)
$$f(a)f(b) < 0$$
;
(ii) $f'(x) \neq 0$ para todo o $x \in [a, b]$;
(iii) $f''(x)$ não muda de sinal em $[a, b]$;
(iv) $\left|\frac{f(a)}{f'(a)}\right| < b - a$ e $\left|\frac{f(b)}{f'(b)}\right| < b - a$

Então, para qualquer $x_0 \in [a, b]$, a sucessão $\{x_k\}$ gerada pelo Método de Newton-Raphson converge para o único zero de f em [a, b].

observações:

- (i) + (ii) garantem a existência de uma só solução em [a, b].
- (ii) + (iii) garantem que a função é monótona, convexa ou côncava.
- (iv) garante que as tangentes à curva em (a, f (a)) e em (b, f (b))
 intersectam o eixo dos XX em (a, b).

→ Vantagens do Método de Newton-Raphson

- Quando converge, tem convergência quadrática.
- Necessita apenas de um ponto, para estimativa inicial.

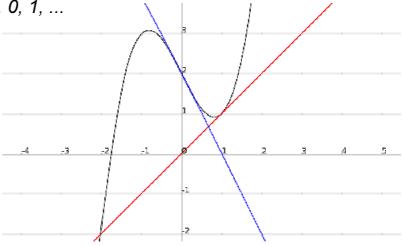
→ Desvantagens do Método de Newton-Raphson

- Exige uma boa aproximação inicial. Caso contrário pode divergir, ou encontrar outra raiz.
- Exige o cálculo da derivada em cada iteração, o que pode ser lento ou mesmo impossível.
- Exige que a derivada (no denominador) nunca se anule. Note que, mesmo para valores da derivada próximos de zero, a intersecção da tangente com o eixo dos xx é um ponto muito afastado...

Alguns casos patológicos do Método de Newton-Raphson

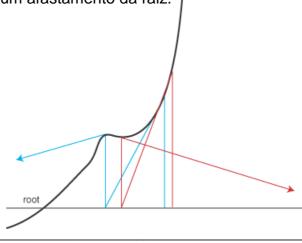
• Para a função $f(x) = x^3 - 2x + 2$, se escolhermos $x_0 = 0$, o método calcula $x_1 = 1$, gerando a sucessão de aproximações:

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...



- Para a função $f(x)=\sqrt[3]{x}$ o método gera uma sucessão tal que, $x_{k+1}=-2\,x_k$
- Para f(x) = √x, obtém-se x_{k+1} = -x_k
 de modo que, para qualquer x₀, o método gera a sucessão:
 x₀, -x₀, x₀, -x₀, x₀, -x₀,...

Todo o ponto de inflecção provoca um afastamento da raiz.



• ...