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Abstract—TIt is known that the protein-coding regions of DNA are
usually characterized by a three-base periodicity. In this paper, we
exploit this property, studying a DNA model based on three deter-
ministic states, where each state implements a finite-context model.
The experimental results obtained confirm the appropriateness of
the proposed approach, showing compression gains in relation to
the single finite-context model counterpart. Additionally, and po-
tentially more interesting than the compression gain on its own, is
the observation that the entropy associated to each of the three base
positions of a codon differs and that this variation is not the same
among the organisms analyzed.

Index Terms—DNA compression, DNA sequence modeling,
finite-context models.

I. INTRODUCTION

N general, the purpose of studying data compression algo-
I rithms is twofold. The need for efficient storage and trans-
mission is often the main motivation, but underlying every com-
pression technique there is a model that tries to reproduce as
closely as possible the information source to be compressed.
This model can have independent interest, as it can shed light
on the statistical properties of the source.

DNA data are no exception. We urge to find out efficient
methods able to reduce the storage space taken by the impressive
amount of genomic data that are continuously being generated.
For example, the human genome has about 3 x 109 pairs of bases
[1], whereas the genome of the wheat has about 16 x 10° [2].
Notwithstanding, we also desire to know how the code of life
works and what structure does it possess. Creating good models
for DNA is one of the ways to achieve this knowledge.

DNA is sufficiently determined by a sequence of four
molecules called nucleotides (or bases): Adenine, Cytosine,
Guanine, and Thymine. These nucleotides can be represented
by an alphabet of four letters, {A, C, G, T}, and can be coded
using two bits per base. According to functionality, DNA is
subdivided in two parts: Coding and noncoding DNA. The
proteins are synthesized based on the coding regions, which are
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characterized by triplets of bases (codons), each of which codes
a protein unit or amino acid according to the genetic code. There
are 43 = 64 possible codons, although they represent only 20
amino acids. Hence, the genetic code (which maps codons to
amino acids) is redundant. The noncoding regions, also called
“junk DNA,” are DNA segments that do not comprise code
for proteins. However, in eukaryotes, they encode functionally
important signals for the regulation of chromosomes [3]. These
noncoding regions are interspersed throughout the DNA.

Although the ideas developed in this paper are relevant for
DNA-specific data compression, its goals go beyond compres-
sion. We seek to better understand and model specific regions
of the DNA data, the protein-coding zones. It is known that
the protein-coding regions possess specific properties. In partic-
ular, they are generally more difficult to compress than the non-
coding regions, because the main characteristic used by most
DNA compressors, the occurrence of sequence repeats, is not
so frequent in coding segments [4]. However, there is a char-
acteristic of coding regions that has not been yet exploited for
compression: The three-base periodicity [5], [6].

The aim of this paper is to explore the three-base periodicity
property of protein-coding regions in the context of data com-
pression. To achieve this we propose a model composed of three
states. Each of the models is selected periodically, according to
the three-base period, and each state is implemented using a fi-
nite-context model. The comparison of this cyclically varying
three-state model with single finite-context model counterparts
has shown its ability to better capture the statistics of the data.

Our model has another interesting characteristic, namely, the
entropy of each of the three states can be individually estimated,
and the results interpreted in reference to the genetic code and
the biological characteristics of the organism under study.
To see why, recall that most of the amino acids are encoded
by more than one codon. For example, there are five amino
acids that can be encoded with any of four codons (any of
GCA,GCC,GCG, or GCT represent Alanine, for example).
Because of the many-to-one property of the genetic code, the
entropy associated with the first, second and third nucleotides
varies as a function of the distribution of the synonyms, and the
variation is contained between two extreme examples: 1) DNA
sequences that exhibit such a strong preference for one of the
synonyms that none of the others appear in the sequence; 2)
sequences that reveal no preference at all for any synonym, so
that all synonyms of each amino acid are equally likely to occur
in the sequence. In the first case the entropy carried by the
third nucleotide is zero, because that nucleotide is completely
determined by the previous two. In the second case, the entropy
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of the third nucleotide is maximum, since any of the possible
nucleotides is equally likely to occur. For example, if the four
synonyms of Alanine are equally likely, then the probability of
a A,C,G or T after GC is 1/4, and the entropy of the third
nucleotide equal to two bits.

The DNA sequences that correspond to organisms fall be-
tween these two extremes, and a three-state model should be
able to detect entropy variations among nucleotides at positions
3n,3n + 1, and 3n + 2. Our results confirm that the entropy
of the three states differs, and that the variation is not the same
among the organisms analyzed, facts that may have independent
interest. The organism-dependence could be due to several rea-
sons. Warmer environment organisms may have a C'/G content
higher than A/T, because C — G bonds are harder to break; and
codon preference is known to vary significantly across different
species. In fact, the level of expression of a foreign protein in a
particular expression system can be enhanced by matching the
codon frequency to that of the host system (see, for example,

(7D.

II. THREE-BASE PERIODICITY

The protein-coding regions of DNA often exhibit period-
icities, the strongest of which is associated with the period
three. This periodicity is probably due to the structure of the
genetic code itself, which consists of code words of length
three (codons).

According to [6], the existence of the period three can be
traced back to the work of Trifonov et al. [S], published more
than two decades ago. Since then, this finding has been used
mostly in the difficult task of locating the protein-coding regions
in DNA (see, for example, [8]—[12]). This application motivated
the development of fast algorithms for calculating the spectral
coefficient of interest [13].

The spectrum of a symbolic sequence can be defined in sev-
eral ways. The simplest solution would be to map each symbol
to a number, but this is far from ideal because the results would
depend on the particular labeling adopted (see [14] for an ex-
ample). The symbolic autocorrelation concept provides one way
of obtaining results that are independent of any symbolic-to-nu-
meric labeling. Given the sequence of symbols z;, its autocor-
relation is the numeric sequence 7

n—1

T = Z d($11$1+k)

1=0
where for any two symbols a and b

d(a,b) = {(1) ‘;b

The discrete Fourier transform (DFT) of this autocorrelation is
the spectrum of the symbolic data. In this case no hypothesis are
necessary regarding the symbols, except the ability to check if
they are equal or distinct.

A DNA sequence can also be represented using four indicator
sequences, that is, zero/one sequences that indicate the positions
of the symbols in the symbolic sequence. The spectrum obtained
from the DFT of the symbolic autocorrelation turns out to be
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Fig. 1. The spectrum of a DNA sequence, showing the period three. Data:
human chromosome 22.
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Fig. 2. The evolution of the magnitude of the spectral line corresponding to the
period three along a segment of DNA. Data: human chromosome 22.

equal to the sum of the squared DFTs of the four indicator se-
quences. From the computational point of view, the latter pro-
cedure is preferable. The concept of spectral envelope provides
yet another approach to the Fourier analysis of symbolic data.
The connections between these approaches and others are dis-
cussed in [14], which gives a unified perspective of the methods
that can be used to perform spectral analysis of symbolic data,
such as DNA data.

Figs. 1 and 2 illustrate the three-base periodicity of a DNA se-
quence and its variation along the sequence. They were obtained
using a sliding window approach. The process started with the
computation of the spectrum of N = 300 nucleotides of a seg-
ment of the human chromosome 22, starting with the nucleotide
at position M = 0. After each computation, the position M
was incremented by 50, and another spectrum was computed.
This process was repeated 115 times, corresponding to 6000 nu-
cleotides. The 115 spectra were averaged, and Fig. 1 shows the
result. The sharp peak at frequency 1/3 is associated with a pe-
riod of length three. Fig. 2 is intended to show how the strength
of this peak varies over the 115 spectra. The quantity plotted
is the size of the peak at 1/3 divided by the average value of
the spectral lines. A value of 50, for example, corresponds to
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a peak value that is 50 times larger than the spectral average.
The three-base periodicity is not equally strong over the seg-
ment under analysis, possibly due to the presence of noncoding
regions.

The three-base periodicity in fact has been accepted as a usual
property of DNA coding regions. Its usefulness for gene-de-
tection has been noted and applied in practice, and recently a
very fast algorithm for computing the size of the spectral coeffi-
cient at 1/3 has been proposed [13]. That work also studies the
connection between the spectrum of a segment of DNA and the
nucleotide distribution along that segment, and gives necessary
and sufficient conditions for a spectral coefficient to have a pre-
scribed magnitude.

The three-state model proposed in this paper explores this
well known periodicity. Our results confirm that it is worthwhile
to explore its presence for data compression and modeling. To
achieve this we use a three-state model, and we have found that
the entropies of the three states varies across organisms. This
other finding may be a new result with biological significance.

III. DNA COMPRESSION METHODS

Although we are not proposing a complete technique for
DNA compression, it is nevertheless interesting to give a brief
overview of the main approaches that have been taken in this
direction. Moreover, this overview also serves to show that
the three-base periodicity has not been used previously in the
context of DNA data compression.

The first method designed specifically for compressing
DNA sequences was proposed by Grumbach et al. in 1993
and was named Biocompress [15]. This technique is based on
the sliding window algorithm proposed by Ziv and Lempel,
also known as LZ77 [16]. According to this universal data
compression technique, a subsequence is encoded using a
reference to an identical subsequence that occurred in the past.
The longer the matching sequences, the higher the compression
ratios attained. The Biocompress algorithm makes use of a
characteristic usually found in DNA sequences which is the
occurrence of complemented inverted repeats (also known as
complementary palindromes). These are subsequences that are
both reversed and complemented (A < T,C < @), and that
are also searched for referencing by the encoding algorithm.
Besides this DNA-specific characteristic, Biocompress is able
to commute between the LZ-based compression mode and a
transparent, uncompressed, mode. Switching between modes
is done using forward adaptation, according to a shortest code
criterion. The second version of Biocompress, Biocompress-2,
introduced a third mode of operation, based on a second order
finite-context arithmetic encoder [17]. Again, during compres-
sion, the mode given the shortest code is the one chosen for
coding that subsequence.

Rivals et al. proposed another compression technique based
on exact repetitions, Cfact, which relies on a two-pass strategy
[18], [19]. In the first pass, the complete sequence is parsed
using a suffix tree. This parsing phase produces a list of the
longest repeating subsequences that have a potential coding
gain. In the second pass, those subsequences are encoded using
references to the past, whereas the rest of the symbols are left
uncompressed. Contrary to Biocompress, Cfact does not try
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to exploit the potential redundancy of complementary palin-
dromes. In fact, Cfact does not incorporate any particularity
of DNA sequences and hence it can be considered a general
purpose compression algorithm.

The idea of using repeating subsequences as a means of
achieving compression was also exploited by Chen et al.
[20], [21]. However, in this case, the authors proposed a
generalization of this strategy such that approximate repeats
of subsequences and of complementary palindromes could
also be handled. In order to be lossless, the algorithm, named
GenCompress, has to be able to reconstruct the original subse-
quence based on an approximation occurring in the past. This
can be done using operations such as replacements, insertions
and deletions. One version of the algorithm, GenCompress-1,
used only replacement operations. A second version, GenCom-
press-2, besides replacements, could also perform deletion and
insertion operations in the subsequence. However, from the
experimental results presented by the authors, both schemes
presented virtually identical compression performance, which
seems to indicate that replacements should be enough. As in
Biocompress, GenCompress includes a mechanism for deciding
if it is worthwhile to encode the subsequence under evaluation
using the substitution-based model. If not, it falls back to a
second mode of operation based on an order-2 finite-context
arithmetic encoder.

A further modification of GenCompress led to a two-pass
algorithm, DNACompress, relying on a separated tool for ap-
proximate repeat searching, PatternHunter, [22]. Besides pro-
viding additional compression gains, DNACompress is consid-
erably faster than GenCompress.

Before the publication of DNACompress, a technique based
on context tree weighting (CTW) and LZ-based compression,
CTW + LZ, was proposed by Matsumoto et al. [23]. Basically,
long repeating subsequences or complementary palindromes,
exact or approximate, are encoded by a LZ-type algorithm,
whereas short subsequences are compressed using CTW (as in
the other cases, this acts as a fall back mechanism). Compared
with GenCompress, CTW + LZ provided a slight compression
gain [23]. However, the time needed to run the program on
relatively large sequences showed to be prohibitive [22].

The paradigm of exact matching was addressed again re-
cently by Manzini et al. [24]. One of the aims of their work
was to design a fast, although competitive, DNA encoder.
One of the key problems of compression techniques based on
subsequence matching is the time taken by the search opera-
tion. Manzini et al. addressed this drawback by proposing a
solution based on fingerprints. Basically, in this approach, the
possibility of matching small subsequences is waived in ex-
change for increased speed. Their argument is that in DNA we
are most interested in matching long subsequences (or reverse
complements) and, therefore, the proposed method is viable.
In fact, most often, the compression performance of Manzini’s
method is lower than that offered by DNACompress, but it is
considerably faster. Like other methods already discussed, this
technique also uses fall back mechanisms for the zones where
matching fails. In this case, finite-context arithmetic coding
of order two (named method Dna2 by Manzini ef al.) or three
(Dna3) play this role.
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Tabus et al. proposed a DNA sequence compression method
based on normalized maximum likelihood discrete regression
for approximate block matching [25]. This work, later improved
for compression performance and speed [26], encodes fixed-size
blocks by referencing a previously encoded subsequence with
minimum Hamming distance. Only replacement operations are
allowed for editing the reference subsequence which, therefore,
always have the same size as the block, although may be lo-
cated in an arbitrary position inside the already encoded se-
quence. As others, this compression method (GeNML) incorpo-
rates fall back modes of operation for avoiding degradation of
performance when the main algorithm fails. In this case, two ad-
ditional modes are included: a finite-context arithmetic encoder
of order one and a transparent mode in which the block passes
uncompressed (i.e., each base is represented directly with a bi-
nary word of two bits).

More recently, Behzadi et al. proposed a new algorithm,
DNAPack, which uses the Hamming distance (i.e., relies only on
substitutions) for the repeats and complementary palindromes,
and either CTW or order-2 arithmetic coding for nonrepeating
regions [27]. Moreover, DNAPack relies on dynamic program-
ming techniques for choosing the repeats, instead of greedy
approaches as others do. Tested in a number of small sequences,
on average, DNAPack provided compression gain in relation to
DNACompress [27].

IV. THE MODELS

The overview presented in Section III allow us to conclude
that most of the effort spent by current DNA compressors is in
the task of finding good exact or approximate repeats of sub-
sequences or of their inverted complements. No doubt, this ap-
proach has proved to give good returns in terms of compression
gains. However, in our opinion, other potentially important as-
pects, such as the particular characteristics of protein-coding re-
gions, also deserve attention. In this paper, we address this issue.
Using finite-context models and a periodicity property, we study
the compressibility of protein-coding regions.

The three-base periodicity suggests an underlying statistical
model that might be driven by three different, although related,
information sources. In this paper, we evaluate this conjecture,
using a setup based on three states, each one composed of a fi-
nite-context model, and where switching between states follows
the three-base periodicity.

A. Finite-Context Models

Consider an information source that generates symbols,
s, from an alphabet .A. At time ¢, the sequence of outcomes
generated by the source is #t = x1%3---z;. A finite-context
model (see Fig. 3) of an information source assigns prob-
ability estimates to the symbols of the alphabet, according
to a conditioning context computed over a finite and fixed
number, M, of past outcomes (order-M finite-context model)
[28]-[30]. At time ¢, we represent these conditioning outcomes
by ¢! = x4 nra1,--.,2¢—1, 2. The number of conditioning
states of the model is |.A|Y, dictating its complexity (or model
cost).
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Fig. 3. Finite-context model: the probability of the next outcome, 1, is con-
ditioned by the M last outcomes. In this example, M = 5.

TABLE I
SIMPLE EXAMPLE ILLUSTRATING HOW FINITE-CONTEXT MODELS ARE
IMPLEMENTED. THE ROWS OF THE TABLE REPRESENTS A PROBABILITY MODEL
AT A GIVEN INSTANT t. IN THIS EXAMPLE, THE PARTICULAR MODEL
THAT IS CHOSEN FOR ENCODING A SYMBOL DEPENDS ON THE
LAST FIVE ENCODED SYMBOLS (ORDER-5 CONTEXT)

Context, ¢t || n(A,ct) | n(C,ct) | n(G,ct) | n(T,ct) Z n(a,ct)
acA
AAAAA 23 41 3 12 79
AAAAC 16 6 21 15 58
AAAAG 19 30 10 50 109
AAAAT 34 47 9 31 121
AAACA 36 17 14 15 82
TTTTT 8 2 18 11 39

In practice, the probability that the next outcome, z;11, is
s € A, is obtained using the following estimator:

n(s,ct) + 6
> n(a,c') + |Al8

acA

Pz = s|ct) =

where n(s, ¢!) represents the number of times that, in the past,
the information source generated symbol s having ¢! as the con-
ditioning context. The parameter 6 > 0, besides allowing fine
tuning the estimator, avoids generating zero probabilities when
a symbol is encoded for the first time. In our case we used
6 = 1, which can be seen as an initialization of all counters
to one. These counters are updated each time a symbol is en-
coded. Since the context template is causal, the decoder is able
to reproduce the same probability estimates without needing ad-
ditional information.

Table I shows an example of how a finite-context is typ-
ically implemented. In this example, an order-5 finite-con-
text model is presented. Each row represents a probability
model that is used to encode a given symbol according to
the last encoded symbols (five in this example). Therefore,
if the last symbols were “AAACA”, ie., ¢! = AAACA,
then the model communicates the following probability
estimates to the arithmetic encoder: P(A|AAACA) =
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Fig. 4. Three-state model, exploiting the three-base periodicity of the DNA
protein-coding regions. In this case, the probability of the next outcome, 1,
is conditioned both by the A/ last outcomes and by the value of (¢t mod 3).

36/82, P(C|AAACA) = 17/82, P(G|AAACA) =
and P(T|AAACA) = 15/82.

The block denoted “Encoder” in Fig. 3 is an arithmetic en-
coder. It is well known that practical arithmetic coding gener-
ates output bit-streams with average bit-rates almost identical to
the entropy of the model [28]-[30]. In our case, the theoretical
bit-rate average (entropy) of the model after encoding N sym-
bols is given by

14/82,

N-1
1
Hy = N ; logy P(w441 = s|c") bps (1)

where “bps” stands for “bits per symbol.” Since we are dealing
with DNA bases, instead of using the generic “bps” measure
we use “bpb,” which stands for “bits per base.” Recall that the
entropy of any sequence of four symbols is limited to two bps,
a value that is achieved when the symbols are independent and
equally likely.

B. The Three-State Model

Fig. 4 shows the model addressed in this paper. It differs from
the finite-context model displayed in Fig. 3 by the inclusion
of three internal states. Each state is selected periodically, ac-
cording to a three-base period, and comprises a finite-context
model, similar to the one presented in Fig. 3.

With this model, probabilities depend not only on the M last
outcomes, but also on the value of (¢ mod 3), which is used for
state selectivity. In this case, the probability estimator is given
by

n;i(s,ct) + 6
S nila,ct) +Als
acA
i.e., three different sets of counters are used, one for each state.
Moreover, only the counters associated with the chosen state are
updated. It is worth noting that, in order to be able to operate,
this model does not require the knowledge of the correct reading

7=t mod 3

P(ziy1 = s|c") =
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frame. However, once having chosen a particular position for
starting the model, the corresponding reading frame should be
maintained, otherwise the statistics will become mixed and the
model will not work properly. Notwithstanding, if we intend to
determine the entropies associated with each of the three base
positions inside the codons, we need to know which base po-
sition corresponds to each state of the model. For the cases re-
ported in t Section V, we always started the model at the begin-
ning of a codon, implying that state zero corresponds to the first
base position of the codon, state one to the second base position
and state two to the third base position.

V. EXPERIMENTAL RESULTS

The experimental results that we present in this section
have been obtained using data from the “ffn” files collected
form ftp://ftp.ncbi.nlm.nih.gov/genomes/. In
our study, we included data from the following organisms:
Haemophilus influenzae, Escherichia coli K12, Schizosaccha-
romyces pombe, Saccharomyces cerevisiae, and Arabidopsis
thaliana. Some of the gene descriptions included in these files
contain a few symbols not belonging to the {A4,C,G,T} al-
phabet. Moreover, in a few cases, the gene length is not multiple
of three, causing an inconsistency in the codon structure. There-
fore, in order to avoid undesirable interferences motivated from
these particularities, the files have been checked and all genes
containing spurious symbols or not having length divisible by
three have not been included for testing.

Table II presents the compression results, in bits per base
(bpb), obtained using four coding approaches: the three-state
finite-context model, the single-state finite-context model,
DNACompress [22] (referred to as “DnaC” in the table)
and Manzini’s method Dna3 [24]. The reason for choosing
DNACompress and Dna3, besides from being state-of-the-art
techniques, was the availability of implementations. Note that,
although the theoretical bit-rate given by (1) is expected to be
very close to the real bit-rate, all compression values presented
in Table II correspond to real code generated by an arithmetic
encoder.

For each sequence, the depth of the context, M, was chosen
in order to provide the best possible compression. This search
has been done for M = {1,2,...,7}. Although we did not try
to establish a relation that could provide us a good guess for M,
we nevertheless note that, generally, the larger the sequence the
larger should be the value of M. This trend can be observed in
the data presented in Table II.

We can see from the results of Table II that the three-state
finite-context model of Section IV-B is always better than
the single-state model of Section IV-A (compare the to-
tals given in columns 8 and 10 of the table), confirming
our assumption about the potential advantage of using
the three-base periodicity for compression purposes. The
three-state model also attained better compression results
than the state-of-the-art DNA compression techniques in-
cluded in the tests, when applied to Haemophilus influenzae,
Escherichia coli K12, and Schizosaccharomyces pombe. For
the Saccharomyces cerevisiae, the results are mixed, although
for more than half of the chromosomes the three-state model
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LE., TO ONE THIRD OF THE WHOLE SEQUENCE), WHEREAS THE “BPB” COLUMN INDICATES OVERALL COMPRESSION RATE. COLUMNS “M”
INDICATE THE ORDER OF THE FINITE-CONTEXT MODEL, WHICH WAS ALWAYS THE BEST POSSIBLE. COLUMNS “DNAC” AND

TABLE 11
COMPRESSION RESULTS, IN BITS PER BASE (BPB), OBTAINED FOR THE FIVE ORGANISMS TESTED: HAEMOPHILUS INFLUENZAE, ESCHERICHIA COLI K12,
SCHIZOSACCHAROMYCES POMBE, SACCHAROMYCES CEREVISIAE AND ARABIDOPSIS THALIANA. FOR THE THREE-STATE MODEL, COLUMNS “BPB0,” “BPB1,”
AND “BPB2” INDICATE THE COMPRESSION RATES ATTAINED BY EACH OF THE THREE STATES (CORRESPONDING TO THEIR RESPECTIVE SUBSEQUENCE,

“DNA3” SHOW COMPRESSION RESULTS USING, RESPECTIVELY, DNACOMPRESS AND MANZINI’'S DNA3 METHOD

Haemophilus influenzae

Reference Sequence Bases Three-state Single-state DnaC Dna3
M | bpb0 bpbl bpb2 bpb M bpb bpb bpb Repeats
GI:16271976 — 1505271 4 1918 | 1.834 | 1.684 | 1.812 5 1.889 1.902 1.895 0.9%

Escherichia coli K12

Reference Sequence Bases Three-state Single-state DnaC Dna3
M | bpb0 bpbl bpb2 bpb M bpb bpb bpb Repeats
GI:49175990 — 4083231 5 1.897 | 1.898 | 1.750 | 1.848 6 1.917 1.920 1.913 1.3%

Schizosaccharomyces pombe

Reference Sequence Bases Three-state Single-state DnaC Dna3
M | bpbO | bpbl bpb2 bpb M bpb bpb bpb Repeats
GI:19113674 Chr-I 2996 109 4 1.961 | 1.884 | 1.820 | 1.889 4 1.939 1.918 1.921 1.3%
GI:19111836 Chr-1I 2399394 4 1.962 | 1.887 | 1.818 | 1.889 4 1.940 1.915 1.916 1.7%
GI:19075172 Chr-III 1169991 3 1.961 | 1.889 | 1.833 | 1.895 4 1.943 1.925 1.930 1.2%

Saccharomyces cerevisiae

Reference Sequence Bases Three-state Single-state DnaC Dna3
M | bpb0 bpbl bpb2 bpb M bpb bpb bpb Repeats
GI:50593113 Chr-I 143157 2 1.937 | 1.882 | 1.909 | 1911 3 1.954 1.884 1.910 3.4%
GI:50593115 Chr-1I 605 184 3 1.936 | 1.869 | 1.886 | 1.897 3 1.942 1.912 1.918 1.7%
GI:42759850 Chr-IIT 217332 2 1.946 | 1.874 | 1.908 | 1.911 3 1.951 1.918 1.923 1.8%
GI:50593138 Chr-IV 1129605 3 1.931 | 1.856 | 1.882 | 1.890 4 1.936 1.846 1.853 5.0%
GI:7276232 Chr-V 391086 3 1935 | 1.872 | 1.894 | 1.901 3 1.947 1.883 1.894 3.3%
GI:42742172 Chr-VI 183702 2 1.938 | 1.863 | 1.904 | 1.904 3 1.949 1.932 1.939 1.0%
GI:50593213 Chr-VII 784707 3 1.935 | 1.861 | 1.882 | 1.893 3 1.939 1.897 1.902 2.2%
GI:50882583 | Chr-VIII 402792 3 1.938 | 1.873 | 1.896 | 1.903 3 1.946 1.907 1.915 2.1%
GI:6322016 Chr-IX 310041 3 1.938 | 1.869 | 1.900 | 1.903 3 1.947 1.933 1.942 0.9%
GI:42742252 Chr-X 557103 3 1.935 | 1.866 | 1.892 | 1.899 3 1.943 1.907 1.914 1.8%
GI:50593424 Chr-XI 478 620 3 1.935 | 1.855 | 1.893 | 1.895 3 1.940 1.938 1.942 0.3%
GI:42742286 Chr-XII 784 695 3 1.936 | 1.862 | 1.893 | 1.898 3 1.942 1.863 1.872 4.1%
GI:44829554 | Chr-XIII 693291 3 1.934 | 1.859 | 1.889 | 1.894 3 1.940 1.886 1.892 3.0%
GI:50593505 | Chr-XIV 576 585 3 1.937 | 1.869 | 1.893 | 1.900 3 1.944 1.930 1.934 0.9%
GI:42742309 | Chr-XV 785568 3 1.937 | 1.865 | 1.887 | 1.897 3 1.941 1.901 1.917 2.2%
GI:50593503 | Chr-XVI 687 666 3 1.937 | 1.862 | 1.887 | 1.896 3 1.941 1.889 1.880 3.6%
GI:6226515 MT 24429 2 1.814 | 1.767 | 1.305 | 1.643 3 1.747 1.466 1.511 16.6%

Arabidopsis thaliana

Reference Sequence Bases Three-state Single-state DnaC Dna3
M | bpbO [ bpbl bpb2 bpb M bpb bpb bpb Repeats
GI:42592260 Chr-I 9595494 5 1.925 | 1.904 | 1.882 | 1.904 6 1.939 1.725 1.743 12.0%
GI:30698031 Chr-1I 5474178 4 1.926 | 1.906 | 1.886 | 1.906 6 1.942 1.710 1.737 12.0%
GI:30698537 Chr-III 7183863 5 1.925 | 1.904 | 1.886 | 1.905 6 1.941 1.736 1.762 10.8%
GI:30698542 Chr-IV 5572038 4 1.926 | 1.905 | 1.888 | 1.906 6 1.942 1.708 1.740 12.1%
GI:30698605 Chr-V 8462424 5 1.924 | 1.902 | 1.883 | 1.903 6 1.939 1.736 1.759 10.9%

TABLE III

THIS TABLE PROVIDES AN EXAMPLE, USING THE SCHIZOSACCHAROMYCES POMBE ORGANISM, OF HOW CHANGING PARAMETER M
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(THE ORDER OF THE FINITE-CONTEXT MODEL) AROUND THE OPTIMAL VALUE, M., AFFECTS THE COMPRESSION VALUES (IN BITS PER BASE).
THE VALUES INSIDE PARENTHESIS INDICATE THE VALUE OF M

Schizosaccharomyces pombe

Sequence Bases Three-state Single-state
]\4opt —1 Mopt Alopt +1 Mopt —1 Mopt ]\4opt +1
Chr-1 2996 109 1.889 (3) 1.889 (4) 1.893 (5) 1.941 (3) 1.939 4) 1.939 (5)
Chr-1I 2399394 1.890 (3) 1.889 (4) 1.894 (5) 1.941 (3) 1.940 (4) 1.940 (5)
Chr-1IT 1169991 1.897 (2) 1.895 (3) 1.896 (4) 1.944 (3) 1.943 (4) 1.947 (5)

performed better. Finally, for the Arabidopsis thaliana, the
three-state finite-context model falls short in comparison to
DNACompress and Dna3.

In Table III, we present, for the case of Schizosaccharomyces
pombe, the variation of the bit-rate when M varies somewhat

around the optimal value, M¢. From this example, it can be
observed that the variation of the bit-rate is usually small for
variations of M of £1 around M. This shows that small vari-
ations of M are not expected to originate large variations in the
performance of the method.
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We note that the approach proposed in this paper is not a
complete DNA compression technique: It explores only one
property of certain regions of DNA, the protein-coding regions,
and tries to show that their properties deserve careful study.
The results obtained using the compression methods included in
Table II are intended to put ours into perspective. In fact, those
compression methods are much more sophisticated, and explore
important features such as the coding of repetitions, whereas the
presented encoder uses only the three-base periodicity.

VI. DISCUSSION

The results of Table II show clearly that, from a compres-
sion point of view, it is advantageous to take into account
the three-base periodicity of the DNA protein-coding regions.
Moreover, for some of the organisms tested, this approach
provided better results than state-of-the-art DNA compression
techniques. Since DNACompress and Dna3 rely strongly on
subsequence repetition (exact or approximate), as in fact most
of the DNA compression techniques do, we believe that the
reason why in some sequences the three-state approach is better
is because in those sequences repetitions are relatively rare.

Obviously, the opposite also holds, i.e., without the support
of complementing techniques, the three-state model falls short
in sequences containing repetitions that are better exploited
by other algorithms. This is precisely what happens with the
Arabidopsis thaliana genome. In fact, it is common for plants
to have a great amount of DNA repetition [31]. Particularly, it
is know that the Arabidopsis thaliana plant has extensive gene
repetition [32].

Our view is supported by the data presented in the last column
of Table II, where the percentages of bases that have been en-
coded by Dna3 using references to past subsequences are in-
dicated. As can be observed, for the Arabidopsis thaliana these
percentages are over 10%. More generally, when the percentage
of bases encoded using the repeat strategy is over 3%, the three-
state model alone cannot capture all relevant structure of the
data. Therefore, if compression performance is the goal, then
the three-state model has to be complemented with a method
able to exploit these repetitive patterns.

Another interesting observation that we can extract from
Table II is how the bit-rates of the three states compare. For
the results presented, state O corresponds to the first base of
the codon, state 1 to the second and state 3 to the last base of
the codon. Therefore, the values denoted by “bpb0”, “bpbl,”
and “bpb2” indicate the average number of bits required by
the encoder to represent, respectively, the first, the second and
the third bases of the codon. For the Haemophilus influenzae,
Schizosaccharomyces pombe, and Arabidopsis thaliana, the
first base is the most hard to compress, then comes the second,
and, finally, the third. From a point of view of information
theory, this means that the first base is the one conveying the
largest fraction of the codon information, followed by the
second base.

This observation is not surprising, due to the degenerated na-
ture of the genetic code. In fact, most of the amino-acids can be
represented by more than one triplet and, for some of them, the
third base is even irrelevant. In our opinion what is surprising is
finding out that for all chromosomes of the Saccharomyces cere-
visiae the second base seems to carry less information than the

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 53, NO. 11, NOVEMBER 2006

third one. Moreover, although marginally, for the Escherichia
coli K12 the second base seems to carry, at least, as much in-
formation as the first base. Currently, we are unable to provide
an explanation for this behavior, but we believe that it justifies
further consideration and analysis also from the biological per-
spective. In fact, as discussed in Section II, this organism-depen-
dence is not totally unexpected: Codon preference may vary dra-
matically across species, and warmer environment organisms
have a C/G content higher than A/T, because it is harder to
break a C' — G bond, a fact that may also induce preferences in
the sets of synonyms.

A final note concerning the computational complexity of the
three-state model. The memory requirements are directly related
to the implementation of the finite-context model. From the ex-
ample presented in Table I, it can be observed that to implement
an order-M finite-context model for an alphabet of size |.A| we
need to store |.A|* probability models (i.e., the number of lines
of Table I) which require about |A|**+1 counters. Therefore,
for example, if M = 6, this implies about 47 counters that can
be stored in about 64 Kbytes (considering four bytes for each
counter). Regarding the computational time, we provide some
indicative values because our current implementation has not
been optimized for speed. For example, for the largest sequence
of the test, i.e., chromosome I of Arabidopsis thaliana, our im-
plementation requires, for a given M, about 12 s on a P4 Mo-
bile@2 GHz with 512 Mbytes of RAM. For the same sequence,
DnaC required 57 s whereas Dna3 needed 14 s.

VII. CONCLUSION

In this paper, we addressed a characteristic of DNA pro-
tein-coding regions known as the three-base periodicity.
We studied the compression performance of a three-state
finite-context model and concluded that, in those regions, it al-
ways behaves better than the single-state counterpart. For some
organisms it also surpasses state-of-the-art DNA compression
techniques.

Probably, the most relevant feature of this model is the pos-
sibility of analyzing how information is distributed among the
three bases of the codon. Although, in this paper, we have not
tried to go deeper into this subject, we pointed out some aspects
that we do believe deserve further study. Particularly, the obser-
vation that for the Saccharomyces cerevisiae the third base of
the codon carries, on average, more information than the second
base, appears to be an interesting finding.
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