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Fixed point problems — an introduction

Paulo J. S. G. Ferreira

Abstract – This paper surveys a number of fundamental re-
sults on the existence and uniqueness of fixed points for cer-
tain classes of possibly nonlinear operators. I do not try to
be exhaustive, but merely to present the results that are more
useful in the context of signal and image reconstruction. Some
specific aspects pertaining to linear operators, and linear op-
erators in finite dimensional spaces, are also discussed. It is
shown that the set of fixed points of a nonexpansive operator is
either empty or convex. Under rather general conditions this
shows that the minimum norm solution of an operator equa-
tion of the form x = Ax exists and is unique, provided that
A is nonexpansive. This is a new result, which has interest-
ing practical consequences in signal and image reconstruction
problems and in other engineering applications.

I. INTRODUCTION

Briefly speaking, a fixed point of an operator T is a solu-
tion of the equation x = Tx. This paper surveys the basic
theorems in fixed point theory, that is, Banach’s theorem,
for contractive mappings, Brouwer’s theorem, which holds
for any continuous mapping in a finite-dimensional space,
and Schauder’s theorem, which generalizes Brouwer’s re-
sult to infinite-dimensional Banach spaces.
The interest of these results, and their practical conse-

quences and applications to problems such as signal and
image reconstruction, tomography, telecommunications,
interpolation, extrapolation, quantizer design, signal en-
hancement, signal synthesis, filter synthesis, among many
others, are quite well-known and need no further comments.
A quick glance through [1], for example, should convince
any reader of the practical interest of the subject: many
interesting practical problems can be recast as fixed point
problems.
For example, let x be a signal of interest, and let y be a

distorted version of x. Assume further that y and x are
related through the operator equation y = Dx (y might be
the signal measured at the receiving end of a transmission
system D, and x the transmitted signal). The problem is
how to estimate x given y and the modelD of the distortion
that x underwent.
If x satisfies a constraint equation x = Cx, then the iden-

tity
x = Cx+ µ(y −DCx)

holds. Under rather general conditions, the solution to this
equation will be the unknown signal x. This observation is
the key to many iterative constrained restoration algorithms

xi+1 = Cxi + µ(y −DCxi). (1)

The fixed point results discussed in this paper are the fun-
damental theoretical components of such techniques, and

lead to conditions under which the sequence defined by (1)
converges to a solution of the initial problem.
The notation used is standard. Symbols such as R and Cn

have the usual meaning, and Mn denotes the set of n ×
n matrices over the complex field. The end of a proof is
marked with the symbol .

A. Structure of the paper

The structure of the paper is as follows. Section II in-
troduces the main concepts and definitions, and section III
deals with Banach’s fixed point theorem. Brouwer’s theo-
rem is discussed in section IV. Its proof is based on a com-
binatorial lemma known as Sperner’s lemma. Schauder’s
theorem is the subject of section V.
To keep the paper reasonably self-contained, the basic el-

ements of graph theory, which are required for the proof of
Sperner’s lemma, are presented. This limits the mathemat-
ical prerequisites to the rudiments of functional analysis,
such as presented in [2].
In section VI, it is shown that the set of fixed points of a

nonexpansive operator is either empty or closed and con-
vex. This is, as far as I know, a new result. It has important
consequences, namely, it shows that the minimum norm so-
lution of an operator equation of the form x = Ax exists
and is unique provided that A is nonexpansive.
Section VII addresses some specific problems related to

the convergence of sequences of successive approximations
and matrix theory.
The paper closes with section VIII, which contains com-

ments and refers to a number of additional works that might
be useful to readers interested in comprehensive treatments
of this subject.

II. CONCEPTS AND DEFINITIONS

I begin with some standard definitions. The metric func-
tion of any of the mentioned metric spaces is denoted by
d.
Definition 1 (contraction mapping) Let X be a metric

space. A mapping T : X → X is a contraction mapping if
there exists a positive real λ < 1 such that

d(Tx, Ty) ≤ λ d(x, y), (2)

for every two x, y ∈ X .
If X is a normed space, then T is a contraction if

‖Tx− Ty‖ ≤ λ ‖x− y‖.

If T is linear, this reduces to

‖Tx‖ ≤ λ ‖x‖
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for all x ∈ X . Thus, a linear operator T : X → X is a
contraction if its norm

‖T‖ = sup
x6=0

‖Tx‖
‖x‖ = sup

‖x‖=1

‖Tx‖

is bounded by a number 0 < λ < 1.
Contraction mappings are well behaved and easy to study.

Unfortunately, condition (2) is often too strong for practi-
cal applications. The following definition introduces a less
stringent concept which is quite useful.
Definition 2 (nonexpansive mapping) Let X be a metric

space. A mapping T : X → X is nonexpansive if

d(Tx, Ty) ≤ d(x, y), (3)

for every two x, y ∈ X .
If X is a normed space, then T is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖.

If T is linear, this reduces to

‖Tx‖ ≤ ‖x‖

for all x ∈ X . Thus, a linear operator T : X → X is
nonexpansive if its norm satisfies ‖T‖ ≤ 1.
The following class of mappings is less general but never-

theless important.
Definition 3 (strictly nonexpansive mapping) Let X be a

metric space. A nonexpansive mapping T : X → X is
strictly nonexpansive if

d(Tx, Ty) = d(x, y) ⇒ x = y, (4)

for every two x, y ∈ X .
If X is a normed space, the condition for strict nonexpan-
siveness reduces to

‖Tx− Ty‖ < ‖x− y‖

if and only if x 6= y. A linear operator T is strictly nonex-
pansive if

‖Tx‖ < ‖x‖

for all nonzero x ∈ X .
Note that any of these properties imply the continuity of
T . It is time to define fixed point of a mapping.
Definition 4 (fixed point) Let T be a mapping of a metric

space X into itself. A point x ∈ X is called a fixed point of
T in X if x = Tx.
Definition 5: A topological space is said to possess the

fixed point property if every continuous mapping of the
space into itself has a fixed point.
Of course, if a topological space has the fixed point prop-
erty, any other topological space homeomorphic to the first
will also possess the fixed point property. In other words,
the fixed point property is a topological property.

A. Finite dimensional spaces

The spectral norm [3] of an arbitrary matrix T is denoted
by ‖T‖ and defined by

‖T‖ = sup
‖x‖=1

‖Tx‖,

where the symbol ‖ · ‖ in the right-hand side denotes the
Euclidean norm in Cn.
The spectral radius ρ(T ) of a matrix T ∈ Mn, with eigen-

values {λi}1≤i≤n, is defined by

ρ(T ) = max
1≤i≤n

|λi|.

In words, the spectral radius of a matrix is the greatest of
its eigenvalues, in absolute value. The following theorem
relates the spectral norm and the spectral radius of a matrix.
Theorem 1: The spectral norm of T ∈Mn is given by

‖T‖ =
√
ρ(THT ), (5)

where ρ(T ) denotes the spectral radius of T .
Proof: Seeking the stationary points of the continuous

function φ(x) = ‖Tx‖2, with the constraint ‖x‖ = 1, leads
to the equation

THTx = λx, (6)

where λ appears as a Lagrange multiplier. This shows that
the unitary vectors x that render ‖T‖ stationary are the
eigenvectors of THT . If x is an eigenvector of THT then

‖Tx‖2 = xHTHTx = |λ| ‖x‖2 = |λ|.

The function φ is continuous and the set defined by ‖x‖ = 1
is compact. Therefore, the absolute maximum (minimum)
of φ(x) is attained by the eigenvector of THT that corre-
sponds to its largest (smallest) eigenvalue in absolute value.
These eigenvalues will be denoted by λmax and λmin, respec-
tively, and the associated eigenvectors by vmax and vmin.
Relation (5) follows from this and the definition of norm.

Note that ‖Tx‖ ≤ ‖T‖ ‖x‖. Also, since THT is Hermitian,
‖T‖2 = ρ(THT ) = ‖THT‖.
Note that the spectral norm of a Hermitian matrix equals its
spectral radius.
Corollary 1: If T ∈ Mn is nonexpansive, then ρ(T ) ≤ 1.

If T ∈Mn is strictly nonexpansive, then ρ(T ) < 1.
Proof: A direct consequence of the inequality ρ(T ) ≤

‖T‖.
The converse of the corollary is not true. It is easy to ex-
hibit examples of expanding linear operators, that is, matri-
ces with norm greater than one, which have spectral radius
less than unity. This can never occur for Hermitian or nor-
mal matrices, whose norms and spectral radii are necessar-
ily equal. A simple example of a matrix whose norm and
spectral radius differ is given by Varga [4].

III. BANACH’S THEOREM

The simplest result about the existence of a fixed point is
Banach’s theorem, sometimes called the contraction map-
ping theorem. It was first stated and proved by Banach
around 1922 [5], as part of his doctoral thesis.
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One word regarding the notation: the symbol T k is a short-
hand for the composition of T , k times, that is

T k ≡ T · T · T · · ·T︸ ︷︷ ︸
k times

.

Theorem 2 (Banach) Let M be a nonempty, complete
metric space, and let T : M → M be a contraction map-
ping. Then, the equation x = Tx has one and only one
solution in M , given by

x = lim
n→∞

Tny,

for every y ∈M .
Proof: I will first show that, for every positive ε, there

is a positive integer N such that, for every integers n ≥ N
and k > 0,

d(Tny, Tn+ky) < ε.

The triangle inequality implies

d(Tny, Tn+ky) ≤ d(Tny, Tn+1y)+

+ d(Tn+1y, Tn+2y) + · · ·+ d(Tn+k−1y, Tn+ky).

(7)

But, since T is a contraction mapping,

d(Tmy, Tm+1y) ≤ λ d(Tm−1y, Tmy),

and therefore

d(Tmy, Tm+1y) ≤ λmd(y, Ty).

Inserting this in (7) yields

d(Tny, Tn+ky) ≤ (λn + · · ·+ λn+k−1) d(y, Ty)

≤ λn

1− λ d(y, Ty). (8)

The second member of (8) can be made arbitrarily small by
a suitable choice of n, because λ is positive and less that 1.
Since the space M was assumed nonempty and complete,
the sequence T ny has a limit in M .
The limit of the sequence T ny is a fixed point of T . This

follows from the continuity of T , since

T lim
n→∞

Tny = lim
n→∞

Tn+1y = lim
n→∞

Tny.

In spite of its importance, the contraction mapping theorem
is not strong enough for certain purposes. In fact, many
operators frequently found do not satisfy condition (2).
The question of whether or not a result similar to theorem 2

holds for the more general class of nonexpansive operators
has a negative answer. In fact, as the following examples
show, a nonexpansive mapping may have any number of
fixed points.
Example 1: The translation f → f + g (g 6= 0) in a Ba-

nach space is nonexpansive and does not have any fixed
points.
If g = 0 this changes drastically.
Example 2: The identity mapping is nonexpansive, and

each point in its domain is a fixed point.

This raises the problem of defining and characterizing
classes of nonexpansive mappings having fixed points.
There is also the related and important uniqueness problem.
I will restrict myself to a few results that are often useful in
applications.

IV. BROUWER’S THEOREM

This section discusses Brouwer’s theorem, which asserts
that every continuous mapping of a closed n-ball to itself
has a fixed point. Unlike Banach’s theorem, which ap-
plies to contractions only, Brouwer’s theorem applies to
any continuous mapping. It is restricted, however, to finite-
dimensional spaces.
Theorem 3 (Brouwer) Every continuous mapping f of a

closed n-ball to itself has a fixed point.
The proof depends on a very simple result from graph the-
ory.

A. Graphs

In simple terms, a graph G is a triple consisting of a set
V of vertices, a set E of edges, and an incidence function
which associates with each edge a pair of vertices. The sets
V and E are assumed to be nonempty and finite.
As the name suggests, graphs have a simple graphical rep-

resentation. The set of vertices can be represented as a set
of points in the plane, and each edge e can be represented
as a line joining the pair of vertices which the incidence
function associates with e. For an example, see figure 1.
For simplicity I will consider simple graphs only. By def-

inition, a graph is simple if it has no loops (that is, edges
with identical ends) and if no two of its edges join the same
pair of vertices.
The number of edges incident with a vertex v of a simple

graph G is called the degree (deg v) of that vertex. Graphi-
cally, the degree of v is the number of lines which connect
v to other vertices of the same graph.
Proposition 1: In any graph G, the number of vertices

with odd degree is even.
Proof: Denote by Ve and Vo the sets of vertices of the

graph with even and odd degrees, respectively. The sets Ve
and Vo are disjoint and their union is V . Adding the degrees
of each vertex of a graph gives an even number, since every
edge is counted twice in the process. Therefore

∑

v∈Ve
deg v +

∑

v∈Vo
deg v

must be an even number. But the sum of the degrees of the
vertices with even degree must be even, and, consequently,

∑

v∈Vo
deg v

must be an even number.
The fixed point theorem due to Brouwer, which counts so
many applications in analysis, can be established on the ba-
sis of as simple a result as proposition 1. I will show, fol-
lowing Bondy [6], that Brouwer’s theorem is a consequence
of a combinatorial result due to Sperner, which is itself a
consequence of proposition 1.
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Figure 1 - An example of a graph with V = {a, b, c, d, e, f, g, h}.
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Figure 2 - An example of simplicial subdivision and proper labeling. Note
the existence of one distinguished triangle.

B. Sperner’s lemma

A few definitions are needed before stating Sperner’s
lemma.
Let T be a closed triangle in the plane. A subdivision of T

into a finite number of smaller triangles is said to be simpli-
cial if any two intersecting triangles have either a vertex or
a whole side in common.
Definition 6: Given a simplicial subdivision of T , a label-

ing of the vertices of triangles in the subdivision in three
symbols 0, 1 and 2 is said to be proper if the following
conditions are satisfied.

1. The three vertices of T are labeled 0, 1 and 2 in any
order.

2. For 0 ≤ i < j ≤ 2, each vertex on the side of T
joining vertices labeled i and j is labeled either i or j.

A triangle in the subdivision may or may not receive all
three possible labels. If it does, it is called a distinguished
triangle.
An example of two-dimensional simplicial subdivision and

proper labeling is shown in figure 2. Note that, although
we have been talking about triangles, there is nothing that
prevents us from extending the definitions above to other
simplices (tetrahedrons, for example).
Sperner’s lemma, which was proved by Sperner in 1928,

states the following.
Lemma 1 (Sperner) Every properly labeled simplicial sub-

division of a triangle has an odd number of distinguished
triangles.
The following proof is essentially the one given in [6].
Denote by T1, T2, . . . , Tn the regions (triangles) of the

subdivision, and let T0 be the region of the plane outside
the triangle T . Consider a graph G with as many vertices
v0, v1, v2, . . . , vn as regions Ti, and edges defined by the

following rule: vi is connected to vj if and only if the re-
gions Ti and Tj have a common boundary whose vertices
have labels 0 and 1.
The following results are required.
Proposition 2: None of the vertices of G can have degree

three.
Proof: Assume that there is a vertex vi of G with

degree three, and let Ti be the triangle of the subdivision
associated with vi. Let the vertices of the triangle Ti be a,
b and c, and ab, bc and ac its sides.
Since, by hypothesis, vi has degree three, the vertices a and
b of the side ab of Ti have labels 0 and 1, in some order. The
same is true of the vertices b and c of side bc, which implies
that a and c have the same label. Thus, vi cannot possibly
have degree three.
Proposition 3: A triangle Ti is distinguished if and only if

the corresponding vertex vi of G has degree one.
Proof: For if Ti is a distinguished triangle one of

its vertices will have label 0 and another will have label 1.
Consider the set S of all triangles of the subdivision which
have a common boundary with Ti. The previous observa-
tion and the fact that the subdivision is simplicial imply that
exactly one of the triangles of S will be adjacent to the edge
of Ti with labels 0 and 1. This implies that the vertex vi of
G will have degree 1.
Proposition 4: The vertex v0 of G, which corresponds to

the region T0 outside T , has odd degree.
Proof: The two edges of T incident with the vertex

with label 2 may be ignored in the discussion. For, if the
labeling is proper, any two labeled points lying in one of
these edges will not have labels 0 and 1 simultaneously.
Consider the edge e of T incident with the vertices labeled

0 and 1, and imagine that the simplicial division took place
sequentially in time. At step k = 0, the labels 0 and 1 were
added to the two vertices of e. Had the subdivision stopped
at this point the degree of v0 in G would be one.
Each step k > 0 of the subdivision may bring an additional

labeled point to e. This can only leave the degree of v0

unchanged or increase it by two (consider adding a point
labeled 0 between two points labeled 1 or vice-versa). This
and the previous observation imply that the degree of v0 in
G must be odd.
Sperner’s lemma can now be demonstrated. By proposi-
tion 4 the vertex v0 has odd degree, and therefore by propo-
sition 1 an odd number of vertices v1, v2, . . . , vn have odd
degree. By proposition 2 none of these may have degree
3, and so those with odd degree must have degree one. By
proposition 3 the existence of a vertex with degree one is
equivalent to the existence of a distinguished triangle.

C. Brouwer’s theorem in one dimension

Before discussing Brouwer’s theorem in n dimensions, it
is enlightening to seek its meaning in one dimension, which
turns out to be quite clear (see figure 3).
A rigorous proof of the result is just as clear. To begin with,

notice that it is possible to assume without loss of generality
that x = 0 and x = 1 are not fixed points (if they are there
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Figure 3 - One-dimensional interpretation of Brouwer’s theorem: the con-
tinuous function f must cross the line y = x at least once.

is nothing else to show). Let g(x) = f(x)−x, and consider

g(0) = f(0),

g(1) = f(1)− 1.

Since 0 ≤ f(x) ≤ 1, g(0) > 0 and g(1) < 0. But g is
a continuous function, and therefore there must exist a real
x ∈ [0, 1] such that g(x) = 0, which means f(x) = x.

D. Brouwer’s theorem in two dimensions

The proof of Brouwer’s theorem in n dimensions is con-
siderably harder. It is preferable to begin by discussing the
two-dimensional situation, which asserts that a continuous
mapping of the closed circle into itself has a fixed point.
Since a closed triangle and a closed circle are homeomor-
phic it is sufficient to prove the result for a closed triangle
T .
Since T is convex, any of its points can be expressed as

a triple (a0, a1, a2), such that each ai is nonnegative and∑
ai = 1. These are called the barycentric coordinates of

T .
Let f be a continuous function of the closed triangle T in

itself. I will use the notation

f(a0, a1, a2) = (b0, b1, b2)

where the ai are the barycentric coordinates of a point of T ,
and the bi are the barycentric coordinates of its image under
f .
Denote by Si (i = 0, 1, 2) the set of points x = (a0, a1, a2)

such that bi ≤ ai. The vertex of T with coordinate (1, 0, 0)
belongs to S0, and thus S0 is not empty. A similar argument
shows that S1 and S2 are not empty.
I claim that any point belonging to the intersection of S0,
S1 and S2 is a fixed point of f . In fact, if x = (a0, a1, a2) is
one such point and (b0, b1, b2) its image under f , then bi ≤
ai for i = 0, 1, 2 by the definition of Si. Since

∑
ai =

∑
bi

it follows that bi = ai, that is, y = x and x is a fixed point
of f .
To show that the intersection of the sets Si is nonempty the

following results are required.
Proposition 5: Any simplicial subdivision of T can be

properly labeled, in the sense of definition 6, in such a way
that each vertex labeled i belongs to Si.

Proof: Let x0 be the vertex of T with coordinates
(1, 0, 0). The coordinates (b0, b1, b2) of its image under f

are nonnegative and satisfy
∑
i bi = 1. This implies b0 ≤

1, and therefore x0 ∈ S0. Similarly one can show that
vertices x1 = (0, 1, 0) and x2 = (0, 0, 1) belong to S1

and S2, respectively. Thus, the condition mentioned in the
proposition is compatible with condition 1 of definition 6.
Let x be any point in the side of T with vertices x0 and
x1, and therefore with coordinates (α, 1 − α, 0), for some
0 ≤ α ≤ 1.
Consider the image y = f(x) of x. It either belongs to the

same side of T as x or not. If it does y = (β, 1−β, 0), with
0 ≤ β ≤ 1, and at least one of the inequalities β ≤ α or
1− β ≤ 1−α will hold, meaning that x belongs to at least
one of the sets S0 or S1.
If y and x are not on the same side of T its third coordinate

will be nonzero. Since the third coordinate of x is zero, x
can not belong to S3. However, it does belong to one of the
sets S0 or S1.
This shows that any point x of the side of T with vertices
x0 and x1 belongs to S0 or S1. Thus, any vertex of the
subdivision of T belonging to the side of T with vertices
x0 and x1 may be labeled 0 or 1.
It is possible to proceed similarly for points in one of the

other sides of T . This establishes that the condition men-
tioned in the proposition is compatible with condition 2 of
definition 6.
Proposition 6: The sets Si (i = 0, 1, 2) are closed.

Proof: Consider a convergent sequence y(n) (n =
1, 2, . . .) of points of Si and let y be its limit. If

y(n) = (a
(n)
0 , a

(n)
1 , a

(n)
2 )

and
f(y(n)) = (b

(n)
0 , b

(n)
1 , b

(n)
2 ),

then b(n)
i ≤ a

(n)
i . Since f is continuous, the coordinates

bi and ai of the limit points x and y will have to satisfy a
similar relation, meaning that y ∈ Si.
To proceed with the proof of Brouwer’s theorem, consider
an arbitrary simplicial subdivision of T and a proper label-
ing satisfying proposition 5. By Sperner’s lemma there is a
triangle in the subdivision whose vertices belong to S0, S1

and S2. Since this may happen when the subdivisions have
arbitrarily small diameter there are points of S0, S1 and S2

arbitrarily close to one another. Since the sets Si are closed
and non-empty their intersection is non-empty, and f will
have at least one fixed point.

E. The general case

The arguments used to prove Brouwer’s theorem in two
dimensions still hold in n-dimensional spaces. The neces-
sary generalization of Sperner’s lemma is straightforward.
Instead of three sets Si one would need n + 1 sets, the
barycentric coordinates would consist of n + 1 numbers,
and so on.

V. SCHAUDER’S THEOREM

Brouwer’s theorem is valid in a finite-dimensional setting
only. The following theorem, due to Schauder, gives a suf-
ficient condition for a possibly infinite-dimensional Banach
space to possess the fixed point property.
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Theorem 4 (Schauder) Any compact convex nonempty
subset of a Banach space has the fixed point property.
This is the same as stating that any continuous mapping T
of a compact convex subset S of a Banach space into itself
has a fixed point.
The proof is patterned after [7], [8]. The main idea is to

build an infinite sequence of mappings of S into itself, such
that each member of the sequence has a fixed point. From
these, a subsequence is extracted which is showed to con-
verge to a fixed point of T . It all starts with the following
lemma.
Lemma 2: LetX be a Banach space andE a compact con-

vex subset of X . Then, for any ε > 0, there exists an
F : E → C (C is a finite dimensional subset of E) such
that ‖Fx− x‖ < ε.

Proof: Since E is compact there are points
x1, x2, . . . , xn belonging to E and such that

min
1≤i≤n

‖x− xi‖ < ε,

that is, any x ∈ E is at a distance less that ε from at least
one of the xi.
Let g : R→ R be a nonnegative continuous function such

that g(t) = 0 if and only if t ≥ 1. The functions

hi(x) =

g

(‖x− xi‖
ε

)

n∑

i=1

g

(‖x− xi‖
ε

) , (1 ≤ i ≤ n)

are continuous on E, nonnegative and satisfy

n∑

i=1

hi(x) = 1,

hi(x) = 0, if ‖x− xi‖ ≥ ε.
Let C be the convex hull of x1, x2, . . . , xn, which is finite-
dimensional and contained in E, since E is convex. Define
F : E → C by

Fx =
n∑

i=1

hi(x)xi.

Note that Fx is a convex combination of the xi, and conse-
quently Fx ∈ C. Also,

‖Fx− x‖ =

∥∥∥∥∥
n∑

i=1

hi(x)xi −
n∑

i=1

hi(x)x

∥∥∥∥∥

≤
∑

‖x−xi‖<ε
hi(x) ‖xi − x‖,

which is less that ε.
It is now possible to proceed with the proof of Schauder’s
theorem. The lemma implies the existence of finite-
dimensional subsets Ck of X and continuous mappings Fk
such that

Fk : E → Ck ∩ E, (1 ≤ k ≤ n)

and

‖Fkx− x‖ ≤
1

k
.

The mappings Tk defined by

Tk ≡ FkT

from E into Fk are continuous. Their restriction to Ck ∩E,

Tk : Ck ∩ E → Ck ∩ E,

by Brouwer’s theorem, has a fixed point xk. Now,

‖Tx− Tkx‖ = ‖Tx− FkTx‖ ≤
1

k
,

and consequently ‖Tx− Tkx‖ → 0 as k →∞. Replacing
x by xk, and using the fact that xk is a fixed point of Tk,
leads to

‖Txk − Tkxk‖ = ‖Txk − xk‖ → 0

as k →∞.
Since E is compact the sequence xk has a convergent sub-

sequence x∗k. Let its limit be x∗. Since ‖Tx∗k − x∗k‖ → 0,
‖Tx∗ − x∗‖ = 0, and x∗ = Tx∗.

The following corollaries are immediate consequences of
Schauder’s theorem.
Corollary 2: Any nonexpansive mapping of a compact

and convex subset of a Banach space into itself has a fixed
point.

Proof: A nonexpansive mapping is continuous.
Corollary 3: Any strictly nonexpansive mapping of a

compact and convex subset of a Banach space into itself
has one and only one fixed point.

Proof: The existence of fixed points being guaranteed
by Schauder’s theorem, it remains to be shown that there
can be no more than one fixed point. But this is a trivial
consequence of definition 4. For, if a and b are distinct
fixed points, then

‖Ta− Tb‖ = ‖a− b‖ < ‖a− b‖,

which is impossible. The contradiction implies a = b.

VI. CONVEXITY OF THE SET OF FIXED POINTS

The examples previously given show that the set of fixed
points of a given nonexpansive mapping may contain any
number of elements. In spite of this, there is an useful prop-
erty that the set of fixed points associated with the mapping
has, as the following lemma shows.
Lemma 3: Let X be a Hilbert space. The set of fixed

points of a nonexpansive mapping T : X → X is either
empty or closed and convex.

Proof: Example 1 shows that the set of fixed points
can be empty. If there is only one fixed point there is noth-
ing to show. Consequently, let x and y be two fixed points,
and put

z = αx+ (1− α)y.

Consider the inequalities

‖Tz − x‖ = ‖Tz − Tx‖ ≤ ‖z − x‖ = (1− α)‖x− y‖,
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A

B

x z y

Figure 4 - Geometrical interpretation of theorem 3.

‖Tz − y‖ = ‖Tz − Ty‖ ≤ ‖z − y‖ = α‖x− y‖.
Adding them together leads to

‖Tz − x‖+ ‖Tz − y‖ ≤ ‖x− y‖.

But
‖Tz − x‖+ ‖Tz − y‖ ≥ ‖x− y‖,

by the triangle inequality, which shows that

‖Tz − x‖+ ‖Tz − y‖ = ‖x− y‖.

This means that

‖Tz − x‖ = ‖z − x‖ = (1− α)‖x− y‖,

‖Tz − y‖ = ‖z − y‖ = α‖x− y‖.
Applying the parallelogram law [2]

‖a− b‖2 + ‖a+ b‖2 = 2‖a‖2 + 2‖b‖2 (9)

with a = Tz − x and b = z − x leads to

‖Tz−z‖2 +‖Tz−x+z−x‖2 = 2‖Tz−x‖2 +2‖z−x‖2.

Therefore

‖Tz − z‖2 ≤ 2‖z − x‖2 + 2‖z − x‖2 −
− ‖Tz − Tx+ z − x‖2

≤ 4‖z − x‖2 − (‖Tz − Tx‖+ ‖z − x‖)2

≤ 4‖z − x‖2 − (‖z − x‖+ ‖z − x‖)2

≤ 4‖z − x‖2 − 4‖z − x‖2,

which means that ‖Tz− z‖ = 0 and consequently z = Tz.
This shows that the set of fixed points of T is convex.
It remains to show that it is closed. Let zn be a sequence

of fixed points, and let z be its limit. To see that z is also a
fixed point of T note that

‖zn − Tz‖ = ‖Tzn − Tz‖ ≤ ‖zn − z‖.

This implies that

lim
n→∞

‖zn − Tz‖ = 0,

and consequently zn converges to Tz. Hence Tz = z,
which shows that z is also a fixed point of T .

A geometrical interpretation of the lemma is given in fig-
ure 4. The sets A and B are defined by

A = {x : ‖Tz − x‖ ≤ (1− α)‖x− y‖},
B = {x : ‖Tz − y‖ ≤ α‖x− y‖}.

The image of z by T must lie in the intersection of A and
B, which reduces to the point z. Thus, Tz must be equal to
z.
Note that it is the strict convexity of the balls A and B that

implies z = Tz. The lemma ceases to be true for Banach
spaces that are not strictly convex, such as L1.
Lemma 4: Let S be a closed and convex subset in a Hilbert

space. Then S contains a unique element of smallest norm.

Proof: This is a well-known result. Choose a se-
quence {xn} of elements of S whose norms converge to

α = inf
x∈S
‖x‖.

The convexity of S implies that ‖xm + xn‖ ≥ 2α, since
(xm + xn)/2 ∈ S. On the other hand, again using the
parallelogram identity (9),

‖xm + xn‖2 + ‖xm − xn‖2 = 2(‖xm‖2 + ‖xn‖2)

and therefore

lim
m,n→∞

‖xm − xn‖ = 0,

since limm,n(‖xm‖2 + ‖xn‖2) = 2α2 and ‖xm + xn‖2 ≥
4α2. But S is closed, and therefore the sequence has a limit
in S which can only be a point a with norm α.
There is only one such point a, since the existence of an-

other point b with that property would imply the conver-
gence of the sequence

a, b, a, b, . . .

by the above argument.
Theorem 5: Let S be a compact and convex subset of a

Hilbert space, and let A be a nonexpansive mapping which
carries S into itself. Then, the minimum-norm solution of
x = Ax exists and is unique.

Proof: By lemma 3, A has a nonempty and convex
set of fixed points. By lemma 4, this set contains a unique
element with minimum norm.

VII. FIXED POINTS, SUCCESSIVE APPROXIMATIONS

AND MATRIX THEORY

The following simple result is often useful.
Theorem 6: Let X be a Banach space. If the operator T :
X → X satisfies ‖T‖ < 1, then

(I − T )−1 =
+∞∑

i=−∞
T i,

the convergence being in norm. The equation x = Tx + b
has exactly one solution (I−T )−1b which can be found by
successive approximations

xi+1 = Txi + b,

independently of x0 ∈ X .
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Proof:

(I − T )

n−1∑

i=0

T i = I − Tn,

and ‖Tn‖ ≤ ‖T‖n, which tends to zero as n→∞.
The theorem can not be obtained from Banach’s theorem,
since T is not required to be a contraction.
Consider the sequence of vectors xi ∈ Cn defined by
xi+1 = Mxi + b, M and b being, respectively, a n×n ma-
trix and a n× 1 column vector. This is a model of the gen-
eral linear stationary iterative algorithm of first order with
iteration matrix M . This is a special case of the problem of
theorem 6, in which the Banach space X is Cn.
Defining the operator T : Cn → Cn by

Tx ≡Mx+ b,

one sees that xi+1 = Txi. If T is a contraction there exists
a real λ, satisfying 0 ≤ λ < 1, and such that for any u, v ∈
Cn,

‖Tu− Tv‖ = ‖M(u− v)‖ ≤ λ‖u− v‖.

This means that the norm ofM is bounded by λ, and conse-
quently its spectral radius ρ(M) is also bounded by λ. By
Banach’s theorem, the sequence xi converges to the unique
fixed point x of T , that is, to a solution of x = Mx+b. The
contraction condition implies that ρ(M) ≤ λ < 1, that is,
M has no eigenvalues equal to one. Consequently I −M
has no zero eigenvalues and is nonsingular.
Assume now that T is strictly nonexpansive. Then,

‖Tu− Tv‖ = ‖M(u− v)‖ ≤ ‖u− v‖,

which implies that ρ(M) < 1. Although Banach’s theorem
does not hold in this case, one sees that I−M must also be
nonsingular, and that there exists a unique fixed point of T .
In fact, if ρ(M) < 1, the sequence xi converges to a limit

vector x which satisfies x = Mx+ b, since

x =
+∞∑

k=0

Mkb = (I −M)−1b.

The error or residual at iteration k, ek = xk − x, is given
by

ek = Mek−1,

being related to the initial error e0 by ek = Mke0. Thus

‖ek‖ ≤ ‖Mk‖ ‖e0‖.

Without imposing further restrictions on M one can only
say that ‖Mk‖ tends to zero with k, monotonically for suf-
ficiently high k. For Hermitian, or, more generally, for nor-
mal matrices,

‖Mk‖ = ρ(M)k,

and the norm of the error decreases with each iteration, that
is, the iterative method has the error-reduction property, in-
dependently of k. In this case, knowledge of ‖M‖ allows a
simple upper-bound for the error to be established. In gen-
eral this is not the case, and it is necessary to study ‖M k‖
instead.

VIII. NOTES

There are many fixed point theorems beyond those pre-
sented here. See [7], [9], [10] for many other results. The
background in functional analysis required for understand-
ing these results is presented in [2]. A more advanced treat-
ment can be found in [11].
Section II-A follows [12]. For an alternative proof of the-

orem 1 see [4]. A matrix T such that all its eigenvalues are
less than unity in absolute value is sometimes called con-
vergent to zero [4].
The combinatorial proof of Brouwer’s theorem given in

section IV is a detailed version of the proof given on [6]. A
version of the proof written in Portuguese is available [13].
It is interesting to compare this proof with others, based on
analytic arguments, such as those given in [8], [14], [15].
The proof of Schauder’s theorem given is essentially the

one found in [7], [8]. A proof based on topological argu-
ments can be found in [9]. It has two main steps: first, it
is showed that any compact and convex subset of a Banach
space is homeomorphic to a compact convex subset of the
Hilbert cube. Then, it is proved that the Hilbert cube has
the fixed point property.
For a discussion and comparison of many more (125!) def-

initions that lead to fixed point theorems see [16].
Theorem 5 and lemma 3 are probably new.
Applications of the theorems discussed in this paper can

be found throughout the literature. Some applications in
signal enhancement, restoration and more are addressed in
[1], [12], [17–23]. The books [24], [25] might also be of
interest. A review of several important fixed point theorems
can be found in [26].
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