

# A brief overview in Dynamic Logics

Alexandre Madeira  
Mathematics Dep, U. Aveiro



February 10, 2026,  
Software Foundations, MAP-i 25/26  
DMat, U.Aveiro

# Outline

Why Program Logics?

Preliminaries: Modal Logic in a rush

(Standard) Dynamic Logics

Extension 1: A DL to hybrid programs

Extension 2: DL for weighted programs (a parametric perspective)

Extension 3: Dynamic Logic for quantum programs

# Outline

## Why Program Logics?

Preliminaries: Modal Logic in a rush

(Standard) Dynamic Logics

Extension 1: A DL to hybrid programs

Extension 2: DL for weighted programs (a parametric perspective)

Extension 3: Dynamic Logic for quantum programs

# About the current computational systems

Andre Platzer

*... there is probably no other area where the gap is more noticeable between the tremendous complexity of the systems we can built and the modest size of systems that we can analyse*

Logical Analysis of Hybrid Systems, 2012

## looking at the current practices

The quality and dependability of most of the systems is assured by **test-oriented** development methodologies

looking at the current practices

The quality and dependability of  
most of the systems is assured by **test-oriented** development  
methodologies

Edsger Dijkstra (Turing Award 1972)

*program testing can be used to show the presence of bugs, but  
never to show their absence!*

(1969)

looking to classic engineering ...

e.g. in Mechanics, mathematics is used

- ▶ as an **unambiguous language** to express requirements
- ▶ to support **rigorous modelling**
- ▶ to support the **validation and verification** tasks

... following the basic principles of engineering

## Formal methods

mathematical and formal logic based techniques for the  
**specification, development** and **validation** of *computational*  
systems

# Formal Logics in Computer Science

particularly, **Formal Logics** are valuable mathematical tools

For

- ▶ modelling
- ▶ reasoning on
- ▶ verify

Complex systems

Just an illustration

Equational Calculus in a rush  
blackboard ...

# Verification of classical imperative programs

Robert W. Floyd

## ASSIGNING MEANINGS TO PROGRAMS<sup>1</sup>

**Introduction.** This paper attempts to provide an adequate basis for formal definitions of the meanings of programs in appropriately defined programming languages, in such a way that a rigorous standard is established for proofs about computer programs, including proofs of correctness, equivalence, and termination. The basis of our approach is the notion of an interpretation of a program: that is, an association of a proposition

## An Axiomatic Basis for Computer Programming

C. A. R. HOARE

*The Queen's University of Belfast,\* Northern Ireland*

# Verification of classical imperative programs

## Floyd-Hoare Logic

$$\{\phi\} \text{ Prog } \{\varphi\}$$

# Verification of classical imperative programs

## Floyd-Hoare Logic

$\{\phi\} \text{ Prog } \{\varphi\}$

**Axioms:**

$$\overline{\{\varphi[e/x]\} x := e \{\varphi\}} \quad \overline{\{\phi\} \text{skip } \{\phi\}}$$

# Verification of classical imperative programs

## Floyd-Hoare Logic

$\{\phi\} \text{ Prog } \{\varphi\}$

### Axioms:

$$\overline{\{\varphi[e/x]\} x := e \{\varphi\}} \quad \overline{\{\phi\} \text{skip} \{\phi\}}$$

### Inference rules:

$$\frac{\phi \rightarrow \phi' \quad \{\phi'\} S \{\varphi'\} \quad \varphi' \rightarrow \varphi}{\{\phi\} S \{\varphi\}} \quad \frac{\{\phi\} S \{\xi\} \quad \{\xi\} T \{\varphi\}}{\{\phi\} S; T \{\varphi\}}$$

$$\frac{\{\phi \wedge \alpha\} S_1 \{\varphi\} \quad \{\phi \wedge \neg\alpha\} S_2 \{\varphi\}}{\{\phi\} \text{if } \alpha \text{ then } S_1 \text{ else } S_2 \{\varphi\}}$$

...

# Verification of classical imperative programs

$$\{x = 1\} y := x + 1; z := y \{z = 2\}$$

## Verification of classical imperative programs

$\{x = 1\}y := x + 1; z := y\{z = 2\}$

$$\frac{\overline{\{x=1\}y:=x+1\{y=2\}} \quad \overline{\{y=2\}z:=y\{z=2\}}}{\{x = 1\}y := x + 1; z := y\{z = 2\}}$$

since  $(y = 2)[x + 1/y] \Leftrightarrow x = 1$  and  $(z = 2)[y/z] \Leftrightarrow y = 2$

# Verification of classical imperative programs

$\{x = 1\}y := x + 1; z := y\{z = 2\}$

$$\frac{\overline{\{x=1\}y:=x+1\{y=2\}} \quad \overline{\{y=2\}z:=y\{z=2\}}}{\{x = 1\}y := x + 1; z := y\{z = 2\}}$$

since  $(y = 2)[x + 1/y] \Leftrightarrow x = 1$  and  $(z = 2)[y/z] \Leftrightarrow y = 2$

$\{x = 1\}\mathbf{if}\ x < 2\ \mathbf{then}\ x := x + 1\ \mathbf{else}\ x := x * x\{x = 2\}$

# Verification of classical imperative programs

$\{x = 1\}y := x + 1; z := y\{z = 2\}$

$$\frac{\overline{\{x=1\}y:=x+1\{y=2\}} \quad \overline{\{y=2\}z:=y\{z=2\}}}{\{x = 1\}y := x + 1; z := y\{z = 2\}}$$

since  $(y = 2)[x + 1/y] \Leftrightarrow x = 1$  and  $(z = 2)[y/z] \Leftrightarrow y = 2$

$\{x = 1\}\mathbf{if}\ x < 2\ \mathbf{then}\ x := x + 1\ \mathbf{else}\ x := x * x\{x = 2\}$

$$\frac{\overline{\{x=1\}x:=x+1\{x=2\}} \quad \overline{\{x=1\wedge x < 2\}x:=x+1\{x=2\}}}{\{x = 1\}\mathbf{if}\ x < 2\ \mathbf{then}\ x := x + 1\ \mathbf{else}\ x := x * x\{x = 2\}}$$

# Verification of classical imperative programs

$$\{x = 1\} y := x + 1; z := y \{z = 2\}$$

$$\frac{\overline{\{x=1\}y:=x+1\{y=2\}} \quad \overline{\{y=2\}z:=y\{z=2\}}}{\{x = 1\} y := x + 1; z := y \{z = 2\}}$$

since  $(y = 2)[x + 1/y] \Leftrightarrow x = 1$  and  $(z = 2)[y/z] \Leftrightarrow y = 2$

$$\{x = 1\} \mathbf{if} \ x < 2 \ \mathbf{then} \ x := x + 1 \ \mathbf{else} \ x := x * x \{x = 2\}$$

$$\frac{\overline{\{x=1\}x:=x+1\{x=2\}} \quad \overline{\{x=1 \wedge x < 2\}x:=x+1\{x=2\}} \quad \overline{\{x=1 \wedge x \geq 2\}x:=x*x\{y=2\}}}{\{x = 1\} \mathbf{if} \ x < 2 \ \mathbf{then} \ x := x + 1 \ \mathbf{else} \ x := x * x \{x = 2\}}$$

since

$$(x = 2)[x + 1/x] \Leftrightarrow x = 1 \text{ and } x = 1 \wedge x < 2 \Leftrightarrow \text{false}$$

# Verification of classical imperative programs

$$\{x = 1\} y := x + 1; z := y \{z = 2\}$$

$$\frac{\overline{\{x=1\}y:=x+1\{y=2\}} \quad \overline{\{y=2\}z:=y\{z=2\}}}{\{x = 1\} y := x + 1; z := y \{z = 2\}}$$

since  $(y = 2)[x + 1/y] \Leftrightarrow x = 1$  and  $(z = 2)[y/z] \Leftrightarrow y = 2$

$$\{x = 1\} \mathbf{if} \ x < 2 \ \mathbf{then} \ x := x + 1 \ \mathbf{else} \ x := x * x \{x = 2\}$$

$$\frac{\overline{\{x=1\}x:=x+1\{x=2\}} \quad \overline{\{x=1 \wedge x \geq 2\}x:=x*x\{y=2\}}}{\{x = 1\} \mathbf{if} \ x < 2 \ \mathbf{then} \ x := x + 1 \ \mathbf{else} \ x := x * x \{x = 2\}}$$

since

$(x = 2)[x + 1/x] \Leftrightarrow x = 1$  and  $x = 1 \wedge x < 2 \Leftrightarrow \text{false}$

**Exercise:**

$$\{y > 4 \wedge z > -1\} y := y + z \{y > 3\}$$

$$\{y > 4\} \mathbf{if} (z > -1) \ \mathbf{then} \ y := y + z \ \mathbf{else} \ y := y - 1 \{y > 3\}$$

# Verification of classical imperative programs

How to take advantage of formal logic methods and results?

- ▶ **Modal logic**, as logic of change, is the natural candidate to reason about programs

# Verification of classical imperative programs

How to take advantage of formal logic methods and results?

- ▶ **Modal logic**, as logic of change, is the natural candidate to reason about programs

# A modal logic to verify programs?

Vaughan Pratt, 76

## SEMANTICAL CONSIDERATIONS ON FLOYD-HOARE LOGIC

Vaughan R. Pratt

Massachusetts Institute of Technology

Cambridge, MA 02139

August 1976

### ABSTRACT

This paper deals with logics of programs. The objective is to formalize a notion of program description, and to give both plausible (semantic) and effective (syntactic) criteria for the

# Outline

Why Program Logics?

Preliminaries: Modal Logic in a rush

(Standard) Dynamic Logics

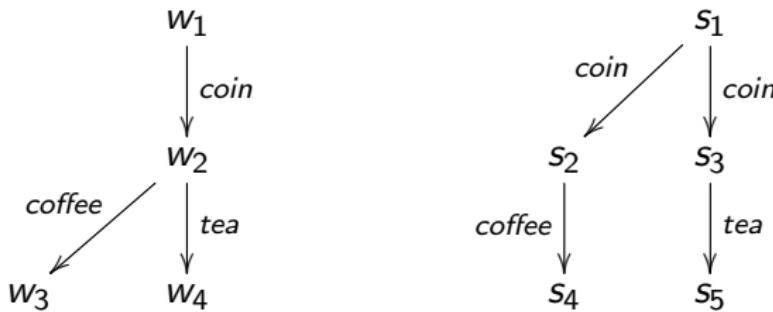
Extension 1: A DL to hybrid programs

Extension 2: DL for weighted programs (a parametric perspective)

Extension 3: Dynamic Logic for quantum programs

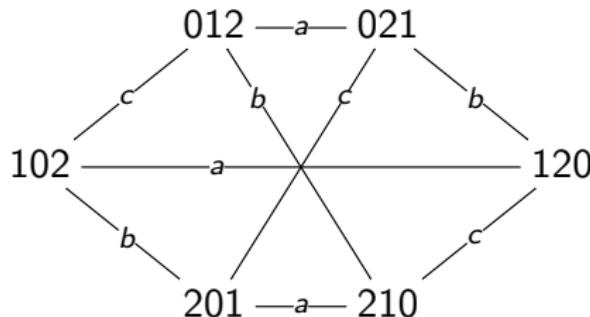
# Processes are transition systems

Two coffee machines



# Knowledge systems with multi-agents are transition systems

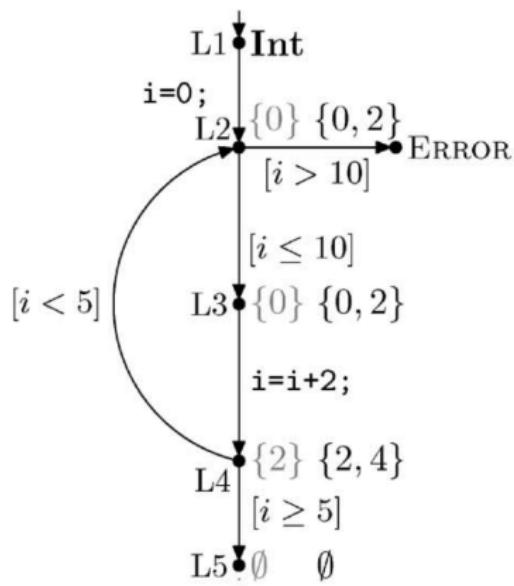
## The envelop game



E.g. at state 012: Ana has an envelop with 0, Bob one with 1 and Clara with 2

# Programs are transition systems

```
int i = 0;  
do {  
    assert(i <= 10);  
    i = i+2;  
} while (i < 5);
```



# The language

## Signatures

Signatures are pairs  $(\text{Prop}, \text{Act})$  where Prop and Act are (disjoint) sets of symbols of **proposition** and of **actions**

# The language

## Signatures

Signatures are pairs  $(\text{Prop}, \text{Act})$  where  $\text{Prop}$  and  $\text{Act}$  are (disjoint) sets of symbols of **proposition** and of **actions**

## Formulas

Let  $(\text{Prop}, \text{Act})$  a signature. The set of formulas for  $(\text{Prop}, \text{Act})$ , in symbols  $\text{Fm}(\text{Prop})$ , is defined as follows:

$$\varphi ::= p \mid \perp \mid \varphi \rightarrow \varphi \mid [a]\varphi$$

where  $p \in \text{Prop}$  and  $a \in \text{Act}$

# The language

## Signatures

Signatures are pairs  $(\text{Prop}, \text{Act})$  where  $\text{Prop}$  and  $\text{Act}$  are (disjoint) sets of symbols of **proposition** and of **actions**

## Formulas

Let  $(\text{Prop}, \text{Act})$  a signature. The set of formulas for  $(\text{Prop}, \text{Act})$ , in symbols  $\text{Fm}(\text{Prop})$ , is defined as follows:

$$\varphi ::= p \mid \perp \mid \varphi \rightarrow \varphi \mid [a]\varphi$$

where  $p \in \text{Prop}$  and  $a \in \text{Act}$

## Abbreviates

- ▶  $\neg\varphi := \varphi \rightarrow \perp$
- ▶  $\varphi_1 \vee \varphi_2 := \neg\varphi_1 \rightarrow \varphi_2$
- ▶  $\varphi_1 \wedge \varphi_2 := \neg(\neg\varphi_1 \rightarrow \neg\varphi_2)$
- ▶  $\langle a \rangle \phi := \neg[a]\neg\phi$
- ▶ ...

# Models

## Models

A **model** for the signature  $(\text{Prop}, \text{Act})$  is a pair  $M = \langle F, V \rangle$ , where

- ▶  $F = \langle W, (R_a)_{a \in \text{Act}} \rangle$  is a **Kripke structure**, i.e.
  - ▶  $W$  is a non empty set (of **states**)
  - ▶  $(R_a)_{a \in \text{Act}}$  is a family of binary relations  $R_a \subseteq W \times W$ , for each modality symbol  $a \in \text{Act}$ .
- ▶  $V : \text{Prop} \rightarrow \mathcal{P}(W)$  is a **valuation**.

# Multimodal satisfaction relation

Satisfaction for a model  $M$  in a state  $w$

- ▶  $M, w \models p$  if  $w \in V(p)$
- ▶  $M, w \models \perp$  is always false
- ▶  $M, w \models \varphi_1 \rightarrow \varphi_2$  if it is false that  $M, w \models \varphi_1$  or  $M, w \models \varphi_2$
- ▶  $M, w \models [a]\varphi$  if for any  $v \in W$ , if  $(w, v) \in R_a$  then  $M, v \models \varphi$

# Multimodal satisfaction relation

## Satisfaction for a model $M$ in a state $w$

- ▶  $M, w \models p$  if  $w \in V(p)$
- ▶  $M, w \models \perp$  is always false
- ▶  $M, w \models \varphi_1 \rightarrow \varphi_2$  if it is false that  $M, w \models \varphi_1$  or  $M, w \models \varphi_2$
- ▶  $M, w \models [a]\varphi$  if for any  $v \in W$ , if  $(w, v) \in R_a$  then  $M, v \models \varphi$

## Corollary

- ▶  $M, w \models \neg\varphi$  if it is false that  $M, w \models \varphi$
- ▶  $M, w \models \varphi_1 \wedge \varphi_2$  if  $M, w \models \varphi_1$  and  $M, w \models \varphi_2$
- ▶  $M, w \models \varphi_1 \vee \varphi_2$  if  $M, w \models \varphi_1$  or  $M, w \models \varphi_2$
- ▶  $M, w \models \langle a \rangle \varphi$  if there exists a  $v \in W$  such that  $(w, v) \in R_a$  and  $M, v \models \varphi$

# Multimodal satisfaction

## Satisfaction

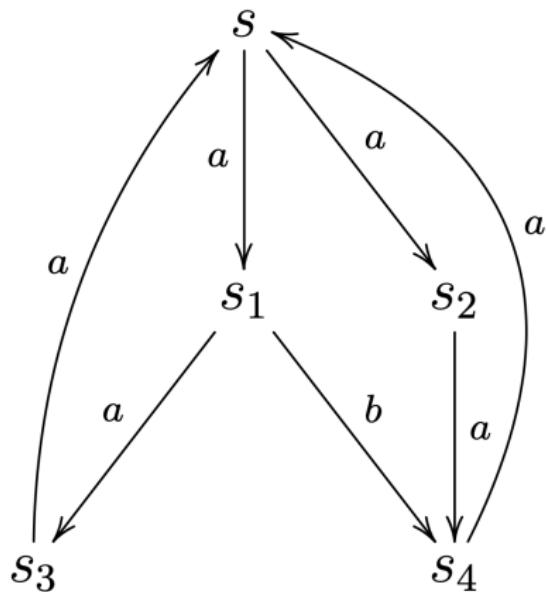
A formula  $\phi \in \text{Fm}(\text{Prop})$  is

- ▶ **satisfiable in  $M$**  if it is satisfied in some state  $w$  of  $M$
- ▶ **globally satisfied in  $M$**  ( $M \models \phi$ ) if it is satisfied in all the states of  $M$
- ▶ **valid** ( $\models \phi$ ) if it is globally satisfied in all the models for  $(\text{Prop}, \text{Act})$
- ▶ **is a semantical consequence** of a set of formulas  $\Gamma$  ( $\Gamma \models \phi$ ) if for any model  $M$ , and for every state  $w$  of  $M$ , if  $M, w \models \Gamma$  then  $M, w \models \phi$

## Exercise

Verify that :

1.  $M, s \models \langle a \rangle \top$
2.  $M, s \models [a] \perp$
3.  $M, s \models \langle b \rangle \top$
4.  $M, s \models [b] \perp$
5.  $M, s \models [a] \langle b \rangle \top$
6.  $M, s \models \langle a \rangle \langle b \rangle \perp$
7.  $M, s \models [a] \langle a \rangle [a] [b] \perp$
8.  $M, s \models \langle a \rangle (\langle a \rangle \top \wedge \langle b \rangle \top)$
9.  $M, s \models [a] (\langle a \rangle \top \vee \langle b \rangle \top)$
10.  $M, s \models \langle a \rangle ([b] [a] \perp \wedge \langle b \rangle \top)$



## Exercício

Find a model  $M$  for  $(\{\}, \{a, b, c\})$  with a state  $w$  such that that simultaneously verifies:

- ▶  $M, w \models \langle a \rangle (\langle b \rangle \langle c \rangle \top \wedge \langle c \rangle \top)$
- ▶  $M, w \models \langle a \rangle \langle b \rangle ([a] \perp \wedge [b] \perp \wedge [c] \perp)$
- ▶  $M, w \models [a] \langle b \rangle ([c] \perp \wedge \langle a \rangle \top)$

# Outline

Why Program Logics?

Preliminaries: Modal Logic in a rush

(Standard) Dynamic Logics

Extension 1: A DL to hybrid programs

Extension 2: DL for weighted programs (a parametric perspective)

Extension 3: Dynamic Logic for quantum programs

# Programs as modalities

Programs:

Assuming a set of atomic programs  $\Pi$ :

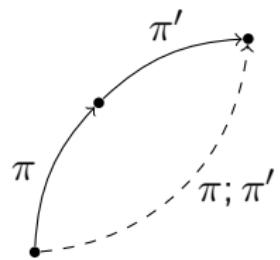
$$\pi ::= \pi_0 \mid \pi + \pi \mid \pi; \pi \mid \pi^* \mid ?\chi$$

for  $\pi_0 \in \Pi$  and  $\chi$  a predicate

# Programs interpretation

## Sequential program

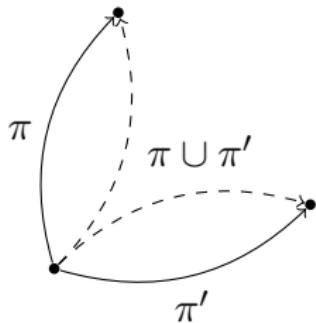
- ▶  $Pr_{\pi; \pi'} = Pr_{\pi} \circ Pr_{\pi'}$



# Programs interpretation

Non deterministic choice

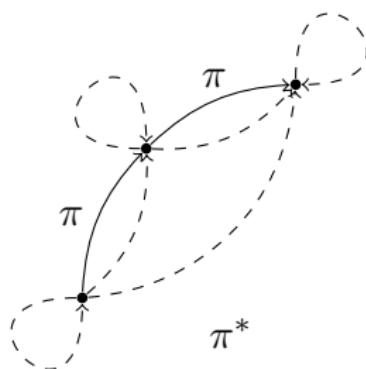
$$\blacktriangleright \Pr_{\pi+\pi'} = \Pr_\pi \cup \Pr_{\pi'}$$



# Programs interpretation

## Iterative closure

- ▶  $Pr_{\pi^*} = (Pr_{\pi})^*$ , for  
 $(Pr_{\pi})^* = \bigcup_{n \leq 0} (Pr_{\pi})^n$ , where
  - ▶  $(w, w') \in (Pr_{\pi})^0$  if  $w = w'$
  - ▶  $(w, w') \in (Pr_{\pi})^{n+1}$  if  $(w, w') \in (Pr_{\pi}) \circ (Pr_{\pi})^n$



# Programs interpretation

## Tests

- ▶  $Pr_{\varphi?} = \{(w, w) \mid M, w \models \varphi\}$



•  
 $\neg\varphi$

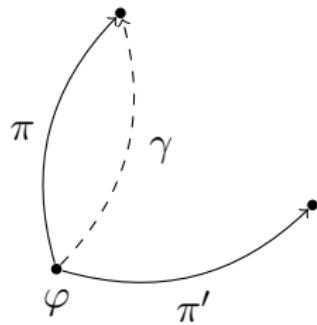
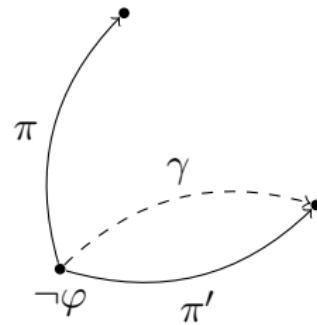
## Exercise:

Express the following standard commands as terms of our program algebra:

- ▶ **if**  $\varphi$  **then**  $\pi$  **else**  $\pi'$
- ▶ **while**  $\varphi$  **do**  $\pi$  **od**
- ▶ **repeat**  $\pi$  **until**  $\varphi$

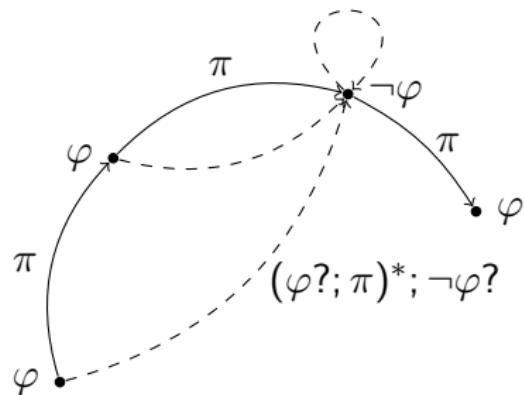
# Programs interpretation

**if**  $\varphi$  **then**  $\pi$  **else**  $\pi' \equiv (\varphi?; \pi) + (\neg\varphi?; \pi')$



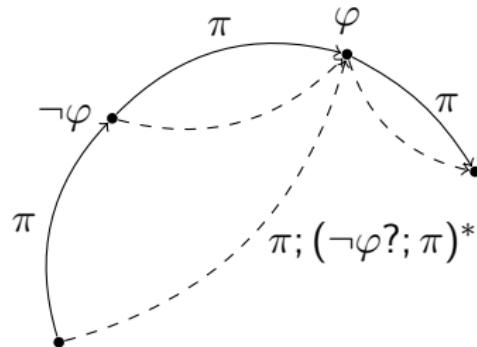
# Programs interpretation

**while**  $\varphi$  **do**  $\pi$  **od**  $\equiv$   $(\varphi?; \pi)^*; \neg\varphi?$



# Programs interpretation

**repeat**  $\pi$  **until**  $\varphi \equiv \pi; (\neg\varphi?; \pi)^*$



## Exercise

Consider the

$(\{a, b\}, \{p, q\})$ -model

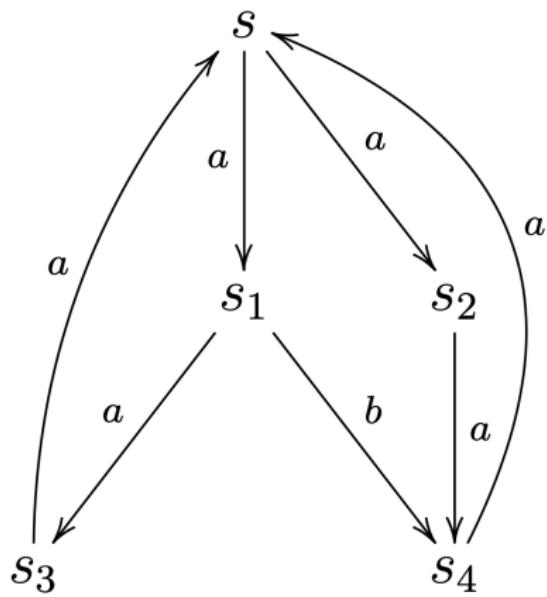
$M$  represented in the left, such

that  $V(p) = \{s_1, s_3\}$  e

$V(q) = \{s, s_2, s_4\}$ .

Interpret the following programs  
in  $M$ :

- ▶  $a; b$
- ▶  $b; a$
- ▶  $a + b$
- ▶  $(a; b) + b$
- ▶  $a^*$
- ▶  $(p?); a$
- ▶  $(q?); a + (\neg q?)b$
- ▶  $(a + b)^*$
- ▶  $(p \wedge q)?$



# Propositional dynamic logic (in a rush)

Signatures Are pairs  $(\text{Prop}, \Pi)$  where  $\text{Prop}$  and  $\Pi$  are disjoint sets of **propositions**, and **atomic programs**

# Propositional dynamic logic (in a rush)

Signatures Are pairs  $(\text{Prop}, \Pi)$  where  $\text{Prop}$  and  $\Pi$  are disjoint sets of **propositions**, and **atomic programs**

Sentences  $\varphi ::= p \mid \langle \pi \rangle \varphi \mid [\pi] \varphi \mid \neg \varphi \mid \varphi \vee \varphi \mid \varphi \wedge \varphi$

$\pi ::= \pi_0 \mid \pi + \pi \mid \pi; \pi \mid \pi^* \mid ?\varphi$

and  $p \in \text{Prop}$

# Propositional dynamic logic (in a rush)

Signatures Are pairs  $(\text{Prop}, \Pi)$  where  $\text{Prop}$  and  $\Pi$  are disjoint sets of **propositions**, and **atomic programs**

Sentences  $\varphi ::= p \mid \langle \pi \rangle \varphi \mid [\pi] \varphi \mid \neg \varphi \mid \varphi \vee \varphi \mid \varphi \wedge \varphi$

$\pi ::= \pi_0 \mid \pi + \pi \mid \pi; \pi \mid \pi^* \mid ?\varphi$

and  $p \in \text{Prop}$

Models Models are Kripke structures, i.e. tuples  $(W, V, R)$

- ▶  $W$  is a set
- ▶  $V : \text{Prop} \rightarrow \mathcal{P}(W)$  is a function
- ▶  $R = (R_\pi \subseteq W \times W)_{\pi \in \Pi}$  is an  $\Pi$ -family of binary relations

# Propositional dynamic logic

Satisfaction

- ▶  $M, w \models \langle \pi \rangle \varphi$  iff there is a  $w' \in W$  such that  $(w, w') \in \overline{R}_\pi$  and  $M, w' \models \varphi$ ;
- ▶ ...

## Program interpretation

$$\overline{R}(\pi_0) = R_{\pi_0}$$

$$\overline{R}(\chi?) = \{(w, w) \mid M, w \models \chi\}$$

$$\overline{R}(\pi + \pi') = \overline{R}(\pi) \cup \overline{R}(\pi')$$

$$\overline{R}(\pi; \pi') = \overline{R}(\pi) \cdot \overline{R}(\pi')$$

$$\overline{R}(\pi^*) = \overline{R}(\pi)^* = \bigcup_{n \in \mathbb{N}} \overline{R}(\pi^n), \text{ where } \pi^{n+1} = \pi; \pi^n$$

## Exercício

Considere o  $(\{a, b, c\}, \{p, q\})$ -modelo  $M = (W, R, V)$ , com  $W = \{w_1, w_2, w_3, w_4, w_5\}$  e tal que:

- ▶  $V(p) = \{w_1, w_3\}$  e  $V(q) = W$ ,
- ▶  $R_a = \{(w_1, w_3), (w_1, w_4), (w_1, w_5), (w_2, w_3), (w_5, w_3)\}$
- ▶  $R_b = \{(x, y) \in W^2 \mid x = y\}$ ,
- ▶  $R_c = \{(w_1, x) \mid x \in W\}$

Verifique se:

- ▶ a)  $M, w_1 \models [(a; b)]p \vee [b^* + c]q$
- ▶ b)  $M, w_3 \models [q?; b]p \rightarrow [c]\neg q$

## Exercício

Considere o  $(\{a, b, c\}, \{p, q\})$ -modelo  $M = (W, R, V)$ , com  $W = \{-2, -1, 0, 1, 2\}$  e tal que:

- ▶  $V(p) = \{x \in W \mid x > 0\}$  e  $V(q) = \{x \in W \mid x \leq 1\}$ ,
- ▶  $R_a = \{(x, y) \in W^2 \mid x \leq 0, y \geq 0\}$
- ▶  $R_b = \{(x, y) \in W^2 \mid x = y\}$
- ▶  $R_c = \{(0, x) \mid x \in W\}$

Verifique se:

- ▶ a)  $M, 0 \models [(a + b)]p \vee [b^* + c]q$
- ▶ b)  $M, 2 \models [(p \rightarrow q)?; b]p \rightarrow [c]\neg q$

## Exercício

Verifique que as seguintes propriedades são válidas em PDL

- ▶  $[\alpha; \beta]\varphi \leftrightarrow [\alpha][\beta]\varphi$
- ▶  $[\alpha + \beta]\varphi \leftrightarrow [\alpha]\varphi \wedge [\beta]\varphi$
- ▶  $[\alpha^*]\varphi \rightarrow \varphi \wedge [\alpha][\alpha]^*\varphi$
- ▶  $[\alpha^*](\varphi \rightarrow [\alpha]\varphi) \rightarrow (\varphi \rightarrow [\alpha^*]\varphi)$
- ▶  $[\varphi?]\psi \leftrightarrow (\varphi \rightarrow \psi)$

# From propositional to first order DL

## Programs:

$\alpha, \beta \ni x := \theta \mid \alpha + \beta \mid \alpha; \beta \mid \alpha^* \mid ?\chi$

## States:

the space of variables valuations  $\mathcal{S} = \mathbb{R}^{\mathcal{V}}$

## Programs interpretation

The accessibility relation  $\rho(\alpha) \subseteq \mathcal{S} \times \mathcal{S}$  is recursively defined by:

- ▶  $\rho(x := \theta) = \{(u, v) \mid v(x) = \theta \text{ and for any } y \in \mathcal{V} \setminus \{x\}, u(y) = v(y)\}$
- ▶ ...

By considering first order assignments:

verification of

$\{x = 1\} \text{if } x < 2 \text{ then } x := x + 1 \text{ else } x := x * x \{x = 2\}$

$x = 1 \rightarrow [(x < 2)?; x := x + 1 + (\neg(x < 2))?; x := x * x] x = 2$

By considering first order assignments:

verification of

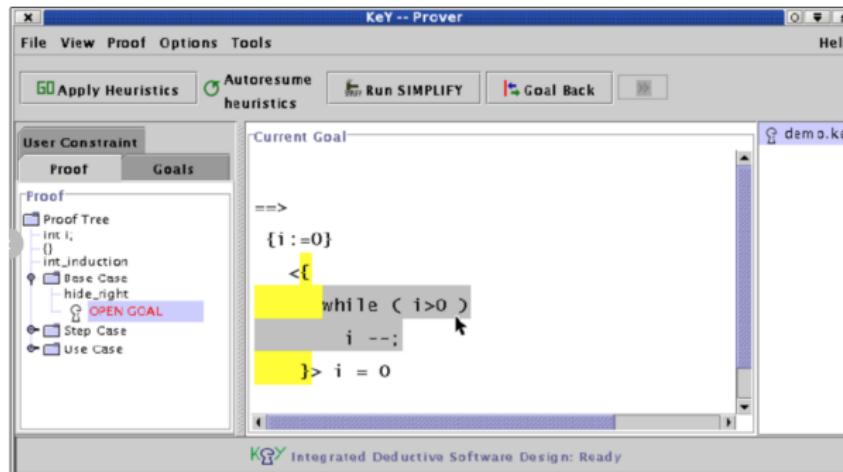
$\{x = 1\} \text{if } x < 2 \text{ then } x := x + 1 \text{ else } x := x * x \{x = 2\}$

$x = 1 \rightarrow [(x < 2)?; x := x + 1 + (\neg(x < 2))?; x := x * x] x = 2$

$x = 1 \rightarrow [\text{if } x < 2 \text{ then } x := x + 1 \text{ else } x := x * x] x = 2$

# Supporting tools?

## KeY project



- ▶ A semi-automatic theorem prover based in dynamic logics
- ▶ see also KeY-Hoare

# Reasoning about imperative programs with DL

Now, the verification of the Hoare triple

$$\{\text{Pre}\} \text{ Prog } \{\text{Post}\}$$

corresponds to the dynamic logic validation of

$$\text{Pre} \rightarrow [\text{Prog}] \text{ Post}$$

# Outline

Why Program Logics?

Preliminaries: Modal Logic in a rush

(Standard) Dynamic Logics

Extension 1: A DL to hybrid programs

Extension 2: DL for weighted programs (a parametric perspective)

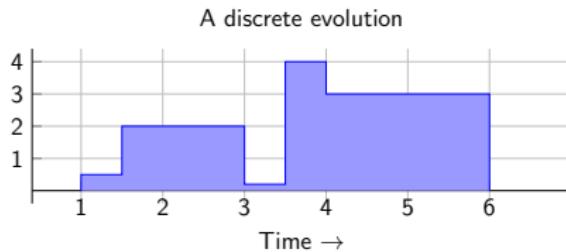
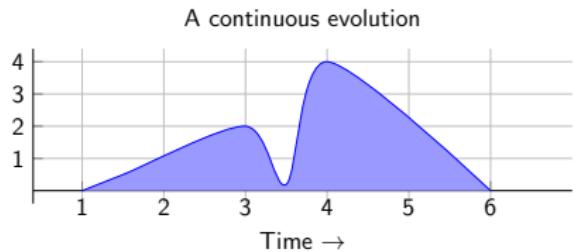
Extension 3: Dynamic Logic for quantum programs

# Dynamic Logic for hybrid systems?

## Platzer's differential dynamic logic $d\mathcal{L}$

- ▶ logic developed for **specifying** and **verifying properties** of hybrid systems
- ▶ with a '**relative complete calculus**' i.e., we can prove properties of hybrid systems exactly as good as properties of differential equations can be proved
- ▶ a powerful **computational tool support** — KeYmaera

# Discrete vs. Continuous evolutions



Hybrid = **discrete** + **continuous**

- ▶ digital controller actions, discrete event interaction, etc
- ▶ **physics entities, analogic controller actions, etc**

# Platzer's $d\mathcal{L}$ – syntax

## Hybrid Programs

$$\alpha, \beta \ni x := \theta \mid \textcolor{blue}{x' = \theta \& \chi} \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^* \mid ?\chi$$

# Platzer's $d\mathcal{L}$ – syntax

## Hybrid Programs

$$\alpha, \beta \ni x := \theta \mid \textcolor{blue}{x' = \theta \& \chi} \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^* \mid ?\chi$$

## $d\mathcal{L}$ -formulas

$$\phi, \psi \ni \theta_1 = \theta_2 \mid \theta_1 \leq \theta_2 \mid \neg \phi \mid \phi \wedge \psi \mid [\alpha] \phi$$

where  $\theta, \theta_1$  and  $\theta_2$  are terms

# Platzer's $d\mathcal{L}$ – semantics

States:

are functions  $\mathcal{V} \rightarrow \mathbb{R}$

Programs interpretation

The relation  $\rho(\alpha) \subseteq \mathcal{S} \times \mathcal{S}$  is defined as for first order DL with

- ▶  $\rho(x := \theta) = \{(u, v) | v(x) = \theta \text{ and for any } y \in \mathcal{V} \setminus \{x\}, u(y) = v(y)\}$
- ▶  $\rho(x' = \theta \& \chi) = \{(\varphi(0), \varphi(r)) | \varphi(t) \models \chi, 0 \leq t \leq r, \text{ for } \varphi : [0, r] \rightarrow \mathcal{S} \text{ a solution of any duration } r\}$
- ▶  $\rho(\alpha \cup \beta) = \rho(\alpha) \cup \rho(\beta)$
- ▶  $\rho(\alpha; \beta) = \rho(\alpha) \circ \rho(\beta)$
- ▶  $\rho(\alpha^*) = \bigcup_{n \in \mathbb{N}} \rho(\alpha^n)$ , where  $\alpha^0 = id$  and  $\alpha^{n+1} = \alpha; \alpha^n$
- ▶  $\rho(? \chi) = \{(v, v) | v \models \chi\}$

## Platzer's $d\mathcal{L}$ – satisfaction

- ▶  $v \models (\theta_1 = \theta_2)$  iff  $v_{\theta_1} = v_{\theta_2}$
- ▶  $v \models \neg \rho$  iff  $v \not\models \rho$
- ▶  $v \models \rho \wedge \rho'$  iff  $v \models \rho$  and  $v \models \rho'$
- ▶  $v \models \rho \vee \rho'$  iff  $v \models \rho$  or  $v \models \rho'$
- ▶  $v \models [\alpha]\rho$  iff for any  $(v, w) \in \rho(\alpha)$ ,  $w \models \rho$
- ▶  $v \models \langle \alpha \rangle \rho$  iff there is a  $(v, w) \in \rho(\alpha)$ , such that  $w \models \rho$

# Platzer's $d\mathcal{L}$ – axiomatisation

## Some deduction rules examples

$$\frac{\rho(\theta)}{[x := \theta]\rho(x)} \qquad \frac{\chi \rightarrow \rho}{[?\chi]\rho}$$

$$\frac{[\alpha][\beta]\rho}{[\alpha; \beta]\rho}$$

$$\frac{[\alpha^*](\rho \rightarrow [\alpha]\rho)}{\rho \rightarrow [\alpha^*]\rho}$$

$$\frac{\forall t \geq 0 [x := y(t)]\rho}{[x' = \theta]\rho}, \text{ for } y'(t) = \theta$$

...

# Some deduction Rules

$$(ax) \frac{}{\varphi \vdash \varphi}$$

$$(\neg r) \frac{\varphi \vdash}{\vdash \neg \varphi}$$

$$(\neg l) \frac{\vdash \varphi}{\vdash \neg \varphi}$$

$$(\vee r) \frac{\vdash \varphi, \psi}{\vdash \varphi \vee \psi}$$

$$(\vee l) \frac{\varphi \vdash \psi \vdash}{\varphi \vee \psi \vdash}$$

$$(cut) \frac{\vdash \varphi \quad \varphi \vdash}{\vdash}$$

$$(\rightarrow r) \frac{\psi \vdash \varphi}{\vdash \psi \rightarrow \varphi}$$

$$(\rightarrow l) \frac{\vdash \varphi \quad \psi \vdash}{\varphi \rightarrow \psi \vdash}$$

$$(\wedge r) \frac{\psi \vdash \varphi \vdash}{\vdash \varphi \wedge \psi}$$

$$(\wedge l) \frac{\varphi, \psi \vdash}{\varphi \wedge \psi \vdash}$$

$$(\langle ; \rangle) \frac{\langle \alpha \rangle \langle \beta \rangle \varphi}{\langle \alpha; \beta \rangle \varphi}$$

$$(\langle \cup \rangle) \frac{\langle \alpha \rangle \varphi \vee \langle \beta \rangle \varphi}{\langle \alpha \cup \beta \rangle \varphi}$$

$$(\langle ? \rangle) \frac{\chi \wedge \varphi}{\langle ? \chi \rangle \varphi}$$

$$(\langle *^n \rangle) \frac{\varphi \vee \langle \alpha \rangle \langle \alpha^* \rangle \varphi}{\langle \alpha^* \rangle \varphi}$$

$$([;]) \frac{[\alpha][\beta]\varphi}{[\alpha; \beta]\varphi}$$

$$([ \cup ]) \frac{[\alpha]\varphi \wedge [\beta]\varphi}{[\alpha \cup \beta]\varphi}$$

$$([?]) \frac{\chi \rightarrow \varphi}{[? \chi] \varphi}$$

$$([*^n]) \frac{\varphi \wedge [\alpha][\alpha^*]\varphi}{[\alpha^*]\varphi}$$

$$(\langle := \rangle) \frac{\varphi_{x_1 \dots x_n}^{\theta_1 \dots \theta_n}}{\langle x_1 := \theta_1, \dots, x_n := \theta_n \rangle \varphi}$$

$$(\langle' \rangle) \frac{\exists t \geq 0 ((\forall 0 \leq t' \leq t, \langle \mathfrak{S}_{t'} \rangle \chi) \wedge \langle \mathfrak{S}_t \rangle \varphi)}{\langle x'_1 = \theta_1, \dots, x'_n = \theta_n \& \chi \rangle \varphi}$$

$$([:=]) \frac{\langle x_1 := \theta_1, \dots, x_n := \theta_n \rangle \varphi}{[x_1 := \theta_1, \dots, x_n := \theta_n] \varphi}$$

$$([']) \frac{\forall t \geq 0 ((\forall 0 \leq t' \leq t, \langle \mathfrak{S}_{t'} \rangle \chi) \rightarrow \langle \mathfrak{S}_t \rangle \varphi)}{[x'_1 = \theta_1, \dots, x'_n = \theta_n \& \chi] \varphi}$$

# Some deduction Rules

$$(\forall r) \frac{\vdash \varphi(s(X_1, \dots, X_n))}{\vdash \forall x \varphi(x)}$$

$$(\exists r) \frac{\vdash \varphi(X)}{\vdash \exists x \varphi(x)}$$

$$(\text{i}\forall) \frac{\vdash \text{QE}(\forall X(\Phi(X) \vdash \Psi(X)))}{\Phi(s(X_1, \dots, X_n)) \vdash \Psi(s(X_1, \dots, X_n))}$$

$$(\exists l) \frac{\varphi(s(X_1, \dots, X_n)) \vdash}{\exists x(\varphi(x)) \vdash}$$

$$(\forall l) \frac{\varphi(X) \vdash}{\forall x \varphi(x) \vdash}$$

$$(\text{i}\exists) \frac{\vdash \text{QE}(\exists X \bigwedge_i (\Phi_i \vdash \Psi_i))}{\Phi_1 \vdash \Psi_1 \dots \Phi_n \vdash \Psi_n}$$

$$(\llbracket gen) \frac{\vdash \forall^\alpha (\varphi \rightarrow \psi)}{[\alpha]\varphi \vdash [\alpha]\psi}$$

$$(\langle \rangle gen) \frac{\vdash \forall^\alpha (\varphi \rightarrow \psi)}{\langle \alpha \rangle \varphi \vdash \langle \alpha \rangle \psi}$$

$$(ind) \frac{\vdash \forall^\alpha (\varphi \rightarrow [\alpha]\varphi)}{\varphi \vdash [\alpha^*]\varphi}$$

$$(con) \frac{\vdash \forall^\alpha \forall v > 0 (\varphi(v) \rightarrow \langle \alpha \rangle \varphi(v-1))}{\exists v \varphi(v) \vdash \langle \alpha^* \rangle \exists v \leq 0 (\varphi(v))}$$

# Case Study from Biology

Controller in a biological system.

## Example

|                                                                                     |                                                                                        |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| $\begin{cases} x' = 5 - x \\ y' = 6 - y + u \end{cases}$<br>$x < 3 \wedge y \geq 2$ | $\begin{cases} x' = 6 - x \\ y' = 1 - y + u \end{cases}$<br>$x \geq 3 \wedge y \geq 2$ |
| $\begin{cases} x' = -x \\ y' = 5 - y + u \end{cases}$<br>$x < 3 \wedge y < 2$       | $\begin{cases} x' = 1 - x \\ y' = -y + u \end{cases}$<br>$x \geq 3 \wedge y < 2$       |

D. Figueiredo, Manuel Martins and M. Chaves.

**Applying differential dynamic logic to reconfigurable biological networks,**  
Mathematical Biosciences, vol. 291, 10-20, 2017.

# Biological Examples.

Controller in a biological system.

we look for steady states

i.e., the values of  $x$  and  $y$  for which the system tends

**Control:**

- ▶  $u = 2$ , if  $x \geq 3$  and  $t \geq 2$
- ▶  $u = 0$ , otherwise.

Using numeric method we can obtain  $(x, y) = (6, 3)$  as steady state candidate.

# Biological Examples

Controller in a biological system.

|                                                                                     |                                                                                        |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| $\begin{cases} x' = 5 - x \\ y' = 6 - y + u \end{cases}$<br>$x < 3 \wedge y \geq 2$ | $\begin{cases} x' = 6 - x \\ y' = 1 - y + u \end{cases}$<br>$x \geq 3 \wedge y \geq 2$ |
| $\begin{cases} x' = -x \\ y' = 5 - y + u \end{cases}$<br>$x < 3 \wedge y < 2$       | $\begin{cases} x' = 1 - x \\ y' = -y + u \end{cases}$<br>$x \geq 3 \wedge y < 2$       |

- ▶  $\alpha_1 \equiv (?x < 3 \wedge y < 2; u := 0;$   
 $(x' = -x, y' = 5 - y + u, \tau' = 1 \& x \leq 3 \wedge y \leq 2))$
- ▶ ...
- ▶  $\alpha_4 \equiv (?x \geq 3 \wedge y \geq 2; u := 2;$   
 $(x' = 6 - x, y' = 1 - y + u, \tau' = 1 \& x \geq 3 \wedge y \geq 2))$

## Example in Biology

Controller in a biological system.

the evolution of the entire biological system can be described by:

$$\alpha \equiv \alpha_1 \cup \alpha_2 \cup \alpha_3 \cup \alpha_4$$

## Example in Biology

Controller in a biological system.

the evolution of the entire biological system can be described by:

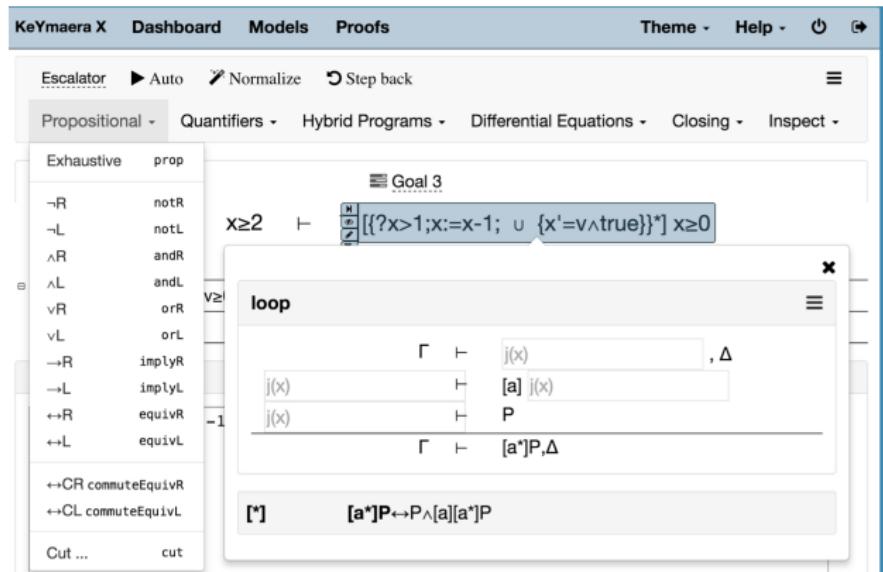
$$\alpha \equiv \alpha_1 \cup \alpha_2 \cup \alpha_3 \cup \alpha_4$$

$(x, y) = (6, 3)$  is a steady state:

$$\begin{aligned} \exists c > 0 (\forall 0 < k < c ((x - 6)^2 + (y - 3)^2 = k \wedge \tau = 0 \\ \rightarrow [\alpha^*](\tau = 0 \vee (x - 6)^2 + (y - 3)^2 < k))) \end{aligned}$$

# Supporting tools?

## KeYmaera X



- ▶ A semi-automatic theorem prover to analyse cyber-physical systems based in Key system

# Outline

Why Program Logics?

Preliminaries: Modal Logic in a rush

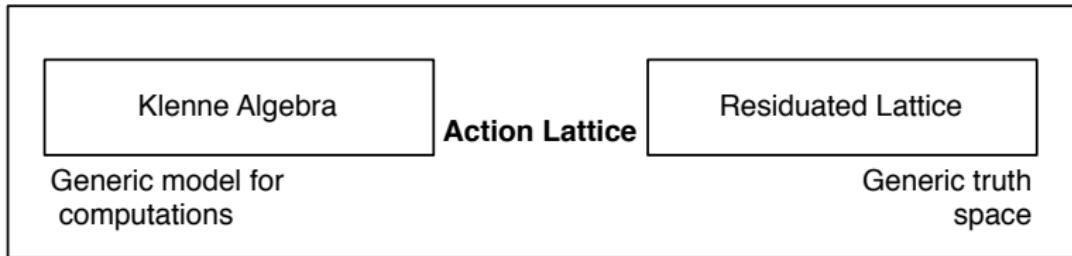
(Standard) Dynamic Logics

Extension 1: A DL to hybrid programs

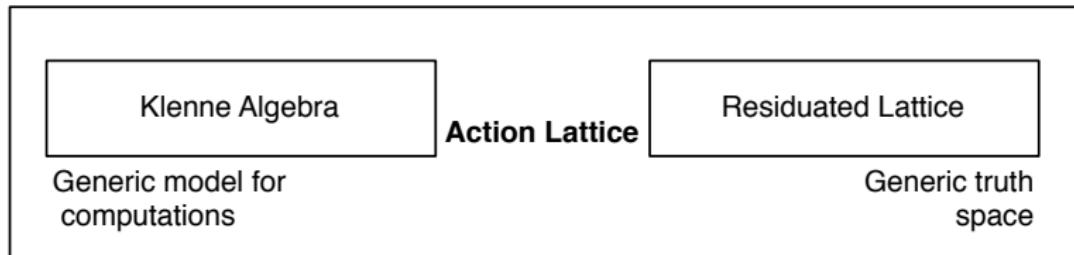
Extension 2: DL for weighted programs (a parametric perspective)

Extension 3: Dynamic Logic for quantum programs

# Construction parameter



# Construction parameter



## Action lattice (Pratt 90, Kozen 91)

$$A = (A, +, ;, 0, 1, *, \rightarrow, \cdot)$$

- ▶  $(A, +, ;, 0, 1, *)$  is a **Kleene algebra**;
- ▶  $\rightarrow$  is a **residue wrt**  $,$  ;
- ▶  $(A, +, \cdot)$  is a **lattice** wrt relation  $a \leq b \equiv a + b = b$

# Action lattice axiomatisation

$$a + (b + c) = (a + b) + c \quad (1)$$

$$a + b = b + a \quad (2)$$

$$a + a = a \quad (3)$$

$$a + 0 = 0 + a = a \quad (4)$$

$$a; (b; c) = (a; b); c \quad (5)$$

$$a; 1 = 1; a = a \quad (6)$$

$$a; (b + c) = (a; b) + (a; c) \quad (7)$$

$$(a + b); c = (a; c) + (b; c) \quad (8)$$

$$a; 0 = 0; a = 0 \quad (9)$$

$$1 + a + (a^*; a^*) \leq a^* \quad (10)$$

$$a; x \leq x \Rightarrow a^*; x \leq x \quad (11)$$

# Action lattice axiomatisation

$$a + (b + c) = (a + b) + c \quad (1)$$

$$a + b = b + a \quad (2)$$

$$a + a = a \quad (3)$$

$$a + 0 = 0 + a = a \quad (4)$$

$$a; (b; c) = (a; b); c \quad (5)$$

$$a; 1 = 1; a = a \quad (6)$$

$$a; (b + c) = (a; b) + (a; c) \quad (7)$$

$$(a + b); c = (a; c) + (b; c) \quad (8)$$

$$a; 0 = 0; a = 0 \quad (9)$$

$$1 + a + (a^*; a^*) \leq a^* \quad (10)$$

$$a; x \leq x \Rightarrow a^*; x \leq x \quad (11)$$

$$x; a \leq x \Rightarrow x; a^* \leq x \quad (12)$$

$$a; x \leq b \Leftrightarrow x \leq a \rightarrow b \quad (13)$$

$$a \rightarrow b \leq a \rightarrow (b + c) \quad (14)$$

$$(x \rightarrow x)^* = x \rightarrow x \quad (15)$$

$$x \leq a \rightarrow (a; x) \quad (16)$$

# Action lattice axiomatisation

$$a + (b + c) = (a + b) + c \quad (1)$$

$$a + b = b + a \quad (2)$$

$$a + a = a \quad (3)$$

$$a + 0 = 0 + a = a \quad (4)$$

$$a; (b; c) = (a; b); c \quad (5)$$

$$a; 1 = 1; a = a \quad (6)$$

$$a; (b + c) = (a; b) + (a; c) \quad (7)$$

$$(a + b); c = (a; c) + (b; c) \quad (8)$$

$$a; 0 = 0; a = 0 \quad (9)$$

$$1 + a + (a^*; a^*) \leq a^* \quad (10)$$

$$a; x \leq x \Rightarrow a^*; x \leq x \quad (11)$$

$$x; a \leq x \Rightarrow x; a^* \leq x \quad (12)$$

$$a; x \leq b \Leftrightarrow x \leq a \rightarrow b \quad (13)$$

$$a \rightarrow b \leq a \rightarrow (b + c) \quad (14)$$

$$(x \rightarrow x)^* = x \rightarrow x \quad (15)$$

$$x \leq a \rightarrow (a; x) \quad (16)$$

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c \quad (17)$$

$$a \cdot b = b \cdot a \quad (18)$$

$$a \cdot a = a \quad (19)$$

$$a + (a \cdot b) = a \quad (20)$$

$$a \cdot (a + b) = a \quad (21)$$

$$a; (a \rightarrow b) \leq b \quad (22)$$

# Examples

## 2 - linear two-values lattice

$$\mathbf{2} = (\{\top, \perp\}, \vee, \wedge, \perp, \top, *, \rightarrow, \wedge)$$

| $\vee$  | $\perp$ | $\top$ | $\wedge$ | $\perp$ | $\top$  | $\rightarrow$ | $\perp$ | $\top$ | $*$     | $\perp$ | $\top$ |
|---------|---------|--------|----------|---------|---------|---------------|---------|--------|---------|---------|--------|
| $\perp$ | $\perp$ | $\top$ | $\perp$  | $\perp$ | $\perp$ | $\perp$       | $\top$  | $\top$ | $\perp$ | $\perp$ | $\top$ |
| $\top$  | $\top$  | $\top$ | $\top$   | $\perp$ | $\top$  | $\top$        | $\top$  | $\top$ | $\top$  | $\top$  | $\top$ |

## Examples

### 2 - linear two-values lattice

$$\mathbf{2} = (\{\top, \perp\}, \vee, \wedge, \perp, \top, *, \rightarrow, \wedge)$$

| $\vee$  | $\perp$ | $\top$ | $\wedge$ | $\perp$ | $\top$  | $\rightarrow$ | $\perp$ | $\top$ | $*$     | $\perp$ | $\top$ |
|---------|---------|--------|----------|---------|---------|---------------|---------|--------|---------|---------|--------|
| $\perp$ | $\perp$ | $\top$ | $\perp$  | $\perp$ | $\perp$ | $\perp$       | $\top$  | $\top$ | $\perp$ | $\perp$ | $\top$ |
| $\top$  | $\top$  | $\top$ | $\top$   | $\perp$ | $\top$  | $\top$        | $\top$  | $\top$ | $\top$  | $\top$  | $\top$ |

### 3 - linear three-value lattice

$$\mathbf{3} = (\{\top, u, \perp\}, \vee, \wedge, \perp, \top, *, \rightarrow, \wedge)$$

| $\vee$  | $\perp$ | $u$    | $\top$ | $\wedge$ | $\perp$ | $u$     | $\top$  | $\rightarrow$ | $\perp$ | $u$    | $\top$ | $*$     | $\perp$ | $\top$ |
|---------|---------|--------|--------|----------|---------|---------|---------|---------------|---------|--------|--------|---------|---------|--------|
| $\perp$ | $\perp$ | $u$    | $\top$ | $\perp$  | $\perp$ | $\perp$ | $\perp$ | $\perp$       | $\top$  | $\top$ | $\top$ | $\perp$ | $\perp$ | $\top$ |
| $u$     | $u$     | $u$    | $\top$ | $u$      | $\perp$ | $u$     | $u$     | $u$           | $\perp$ | $\top$ | $\top$ | $u$     | $u$     | $\top$ |
| $\top$  | $\top$  | $\top$ | $\top$ | $\top$   | $\perp$ | $u$     | $\top$  | $\top$        | $\perp$ | $u$    | $\top$ | $\top$  | $\top$  | $\top$ |

## Examples

$\mathbf{L}$  - the Łukasiewicz arithmetic lattice

$$\mathbf{L} = ([0, 1], \max, \odot, 0, 1, *, \rightarrow, \min)$$

where

- ▶  $x \odot y = \max\{0, y + x - 1\}$ ,
- ▶  $x \rightarrow y = \min\{1, 1 - x + y\}$  and
- ▶  $*$  maps each point of  $[0, 1]$  to 1.

# Examples

## FW - the Floyd-Warshall algebra

$$\mathbb{N}_{\perp\top}^+ = (\{\perp, 0, 1, \dots, \top\}, \max, +, \perp, 0, *, \sim, \min)$$

- $+$  extends addition on  $\mathbb{N}$  by considering  $\perp$  as its absorbent
- $\max$  and  $\min$  wrt the order  $\perp < 0 < \dots < \top$

$$a \sim b = \begin{cases} \top, & \text{if } a = \perp \text{ or } b = \top \\ b - a, & \text{if } b \geq a \text{ and } a, b \in \mathbb{N} \\ 0, & \text{if } a > b \text{ and } a, b \in \mathbb{N} \\ \perp & \text{otherwise} \end{cases}$$

|  |         |        |
|--|---------|--------|
|  | $*$     |        |
|  | $\perp$ | 0      |
|  | 0       | 0      |
|  | $i$     | $\top$ |
|  | $\top$  | $\top$ |

# Parametric construction

Let us construct

$$\mathcal{GDL}(\mathbf{A})$$

for a fixed action lattice

$$\mathbf{A} = (A, +, ;, 0, 1, *, \rightarrow, \cdot)$$

# Parametric construction

Let us construct

$$\mathcal{GDL}(\mathbf{A})$$

for a fixed action lattice

$$\mathbf{A} = (A, +, ;, 0, 1, *, \rightarrow, \cdot)$$

$\mathcal{GDL}(\mathbf{A})$ -signatures

are propositional dynamic logic signatures, i.e. pairs

$$(\text{Prop}, \Pi)$$

# $\mathcal{GDL}(\mathbf{A})$ – formulæ

The **set of programs**  $Prog(\Pi)$ :

$$\pi \ni \pi_0 \mid \pi; \pi \mid \pi + \pi \mid \pi^*$$

for  $\pi_0 \in \Pi$ .

# $\mathcal{GDL}(\mathbf{A})$ – formulæ

The **set of programs**  $Prog(\Pi)$ :

$$\pi \ni \pi_0 \mid \pi; \pi \mid \pi + \pi \mid \pi^*$$

for  $\pi_0 \in \Pi$ . The set of formulas  $Fm^{\Gamma(\mathbf{A})}(\Pi, \text{Prop})$ :

$$\rho \ni \top \mid \perp \mid p \mid \rho \vee \rho \mid \rho \wedge \rho \mid \rho \rightarrow \rho \mid \langle \pi \rangle \rho \mid [\pi] \rho$$

for  $p \in \text{Prop}$  and  $\pi \in Prog(\Pi)$ .

# $\mathcal{GDL}(\mathbf{A})$ – models

Based on [Conway 71] we consider the Kleene algebra

$$\mathbb{M}_n(\mathbf{A}) = (M_n(\mathbf{A}), +, ;, \mathbf{0}, \mathbf{1}, *)$$

- ▶  $M_n(\mathbf{A})$  is the space of  $(n \times n)$ -matrices over  $\mathbf{A}$
- ▶  $M = A + B$  defined by  $M_{i,j} = A_{i,j} + B_{i,j}$ ,  $i, j \leq n$ .
- ▶  $M = A ; B$  defined by  $M_{i,j} = \sum_{k=1}^n (A_{i,k} ; B_{k,j})$  for any  $i, j \leq n$ .
- ▶ **1** and **0** the identity and 0 matrices
- ▶  $M = \left[ \begin{array}{c|c} A & B \\ \hline C & D \end{array} \right]$   
$$M^* = \left[ \begin{array}{c|c} F^* & F^* ; B ; D^* \\ \hline D^* ; C ; F^* & D^* + (D^* ; C ; F^* ; B ; D^*) \end{array} \right] \text{ where}$$
$$F = A + B ; D^* ; C.$$

# $\mathcal{GDL}(\mathbf{A})$ – models

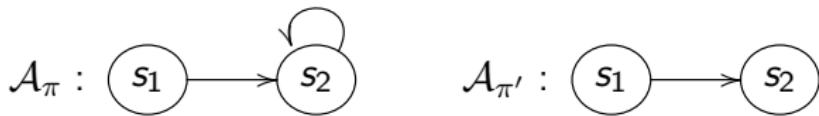
$\mathcal{GDL}(\mathbf{A})$ -models for  $(\text{Prop}, \Pi)$

$$\mathcal{A} = (W, V, (\mathcal{A}_\pi)_{\pi \in \Pi})$$

where

- ▶  $W$  is a set (of states),
- ▶  $V : \text{Prop} \times W \rightarrow \mathbf{A}$  is a function,
- ▶ and  $\mathcal{A}_\pi \in \mathbb{M}_n(\mathbf{A})$ , with  $n$  standing for the cardinality of  $W$ .

## Examples

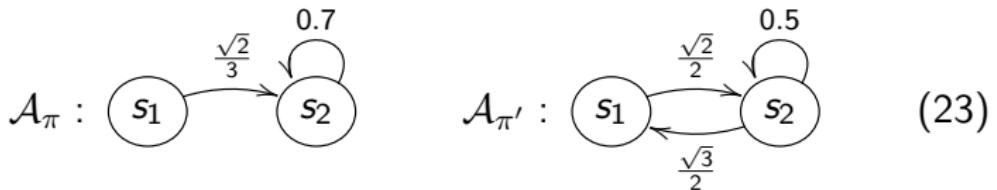


For a classic *PDL* semantics

$$\mathbf{2} = (\{\top, \perp\}, \vee, \wedge, \perp, \top, *, \leftarrow, \rightarrow, \wedge)$$

$$\mathcal{A}_{\pi; \pi'} = \begin{bmatrix} \perp & \top \\ \perp & \top \end{bmatrix}; \begin{bmatrix} \perp & \top \\ \perp & \perp \end{bmatrix} =$$
$$\begin{bmatrix} (\perp \wedge \perp) \vee (\top \wedge \perp) & (\perp \wedge \top) \vee (\top \wedge \perp) \\ (\perp \wedge \perp) \vee (\top \wedge \perp) & (\perp \wedge \top) \vee (\top \wedge \perp) \end{bmatrix} = \begin{bmatrix} \perp & \perp \\ \perp & \perp \end{bmatrix}$$

## Examples

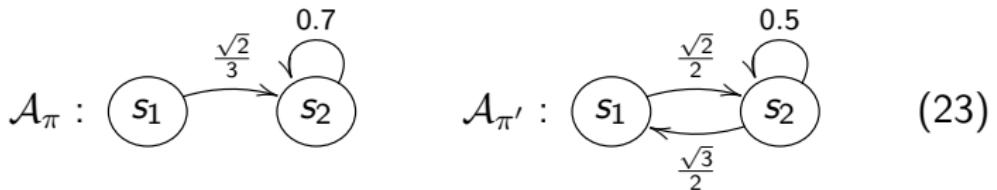


For systems with uncertainty

$$\mathbf{t} = ([0, 1], \max, \odot, 0, 1, *, \rightarrow, \min)$$

$$\begin{aligned} \mathcal{A}_{\pi+\pi'} &= \\ \max(\mathcal{A}_\pi, \mathcal{A}_{\pi'}) &= \end{aligned}$$

## Examples



For systems with uncertainty

$$\mathbf{L} = ([0, 1], \max, \odot, 0, 1, *, \rightarrow, \min)$$

$$\begin{aligned} \mathcal{A}_{\pi+\pi'} &= \\ \max(\mathcal{A}_\pi, \mathcal{A}_{\pi'}) &= \\ \max \left( \begin{bmatrix} 0 & \frac{\sqrt{2}}{3} \\ 0 & 0.7 \end{bmatrix}, \begin{bmatrix} 0 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{3}}{2} & 0.5 \end{bmatrix} \right) &= \begin{bmatrix} 0 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{3}}{2} & 0.7 \end{bmatrix} \end{aligned}$$

## Examples



For cost transitions systems

$$\mathbb{N}_{\perp\top}^+ = (\{\perp, 0, 1, \dots, \top\}, \max, +, \perp, 0, *, \sim, \min)$$

$$\mathcal{A}_{\pi^*} = \begin{bmatrix} \perp & a \\ \perp & b \end{bmatrix} = \begin{bmatrix} f^* & f^* + a + b^* \\ \perp & \max\{b^*, b^* + \perp + \perp^* + a + b^*\} \end{bmatrix} = \\ \begin{bmatrix} 0 & a + b^* \\ \perp & b^* \end{bmatrix}, \text{ where } f = \max\{\perp, a + b^* + \perp\}$$

# $\mathcal{GDL}(\mathbf{A})$ satisfaction

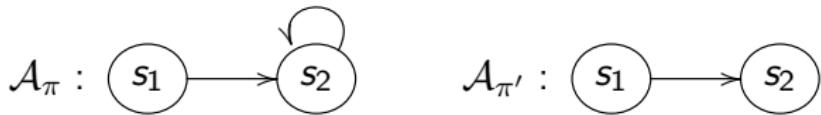
$$\models : W \times \text{Fm}^{\Gamma(\mathbf{A})}(\Pi, \text{Prop}) \rightarrow A$$

## $\mathcal{GDL}(\mathbf{A})$ satisfaction

$$\models : W \times \text{Fm}^{\Gamma(\mathbf{A})}(\Pi, \text{Prop}) \rightarrow A$$

- ▶  $(w \models \top) = \top$
- ▶  $(w \models \perp) = \perp$
- ▶  $(w \models p) = V(p, w)$ , for any  $p \in \text{Prop}$
- ▶  $(w \models \rho \wedge \rho') = (w \models \rho) \cdot (w \models \rho')$
- ▶  $(w \models \rho \vee \rho') = (w \models \rho) + (w \models \rho')$
- ▶  $(w \models \rho \rightarrow \rho') = (w \models \rho) \rightarrow (w \models \rho')$
- ▶  $(w \models \rho \leftrightarrow \rho') = (w \models \rho \rightarrow \rho'); (w \models \rho' \rightarrow \rho)$
- ▶  $(w \models \langle \pi \rangle \rho) = \sum_{w' \in W} (\mathcal{A}_\pi(w, w'); (w' \models \rho))$
- ▶  $(w \models [\pi] \rho) = \prod_{w' \in W} (\mathcal{A}_\pi(w, w') \rightarrow (w' \models \rho))$

## Example — $\mathcal{GDL}(2)$



with  $V(p, s_1) = \perp$  and  $V(p, s_2) = \top$

$$\begin{aligned} (s_1 \models \langle \pi^* \rangle p) &= \\ &= \sum_{w' \in W} \{A_{\pi^*}(s_1, w'); (w' \models p)\} \\ &= (A_{\pi^*}(s_1, s_1) \wedge (s_1 \models p)) \vee (A_{\pi^*}(s_1, s_2) \wedge (s_2 \models p)) \\ &= (\top \wedge V(p, s_1)) \vee (\top \wedge V(p, s_2)) \\ &= (\top \wedge \perp) \vee (\top \wedge \top) \\ &= \top \end{aligned}$$

we can achieve at a state satisfying  $p$  from  $s_1$  through  $\pi^*$

## Example — $\mathcal{GDL}(\mathbb{N}_{\perp\top}^+)$

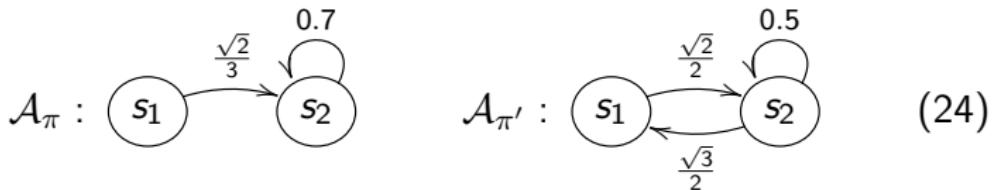


with  $V(s_1, p) = \perp$  and  $V(s_2, p) = 0$

$$\begin{aligned}(s_1 \models \langle \pi^* \rangle p) &= \\ &= \sum_{w' \in W} \{ \mathcal{A}_{\pi^*}(s_1, w'); (w' \models p) \} \\ &= \max \{ \mathcal{A}_{\pi^*}(s_1, s_1) + (s_1 \models p), \mathcal{A}_{\pi^*}(s_1, s_2) + (s_2 \models p) \} \\ &= \max \{ 0 + \perp, a + b^* + 0 \} \\ &= a + b^*\end{aligned}$$

we can achieve at a state satisfying  $p$  from  $s_1$  through  $\pi^*$  consuming  $a + b^*$  cost unities

## Example — $\mathcal{GDL}(\mathbb{L})$



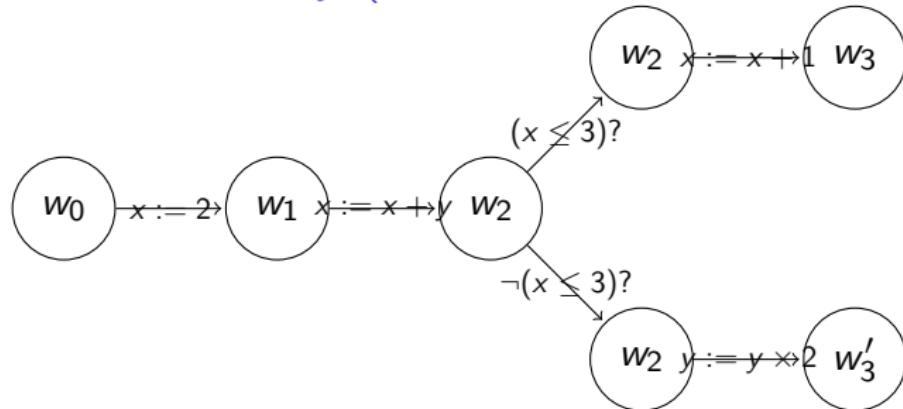
with  $V(p, s_1) = 0.1$ ,  $V(q, s_1) = 0.5$ ,  $V(p, s_2) = \frac{\pi}{4}$  and  
 $V(q, s_2) = 0.75$

$s_1 \models \langle \pi + \pi' \rangle (p \rightarrow q)$

$$\begin{aligned} &= \max(0 \odot (0.1 \rightarrow 0.5), \frac{\sqrt{2}}{2} \odot (0.75 \rightarrow \frac{\pi}{4})) \\ &= \frac{\sqrt{2}}{2} \odot (0.75 \rightarrow \frac{\pi}{4}) \\ &= \frac{\sqrt{2}}{2} \odot \min(1, 1 - 0.75 + \frac{\pi}{4}) \\ &= \frac{\sqrt{2}}{2} \end{aligned}$$

# Logic for imperative weighted programs?

$x := 2; x := x + y; (\text{if } x \leq 3 \text{ then } x := x + 1 \text{ else } y := y \times 2)$



**On the Generation of Equational Dynamic Logics for Weighted Imperative Programs.** Leandro Gomes, Alexandre Madeira, Manisha Jain, Luís Soares Barbosa. ICFEM 2019

# Syntax of $\Gamma(\mathbf{A})$

$$\mathbf{A} = (A, +, ;, 0, 1, *, \rightarrow, \cdot)$$

## Signatures of $\Gamma(\mathbf{A})$

are pairs  $(\Sigma, \Pi)$ , with

- ▶  $\Sigma$  is a FOL signature
- ▶  $\Pi = \{x := t \mid x \in X \text{ and } t \in T_\Sigma(X)\}$

## Programs

$$\pi ::= \pi_0 \mid \phi? \mid \pi; \pi \mid \pi + \pi \mid \pi^*, \quad \pi_0 \in \Pi$$

## Formulas of $\Gamma(\mathbf{A})$

$$\varphi ::= \top \mid \perp \mid P(t_0, \dots, t_n) \mid \varphi \vee \varphi \mid \varphi \wedge \varphi \mid \varphi \rightarrow \varphi \mid \langle \pi \rangle \varphi \mid [\pi] \varphi$$

# Interpretation of Atomic Programs

States are functions

$$w : X \times \mathbb{R} \rightarrow A$$

where  $A$  is the carrier of action lattice **A**

$(\Sigma, \Pi)$ -Models of  $\Gamma(\mathbf{A})$

are structures

$$M = (W, E)$$

where

- ▶  $W \subseteq A^{X \times \mathbb{R}}$  is a set of states;
- ▶  $E : \Pi \times (W \times W) \rightarrow A$  is a program grading function.

# Interpretation of Atomic Programs

Interpretation of terms  $\llbracket t \rrbracket_w : T_\Sigma^F(X) \rightarrow A^{\mathbb{R}}$

- ▶  $\llbracket x \rrbracket_w(r) = w(x, r)$
- ▶  $\llbracket c \rrbracket_w(r) = 1$  if  $r = c$  and  $\llbracket c \rrbracket_w(r) = 0$  otherwise
- ▶  $\llbracket f(t_1, \dots, t_n) \rrbracket_w(r) = \sum_{i \in I} \{ \prod_{j=1}^n \llbracket t_j \rrbracket_w(r_j^i) \mid f(r_1^i, \dots, r_n^i) = r \},$   
/ the cardinality of the set solutions of  $f(r_1^i, \dots, r_n^i) = r$  in  $\mathbb{R}$

# Interpretation of Atomic Programs

## Example in $\Gamma(\mathbf{G})$

Let us consider a state  $w$  such that  $w(x, 1) = 0.5$ ,  $w(x, 2) = 0.2$ ,  $w(y, 1) = 0.1$ ,  $w(y, 2) = 0.4$  and 0 otherwise for state  $w$ .

$$\begin{aligned}\llbracket x + y \rrbracket_w(3) &= \llbracket x \rrbracket_w(1); \llbracket y \rrbracket_w(2) + \llbracket x \rrbracket_w(2); \llbracket y \rrbracket_w(1) \\ &= w(x, 1); w(y, 2) + w(x, 2); w(y, 1) \\ &= \max(\min(0.5; 0.4), \min(0.2; 0.1)) \\ &= 0.4\end{aligned}$$

# Interpretation of Atomic Programs

Interpretation of predicates  $\llbracket p \rrbracket_w : T_\Sigma^P(X) \rightarrow A$

$$\llbracket p(t_1, \dots, t_n) \rrbracket_w = \sum_{i \in I} \{ \prod_{j=1}^n \llbracket t_j \rrbracket_w(r_j^i) : p(r_1^i, \dots, r_n^i) \text{ is true} \}$$

where  $I$  is the cardinality of the set of all possible values  $(r_1^i, \dots, r_n^i) \in \mathbb{R}^n$  satisfying  $p(r_1^i, \dots, r_n^i)$  in  $\mathbb{R}$

Example in  $\Gamma(\mathbf{G})$

$w(x, 2) = 0.3, w(x, 3) = 0.5, w(x, 4) = 0.5, w(x, r) = 0$  otherwise  
 $\llbracket x \leq 3 \rrbracket(w) = \llbracket x \rrbracket(2); \llbracket 3 \rrbracket(3) + \llbracket x \rrbracket(3); \llbracket 3 \rrbracket(3) =$   
 $\max\{ \min\{0.3, 1\}, \min\{0.2, 1\} \} = 0.3$

# Interpretation of atomic programs

## Interpretation of atomic programs

$$\llbracket \_ \rrbracket^0: \Pi \rightarrow A^{W \times W}$$

is the map defined by:

$$\llbracket x := t \rrbracket^0(w, w') = \begin{cases} E(x := t, (w, w')) & \text{if } (w, w') \in \llbracket x := t \rrbracket \\ \mathbf{0} & \text{otherwise} \end{cases}$$

with

$$(w, w') \in \llbracket x := t \rrbracket \Leftrightarrow \begin{cases} w'(y, r) = w(y, r) & \text{if } y \neq x \\ w'(x, r) = \llbracket t \rrbracket_w(r) & \text{otherwise} \end{cases}$$

# interpretation of (composed) programs

The algebra of *program grading functions*

for an action lattice  $\mathbf{A} = (A, +, ;, 0, 1, *, \rightarrow, \cdot)$  and a set of states  $W$ , is the structure

$$\mathbf{E} = (Z(E), \cup, \circ, \emptyset, \chi, *)$$

where:

- ▶  $Z(E)$  is the universe of all the program grading functions
- ▶  $(E(\pi_1) \cup E(\pi_2))(w, w') = E(\pi_1, (w, w')) + E(\pi_2, (w, w'))$
- ▶  $(E(\pi_1) \circ E(\pi_2))(w, w') = \sum_{w'' \in W} E(\pi_1, (w, w'')); E(\pi_2, (w'', w'))$
- ▶  $\emptyset(w, w') = 0$
- ▶  $(E(\pi))^*(w, w') = \sum_{i \geq 0} (E(\pi))^i(w, w') = (E(\pi))^0(w, w') + (E(\pi))^1(w, w') + (E(\pi))^2(w, w') + \dots$

# interpretation of (composed) programs

The interpretation of a composed program  
in a model is a map

$$[\![ - ]\!]: \text{Prg}(\Sigma, X) \rightarrow A^{W \times W}$$

where

- ▶  $[\![ \pi_0 ]\!] = [\![ \pi_0 ]\!]^0$ , for each  $\pi_0 \in \text{Prg}_0(\Delta)$
- ▶  $[\![ \pi; \pi ]\!] = [\![ \pi ]\!] \circ [\![ \pi' ]\!]$
- ▶  $[\![ \pi + \pi ]\!] = [\![ \pi ]\!] \cup [\![ \pi' ]\!]$
- ▶  $[\![ \pi^* ]\!] = [\![ \pi ]\!]^*$

where, for  $r \in A^{W \times W}$ ,  $r^*(w, w') = \sum_{k \geq 0} r^k(w, w')$ .

# Satisfaction

The graded Satisfaction relation

for a model  $M \in \text{Mod}^{\Gamma(\mathbf{A})}(\Delta)$ , consists of a function

$$\models_{\Gamma(\mathbf{A})} : W \times \text{Fm}^{\Gamma(\mathbf{A})}(\Delta) \rightarrow A$$

recursively defined by

- ▶  $(w \models_{\Gamma(\mathbf{A})} \top) = 1$
- ▶  $(w \models_{\Gamma(\mathbf{A})} \perp) = 0$
- ▶  $(w \models_{\Gamma(\mathbf{A})} p(t_1, \dots, t_n)) = [\![p(t_1, \dots, t_n)]\!]_w$
- ▶  $(w \models_{\Gamma(\mathbf{A})} \varphi \rightarrow \varphi') = (w \models_{\Gamma(\mathbf{A})} \varphi) \rightarrow (w \models_{\Gamma(\mathbf{A})} \varphi')$
- ▶  $(w \models_{\Gamma(\mathbf{A})} \langle \pi \rangle \varphi) = \sum_{w' \in W} ([\![\pi]\!](w, w'); (w' \models_{\Gamma(\mathbf{A})} \varphi))$
- ▶  $(w \models_{\Gamma(\mathbf{A})} [\pi] \varphi) = \bigwedge_{w' \in W} ([\![\pi]\!](w, w') \rightarrow (w' \models_{\Gamma(\mathbf{A})} \varphi))$

# Satisfaction

Interpretation of tests:

Classic interpretation

$$R_{\varphi?} = \{(w, w) \mid w \models \varphi\}$$

In this work

$$[\![\varphi?]\!](w, w') = \begin{cases} (w \models_{\Gamma(\mathbf{A})} \varphi) & \text{if } w = w' \\ 0 & \text{otherwise} \end{cases}$$

## Illustration

**if**  $x \leq 3$  **then**  $x := x + 1$  **else**  $y := y \times 2$

$$\begin{aligned}&\equiv \llbracket ((x \leq 3)?; x := x + 1) + (((x \leq 3) \rightarrow \perp)?; y := y \times 2) \rrbracket(w, v) \\&= \llbracket (x \leq 3)?; x := x + 1 \rrbracket(w, v) + \llbracket ((x \leq 3) \rightarrow \perp)?; y := y \times 2 \rrbracket(w, v) \\&= \llbracket (x \leq 3)? \rrbracket(w, w); \llbracket x := x + 1 \rrbracket_0(w, v) + \llbracket ((x \leq 3) \rightarrow \perp)? \rrbracket(w, w); \llbracket y := y \times 2 \rrbracket_0(w, v) \\&= (w \models x \leq 3); E(x := x + 1, (w, v)) + (w \models x \leq 3 \rightarrow (w \models 0)); E(y := y \times 2, (w, v))\end{aligned}$$

$\Gamma(2)$  – classic programs

$$w(x, 2) = \top \text{ and } w(x, r) = \perp, r \neq 2 \text{ and } v(x, 3) = \top \text{ and } v(x, r) = \perp, r \neq 3, \\(\top \wedge \top) \vee ((\top \rightarrow \perp) \wedge \top) = \top$$

$\Gamma(\mathbf{G})$  – fuzzy programs

$$\max\{\min\{0.3, 0.7\}, \min\{0.3 \rightarrow 0, 0.09\}\} = 0.3$$

$\Gamma(\mathbf{R})$  – resources dependent programs

$$\min\{3 + 7, 0 + 9\} = 9$$

# Outline

Why Program Logics?

Preliminaries: Modal Logic in a rush

(Standard) Dynamic Logics

Extension 1: A DL to hybrid programs

Extension 2: DL for weighted programs (a parametric perspective)

Extension 3: Dynamic Logic for quantum programs

# Dynamic Logics for Quantum Programs?

Quantum logics have a long tradition...

- ▶ (Von Neumann-Birkhoff, 36)/ (Mackey, 56)/ (Piron, 76)...  
“Logics for quantum mechanics”
  - ▶ unlike in Classic Mechanics, Quantum Mechanics requires giving up basic principles of classical proposition logic
    - **Orthocomplemented lattices**

# Dynamic Logics for Quantum Programs?

Quantum logics have a long tradition...

- ▶ (Von Neumann-Birkhoff, 36)/ (Mackey, 56)/ (Piron, 76)...  
“Logics for quantum mechanics”
  - ▶ unlike in Classic Mechanics, Quantum Mechanics requires giving up basic principles of classical proposition logic
    - **Orthocomplemented lattices**

(Feynman,82) – seminal idea of quantum computing –

# Dynamic Logics for Quantum Programs?

Quantum logics have a long tradition...

- ▶ (Von Neumann-Birkhoff, 36)/ (Mackey, 56)/ (Piron, 76)...  
“Logics for quantum mechanics”
  - ▶ unlike in Classic Mechanics, Quantum Mechanics requires giving up basic principles of classical proposition logic
    - **Orthocomplemented lattices**

(Feynman,82) – seminal idea of quantum computing –

- ▶ Challenge:  
**logics for the specification and verification of quantum algorithms**

# Dynamic Logics for Quantum Programs?

Dynamic Logics are suitable to verify a wide class of computational systems

Quantum Computing is an exception?

# Dynamic Logics for Quantum Programs?

Dynamic Logics are suitable to verify a wide class of computational systems

Quantum Computing is an exception?

- ▶ Hoare Logics for Quantum programs – (M. Ying, 12), (Kakutani, 09), ...

# Dynamic Logics for Quantum Programs?

Dynamic Logics are suitable to verify a wide class of computational systems

Quantum Computing is an exception?

- ▶ Hoare Logics for Quantum programs – (M. Ying, 12), (Kakutani, 09), ...
- ▶ Dynamic turn in quantum logic of Baltag-Smets
  - ▶ Quantum Logic as ‘**Dynamic logic of Quantum Measurements and Quantum Evolutions**’
  - ▶ evolved to fit the **verification of quantum algorithms**

# Baltag - Smets Quantum Dynamic Logics

Since 2004,

- ▶ LQM - logic of the quantum measurements
  - ▶ single quantum systems
- ▶ LQA - logic of quantum actions
  - ▶ unitary transformations (quantum-gates) as atomic programs
- ▶ LQP - logic of compound quantum systems
  - ▶  $\otimes$ -composition of  $\mathcal{H}$ -subspaces and spatial modalities
- ▶ PLPQ - probabilistic quantum programs
  - ▶ probabilistic modalities
- ▶ ...

# Principles of the approach

Let us fix and Hilbert space  $\mathcal{H}$  and a signature (Prop,  $U$ )

- ▶ **Syntax** is the classic one – atomic actions are quantum gates (unitary transformations)
- ▶ **Quantum Kripke frame**  $M = (W, S, U)$ :
  - ▶  $W$  is the one-dimensional subspaces of  $\mathcal{H}$  (i.e. the rays)
  - ▶  $S$  is a set of testable properties (i.e. st  $S = S^{\perp\perp}$ , for  $S^\perp = \{t \in W \mid t \perp s, s \in S\}$ )
  - ▶ for each  $u \in U$ ,  $R_u : W \rightarrow W$  is an unitary transformation (a quantum gate)

# Principles of the approach

## (Classic )Tests Vs Measurements (evolutions)

- ▶ **classic case:**  $?φ$  means that – “ $φ$  holds in the tested state”
  - ▶  $\overline{R}_{?φ} = \{(w, w) | w \models φ\}$
  - ▶  $M, w \models [?φ]\psi$  iff  $M, w \models φ$  implies  $M, w \models \psi$

# Principles of the approach

## (Classic )Tests Vs Measurements (evolutions)

- ▶ **classic case:**  $? \varphi$  means that – “ $\varphi$  holds in the tested state”
  - ▶  $\overline{R}_{? \varphi} = \{(w, w) | w \models \varphi\}$
  - ▶  $M, w \models [? \varphi] \psi$  iff  $M, w \models \varphi$  implies  $M, w \models \psi$
- ▶ **quantum case:**  $? \varphi$  means that – “ $\varphi$  holds after the test”
  - ▶  $\overline{R}_{? \varphi} = \{(s, t) | Proj_{\varphi}(v) = t, v \in s\}$ , for  $Proj_{\varphi} : \mathcal{H} \rightarrow \mathcal{H}$  is the projection onto the closed linear subspace that the set of states satisfying  $\varphi$  generates
  - ▶  $M, w \models [? \varphi] \psi$   
iff for all  $v \in w$ ,  $M, Proj_{\varphi}(v) \models \varphi$  implies  $M, Proj_{\varphi}(v) \models \psi$

(There are more slides to put here ...)

# A brief overview in Dynamic Logics

Alexandre Madeira  
Mathematics Dep, U. Aveiro



February 10, 2026,  
Software Foundations, MAP-i 25/26  
DMat, U.Aveiro