
A brief overview in Dynamic Logics

Alexandre Madeira
Mathematics Dep, U. Aveiro

February 10, 2026,
Software Foundations, MAP-i 25/26

DMat, U.Aveiro

Outline

Why Program Logics?

Preliminairs: Modal Logic in a rush

(Standard) Dynamic Logics

Extension 1: A DL to hybrid programs

Extension 2: DL for weighted programs (a parametric perspective)

Extension 3: Dynamic Logic for quantum programs

Outline

Why Program Logics?

Preliminairs: Modal Logic in a rush

(Standard) Dynamic Logics

Extension 1: A DL to hybrid programs

Extension 2: DL for weighted programs (a parametric perspective)

Extension 3: Dynamic Logic for quantum programs

About the current computational systems

Andre Platzer
... there is probably no other area where the gap is more noticeable
between the tremendous complexity of the systems we can built
and the modest size of systems that we can analyse

Logical Analysis of Hybrid Systems, 2012

looking at the current practices

The quality and dependability of

most of the systems is assured by test-oriented development
methodologies

Edsger Dijkstra (Turing Award 1972)

program testing can be used to show the presence of bugs, but
never to show their absence!

(1969)

looking at the current practices

The quality and dependability of

most of the systems is assured by test-oriented development
methodologies

Edsger Dijkstra (Turing Award 1972)

program testing can be used to show the presence of bugs, but
never to show their absence!

(1969)

looking to classic engineering ...

e.g. in Mechanics, mathematics is used

▶ as an unambiguous language to express requirements

▶ to support rigorous modelling

▶ to support the validation and verification tasks

... following the basic principles of engineering

Formal methods
mathematical and formal logic based techniques for the
specification, development and validation of computational
systems

Formal Logics in Computer Science

particularly, Formal Logics are valuable mathematical tools

For

▶ modelling

▶ reasoning on

▶ verify

Complex systems

Just an illustration

Equational Calculus in a rush

blackboard ...

Verification of classical imperative programs

Verification of classical imperative programs

Floyd-Hoare Logic

{ϕ} Prog {φ}

Axioms:

{φ[e/x]} x := e {φ} {ϕ} skip {ϕ}
Inference rules:

ϕ→ ϕ′ {ϕ′}S{φ′} φ′ → φ

{ϕ}S{φ}
{ϕ}S{ξ} {ξ}T{φ}
{ϕ}S ;T{φ}

{ϕ ∧ α}S1{φ} {ϕ ∧ ¬α}S2{φ}
{ϕ}if α then S1 elseS2{φ}

· · ·

Verification of classical imperative programs

Floyd-Hoare Logic

{ϕ} Prog {φ}

Axioms:

{φ[e/x]} x := e {φ} {ϕ} skip {ϕ}

Inference rules:

ϕ→ ϕ′ {ϕ′}S{φ′} φ′ → φ

{ϕ}S{φ}
{ϕ}S{ξ} {ξ}T{φ}
{ϕ}S ;T{φ}

{ϕ ∧ α}S1{φ} {ϕ ∧ ¬α}S2{φ}
{ϕ}if α then S1 elseS2{φ}

· · ·

Verification of classical imperative programs

Floyd-Hoare Logic

{ϕ} Prog {φ}

Axioms:

{φ[e/x]} x := e {φ} {ϕ} skip {ϕ}
Inference rules:

ϕ→ ϕ′ {ϕ′}S{φ′} φ′ → φ

{ϕ}S{φ}
{ϕ}S{ξ} {ξ}T{φ}
{ϕ}S ;T{φ}

{ϕ ∧ α}S1{φ} {ϕ ∧ ¬α}S2{φ}
{ϕ}if α then S1 elseS2{φ}

· · ·

Verification of classical imperative programs

{x = 1}y := x + 1; z := y{z = 2}

{x=1}y :=x+1{y=2} {y=2}z:=y{z=2}

{x = 1}y := x + 1; z := y{z = 2}
since (y = 2)[x + 1/y]⇔ x = 1 and (z = 2)[y/z]⇔ y = 2

{x = 1}if x < 2 then x := x + 1 else x := x ∗ x{x = 2}

{x=1}x :=x+1{x=2}
{x=1∧x<2}x :=x+1{x=2} {x=1∧x≥2}x :=x∗x{y=2}

{x = 1}if x < 2 then x := x + 1 else x := x ∗ x{x = 2}
since
(x = 2)[x + 1/x]⇔ x = 1 and x = 1 ∧ x < 2⇔ false

Exercise:
{y > 4 ∧ z > −1}y := y + z{y > 3}
{y > 4}if (z > −1) then y := y + z else y := y − 1{y > 3}

Verification of classical imperative programs

{x = 1}y := x + 1; z := y{z = 2}

{x=1}y :=x+1{y=2} {y=2}z:=y{z=2}

{x = 1}y := x + 1; z := y{z = 2}
since (y = 2)[x + 1/y]⇔ x = 1 and (z = 2)[y/z]⇔ y = 2

{x = 1}if x < 2 then x := x + 1 else x := x ∗ x{x = 2}

{x=1}x :=x+1{x=2}
{x=1∧x<2}x :=x+1{x=2} {x=1∧x≥2}x :=x∗x{y=2}

{x = 1}if x < 2 then x := x + 1 else x := x ∗ x{x = 2}
since
(x = 2)[x + 1/x]⇔ x = 1 and x = 1 ∧ x < 2⇔ false

Exercise:
{y > 4 ∧ z > −1}y := y + z{y > 3}
{y > 4}if (z > −1) then y := y + z else y := y − 1{y > 3}

Verification of classical imperative programs

{x = 1}y := x + 1; z := y{z = 2}

{x=1}y :=x+1{y=2} {y=2}z:=y{z=2}

{x = 1}y := x + 1; z := y{z = 2}
since (y = 2)[x + 1/y]⇔ x = 1 and (z = 2)[y/z]⇔ y = 2

{x = 1}if x < 2 then x := x + 1 else x := x ∗ x{x = 2}

{x=1}x :=x+1{x=2}
{x=1∧x<2}x :=x+1{x=2} {x=1∧x≥2}x :=x∗x{y=2}

{x = 1}if x < 2 then x := x + 1 else x := x ∗ x{x = 2}
since
(x = 2)[x + 1/x]⇔ x = 1 and x = 1 ∧ x < 2⇔ false

Exercise:
{y > 4 ∧ z > −1}y := y + z{y > 3}
{y > 4}if (z > −1) then y := y + z else y := y − 1{y > 3}

Verification of classical imperative programs

{x = 1}y := x + 1; z := y{z = 2}

{x=1}y :=x+1{y=2} {y=2}z:=y{z=2}

{x = 1}y := x + 1; z := y{z = 2}
since (y = 2)[x + 1/y]⇔ x = 1 and (z = 2)[y/z]⇔ y = 2

{x = 1}if x < 2 then x := x + 1 else x := x ∗ x{x = 2}

{x=1}x :=x+1{x=2}
{x=1∧x<2}x :=x+1{x=2} {x=1∧x≥2}x :=x∗x{y=2}

{x = 1}if x < 2 then x := x + 1 else x := x ∗ x{x = 2}

since
(x = 2)[x + 1/x]⇔ x = 1 and x = 1 ∧ x < 2⇔ false

Exercise:
{y > 4 ∧ z > −1}y := y + z{y > 3}
{y > 4}if (z > −1) then y := y + z else y := y − 1{y > 3}

Verification of classical imperative programs

{x = 1}y := x + 1; z := y{z = 2}

{x=1}y :=x+1{y=2} {y=2}z:=y{z=2}

{x = 1}y := x + 1; z := y{z = 2}
since (y = 2)[x + 1/y]⇔ x = 1 and (z = 2)[y/z]⇔ y = 2

{x = 1}if x < 2 then x := x + 1 else x := x ∗ x{x = 2}

{x=1}x :=x+1{x=2}
{x=1∧x<2}x :=x+1{x=2} {x=1∧x≥2}x :=x∗x{y=2}

{x = 1}if x < 2 then x := x + 1 else x := x ∗ x{x = 2}
since
(x = 2)[x + 1/x]⇔ x = 1 and x = 1 ∧ x < 2⇔ false

Exercise:
{y > 4 ∧ z > −1}y := y + z{y > 3}
{y > 4}if (z > −1) then y := y + z else y := y − 1{y > 3}

Verification of classical imperative programs

{x = 1}y := x + 1; z := y{z = 2}

{x=1}y :=x+1{y=2} {y=2}z:=y{z=2}

{x = 1}y := x + 1; z := y{z = 2}
since (y = 2)[x + 1/y]⇔ x = 1 and (z = 2)[y/z]⇔ y = 2

{x = 1}if x < 2 then x := x + 1 else x := x ∗ x{x = 2}

{x=1}x :=x+1{x=2}
{x=1∧x<2}x :=x+1{x=2} {x=1∧x≥2}x :=x∗x{y=2}

{x = 1}if x < 2 then x := x + 1 else x := x ∗ x{x = 2}
since
(x = 2)[x + 1/x]⇔ x = 1 and x = 1 ∧ x < 2⇔ false

Exercise:
{y > 4 ∧ z > −1}y := y + z{y > 3}
{y > 4}if (z > −1) then y := y + z else y := y − 1{y > 3}

Verification of classical imperative programs

How to take advantage of formal logic methods and results?

▶ Modal logic, as logic of change, is the natural candidate to
reason about programs

Verification of classical imperative programs

How to take advantage of formal logic methods and results?

▶ Modal logic, as logic of change, is the natural candidate to
reason about programs

A modal logic to verify programs?

Vaughan Pratt, 76

Outline

Why Program Logics?

Preliminairs: Modal Logic in a rush

(Standard) Dynamic Logics

Extension 1: A DL to hybrid programs

Extension 2: DL for weighted programs (a parametric perspective)

Extension 3: Dynamic Logic for quantum programs

Processes are transition systems

Two coffee machines

w1

coin

��

s1
coin

~~
coin

��
w2

coffee

}}
tea

��

s2

coffee

��

s3

tea

��
w3 w4 s4 s5

Knowledge systems with multi-agents are transition
systems

The envelop game

012 a

c b

021

c b

102 a

b

120

c

201 a 210

E.g. at state 012: Ana has an envelop with 0, Bob one with 1 and
Clara with 2

Programs are transition systems

The language

Signatures

Signatures are pairs (Prop,Act) where Prop and Act are (disjoint)
sets of symbols of proposition and of actions

Formulas
Let (Prop,Act) a signature. The set of formulas for (Prop,Act), in
symbols Fm(Prop), is defined as follows:

φ ::= p | ⊥ | φ→ φ | [a]φ

where p ∈ Prop and a ∈ Act

Abbreviates

▶ ¬φ := φ→ ⊥
▶ φ1 ∨ φ2 := ¬φ1 → φ2

▶ φ1 ∧ φ2 := ¬(¬φ1 → ¬φ2)

▶ ⟨a⟩ϕ := ¬[a]¬ϕ
▶ · · ·

The language

Signatures

Signatures are pairs (Prop,Act) where Prop and Act are (disjoint)
sets of symbols of proposition and of actions

Formulas
Let (Prop,Act) a signature. The set of formulas for (Prop,Act), in
symbols Fm(Prop), is defined as follows:

φ ::= p | ⊥ | φ→ φ | [a]φ

where p ∈ Prop and a ∈ Act

Abbreviates

▶ ¬φ := φ→ ⊥
▶ φ1 ∨ φ2 := ¬φ1 → φ2

▶ φ1 ∧ φ2 := ¬(¬φ1 → ¬φ2)

▶ ⟨a⟩ϕ := ¬[a]¬ϕ
▶ · · ·

The language

Signatures

Signatures are pairs (Prop,Act) where Prop and Act are (disjoint)
sets of symbols of proposition and of actions

Formulas
Let (Prop,Act) a signature. The set of formulas for (Prop,Act), in
symbols Fm(Prop), is defined as follows:

φ ::= p | ⊥ | φ→ φ | [a]φ

where p ∈ Prop and a ∈ Act

Abbreviates

▶ ¬φ := φ→ ⊥
▶ φ1 ∨ φ2 := ¬φ1 → φ2

▶ φ1 ∧ φ2 := ¬(¬φ1 → ¬φ2)

▶ ⟨a⟩ϕ := ¬[a]¬ϕ
▶ · · ·

Models

Models
A model for the signature (Prop,Act) is a pair M = ⟨F ,V ⟩,
where
▶ F = ⟨W , (Ra)a∈Act⟩ is a Kripke structure, i.e.

▶ W is a non empty set (of states)
▶ (Ra)a∈Act is a family of binary relations Ra ⊆W ×W , for

each modality symbol a ∈ Act.

▶ V : Prop→ P(W) is a valuation.

Multimodal satisfaction relation

Satisfaction for a model M in a state w
▶ M,w |= p if w ∈ V (p)

▶ M,w |= ⊥ is always false

▶ M,w |= φ1 → φ2 if it is false that M,w |= φ1 or M,w |= φ2

▶ M,w |= [a]φ if for any v ∈ W , if (w , v) ∈ Ra then M, v |= φ

Corollary
▶ M,w |= ¬φ if is false that M,w |= φ

▶ M,w |= φ1 ∧ φ2 if M,w |= φ1 and M,w |= φ2

▶ M,w |= φ1 ∨ φ2 if M,w |= φ1 or M,w |= φ2

▶ M,w |= ⟨a⟩φ if there exists a v ∈ W such that (w , v) ∈ Ra and M, v |= φ

Multimodal satisfaction relation

Satisfaction for a model M in a state w
▶ M,w |= p if w ∈ V (p)

▶ M,w |= ⊥ is always false

▶ M,w |= φ1 → φ2 if it is false that M,w |= φ1 or M,w |= φ2

▶ M,w |= [a]φ if for any v ∈ W , if (w , v) ∈ Ra then M, v |= φ

Corollary
▶ M,w |= ¬φ if is false that M,w |= φ

▶ M,w |= φ1 ∧ φ2 if M,w |= φ1 and M,w |= φ2

▶ M,w |= φ1 ∨ φ2 if M,w |= φ1 or M,w |= φ2

▶ M,w |= ⟨a⟩φ if there exists a v ∈ W such that (w , v) ∈ Ra and M, v |= φ

Multimodal satisfaction

Satisfaction
A formula ϕ ∈ Fm(Prop) is

▶ satisfiable in M if it is satisfied in some state w of M

▶ globally satisfied in M (M |= ϕ) if it is satisfied in all teh
states of M

▶ valid (|= ϕ) if it is globally satisfied in all the models for
(Prop,Act)

▶ is a semantical consequence of a set of formulas Γ (Γ |= ϕ)
i for any model M, and for every state w of M, if M,w |= Γ
then M,w |= ϕ

Exercise

Verify that :

1. M, s |= ⟨a⟩⊤
2. M, s |= [a]⊥
3. M, s |= ⟨b⟩⊤
4. M, s |= [b]⊥
5. M, s |= [a]⟨b⟩⊤
6. M, s |= ⟨a⟩⟨b⟩⊥
7. M, s |= [a]⟨a⟩[a][b]⊥
8. M, s |= ⟨a⟩(⟨a⟩⊤ ∧ ⟨b⟩⊤)
9. M, s |= [a](⟨a⟩⊤ ∨ ⟨b⟩⊤)

10. M, s |= ⟨a⟩([b][a]⊥ ∧ ⟨b⟩⊤)

Exerćıcio

Find a model M for ({}, {a, b, c}) with a state w such that that
simultaneously verifies:

▶ M,w |= ⟨a⟩(⟨b⟩⟨c⟩⊤ ∧ ⟨c⟩⊤)
▶ M,w |= ⟨a⟩⟨b⟩([a]⊥ ∧ [b]⊥ ∧ [c]⊥)
▶ M,w |= [a]⟨b⟩([c]⊥ ∧ ⟨a⟩⊤)

Outline

Why Program Logics?

Preliminairs: Modal Logic in a rush

(Standard) Dynamic Logics

Extension 1: A DL to hybrid programs

Extension 2: DL for weighted programs (a parametric perspective)

Extension 3: Dynamic Logic for quantum programs

Programs as modalities

Programs:

Assuming a set of atomic programs Π:

π ::= π0 | π + π | π;π | π∗ | ?χ

for π0 ∈ Π and χ a predicate

Programs interpretation

Sequential program

▶ Prπ;π′ = Prπ ◦ Prπ′

π

π′

π;π′

Programs interpretation

Non deterministic choice
▶ Prπ+π′ = Prπ ∪ Prπ′

π

π′

π ∪ π′

Programs interpretation

Iterative closure
▶ Prπ∗ = (Prπ)

∗, for
(Prπ)

∗ =
⋃

n≤0(Prπ)
n, where

▶ (w ,w ′) ∈ (Prπ)
0 if w = w ′

▶ (w ,w ′) ∈ (Prπ)
n+1 if (w ,w ′) ∈ (Prπ) ◦ (Prπ)n

π

π

π∗

Programs interpretation

Tests
▶ Prφ? = {(w ,w) | M,w |= φ}

φ ¬φ

φ?

Exercise:

Express the following standard commands as terms of out program
algebra:

▶ if φ then π else π′

▶ while φ do π od

▶ repeat π until φ

Programs interpretation

if φ then π else π′ ≡ (φ?; π) + (¬φ?; π′)

φ ¬φ

π

π′

π

π′

γ γ

Programs interpretation

while φ do π od ≡ (φ?; π)∗;¬φ?

φ

φ

¬φ

φ

π

π

π

(φ?;π)∗;¬φ?

Programs interpretation

repeat π until φ ≡ π; (¬φ?; π)∗

¬φ

φ

π

π

π

π; (¬φ?;π)∗

Exercise
Consider the
({a, b}, {p, q})-model
Mrepresented in the left, such
that V (p) = {s1, s3} e
V (q) = {s, s2, s4}.
Interpret the following programs
in M:

▶ a; b

▶ b; a

▶ a+ b

▶ (a; b) + b

▶ a∗

▶ (p?); a

▶ (q?); a+ (¬q?)b
▶ (a+ b)∗

▶ (p ∧ q)?

▶ (p ∧ q)?; a; b

Propositional dynamic logic (in a rush)

Signatures Are pairs (Prop,Π) where Prop and Π are disjoint
sets of propositions, and atomic programs

Sentences φ ::= p | ⟨π⟩φ | [π]φ | ¬φ |φ ∨ φ |φ ∧ φ
π ::= π0 | π + π | π;π | π∗ | ?φ
and p ∈ Prop

Models Models are Kripke structures, i.e. tuples
(
W ,V ,R

)
▶ W is a set
▶ V : Prop→ P(W) is a function
▶ R = (Rπ ⊆W ×W)π∈Π is an Π-family of binary

relations

Propositional dynamic logic (in a rush)

Signatures Are pairs (Prop,Π) where Prop and Π are disjoint
sets of propositions, and atomic programs

Sentences φ ::= p | ⟨π⟩φ | [π]φ | ¬φ |φ ∨ φ |φ ∧ φ
π ::= π0 | π + π | π;π | π∗ | ?φ
and p ∈ Prop

Models Models are Kripke structures, i.e. tuples
(
W ,V ,R

)
▶ W is a set
▶ V : Prop→ P(W) is a function
▶ R = (Rπ ⊆W ×W)π∈Π is an Π-family of binary

relations

Propositional dynamic logic (in a rush)

Signatures Are pairs (Prop,Π) where Prop and Π are disjoint
sets of propositions, and atomic programs

Sentences φ ::= p | ⟨π⟩φ | [π]φ | ¬φ |φ ∨ φ |φ ∧ φ
π ::= π0 | π + π | π;π | π∗ | ?φ
and p ∈ Prop

Models Models are Kripke structures, i.e. tuples
(
W ,V ,R

)
▶ W is a set
▶ V : Prop→ P(W) is a function
▶ R = (Rπ ⊆W ×W)π∈Π is an Π-family of binary

relations

Propositional dynamic logic

Satisfaction ▶ M,w |= ⟨π⟩φ iff there is a w ′ ∈W such that
(w ,w ′) ∈ Rπ and M,w ′ |= φ;

▶ . . .

Program interpretation

R(π0) = Rπ0

R(χ?) = {(w ,w)|M,w |= χ}
R(π + π′) = R(π) ∪ R(π′)

R(π;π′) = R(π) · R(π′)

R(π∗) = R(π)⋆ =
⋃

n∈N R(πn), where πn+1 = π;πn

Exerćıcio

Considere o ({a, b, c}, {p, q})-modelo M = (W ,R,V), com
W = {w1,w2,w3,w4,w5} e tal que:

▶ V (p) = {w1,w3} e V (q) = W ,

▶ Ra = {(w1,w3), (w1,w4), (w1,w5), (w2,w3), (w5,w3)}
▶ Rb = {(x , y) ∈W 2|x = y},
▶ Rc = {(w1, x)|x ∈W }

Verifique se:

▶ a) M,w1 |= [(a; b)]p ∨ [b∗ + c]q

▶ b) M,w3 |= [q?; b]p → [c]¬q

Exerćıcio

Considere o ({a, b, c}, {p, q})-modelo M = (W ,R,V), com
W = {−2,−1, 0, 1, 2} e tal que:

▶ V (p) = {x ∈W |x > 0} e V (q) = {x ∈W |x ≤ 1},
▶ Ra = {(x , y) ∈W 2|x ≤ 0, y ≥ 0}
▶ Rb = {(x , y) ∈W 2|x = y}
▶ Rc = {(0, x)|x ∈W }

Verifique se:

▶ a) M, 0 |= [(a+ b)]p ∨ [b∗ + c]q

▶ b) M, 2 |= [(p → q)?; b]p → [c]¬q

Exerćıcio

Verifique que as seguintes propriedades são válidas em PDL

▶ [α;β]φ↔ [α][β]φ

▶ [α+ β]φ↔ [α]φ ∧ [β]φ

▶ [α∗]φ→ φ ∧ [α][α]∗φ

▶ [α∗](φ→ [α]φ)→ (φ→ [α∗]φ

▶ [φ?]ψ ↔ (φ→ ψ)

From propositional to first order DL

Programs:

α, β ∋ x := θ | α+ β | α;β | α∗ | ?χ

States:
the space of variables valuations S = RV

Programs interpretation
The accessibility relation ρ(α) ⊆ S × S is recursively defined by:

▶ ρ(x := θ) = {(u, v)|v(x) = θ and for any y ∈ V \ {x}, u(y) = v(y)}
▶ · · ·

By considering first order assignments:

verification of
{x = 1}if x < 2 then x := x + 1 else x := x ∗ x{x = 2}

x = 1→ [(x < 2)?; x := x + 1 + (¬ (x < 2))?; x := x ∗ x]x = 2

x = 1→ [if x < 2 then x := x + 1 else x := x ∗ x]x = 2

By considering first order assignments:

verification of
{x = 1}if x < 2 then x := x + 1 else x := x ∗ x{x = 2}

x = 1→ [(x < 2)?; x := x + 1 + (¬ (x < 2))?; x := x ∗ x]x = 2

x = 1→ [if x < 2 then x := x + 1 else x := x ∗ x]x = 2

Supporting tools?

KeY project

▶ A semi-automatic theorem prover based in dynamic logics

▶ see also KeY-Hoare

Reasoning about imperative programs with DL

Now, the verification of the Hoare triple

{Pre} Prog {Post}

corresponds to the dynamic logic validation of

Pre → [Prog] Post

Outline

Why Program Logics?

Preliminairs: Modal Logic in a rush

(Standard) Dynamic Logics

Extension 1: A DL to hybrid programs

Extension 2: DL for weighted programs (a parametric perspective)

Extension 3: Dynamic Logic for quantum programs

Dynamic Logic for hybrid systems?

Platzer’s differential dynamic logic dL
▶ logic developed for specifying and verifying properties of

hybrid systems

▶ with a ‘relative complete calculus’ i.e., we can prove
properties of hybrid systems exactly as good as properties of
differential equations can be proved

▶ a powerful computational tool support — KeYmaera

Discrete vs. Continuous evolutions

1 2 3 4 5 6

1

2

3

4

Time →

A discrete evolution

1 2 3 4 5 6

1

2

3

4

Time →

A continuous evolution

Hybrid = discrete + continuous

▶ digital controller actions, discrete event interaction, etc

▶ physics entities, analogic controller actions, etc

Platzer’s dL – syntax

Hybrid Programs

α, β ∋ x := θ | x ′ = θ&χ | α ∪ β | α;β | α∗ | ?χ

dL-formulas

ϕ, ψ ∋ θ1 = θ2 | θ1 ≤ θ2 | ¬ϕ | ϕ ∧ ψ | [α]ϕ

where θ, θ1 and θ2 are terms

Platzer’s dL – syntax

Hybrid Programs

α, β ∋ x := θ | x ′ = θ&χ | α ∪ β | α;β | α∗ | ?χ

dL-formulas

ϕ, ψ ∋ θ1 = θ2 | θ1 ≤ θ2 | ¬ϕ | ϕ ∧ ψ | [α]ϕ

where θ, θ1 and θ2 are terms

Platzer’s dL – semantics

States:
are functions V → R

Programs interpretation
The relation ρ(α) ⊆ S × S is defined as for first order DL with

▶ ρ(x := θ) = {(u, v)|v(x) = θ and for any y ∈ V \ {x}, u(y) = v(y)}
▶ ρ(x ′ = θ&χ) = {(φ(0), φ(r))|φ(t) |= χ, 0 ≤ t ≤ r , for φ : [0, r]→
S a solution of any duration r}

▶ ρ(α ∪ β) = ρ(α) ∪ ρ(β)
▶ ρ(α;β) = ρ(α) ◦ ρ(β)
▶ ρ(α∗) =

⋃
n∈N ρ(α

n), where α0 = id and αn+1 = α;αn

▶ ρ(?χ) = {(v , v)|v |= χ}

Platzer’s dL – satisfaction

▶ v |= (θ1 = θ2) iff vθ1 = vθ2
▶ v |= ¬ρ iff v ̸|= ρ

▶ v |= ρ ∧ ρ′ iff v |= ρ and v |= ρ′

▶ v |= ρ ∨ ρ′ iff v |= ρ or v |= ρ′

▶ v |= [α]ρ iff for any (v ,w) ∈ ρ(α), w |= ρ

▶ v |= ⟨α⟩ρ iff there is a (v ,w) ∈ ρ(α), such that w |= ρ

Platzer’s dL – axiomatisation

Some deduction rules examples

ρ(θ)

[x := θ]ρ(x)

χ→ ρ

[?χ]ρ

[α][β]ρ

[α;β]ρ

[α∗](ρ→ [α]ρ)

ρ→ [α∗]ρ

∀t ≥ 0[x := y(t)]ρ

[x ′ = θ]ρ
, for y ′(t) = θ

. . .

Some deduction Rules

Some deduction Rules

Case Study from Biology
Controller in a biological system.

Example{
x ′ = 5− x

y ′ = 6− y + u

{
x ′ = 6− x

y ′ = 1− y + u

x < 3 ∧ y ≥ 2 x ≥ 3 ∧ y ≥ 2{
x ′ = −x
y ′ = 5− y + u

{
x ′ = 1− x

y ′ = −y + u

x < 3 ∧ y < 2 x ≥ 3 ∧ y < 2

D. Figueiredo, Manuel Martins and M. Chaves.
Applying differential dynamic logic to reconfigurable biological networks,
Mathematical Biosciences, vol. 291, 10-20, 2017.

Biological Examples.
Controller in a biological system.

we look for steady states

i.e., the values of x and y for which the system tends

Control:

▶ u = 2, if x ≥ 3 and t ≥ 2

▶ u = 0, otherwise.

Using numeric method we can obtain (x , y) = (6, 3) as steady
state candidate.

Biological Examples
Controller in a biological system.{

x ′ = 5− x

y ′ = 6− y + u

{
x ′ = 6− x

y ′ = 1− y + u

x < 3 ∧ y ≥ 2 x ≥ 3 ∧ y ≥ 2{
x ′ = −x
y ′ = 5− y + u

{
x ′ = 1− x

y ′ = −y + u

x < 3 ∧ y < 2 x ≥ 3 ∧ y < 2

▶ α1 ≡ (?x < 3 ∧ y < 2; u := 0;

(x ′ = −x , y ′ = 5− y + u, τ ′ = 1 & x ≤ 3 ∧ y ≤ 2))

▶ ...

▶ α4 ≡ (?x ≥ 3 ∧ y ≥ 2; u := 2;

(x ′ = 6− x , y ′ = 1− y + u, τ ′ = 1 & x ≥ 3 ∧ y ≥ 2))

Example in Biology
Controller in a biological system.

the evolution of the entire biological system can be described
by:

α ≡ α1 ∪ α2 ∪ α3 ∪ α4

(x , y) = (6, 3) is a steady state:

∃c > 0(∀ 0 < k < c((x − 6)2 + (y − 3)2 = k ∧ τ = 0
→ [α∗](τ = 0 ∨ (x − 6)2 + (y − 3)2 < k)))

Example in Biology
Controller in a biological system.

the evolution of the entire biological system can be described
by:

α ≡ α1 ∪ α2 ∪ α3 ∪ α4

(x , y) = (6, 3) is a steady state:

∃c > 0(∀ 0 < k < c((x − 6)2 + (y − 3)2 = k ∧ τ = 0
→ [α∗](τ = 0 ∨ (x − 6)2 + (y − 3)2 < k)))

Supporting tools?

KeYmaera X

▶ A semi-automatic theorem prover to analyse cyber-physical
systems based in Key system

Outline

Why Program Logics?

Preliminairs: Modal Logic in a rush

(Standard) Dynamic Logics

Extension 1: A DL to hybrid programs

Extension 2: DL for weighted programs (a parametric perspective)

Extension 3: Dynamic Logic for quantum programs

Construction parameter

Action Lattice
Klenne Algebra Residuated Lattice

Generic model for
 computations

Generic truth
space

Action lattice (Pratt 90, Kozen 91)

A = (A,+, ; , 0, 1, ∗,→, ·)

▶ (A,+, ; , 0, 1, ∗) is a Kleene algebra;

▶ → is a residue wrt ;

▶ (A,+, .) is a lattice wrt relation a ≤ b ≡ a+ b = b

Construction parameter

Action Lattice
Klenne Algebra Residuated Lattice

Generic model for
 computations

Generic truth
space

Action lattice (Pratt 90, Kozen 91)

A = (A,+, ; , 0, 1, ∗,→, ·)

▶ (A,+, ; , 0, 1, ∗) is a Kleene algebra;

▶ → is a residue wrt ;

▶ (A,+, .) is a lattice wrt relation a ≤ b ≡ a+ b = b

Action lattice axiomatisation

a+ (b + c) = (a+ b) + c (1)

a+ b = b + a (2)

a+ a = a (3)

a+ 0 = 0 + a = a (4)

a; (b; c) = (a; b); c (5)

a; 1 = 1; a = a (6)

a; (b + c) = (a; b) + (a; c) (7)

(a+ b); c = (a; c) + (b; c) (8)

a; 0 = 0; a = 0 (9)

1 + a+ (a∗; a∗) ≤ a∗ (10)

a; x ≤ x ⇒ a∗; x ≤ x (11)

x ; a ≤ x ⇒ x ; a∗ ≤ x (12)

a; x ≤ b ⇔ x ≤ a → b(13)

a → b ≤ a → (b + c)(14)

(x → x)∗ = x → x (15)

x ≤ a → (a; x)(16)

a · (b · c) = (a · b) · c (17)

a · b = b · a (18)

a · a = a (19)

a+ (a · b) = a (20)

a · (a+ b) = a (21)

a; (a → b) ≤ b (22)

Action lattice axiomatisation

a+ (b + c) = (a+ b) + c (1)

a+ b = b + a (2)

a+ a = a (3)

a+ 0 = 0 + a = a (4)

a; (b; c) = (a; b); c (5)

a; 1 = 1; a = a (6)

a; (b + c) = (a; b) + (a; c) (7)

(a+ b); c = (a; c) + (b; c) (8)

a; 0 = 0; a = 0 (9)

1 + a+ (a∗; a∗) ≤ a∗ (10)

a; x ≤ x ⇒ a∗; x ≤ x (11)

x ; a ≤ x ⇒ x ; a∗ ≤ x (12)

a; x ≤ b ⇔ x ≤ a → b(13)

a → b ≤ a → (b + c)(14)

(x → x)∗ = x → x (15)

x ≤ a → (a; x)(16)

a · (b · c) = (a · b) · c (17)

a · b = b · a (18)

a · a = a (19)

a+ (a · b) = a (20)

a · (a+ b) = a (21)

a; (a → b) ≤ b (22)

Action lattice axiomatisation

a+ (b + c) = (a+ b) + c (1)

a+ b = b + a (2)

a+ a = a (3)

a+ 0 = 0 + a = a (4)

a; (b; c) = (a; b); c (5)

a; 1 = 1; a = a (6)

a; (b + c) = (a; b) + (a; c) (7)

(a+ b); c = (a; c) + (b; c) (8)

a; 0 = 0; a = 0 (9)

1 + a+ (a∗; a∗) ≤ a∗ (10)

a; x ≤ x ⇒ a∗; x ≤ x (11)

x ; a ≤ x ⇒ x ; a∗ ≤ x (12)

a; x ≤ b ⇔ x ≤ a → b(13)

a → b ≤ a → (b + c)(14)

(x → x)∗ = x → x (15)

x ≤ a → (a; x)(16)

a · (b · c) = (a · b) · c (17)

a · b = b · a (18)

a · a = a (19)

a+ (a · b) = a (20)

a · (a+ b) = a (21)

a; (a → b) ≤ b (22)

Examples

2 - linear two-values lattice

2 = ({⊤,⊥},∨,∧,⊥,⊤, ∗,→,∧)

∨ ⊥ ⊤
⊥ ⊥ ⊤
⊤ ⊤ ⊤

∧ ⊥ ⊤
⊥ ⊥ ⊥
⊤ ⊥ ⊤

→ ⊥ ⊤
⊥ ⊤ ⊤
⊤ ⊥ ⊤

∗
⊥ ⊤
⊤ ⊤

3 - linear three-value lattice

3 = ({⊤, u,⊥},∨,∧,⊥,⊤, ∗,→,∧)

∨ ⊥ u ⊤
⊥ ⊥ u ⊤
u u u ⊤
⊤ ⊤ ⊤ ⊤

∧ ⊥ u ⊤
⊥ ⊥ ⊥ ⊥
u ⊥ u u
⊤ ⊥ u ⊤

→ ⊥ u ⊤
⊥ ⊤ ⊤ ⊤
u ⊥ ⊤ ⊤
⊤ ⊥ u ⊤

∗
⊥ ⊤
u ⊤
⊤ ⊤

Examples

2 - linear two-values lattice

2 = ({⊤,⊥},∨,∧,⊥,⊤, ∗,→,∧)

∨ ⊥ ⊤
⊥ ⊥ ⊤
⊤ ⊤ ⊤

∧ ⊥ ⊤
⊥ ⊥ ⊥
⊤ ⊥ ⊤

→ ⊥ ⊤
⊥ ⊤ ⊤
⊤ ⊥ ⊤

∗
⊥ ⊤
⊤ ⊤

3 - linear three-value lattice

3 = ({⊤, u,⊥},∨,∧,⊥,⊤, ∗,→,∧)

∨ ⊥ u ⊤
⊥ ⊥ u ⊤
u u u ⊤
⊤ ⊤ ⊤ ⊤

∧ ⊥ u ⊤
⊥ ⊥ ⊥ ⊥
u ⊥ u u
⊤ ⊥ u ⊤

→ ⊥ u ⊤
⊥ ⊤ ⊤ ⊤
u ⊥ ⊤ ⊤
⊤ ⊥ u ⊤

∗
⊥ ⊤
u ⊤
⊤ ⊤

Examples

 L - the Lukasiewicz arithmetic lattice

 L = ([0, 1],max ,⊙, 0, 1, ∗, → , min)

where

▶ x ⊙ y = max{0, y + x − 1},
▶ x → y = min{1, 1− x + y} and
▶ ∗ maps each point of [0, 1] to 1.

Examples

FW - the Floyd-Warshall algebra

N+
⊥⊤ = ({⊥, 0, 1, . . . ,⊤},max ,+,⊥, 0, ∗,∼ , min)

▶ + extends addition on N by considering ⊥ as its absorbent

▶ max and min wrt the order ⊥ < 0 < · · · < ⊤

a ∼ b =


⊤, if a = ⊥ or b = ⊤
b − a, if b ≥ a and a, b ∈ N
0, if a > b and a, b ∈ N
⊥ otherwise

∗
⊥ 0
0 0
i ⊤
⊤ ⊤

Parametric construction

Let us construct
GDL(A)

for a fixed action lattice

A = (A,+, ; , 0, 1, ∗,→, ·)

GDL(A)-signatures

are propositional dynamic logic signatures, i.e. pairs

(Prop,Π)

Parametric construction

Let us construct
GDL(A)

for a fixed action lattice

A = (A,+, ; , 0, 1, ∗,→, ·)

GDL(A)-signatures

are propositional dynamic logic signatures, i.e. pairs

(Prop,Π)

GDL(A) – formulæ

The set of programs Prog(Π):

π ∋ π0 |π;π |π + π |π∗

for π0 ∈ Π.

The set of formulas FmΓ(A)(Π,Prop):

ρ ∋ ⊤ |⊥ | p | ρ ∨ ρ | ρ ∧ ρ | ρ→ ρ | ⟨π⟩ρ | [π]ρ

for p ∈ Prop and π ∈ Prog(Π).

GDL(A) – formulæ

The set of programs Prog(Π):

π ∋ π0 |π;π |π + π |π∗

for π0 ∈ Π. The set of formulas FmΓ(A)(Π,Prop):

ρ ∋ ⊤ |⊥ | p | ρ ∨ ρ | ρ ∧ ρ | ρ→ ρ | ⟨π⟩ρ | [π]ρ

for p ∈ Prop and π ∈ Prog(Π).

GDL(A) – models

Based on [Conway 71] we consider the Kleene algebra

Mn(A) = (Mn(A),+, ;, 0, 1, *)

▶ Mn(A) is the space of (n × n)-matrices over A

▶ M = A+B defined by Mi,j = Ai,j + Bi,j , i , j ≤ n.

▶ M = A ; B defined by Mi,j =
∑n

k=1(Ai,k ;Bk,j) for any i , j ≤ n.

▶ 1 and 0 the identity and 0 matrices

▶ M =

[
A B
C D

]
M∗ =

[
F * F * ;B ;D*

D∗;C ;F ∗ D*+(D* ;C ;F * ;B ;D*)

]
where

F = A+ B ;D* ;C .

GDL(A) – models

GDL(A)-models for (Prop,Π)

A = (W ,V , (Aπ)π∈Π)

where

▶ W is a set (of states),

▶ V : Prop×W → A is a function,

▶ and Aπ ∈Mn(A), with n standing for the cardinality of W .

Examples

Aπ : s1 // s2
��

Aπ′ : s1 // s2

For a classic PDL semantics

2 = ({⊤,⊥},∨,∧,⊥,⊤, ∗,←,→,∧)

Aπ;π′ =

[
⊥ ⊤
⊥ ⊤

]
;

[
⊥ ⊤
⊥ ⊥

]
=[

(⊥ ∧⊥) ∨ (⊤ ∧⊥) (⊥ ∧⊤) ∨ (⊤ ∧⊥)
(⊥ ∧⊥) ∨ (⊤ ∧⊥) (⊥ ∧⊤) ∨ (⊤ ∧⊥)

]
=

[
⊥ ⊥
⊥ ⊥

]

Examples

Aπ : s1

√
2
3 **

s2

0.7

��
Aπ′ : s1

√
2

2 **
s2

0.5

��

√
3

2

jj (23)

For systems with uncertainty

 L = ([0, 1],max ,⊙, 0, 1, ∗, → , min)

Aπ+π′ =
max(Aπ,Aπ′) =

max

([
0

√
2
3

0 0.7

]
,

[
0

√
2
2√

3
2 0.5

])
=

[
0

√
2
2√

3
2 0.7

]

Examples

Aπ : s1

√
2
3 **

s2

0.7

��
Aπ′ : s1

√
2

2 **
s2

0.5

��

√
3

2

jj (23)

For systems with uncertainty

 L = ([0, 1],max ,⊙, 0, 1, ∗, → , min)

Aπ+π′ =
max(Aπ,Aπ′) =

max

([
0

√
2
3

0 0.7

]
,

[
0

√
2
2√

3
2 0.5

])
=

[
0

√
2
2√

3
2 0.7

]

Examples

Aπ : s1 a
// s2

b

��
Aπ′ : s1 c

// s2

For cost transitions systems

N+
⊥⊤ = ({⊥, 0, 1, . . . ,⊤},max ,+,⊥, 0, ∗,∼ , min)

Aπ∗ =

[
⊥ a
⊥ b

]
=

[
f ∗ f ∗ + a+ b∗

⊥ max{b∗, b∗ +⊥+⊥∗ + a+ b∗}

]
=[

0 a+ b∗

⊥ b∗

]
, where f = max{⊥, a+ b∗ +⊥}

GDL(A) satisfaction

|= : W × FmΓ(A)(Π,Prop)→ A

▶ (w |= ⊤) = ⊤
▶ (w |= ⊥) = ⊥
▶ (w |= p) = V (p,w), for any p ∈ Prop

▶ (w |= ρ ∧ ρ′) = (w |= ρ) · (w |= ρ′)

▶ (w |= ρ ∨ ρ′) = (w |= ρ) + (w |= ρ′)

▶ (w |= ρ→ ρ′) = (w |= ρ)→ (w |= ρ′)

▶ (w |= ρ↔ ρ′) = (w |= ρ→ ρ′); (w |= ρ′ → ρ)

▶ (w |= ⟨π⟩ρ) =
∑

w ′∈W
(
Aπ(w ,w

′); (w ′ |= ρ)
)

▶ (w |= [π]ρ) =
∏

w ′∈W
(
Aπ(w ,w

′)→ (w ′ |= ρ)
)

GDL(A) satisfaction

|= : W × FmΓ(A)(Π,Prop)→ A

▶ (w |= ⊤) = ⊤
▶ (w |= ⊥) = ⊥
▶ (w |= p) = V (p,w), for any p ∈ Prop

▶ (w |= ρ ∧ ρ′) = (w |= ρ) · (w |= ρ′)

▶ (w |= ρ ∨ ρ′) = (w |= ρ) + (w |= ρ′)

▶ (w |= ρ→ ρ′) = (w |= ρ)→ (w |= ρ′)

▶ (w |= ρ↔ ρ′) = (w |= ρ→ ρ′); (w |= ρ′ → ρ)

▶ (w |= ⟨π⟩ρ) =
∑

w ′∈W
(
Aπ(w ,w

′); (w ′ |= ρ)
)

▶ (w |= [π]ρ) =
∏

w ′∈W
(
Aπ(w ,w

′)→ (w ′ |= ρ)
)

Example — GDL(2)

Aπ : s1 // s2
��

Aπ′ : s1 // s2

with V (p, s1) = ⊥ and V (p, s2) = ⊤

(s1 |= ⟨π∗⟩p) =
=

∑
w ′∈W {Aπ∗(s1,w

′); (w ′ |= p)}
=

(
Aπ∗(s1, s1) ∧ (s1 |= p)

)
∨
(
Aπ∗(s1, s2) ∧ (s2 |= p)

)
= (⊤ ∧ V (p, s1)) ∨ (⊤ ∧ V (p, s2))
= (⊤ ∧⊥) ∨ (⊤ ∧⊤)
= ⊤

we can achieve at a state satisfying p from s1 through π∗

Example — GDL(N+
⊥⊤)

Aπ : s1 a
// s2

b

��
Aπ′ : s1 c

// s2

with V (s1, p) = ⊥ and V (s2, p) = 0

(s1 |= ⟨π∗⟩p) =
=

∑
w ′∈W {Aπ∗(s1,w

′); (w ′ |= p)
}

= max
{
Aπ∗(s1, s1) + (s1 |= p),Aπ∗(s1, s2) + (s2 |= p)

}
= max{0 +⊥, a+ b∗ + 0}
= a+ b∗

we can achieve at a state satisfying p from s1 through π∗ con-
suming a+ b∗ cost unities

Example — GDL(L)

Aπ : s1

√
2
3 **

s2

0.7

��
Aπ′ : s1

√
2

2 **
s2

0.5

��

√
3

2

jj (24)

with V (p, s1) = 0.1, V (q, s1) = 0.5, V (p, s2) =
π
4 and

V (q, s2) = 0.75

s1 |= ⟨π + π′⟩(p → q))

= max(0⊙ (0.1→ 0.5),
√
2
2 ⊙ (0.75→ π

4))

=
√
2
2 ⊙ (0.75→ π

4)

=
√
2
2 ⊙min(1, 1− 0.75 + π

4)

=
√
2
2

Logic for imperative weighted programs?

x := 2; x := x + y ; (if x ≤ 3 then x := x + 1 else y := y × 2)

w0 w1 w2

w2

w2

w3

w ′
3

x := 2 x := x + y

(x ≤ 3)?

¬(x ≤ 3)?

x := x + 1

y := y × 2

On the Generation of Equational Dynamic Logics for
Weighted Imperative Programs. Leandro Gomes, Alexandre
Madeira, Manisha Jain, Lúıs Soares Barbosa. ICFEM 2019

Syntax of Γ(A)

A = (A,+, ; , 0, 1, ∗,→, ·)

Signatures of of Γ(A)

are pairs (Σ,Π), with

▶ Σ is a FOL signature

▶ Π = {x := t | x ∈ X and t ∈ TΣ(X)}

Programs

π ::= π0 |ϕ? |π;π |π + π |π∗, π0 ∈ Π

Formulas of Γ(A)

φ ::= ⊤ |⊥ |P(t0, . . . , tn) |φ ∨ φ |φ ∧ φ |φ→ φ | ⟨π⟩φ | [π]φ

Interpretation of Atomic Programs

States are functions

w : X × R→ A

where A is the carrier of action lattice A

(Σ,Π)-Models of Γ(A)

are structures
M = (W ,E)

where

▶ W ⊆ AX×R is a set of states;

▶ E : Π× (W ×W)→ A is a program grading function.

Interpretation of Atomic Programs

Interpretation of terms JtKw : T F
Σ (X)→ AR

▶ JxKw (r) = w(x , r)

▶ JcKw (r) = 1 if r = c and JcKw (r) = 0 otherwise

▶ Jf (t1, . . . , tn)Kw (r) =
∑

i∈I{
∏n

j=1JtjKw (r
i
j) | f (r i1, . . . , r in) =

r},
I the cardinality of the set solutions of f (r i1, . . . , r

i
n) = r in R

Interpretation of Atomic Programs

Example in Γ(G)

Let us consider a state w such that w(x , 1) = 0.5, w(x , 2) = 0.2,
w(y , 1) = 0.1, w(y , 2) = 0.4 and 0 otherwise for state w .

Jx + yKw (3) =JxKw (1); JyKw (2) + JxKw (2); JyKw (1)
=w(x , 1);w(y , 2) + w(x , 2);w(y , 1)

=max(min(0.5; 0.4),min(0.2; 0.1))

=0.4

Interpretation of Atomic Programs

Interpretation of predicates JpKw : TP
Σ (X)→ A

Jp(t1, . . . , tn)Kw =
∑
i∈I
{

n∏
j=1

JtjKw (r ij) : p(r
i
1, . . . , r

i
n) is true}

where I is the cardinality of the set of all possible values
(r i1, . . . , r

i
n) ∈ Rn satisfying p(r i1, . . . , r

i
n) in R

Example in Γ(G)

w(x , 2) = 0.3, w(x , 3) = 0.5, w(x , 4) = 0.5, w(x , r) = 0 otherwise
Jx ≤ 3K(w) = JxK(2); J3K(3) + JxK(3); J3K(3) =
max{min{0.3, 1},min{0.2, 1}} = 0.3

Interpretation of atomic programs

Interpretation of atomic programs

J K0 : Π→ AW×W

is the map defined by:

Jx := tK0(w ,w ′) =

{
E (x := t, (w ,w ′)) if (w ,w ′) ∈ Lx := tM
0 otherwise

with

(w ,w ′) ∈ Lx := tM⇔

{
w ′(y , r) = w(y , r) if y ̸= x

w ′(x , r) = JtKw (r) otherwise

interpretation of (composed) programs

The algebra of program grading functions
for an action lattice A = (A,+, ; , 0, 1, ∗,→, ·) and a set of states W , is
the structure

E = (Z (E),∪, ◦,∅, χ, ∗)

where:

▶ Z (E) is the universe of all the program grading functions

▶ (E (π1) ∪ E (π2))(w ,w
′) = E (π1, (w ,w

′)) + E (π2, (w ,w
′))

▶ (E (π1) ◦ E (π2))(w ,w ′) =
∑

w ′′∈W

E (π1, (w ,w
′′));E (π2, (w

′′,w ′))

▶ ∅(w ,w ′) = 0

▶ (E (π))∗(w ,w ′) =
∑
i≥0

(E (π))i (w ,w ′) =

(E (π))0(w ,w ′) + (E (π))1(w ,w ′) + (E (π))2(w ,w ′) + . . .

interpretation of (composed) programs

The interpretation of a composed program

in a model is a map

J−K : Prg(Σ,X)→ AW×W

where

▶ Jπ0K = Jπ0K0, for each π0 ∈ Prg0(∆)

▶ Jπ;πK = JπK ◦ Jπ′K
▶ Jπ + πK = JπK ∪ Jπ′K
▶ Jπ∗K = JπK∗

where, for r ∈ AW×W , r∗(w ,w ′) =
∑
k≥0

rk(w ,w ′).

Satisfaction

The graded Satisfaction relation
for a model M ∈ ModΓ(A)(∆), consists of a function

|=Γ(A) : W × FmΓ(A)(∆)→ A

recursively defined by

▶ (w |=Γ(A) ⊤) = 1

▶ (w |=Γ(A) ⊥) = 0

▶ (w |=Γ(A) p(t1, . . . , tn)) = Jp(t1, . . . , tn)Kw
▶ (w |=Γ(A) φ→ φ′) = (w |=Γ(A) φ)→ (w |=Γ(A) φ

′)

▶ (w |=Γ(A) ⟨π⟩φ) =
∑

w ′∈W

(
JπK(w ,w ′); (w ′ |=Γ(A) φ)

)
▶ (w |=Γ(A) [π]φ) =

∧
w ′∈W

(
JπK(w ,w ′)→ (w ′ |=Γ(A) φ)

)

Satisfaction

Interpretation of tests:

Classic interpretation
Rφ? = {(w ,w)|w |= φ}

In this work

Jφ?K(w ,w ′) =

{
(w |=Γ(A) φ) if w = w ′

0 otherwise

Illustration

if x ≤ 3 then x := x + 1 else y := y × 2

≡ J((x ≤ 3)?; x := x + 1) + (((x ≤ 3) → ⊥)?; y := y × 2)K(w , v)

= J(x ≤ 3)?; x := x + 1K(w , v) + J((x ≤ 3) → ⊥)?; y := y × 2K(w , v)

= J(x ≤ 3)?K(w ,w); Jx := x + 1K0(w , v) + J((x ≤ 3) → ⊥)?K(w ,w); Jy := y × 2K0(w , v)

= (w |= x ≤ 3);E(x := x + 1, (w , v)) + ((w |= x ≤ 3) → (w |= 0));E(y := y × 2, (w , v))

Γ(2) – classic programs
w(x , 2) = ⊤ and w(x , r) = ⊥, r ̸= 2 and v(x , 3) = ⊤ and v(x , r) = ⊥, r ̸= 3,
(⊤ ∧⊤) ∨ ((⊤ → ⊥) ∧ ⊤) = ⊤

Γ(G) – fuzzy programs
max{min{0.3, 0.7},min{0.3 → 0, 0.09}} = 0.3

Γ(R) – resources dependent programs
min{3 + 7, 0 + 9} = 9

Outline

Why Program Logics?

Preliminairs: Modal Logic in a rush

(Standard) Dynamic Logics

Extension 1: A DL to hybrid programs

Extension 2: DL for weighted programs (a parametric perspective)

Extension 3: Dynamic Logic for quantum programs

Dynamic Logics for Quantum Programs?

Quantum logics have a long tradition...

▶ (Von Neumann-Birkhoff, 36)/ (Mackey, 56)/ (Piron, 76)...

“Logics for quantum mechanics”

▶ unlike in Classic Mechanics, Quantum Mechanics requires
giving up basic principles of classical proposition logic
– Orthocomplemented lattices

(Feynman,82) – seminal idea of quantum computing –

▶ Challenge:
logics for the specification and verification of quantum
algorithms

Dynamic Logics for Quantum Programs?

Quantum logics have a long tradition...

▶ (Von Neumann-Birkhoff, 36)/ (Mackey, 56)/ (Piron, 76)...

“Logics for quantum mechanics”

▶ unlike in Classic Mechanics, Quantum Mechanics requires
giving up basic principles of classical proposition logic
– Orthocomplemented lattices

(Feynman,82) – seminal idea of quantum computing –

▶ Challenge:
logics for the specification and verification of quantum
algorithms

Dynamic Logics for Quantum Programs?

Quantum logics have a long tradition...

▶ (Von Neumann-Birkhoff, 36)/ (Mackey, 56)/ (Piron, 76)...

“Logics for quantum mechanics”

▶ unlike in Classic Mechanics, Quantum Mechanics requires
giving up basic principles of classical proposition logic
– Orthocomplemented lattices

(Feynman,82) – seminal idea of quantum computing –

▶ Challenge:
logics for the specification and verification of quantum
algorithms

Dynamic Logics for Quantum Programs?

Dynamic Logics are suitable to verify a wide class of
computational systems

Quantum Computing is an exception?

▶ Hoare Logics for Quantum programs – (M. Ying, 12),
(Kakutani, 09), ...

▶ Dynamic turn in quantum logic of Baltag-Smets
▶ Quantum Logic as ‘Dynamic logic of Quantum

Measurements and Quantum Evolutions’
▶ evolved to fit the verification of quantum algorithms

Dynamic Logics for Quantum Programs?

Dynamic Logics are suitable to verify a wide class of
computational systems

Quantum Computing is an exception?

▶ Hoare Logics for Quantum programs – (M. Ying, 12),
(Kakutani, 09), ...

▶ Dynamic turn in quantum logic of Baltag-Smets
▶ Quantum Logic as ‘Dynamic logic of Quantum

Measurements and Quantum Evolutions’
▶ evolved to fit the verification of quantum algorithms

Dynamic Logics for Quantum Programs?

Dynamic Logics are suitable to verify a wide class of
computational systems

Quantum Computing is an exception?

▶ Hoare Logics for Quantum programs – (M. Ying, 12),
(Kakutani, 09), ...

▶ Dynamic turn in quantum logic of Baltag-Smets
▶ Quantum Logic as ‘Dynamic logic of Quantum

Measurements and Quantum Evolutions’
▶ evolved to fit the verification of quantum algorithms

Baltag - Smets Quantum Dynamic Logics

Since 2004,
▶ LQM - logic of the quantum measurements

▶ single quantum systems

▶ LQA - logic of quantum actions
▶ unitary transformations (quantum-gates) as atomic programs

▶ LQP - logic of compound quantum systems
▶ ⊗-composition of H-subspaces and spatial modalities

▶ PLPQ - probabilistic quantum programs
▶ probabilistic modalities

▶ ...

Principles of the approach

Let us fix and Hilbert space H and a signature (Prop,U)

▶ Syntax is the classic one – atomic actions are quantum gates
(unitary transformations)

▶ Quantum Kripke frame M = (W ,S ,U):
▶ W is the one-dimensional subspaces of H (i.e. the rays)
▶ S is a set of testable properties (i.e. st S = S⊥⊥, for

S⊥ = {t ∈W |t ⊥ s, s ∈ S})
▶ for each u ∈ U, Ru : W →W is an unitary transformation (a

quantum gate)

Principles of the approach

(Classic)Tests Vs Measurements (evolutions)

▶ classic case: ?φ means that – “φ holds in the tested state”
▶ R?φ = {(w ,w)|w |= φ}
▶ M,w |= [?φ]ψ iff M,w |= φ implies M,w |= ψ

▶ quantum case:, ?φ means that – “φ holds after the test”
▶ R?φ = {(s, t)|Projφ(v) = t, v ∈ s}, for Projφ : H → H is the

projection onto the closed linear subspace that the set of states
satisfying φ generates

▶ M,w |= [?φ]ψ
iff for all v ∈ w , M,Projφ(v) |= φ implies M,Projφ(v) |= ψ

Principles of the approach

(Classic)Tests Vs Measurements (evolutions)

▶ classic case: ?φ means that – “φ holds in the tested state”
▶ R?φ = {(w ,w)|w |= φ}
▶ M,w |= [?φ]ψ iff M,w |= φ implies M,w |= ψ

▶ quantum case:, ?φ means that – “φ holds after the test”
▶ R?φ = {(s, t)|Projφ(v) = t, v ∈ s}, for Projφ : H → H is the

projection onto the closed linear subspace that the set of states
satisfying φ generates

▶ M,w |= [?φ]ψ
iff for all v ∈ w , M,Projφ(v) |= φ implies M,Projφ(v) |= ψ

(There are more slides to put here ...)

A brief overview in Dynamic Logics

Alexandre Madeira
Mathematics Dep, U. Aveiro

February 10, 2026,
Software Foundations, MAP-i 25/26

DMat, U.Aveiro

	Why Program Logics?
	Preliminairs: Modal Logic in a rush
	(Standard) Dynamic Logics
	Extension 1: A DL to hybrid programs
	Extension 2: DL for weighted programs (a parametric perspective)
	Extension 3: Dynamic Logic for quantum programs

