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ABSTRACT

For any fixed bandwidth, there are finite energy signals
which oscillate arbitrarily fast on arbitrarily long time in-
tervals. More precisely, for any fixed bandwidth, it is pos-
sible to find finite energy signals f which at arbitrarily cho-
sen times {ti}N

i=1 possess arbitrarily prescribed amplitudes ai,
i.e. which obey f (ti) = ai for i = 1,2, ...,N where N is arbi-
trarily large. This paper investigates to which extent such
superoscillating signals could be used for the fast transmis-
sion of information through low bandwidth channels. The
main result is that for fixed noise level, arbitrary amounts
of information can be compressed into arbitrarily short seg-
ments of signals of arbitrarily low bandwidth, without having
to increase the level of the amplitudes which encode the in-
formation. The price to be paid is that, for fixed message
size, the energy expense grows polynomially with the com-
pression and that, for fixed compression, the energy expense
grows exponentially with the message size.

1 INTRODUCTION

It is commonly believed that a bandlimited signal cannot os-
cillate at a rate higher than the Nyquist rate. Also, it is well
known that bandlimited functions are entire functions of ex-
ponential type, and that there is a connection between the
growth (or bandwidth) of the function and the density of its
zeros. Thus, it may come as a surprise that finite-energy ban-
dlimited signal can indeed oscillate at rates arbitrarily higher
than the Nyquist rate throughout intervals of arbitrary finite
length. Fig. 1 depicts an example. Such so-called “super-
oscillations” have been known in various contexts in physics,
see e.g. [1, 2].

Intuitively, superoscillations are possible because they are
a merely local phenomenon. The global behavior of a signal
(for example, the average zero density) is not affected by the
occurrence of superoscillations (which occur over finite in-
tervals): crucially, a bandlimited signal can oscillate at a rate
higher than the Nyquist rate only on finite intervals, but not
on infinite intervals. We will discuss the precise mathemati-
cal origin of superoscillations in Section 1.2.

∗Partially supported by the FCT.

Let us now consider a channel bandlimited to 1/2 Hz.
Transmittable signals are of the form

f (t) =
∫ 1/2

−1/2
f̂ (w) e2πitω dω

with Fourier transform

f̂ (ω) =
∫ ∞

−∞
f (t) e−2πitω dt

and obeying:

f (t) =
∞

∑
n=−∞

f (n)
sin((t−n)π)

(t−n)π

Let us assume, for simplicity, that the channel’s noise is such
that amplitudes can be measured reliably only up to integers.

Now assume that we wish to transmit messages of b bits
information content by sending suitable signals through this
channel. One simple, conventional possibility is, of course,
to encode the data as coefficients of a sampling series at the
Nyquist rate. This possibility comes with a certain well-
known trade-off between how large the signal amplitudes are
allowed to be and how long it takes to transmit a given mes-
sage.

Another possibility, however, is to use superoscillating sig-
nals of the same bandwidth. The use of superoscillating sig-
nals will allow one to compress messages into an arbitrarily
short time interval without needing to increase the level of
signal amplitudes which encode the data.

What price is there to be paid? Answering this question in
quantitative terms is the main purpose of this paper.

To this end, let us now discuss the two ways of encoding
bits into a bandlimited signal which we mentioned above.
Both methods will be idealized, or “thought experiments”.
For example, while it is plausible that actual signals are ban-
dlimited, it is also plausible that they are duration-limited,
while both properties are known to excluded another, see, for
example, [3]. We will need to discuss a related point at the
end.

1.1 Conventional method
A well known, idealized method for transmitting messages
of b bits through our type of channel is:
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• Divide the b bits into N groups of k bits, i.e. b = Nk

• Consider the Nyquist rate grid of sampling times t =
1,2,3, ...,N

• Create a 1/2 Hz bandlimited signal whose amplitudes
an at those N sampling times encode k bits each, i.e.
whose amplitudes an each take one of the 2k possible
values ±1/2,±3/2,±5/2, ...,± 2k−1

2 :

f (t) =
N

∑
n=1

an
sin((t−n)π)

(t−n)π
(1)

• Transmit this 1/2Hz bandlimited signal to the receiver,
who then measures those same N discrete amplitudes
which each carry k bits, to recover the full message of
b = Nk bits.

Obviously, choosing a large k means a need for fewer sam-
ples, which means that the message is “compressed” into a
shorter signal.

1.2 Method using superoscillations
It is possible to transmit messages of b bits by sending a sig-
nal bandlimited to 1/2Hz which encodes the b bits in b one-
bit samples which are spaced more tightly than the Nyquist
spacing. Such signals are called superoscillating because in
order to encode a typical b bit message such 1/2Hz signals
must locally exhibit oscillations that are faster than 1/2Hz.

The following is a method for constructing superoscillat-
ing signals bandlimited to 1/2Hz which have prescribed am-
plitudes an (encoding k bits each) at sampling times t which
are spaced tighter than the Nyquist rate, say:

t = T,2T,3T, ...,NT, where T < 1

• Define the 1/2Hz bandlimited signal

f (t) =
N

∑
r=1

xr
sin((t−Tr)π)

(t−Tr)π

with as yet undetermined coefficients xr, r = 1, ...,N.

• The coefficients xr are determined by requiring that the
signal possesses the prescribed amplitudes an = f (nT ):

an =
N

∑
r=1

xr
sin((n− r)Tπ)

(n− r)Tπ
(2)

This yields for the coefficients xr:

xr =
N

∑
n=1

S−1
rn an (3)

where S−1 is the inverse of the N ×N matrix S with
coefficients

Snr =
sin((n− r)Tπ)

(n− r)Tπ
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Figure 1: An example of a superoscillating signal. In this
case, N = 10, and T = 0.2. The sinc signal is shown for
comparison (both signals are bandlimited to 1/2Hz).

Note: The matrix S is invertible because any finite set of
functions

ei(t) =
sin((t−λi)π)

(t−λi)π
(where the λi are N nonrepeated reals) and correspondingly
of functions

êi(ω) = e2πiλiω

is linearly independent and consequently forms an in general
nonorthogonal basis. The rows of the matrix S are the coef-
ficients of those basis vectors in their own basis. The linear
independence of the ei(t) thus implies that S is of full rank
and therefore invertible.

An example of a superoscillating signal generated using
this method is shown in Fig. 1. The highest frequency of
the signal is 1/2Hz, and the signal interpolates a set of alter-
nating sign data points ak, k = 1,2, ...,10, on a grid of mesh
T = 0.2.

2 ENERGY EXPENSE

Let us consider the amount of energy that needs to be avail-
able in order to be able to transmit all possible b bit messages
when using one of the two above mentioned methods respec-
tively.

2.1 Energy need of conventional coding
The energy E of a 1/2Hz signal is:

E =
∫ ∞

−∞
f (t)2 dt

= ∑
n1,n2

f (n1) f (n2)
∫ ∞

−∞

sin((t−n1)π)

(t−n1)π
sin((t−n2)π)

(t−n2)π
dt

=
∞

∑
n=−∞

f (n)2

We recall that the amplitude range of the coding samples is

f (n) ∈ {±1/2,±3/2,±5/2...± 2k−1
2
}
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which implies that the maximum value for each of the f (n)2

is (2k−1)2 = 22k−2. Thus the amount of energy that needs
to be available per signal in order to be able to transmit any
arbitrary b bit message by the conventional method is:

E =
N

∑
n=1

22k−2

= N22k−2

Using b = Nk we find the maximum energy need per bit,
E/b:

E/b =
22k−2

k
(4)

There is an obvious tradeoff: For fixed message size b, the
energy expense grows exponentially as one compresses the
signal into a shorter time interval (by increasing k). Also, for
fixed time compression (i.e. for fixed k), the energy expense
grows linearly with the message size. For example, by send-
ing one bit per sample, one clearly minimizes E/b while also
minimizing the transmission speed.

2.2 Energy need of superoscillation coding
By using superoscillating signals it is possible, for example,
to transmit N = b samples, whose amplitudes code for one
bit each, in a time shorter than N seconds (in fact, in any ar-
bitrarily short time interval). Therefore, the question arises,
whether, in this way, fast transmission speed can be com-
bined with low energy need.

To clarify this issue, let us determine the energy that needs
to be available to be able to transmit any b bit message in a
superoscillating signal by coding one bit each in N equidis-
tantly spaced samples with a spacing T < 1.

Theorem: The lowest energy superoscillating signal f (t)
which at the times {nT}N

n=1 has prescribed amplitudes
f (nT ) = an is given by (2) and (3). Further, the energy of
this signal is:

E = aT S−1a (5)

where a is the vector with coefficients ai.
Proof: The L2 signal that satisfies

f (tk) = ak, k = 1,2, . . . ,N,

and has minimum energy can be found by minimizing

E =

∫ +∞

−∞
| f (t)|2 dt =

∫ +1/2

−1/2
| f̂ (ξ)|2 dξ

subject to the N constraints

∫ +1/2

−1/2
f̂ (ξ)ei2πξtk dξ = ak.

This is a standard constrained minimization problem. Solv-
ing it and inserting the N constraints f (ti) = ai we get

N

∑
k=1

xk

∫ +1/2

−1/2
ei2πξ(ti−tk) dξ = ai, i = 1,2, . . . ,N,

that is,

N

∑
j=1

x j sinc(ti− t j) = ai, i = 1,2, . . . ,N.

In matrix form, this is Sx = a, where x is the vector of coeffi-
cients xi, and S is the symmetric matrix with elements

Si j = sinc(ti− t j),

and sincx = sin(πx)/(πx). The energy of the interpolating
signal is

E =
∫ +1/2

−1/2

∣∣∣∣∣
N

∑
k=1

xk e−i2πξtk

∣∣∣∣∣

2

dξ

=
N

∑
i=1

xi

N

∑
k=1

xk

∫ +1/2

−1/2
ei2πξ(ti−tk)

=
N

∑
i=1

xi

N

∑
k=1

xkSik,

or
E = xT Sx = aT S−1a,

since Sx = a. This establishes (5).

2.3 Estimating the energy
Our aim is to find how the energy need E as given in (5)
depends on the size of the message b and on the spacing T <
1, for small T .

For messages of b = 2,3 and 4 alternating bits the energy
of the carrying superoscillating signal can be calculated by
machine to leading order in 1/T :

E =
3

π2T 2 for b = 2

E =
45

π4T 4 for b = 3

E =
700

π6T 6 for b = 4

This sequence suggests that, in general, the energy needed to
be able to transmit by means of superoscillations any b bit
message in bT seconds scales roughly as:

Esup. ≈
1

15

(
15

π2T 2

)b−1

(6)

This would mean that superoscillation coding is energetically
exponentially expensive with respect to the message size,
while being only polynomially expensive with respect to the
time compression factor 1/T .

We can show that this conjecture is in fact true, by ar-
guing as follows: the matrix S is related to the prolate ma-
trix ρ(N,W )mn [4], where N is the order of the matrix, and
W = T/2. Using the results in [4, Section 2.5], we derive
that, for small W , the smallest eigenvalue of ρ(N,W ) satis-
fies

λN−1(N,W )≈ G(N)

π
(2πW )2N−1
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Figure 2: The smallest eigenvalue of S, as a function of T ,
for several N.

where

G(N) =
22N−2

(2N−1)
(

2N−2
N−1

)3 .

Expanding the binomial coefficient using Stirling’s formula,
we obtain the approximation

G(N)∼ π3/2(N−1)3/2

24N−4(2N−1)
,

and finally

λN−1(N,W )∼
√

π(2πW )2N−1 (N−1)3/2

24N−4(2N−1)
.

The largest eigenvalue of S−1, which is the reciprocal of the
smallest eigenvalue of S (plotted in Fig. 2), therefore satisfies

λmax ∼
24N−4(2N−1)√

π(πT )2N−1(N−1)3/2
, (7)

or

λmax = O

(
16N−1

T 2N−1 N1/2

)
. (8)

3 REMARKS AND CONCLUSIONS

In general, the energy necessary for being able to send any b
bit message by superoscillation coding satisfies

E = aT S−1a≤ λmax‖a‖2.

There is equality when the N dimensional vector a is propor-
tional to the eigenvector of S to the eigenvalue λmax.

This defines the set of amplitudes that are “most difficult”
to interpolate, in the sense of requiring the maximum en-
ergy among all other possible amplitude sets (of the same
cardinality N, and for the same spacing T ). In other words:
the minimum energy of the signal f , band-limited to 1/2Hz,
and satisfying f (kT ) = ak, k = 1,2, . . .N, reaches a maxi-
mum when a is proportional to the eigenvector correspond-
ing to λmax. Inspection of the eigenvectors of the prolate ma-
trix shows that if the vector of amplitudes a has alternating
signs, the component along the eigenvector associated with
the eigenvalue λmax is indeed large, implying that the upper
bound is in fact a good approximation for E.

One can conclude, therefore, that indeed, for fixed time
compression T the energy expense increases exponentially
with the message size b

E = O(16b−1),

(note that b = N), whereas for fixed message size b, the en-
ergy expense increases polynomially in the compression fac-
tor T ,

E = O(T−2b+1),

as T → 0. This follows, of course, from (7) or (8).
We showed that arbitrary amounts of information can be

encoded in an arbitrarily small segment of an arbitrarily low
bandwidth signal, whereby, in particular, the energy need
grows only polynomially with the compression into smaller
and smaller segments — which is better than the exponential
growth when coding conventionally. The caveat with super-
oscillation coding is, however, that it does not suffice to trans-
mit merely the coding segment of the superoscillating signal,
i.e. the benefit of time compression cannot be realized in
transmissions. This is because the truncation makes the sig-
nal non-bandlimited, which must here cause large truncation
distortions. In this way, there is no contradiction with the
fundamental results of Landau [5] on the necessary condi-
tions for stable data transmission.
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