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Superoscillations With Optimum
Energy Concentration
Dae Gwan Lee and Paulo Jorge S. G. Ferreira

Abstract—Oscillations of a bandlimited signal at a rate faster
than the bandlimit are called “superoscillations” and have appli-
cations e.g. in superresolution and superdirectivity. The synthesis
of superoscillating signals is a numerically difficult problem. Min-
imum energy superoscillatory signals seem attractive for applica-
tions because (i) the minimum-energy solution is unique (ii) it has
the smallest energy cost (iii) it may yield a signal of the smallest pos-
sible amplitude. On the negative side, superoscillating functions of
minimum-energy depend heavily on cancellation and give rise to
expressions that have very large coefficients. Furthermore, these
coefficients have to be found by solving equations that are very ill-
conditioned. Surprisingly, we show that by dropping the minimum
energy requirement practicality can be gained rather than lost. We
give a method of constructing superoscillating signals that leads to
coefficients and condition numbers that are smaller by several or-
ders of magnitude than the minimum-energy solution, yet yields
energies close to the minimum. In contrast with the minimum-en-
ergy method, which builds superoscillations by linearly combining
functions with an ill-conditioned Gram matrix, our method com-
bines orthonormal functions, the Gram matrix of which is obvi-
ously the identity. Another feature of the method is that it yields
the superoscillatory signal that maximises the energy concentra-
tion in a given set, which may or may not include the superoscilla-
tory segment.

Index Terms—Algorithms, Hilbert space, interpolation, ma-
trices, nonuniform sampling, numerical stability, optimisation,
sampling methods, signal design, superoscillations.

I. INTRODUCTION

A bandlimited signal can oscillate at a rate much higher than
its highest frequency throughout a finite interval .

Spectral analysis of the restriction of the signal to then
yields a bandwidth much larger than the true value.
This counter-intuitive phenomenon, known as superoscilla-

tion, was first explored in the context of quantum mechanics
(see Section II) and has already found several applications,
e.g. in superdirectivity and superresolution. The paper [1], in
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which subwavelength resolutions down to are reported,
asserts that “super-oscillation-based imaging has unbeatable
advantages over other technologies”.
Superoscillations come at a cost. The amplitude and energy of

the signal outside the interval that contains the superoscillations
is very large compared with the amplitude and energy of the su-
peroscillating part. In addition to this, the numerical procedures
to generate superoscillatory signals tend to be difficult to con-
trol due to ill-conditioning. The difficulty increases rapidly with
the frequency, number or duration of the superoscillations [2].
A natural step towards controlling the magnitude of a super-

oscillating signal is to control its total energy. Consider the set
of finite-energy signals bandlimited to Hz, i.e.

This set (the Paley-Wiener space ) contains signals that su-
peroscillate at any prescribed rate throughout a given interval.
Among such signals, those of least energy appear to be the
most convenient for applications for the following reasons: first,
minimum-energy superoscillating solutions are uniquely deter-
mined by interpolatory constraints. Second, they obviously have
the smallest possible energy cost. Third, since amplitude (or
norm) and energy (or squared norm) are related by

superoscillating signals of least energy also seem likely to
exhibit the least amplitude. The minimum-energy requirement
seems to be an essential step toward practicality.
Surprisingly, this is not always the case. We show that by

dropping the minimum energy requirement, practicality can be
gained rather than lost. Superoscillating functions of minimum-
energy depend heavily on cancellation and give rise to expres-
sions that have very large coefficients. Furthermore, the coef-
ficients have to be found by solving equations that are very
ill-conditioned.
We give amethod of constructing superoscillating signals that

leads to coefficients and condition numbers that are smaller by
several orders of magnitude than in the minimum-energy solu-
tion, yet yields energies close to the minimum.
In fact, we design the superoscillations under two distinct

constraints. We consider the interpolatory constraints needed to
shape and control the superoscillatory segment but we also seek
a solution that is maximally concentrated in a certain set. If the
set is close to the superoscillatory segment, the solution is close
to the minimum-energy solution. It progressively deviates from
the minimum-energy solution as the set is moved away from the
superoscillatory segment.
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We hope that the new results given in the paper help to further
understand the construction of superoscillations and the numer-
ical problems associated with it.

II. RELATED WORK

Superoscillations were introduced in the context of quantum
mechanics, as a part of Aharonov’s weak measurement for-
malism [3], [4]. Consider the sequence of functions

where . In an interval sufficiently close to the origin,
one has , the frequency of which can greatly
exceed the bandlimit [3]. More recently, Aharonov et al. [5]
discussed some of the approximation properties of this sequence
and show that for , where is a fixed real number, the
sequence converges uniformly to .
Superoscillations can also be generated by zero manipula-

tion. The effects of zero cancellation and replacement were
mentioned or rediscovered a few times [6]–[9] and the min-
imum-energy interpolant was first described in [10] (see [11]
for more references and details). However, there is no explicit
mention of superoscillations until the cited work of Aharonov
and co-workers. It was followed by works such as [12], which
investigated the amplitude of superoscillating signals in the
region of normal oscillation, or [13], in which superoscillations
are discussed in the context of transplanckian frequencies in
black hole radiation. Berry [14] studied superoscillations in
the context of a quantum billiards problem and [15] discussed
some associated phenomena of interest from the viewpoint of
thermodynamics, information theory and measurement theory.
The energy cost of superoscillations was considered in [2],

[16], which study the energy required by superoscillating sig-
nals as a function of the superoscillation’s frequency, number,
and maximum derivative, and discuss some of the implications
of superoscillating signals in information theory and time-fre-
quency analysis. The required energy was found to grow expo-
nentially with the number of superoscillations, and polynomi-
ally with the reciprocal of the bandwidth or the reciprocal of the
period of superoscillation.
The optimisation of superoscillations was considered in [17],

which considers the maximisation of the yield, i.e. the ratio of
the energy in the superoscillations to the total energy of the
signal. The work [18] introduces a periodicity measure and ap-
plies it to yield-optimised superoscillating signals, and [19] in-
vestigates the impact of small deviations in the Fourier coeffi-
cients on the superoscillations.
The work [20] emphasises scale rather than frequency and

discusses the approximation of an arbitrarily narrow pulse by
linear combinations of arbitrarily wider pulses. Aharonov et al.
[21, p. 2967] had pointed out long ago that a superposition of
Gaussians centred between 1 and 1 could yield a Gaussian
centred at 3. In [20] the pulses are of different width and the
matter is treated from a different perspective.

A. Some Applications

Superoscillations have been successfully applied to a number
of important problems. We point out a few in this section.
A function and its Fourier transform cannot both be sharply

localised, but the authors of [22] seek to arbitrarily compress a

temporal pulse and report the design of a class of superoscilla-
tory electromagnetic waveforms for which the sideband ampli-
tudes, and hence the sensitivity, can be regulated. They claim
a pulse compression improvement of 47% beyond the Fourier
transform limit.
The article [23] discusses optical superresolution without

evanescent waves. The method introduced in [24], [25] explores
the relation between superdirectivity and superoscillation and
leads to subwavelength focusing schemes in free space and
within a waveguide. The authors demonstrate subwavelength
focusing down to 0.6 times the diffraction limit, five wave-
lengths away from the source. The work [26] demonstrates a
superoscillatory sub-wavelength focus in a waveguide envi-
ronment. The authors claim the formation of a focus at 75%
the spatial width of the diffraction limited sinc pulse, 4.8
wavelengths away from the source distributions.
An array of nanoholes is used in [27] to focus light into sub-

wavelength spots in the far-field. The article [28] discusses ap-
proaches capable of beating the diffraction limit and [29] pro-
poses a solution based on an opticalmask,which is used to create
superoscillations by constructive interference of waves, leading
to a subwavelength focus. The authors also demonstrate that the
mask can be used also as a superresolution imaging device.
Subwavelength resolution down to was reported in [1],

using a mask divided into concentric annuli, each of which had
either unit or zero transmittance, and then optimised using par-
ticle swarm optimisation. The focal spot waveform obtained re-
sembles those in [30], [31], which are among the earliest works
on the deterministic subwavelength focusing of superoscillatory
optical waves.
The ambiguity present in ideal diffraction-limited imaging

systems, which causes different objects to produce identical im-
ages, can be removed by using a priori information about the
object (e.g., finite size). This has long been noted [32]–[35].
Recently, super-resolution post-processing schemes based on
superoscillation have also been studied and demonstrated. See
[36] and [37], where superoscillation-based numerical post-pro-
cessing is used to restore lost image resolution inmicrowave and
optical systems.

III. MOTIVATION

Superoscillations must be discussed in reference to a fixed
bandlimit, which can be normalised without loss of generality.
From now on we restrict ourselves to , that is, to
the Paley-Wiener space (which can be thought of as the
Hilbert space of square-integrable functions bandlimited to
radians/second or 1/2 Hz).
To explain the motivation for the present paper we use a

simple example. Consider the signals in that satisfy

(1)

where . The arrangement of the in a
sufficiently dense grid combined with adequately chosen can
result in superoscillations at any desired rate. The unique signal
of minimum-energy that satisfies these constraints [2] is given
by
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where the coefficients are obtained by solving the linear
equations

with

Fast superoscillations require small separations
. However, the similarity between the elements of in-

creases as the decrease, causing the matrix to be ill-condi-
tioned. The problem can also be understood from the following
perspective: superoscillations of minimum energy are created
by linear combinations of the functions

which are linearly independent as long as the are distinct. In
fact, is the (invertible) Gram matrix asso-
ciated with the . However, as the density of the in-
creases, the inner products become close to the unity
and the matrix close to singular. As a result, minimum-en-
ergy superoscillations can only be achieved by cancellation of
terms with very large coefficients .
In this paper we drop the minimum-energy requirement in

order to build superoscillations with better numerical stability
and coefficients of smaller magnitude. Instead of the functions

associated with the minimum-energy solution, we
consider the integer translates , which are mutually
orthonormal regardless of how dense the are. Themain advan-
tage is that the associated Gram matrix is always the (perfectly
conditioned) identity matrix.
To illustrate this, consider the following problem: given a

fixed set (finite or infinite), find a function of the form

that meets the constraints expressed by (1), i.e.,

This leads to an equation of the form , with

We refer to this method as the direct approach to superoscilla-
tions (see Section IV-A for some background on the matrix ).
By the sampling theorem, when the set of possible

coincides with . Otherwise, it forms a subspace of .
Figs. 1 and 2 show superoscillations generated by the min-

imum energy approach and the direct approach. The spacing be-
tween the was set to one-fifth of the standard sampling period.
Inside the superoscillating interval, the difference between the
two signals is small. Outside the interval, the minimum-energy
method leads to smaller amplitudes, as expected.
Although the energy and amplitude of the two solutions are

comparable, the size of the largest coefficient and the condition
number of the two problems differ by several orders of magni-
tude (cf. Table I).
This behaviour is typical rather than exceptional. Figs. 3–5

show the results of 1000 experiments in which the number of

Fig. 1. Superoscillations at 10 times the Nyquist rate obtained using (a) the
minimum energy method and (b) the direct method. The difference between the
two solutions is also shown.

Fig. 2. Outside the superoscillatory interval, the minimum energy solution (a)
shows oscillations of slightly smaller amplitude than those of solution (b).

TABLE I
ENERGY, LARGEST COEFFICIENT AND CONDITION NUMBER OF THE PROBLEMS

OF FIG. 1 AND FIG. 2

superoscillations and their rate were randomly chosen. The den-
sity of the varied between 10 and 20 times the Nyquist den-
sity. Fig. 3 shows the energy ratios where and
denote the minimum energy and the direct method solutions,

respectively. As in the example discussed before, the energies of
the two solutions are comparable but the coefficient magnitude
and condition numbers differ by several orders of magnitude.
More extreme problems lead to even larger differences.
This shows that by abandoning the minimum-energy condi-

tion practicality can be gained rather than lost. The next sec-
tions address an optimisation problem inspired by this observa-
tion. Our goal is not merely to construct superoscillations using
translates in a stable way: we also try to concentrate
the energy of the signal as much as possible in a given interval,
which need not be close to the superoscillating segment.
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Fig. 3. The energy ratio for 1000 random superoscillation prob-
lems (frequencies between 10 and 20 times the Nyquist rate), obtained using the
minimum energy approach and the direct method .

Fig. 4. Similar to Fig. 3, but shows the ratio of the largest coefficients of
(direct method) to (minimum energy).

Fig. 5. Similar to Fig. 4, but shows the ratio of the condition numbers of the
matrices of the direct method and the minimum energy approach.

IV. RESULTS

A. Background

Let be a finite or infinite set of integers (the case is
not excluded). Let be a set of reals .
Consider the set of signals of the form

(2)

that satisfy the constraints

(3)

The constraints (3) determine the linear equations

where , and
. When , should be interpreted as the linear

operator from into with the given matrix representa-
tion.
The following necessary and sufficient condition for to

have full rank [11] will be needed in the sequel.
Theorem 1: Let where

and . Let denote the set of integer elements of that
are not in .
(a) Assume that . Then is of full rank if and only

if is empty.
(b) Assume that . Then is of full rank if and only

if .
As a corollary, has full rank if is empty. For example, if
consists of numbers of the form , with and

irrational, then is necessarily empty. In general, the condition
is extremely simple to verify (an examination of the sets and
yields the answer).
The condition is also very natural. If the functions under

consideration are of the form (2), then by definition they sat-
isfy for all integer outside . However, if the set
is nonempty, there exists at least one constraint of the form

, where is an integer outside . This would estab-
lish a potential conflict.
For these reasons and to avoid repetitions, from this point

onwards we will tacitly assume that the matrices of the form
that will occur have full rank.

B. An Optimisation Problem

Ideally, an algorithm to construct superoscillations should be
numerically stable and lead to a signal with as much energy
inside the superoscillatory interval as possible. This suggests
the problem

(4)

where the integration is over the smallest interval that
contains , the set that determines the superoscillations, under
an additional constraint on the total signal energy.
We seek an alternative more flexible formulation closer to the

motivating example in Section III: we select a finite set of inte-
gers that covers and use the energy inside the interval that
contains as a replacement for (4). This ensures two things:
first, the superoscillations will be built by combining integer
translates of the sinc function, leading to numerical procedures
much more stable than those associated with the minimum-en-
ergy formulation; second, the fraction of energy transferred to
the interval that contains is maximised. By varying , the en-
ergy concentration can be adjusted as needed.
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Before proceeding we define more precisely what we mean
by “ covers ”.
Definition 1: Let be a set of finitely many distinct real num-

bers. An integer set covers if

Returning to the problem of superoscillations, we may assume
that the separation between the in (3) satisfies , i.e.
the constraints lie in a grid denser than the Nyquist density. It
is then easy to select a set with that covers . The
minimal set is obtained by taking and as the smallest
and largest element of , respectively.
In fact, we will formulate a slightly more general problem.

For greater flexibility, the finite set is left unrestricted, i.e., it
may or may not cover ; and the functions will be drawn from
the entire space or from the subspace defined by

where is a fixed subset of . By the sampling theorem, when
we will be considering the entire space. In any case,

where

If is finite, and are both given by finite sums. In any
case,

where . Similarly, , with
, so that the total energy of can always be written

as , regardless of the nature of .
We may now formulate our main problem.
Problem 1: Let . Let be a finite subset of , with
elements. Let be a set of reals .

Assume that and satisfy the condition of Theorem 1. Among
all of the form

(5)

that satisfy the constraints

find a signal that maximises the energy ratio

where with and
with . In the rest of the paper we solve this
problem.

C. An Equivalent Finite-Dimensional Problem

Rewriting the energy ratio in Problem 1 in the form

we obtain the following formulation:

(6)

where . We have replaced the func-
tion with the vector of its samples, formed by concatenating
and . The goal is to direct as much energy as possible to

the interval and to the vector . If the interval covers it
contains the superoscillating segment of the signal, and so the
fraction of the energy directed to the superoscillations will be
maximised (or, alternatively, the fraction of energy directed to
the complement of will be minimised).
The constraint can be written as

(7)

where

Here is with and is
with where is allowed to be infinite. These ma-
trices are assumed to have full rank, as discussed immediately
after Theorem 1 (the pairs and are assumed to
satisfy the condition of the theorem).
Remark 2: The energy is concentrated in but the interval

that contains the superoscillations is determined by . Our
methods work for any set , including sets that cover . When
covers , one may be interested in minimal covers, for

reasons of efficiency. The tighter the covering of , the more
efficient the energy concentration is likely to be.
Remark 3: To generate superoscillations, must be denser

than the reference Nyquist density (in , the reference den-
sity is that of the integers). As a result, if is a set of integers
that tightly covers , then the cardinal of will naturally satisfy

. The contrary is in fact less interesting. For example,
when the matrix is invertible, so we can simply put

and easily obtain the optimal solution for (6) (as studied
in [11], [38], in a different context). Thus, in the following we
assume that , the condition under which the problem
is simultaneously more interesting and more useful.
We may always express as

where and is unrestricted. This turns (7) into
two separate equations

(8a)

(8b)

By varying in , we can attain all the solutions of (7).
That is, the set is the same as



4862 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 18, SEPTEMBER 15, 2014

Fix any , and consider the (8) with independent
variables and . The minimisation objective is
and we want to minimise while maximising . Notice
that this can be done independently, since fixing
has separated the constraint into two independent equations.
Consider the maximisation of first. The equations in-

volving are over-determined and
there is no freedom to maximise . Since , the
unique solution is

This is the least-squares solution but it agrees with the exact
solution because .
Since to each vector in there corresponds one

and only one in , we may use instead of
as the variable.

Consider now the minimisation of . Since the equations
involving are under-determined,
we have the minimum norm solution

(9)

Substituting (9) in (6) yields

Taking the constraints inside the target function, we obtain the
following equivalent formulation of Problem 1.
Problem 2: The signal that solves Problem 1 is

determined by the minimisation problem

(10)

where

Since and are always finite-dimensional (see
Section IV-H for implementation details), we have converted
the original problem into a finite dimensional one, easier to
solve.

D. Remarks

The following remarks help to appreciate the differences be-
tween the problem that we have formulated and some seemingly
related problems.
Remark 4: The minimisation problem for the Rayleigh quo-

tient for the matrix can be written as

or simply subject to . Our problem can also be written
as

The objective functions are the same, but the problems are very
different due to their constraints.
Remark 5: As a particular case, the set can be chosen to

cover in order to maximise the energy of the superoscillating
part of the signal in reference to its total energy. This resembles
the goal of [17], which considers the problem of yield maximi-
sation, that is, the maximisation of the ratio of the energy in the
superoscillations to the total energy of the signal.
However, the two approaches are very different. The work

[17] considers periodic functions only (cosine series) whereas
we consider finite-energy (non-periodic) functions. In fact,
we consider the optimisation problem over the entire space
(if ) or a subspace of (determined by ). Further-
more, we set no restrictions on . As a result, by varying we
can control the energy concentration range. Finally, we set no
restriction on the sets (they need not be uniformly spaced).

E. Another Form of the Problem

The matrix is symmetric positive definite and so it has
a unique Cholesky factorisation

where is a lower triangular matrix with positive
diagonal entries. In fact, such a decomposition will become ir-
relevant in the end, as long as is an invertible square matrix.
Then so that (10) can be rewritten as

We have obtained the following equivalent formulation of
Problem 2.
Problem 3: The signal that solves Problem 1 is

determined by the minimisation problem

(11)

where is of full rank and
.

Since is of full rank, is positive definite
and has positive eigenvalues (which are also the squared sin-
gular values of ). Recall that (resp., ) is the square

root of the smallest (resp., largest) eigenvalue of . (In fact,
for any .) Let denote a unit

eigenvector of associated with the smallest eigenvalue
.

If , then the minimum
value of (11) is zero. This makes sense because having

is equivalent to saying that we can suc-
cessfully build an interpolant with indices in (therefore
concentrating all energy in , i.e., takes all energy
and ). In this case, the corresponding solution is

.
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So our interest is in the case ,
which is likely be the case when we consider superoscillation
constraints. One should note that this trivially implies .
Then where
is the least-squares solution to , and

. So,

If
, then the problem (11) becomes

It is easy to see that any solution to this problem must be of the
form for some constant . However, since , the
minimum value occurs at .
Thus, in the following, we will assume that , equiv-

alent to

and , equivalent to

F. Bounds for the Minimum Value

We find some bounds for the minimum value in (11). Note
that for any nonzero real number ,

where since . Then for any nonzero
satisfying ,

Therefore

On the other hand,

It is easy to see that the minimum of the last term is attained at

for some constant , and in fact,
and the minimum value is

Therefore,

(12)
The strict inequality for the upper bound will become important
in the following.

G. Solution of the Problem

Assume that

is attained at . Then

Since is a quadratic
form, is positive semi-definite, that is,

. In fact, is positive definite since
by (12). Then

so that

(13)

is the unique solution to the problem and

The last equation is equivalent to

(14)

where denotes the adjoint matrix of , i.e., the transpose
of the cofactor matrix of . Since , the right
hand side of (14) is a polynomial of degree at most
in . In fact, it is possible to show that the polynomial has
only real zeros, as its connection with the quadratic form of a
symmetric matrix suggests. The possible range of is given
by (12) so can be obtained numerically. Once we find ,
follows immediately from (13). Finally,

The solution resembles the elementary process of finding eigen-
vectors for a given square matrix (find from the characteristic
polynomial and then use it to find the corresponding eigenvec-
tors). Note that depends on the value of . From the view-
point of stability, the worst case scenario is when ,

so that becomes ill-conditioned.

H. Computational Aspects

For convenience, we collect and summarise here some of the
results obtained, expressing them in a form suitable for practical
usage.
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As before, and , and to get a non-trivial
result it is assumed that . All matrices are assumed to
have full rank (see the conditions stated in Theorem 1).
The solution obtained can be drawn from the entire

space or from the subspace defined by (5). When working with
the space, the set in (5) coincides with and is of
course infinite. When is a finite subset of , is always
finite.
The matrices to consider are

The vector of constraint values is .
The equations (13) and (14) can be expressed in the following

forms:

(15)

(16)

where

If necessary, the computation of should be approached
in a manner adequate to the nature of the set in (5). There are
two cases to consider.
If is a finite set, the set is also finite and can

be computed directly using a finite sum:

If is a finite set (e.g., ), then is infinite so that
has an infinite number of columns and the above summation is
infinite. However, since is finite, the computation can
be reduced to the following finite sum:

(17)

where . To verify it, note that the application of the
sampling theorem to the function yields

(18)

Separate summation over and , followed by the
substitution , leads to (17).
Note that where

denotes the smallest eigenvalue. Moreover, since

and
, it follows that

and

Then the bounds (12) for can be rewritten in terms of ,
and as

(19)

I. An Iterative Solution

We now present an approach to Problem 3 that does not re-
quire the computation of the zeros of a polynomial. Instead,
it explores the quadratic nature of the minimisation objective
function to obtain an iterative solution.
The derivative with respect to of the function

is given by

and so the necessary condition for an extremum is

This is equivalent to

that is,

This can be written separately as

suggesting the iteration
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Fig. 6. Superoscillations at 10 times the Nyquist rate obtained using the ME
and OPT methods. The set where the energy is optimised corresponds to

.

We have used the difference between successive as the stop-
ping criterion.

V. EXAMPLES

We now present some numerical examples that illustrate
our approach to the construction of superoscillations and how
it compares with the minimum-energy solution. The min-
imum-energy solution will be denoted by ME and the solution
to Problem 1 (reformulated as Problem 2 and Problem 3) will
be denoted by OPT.
Example 1: The set (shown in Fig. 6 top) is uniformly

spaced with , i.e. 10 times the Nyquist rate. The
figure shows the superoscillations obtained with the ME and
OPT methods. The set where the energy concentration is
maximised is , which corresponds to the minimal
cover of . The difference between the two solutions inside
cannot be seen at the scale of the plot. Outside , the value
is larger in the optimised solution than in the minimum-energy
(as expected, given the optimisation with respect to ).
The condition number of the ME matrix, the energy of ME

solution and its largest coefficient in absolute value were all of
the order of .
The OPT solution was found using the iterative method de-

scribed in Section IV-I. The condition number of the matrix was
. Three iterations were required to bring the difference in

successive values of below . The largest coefficient in
absolute value had magnitude and the energy of the OPT
solution was close to that of the ME solution (also about ).

Fig. 7. Superoscillations at 10 times the Nyquist rate obtained using the ME
and OPT methods. The set where the energy is optimised corresponds to

.

Example 2: The set (shown in Fig. 7 top) is uniformly
spaced with , as in Example 1. Thus, the ME solution
is the same as in Example 1. In particular, its condition number,
energy and largest coefficient in absolute value are the same as
in Example 1 (order of magnitude ).
However, the set where the energy concentration is max-

imised is now , which does not cover . This obvi-
ously impacts the optimisation problem and as result the differ-
ence between the ME solution and the OPT solution becomes
large outside (see Fig. 7 bottom).
Inside , however, the discrepancy is still small, proving that

the superoscillations can still be induced in , just as before,
despite the apparently conflicting requirement of concentrating
the energy in a different set . The numerical stability of the
OPT solution is not affected by this and, as we will see, it is
even improved.
The OPT solution was found using the iterative method of

Section IV-I. The condition number of the matrix was below
220. Two iterations were required to bring the difference in suc-
cessive values of below . The largest coefficient in ab-
solute value is smaller than , or 3 orders of magnitude below
the coefficients of the ME solution.
Example 3: To show how the energy, condition number and

magnitude of the largest coefficient vary as functions of we
varied up to 20 times the Nyquist rate (more precisely, in the
interval [0.05,0.15]) and built the corresponding superoscilla-
tions by the ME and OPT methods (the latter solved using the
iterative method of Section IV-I).
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Fig. 8. The evolution with of the energy, condition number and magnitude
of the largest coefficient for the ME and OPT methods.

The energy of the two solutions, as shown in Fig. 8 (top),
is comparable. However, the condition numbers of the ME and
OPT matrices, the latter being given by

differ by orders of magnitude. Similarly, the largest coefficient
in absolute value of the ME and OPT solutions also differ by
orders of magnitude.

VI. CONCLUSION

To build superoscillations with respect to the bandlimit
, one prescribes the value of a function on

a sufficiently dense grid of points . Su-
peroscillations of minimum-energy are attractive because they
have minimum energy cost, but being linear combinations of
the functions they are prone to ill-conditioning and
require coefficients of very large magnitude. It is impossible
to circumvent these disadvantages: the minimum energy inter-
polant is unique and necessarily given by a linear combination
of the functions [2], and the points must be near
each other in order to build superoscillations.
Our goal was to build superoscillations by combining

translates of the sinc function by integers, instead of translates
by , to improve the numerical conditioning and reduce the
size of the expansion coefficients. This leads to Problem 1,
in which we ask for the superoscillating signal with energy
maximally concentrated in a given set . The solution, which
exhibits the required superoscillations, can be expressed as
a linear combination of translates of the sinc function. It
shows interesting numerical behaviour, with relatively small
coefficients and condition numbers, and maximal energy con-
centration in as desired.
We gave both noniterative and iterative methods to determine

the solution. The noniterative solution requires the computation
of the roots of a polynomial, a step that the iterative method does
not require.
We gave examples that illustrate the behaviour of the new

method. It leads to solutions that are linear combinations of
orthonormal functions, in contrast with the minimum-energy
approach, the solution of which is a linear combination of
functions with an ill-conditioned Gram matrix. Because of this,
the numerical behaviour of the new method can be much more
favourable than the minimum-energy approach.
We also found out that its benefits can be obtained without a

significantly increase in the energy cost. If tightly covers ,
the additional energy can be almost negligible. If grows, or if
is moved away from , the energy cost increases. Note that

in the latter case the superoscillations must be constructed in a
certain interval (determined by ) by combining sinc functions
(determined by ) centred far from that interval.
If is moved away from , the difference between the

optimised solution and the minimum-energy solution becomes
large. This behaviour is expected since is the set where
the energy concentration is maximised. If and are not
close to each other, the optimised solution will still exhibit the
superoscillations imposed by the constraints on . However,
its energy will also get concentrated in , a requirement that is
not present in the minimum-energy formulation. As is moved
away from the superoscillations, the optimised solution tends
to deviate more and more from the minimum-energy solution.
Superoscillations are difficult to build but have impor-

tant applications, e.g. in antenna theory and subwavelength
imaging, where the current limit has been brought down to one
sixth of the wavelength [1]. The importance of the applications
justify the development of new construction methods, with
better numerical properties, capable of going further than the
existing ones. The approach presented in this paper is a step
towards that goal.
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