A brief overview in Dynamic Logics

Alexandre Madeira
Mathematics Dep, U. Aveiro

universidade
de aveiro

February 10, 2026,
Software Foundations, MAP-i 25/26
DMat, U.Aveiro

Outline

Why Program Logics?

Preliminairs: Modal Logic in a rush

(Standard) Dynamic Logics

Extension 1: A DL to hybrid programs

Extension 2: DL for weighted programs (a parametric perspective)

Extension 3: Dynamic Logic for quantum programs

Outline

Why Program Logics?

About the current computational systems

Andre Platzer
. there is probably no other area where the gap is more noticeable
between the tremendous complexity of the systems we can built
and the modest size of systems that we can analyse
Logical Analysis of Hybrid Systems, 2012

looking at the current practices

The quality and dependability of

most of the systems is assured by test-oriented development
methodologies

looking at the current practices

The quality and dependability of

most of the systems is assured by test-oriented development
methodologies

Edsger Dijkstra (Turing Award 1972)

program testing can be used to show the presence of bugs, but
never to show their absence!

(1969)

looking to classic engineering ...

e.g. in Mechanics, mathematics is used

P as an unambiguous language to express requirements
P to support rigorous modelling

P to support the validation and verification tasks

... following the basic principles of engineering

Formal methods
mathematical and formal logic based techniques for the
specification, development and validation of computational

systems

Formal Logics in Computer Science

particularly, Formal Logics are valuable mathematical tools
For

> modelling
P reasoning on
> verify

Complex systems

Just an illustration

Equational Calculus in a rush
blackboard ...

Verification of classical imperative programs

Robert W. Floyd

ASSIGNING MEANINGS TO PROGRAMS:!

Introduction. This paper attempts to provide an adequate basis for

formal definitions of the ings of in iately defined
programming languages, in such a way that arigorous standard is established
for proofs about Tudis proofs of

equivalence, and termination. The basis of our approach is the notion of
an interpretation of a program: that is, an association of a proposition

An Axiomatic Basis for
Computer Programming

C. A. R. HoARE
The Queen’s University of Belfast,* Northern Ireland

Verification of classical imperative programs

Floyd-Hoare Logic

{¢} Prog {p}

Verification of classical imperative programs

Floyd-Hoare Logic

{¢} Prog {p}

Axioms:

{le/x]} x = e{p} {0} skip{o}

Verification of classical imperative programs

Floyd-Hoare Logic

{¢} Prog {x}

Axioms:

{le/x]} x = e{p} {0} skip{o}

Inference rules:

o —¢ {¢}S{¢'} ¢ = {615{&} {§}T{v}
{6}S{¢} {6}S; T{p}

{¢ A a}Si{e} {oA—a}S{s}
{¢}if athen S; else Sp{p}

Verification of classical imperative programs

{x=1}y =x+1,z:=y{z=2}

Verification of classical imperative programs

{x=1}ly =x+1z:=y{z=2}

x=1ly =x+1z:=y{z=2}

since (y =2)[x+1/yl]ex=1and (z=2)[y/z] &y =2

Verification of classical imperative programs

{x=1}y =x+1,z:=y{z=2}

{x=1}y:=x+1{y=2} {y=2}z:=y{z=2}
{x=1}y =x+1,z:=y{z=2}

since (y =2)[x+1/yl]ex=1and (z=2)[y/z] &y =2

{x =1}if x < 2thenx := x + lelse x := x * x{x = 2}

Verification of classical imperative programs

{x=1}ly =x+1z:=y{z=2}

x=1ly =x+1z:=y{z=2}

since (y =2)[x+1/yl]ex=1and (z=2)[y/z] &y =2

{x =1}if x <2thenx := x + lelse x := x x x{x = 2}

{x=1}x:=x+1{x=2}
{x=1Ax<2}x:=x+1{x=2} {x=1Ax>2}x:=xxx{y=2}

{x =1}if x < 2thenx := x + lelse x := x * x{x = 2}

Verification of classical imperative programs

{x=1}ly =x+1z:=y{z=2}

x=1ly =x+1z:=y{z=2}

since (y =2)[x+1/yl]ex=1and (z=2)[y/z] &y =2

{x =1}if x <2thenx := x + lelse x := x x x{x = 2}

{x=1}x:=x+1{x=2}
{x=1Ax<2}x:=x+1{x=2} {x=1Ax>2}x:=xxx{y=2}

{x =1}if x < 2thenx := x + lelse x := x * x{x = 2}

since
(x=2)[x+1/x] ©@x=1and x=1Ax < 2<% false

Verification of classical imperative programs

{x=1}ly =x+1z:=y{z=2}

x=1ly =x+1z:=y{z=2}

since (y =2)[x+1/yl]ex=1and (z=2)[y/z] &y =2

{x =1}if x <2thenx := x + lelse x := x x x{x = 2}

{x=1}x:=x+1{x=2}
{x=1Ax<2}x:=x+1{x=2} {x=1Ax>2}x:=xxx{y=2}

{x =1}if x < 2thenx := x + lelse x := x * x{x = 2}

since
(x=2)[x+1/x] ©@x=1and x=1Ax < 2<% false

Exercise:
{y>4Nz>-1ly =y+z{y >3}
{y >4}if(z>—-1)theny ==y +zelsey .=y — 1{y > 3}

Verification of classical imperative programs

How to take advantage of formal logic methods and results?

» Modal logic, as logic of change, is the natural candidate to
reason about programs

Verification of classical imperative programs

How to take advantage of formal logic methods and results?

» Modal logic, as logic of change, is the natural candidate to
reason about programs

A modal logic to verify programs?

Vaughan Pratt, 76

SEMANTICAL CONSIDERATIONS ON FLOYD-HOARE LOGIC

Vaughan R. Pratt
Nassachusetts Institute of Technology
Cambridge, MA 02139
August 1976
ABSTRACT

This paper deals with logics of programs. The objective
is to formalize a notion of program description, snd to give both
plausible (semantic) and effective (syntactic) criteria for the

Outline

Preliminairs: Modal Logic in a rush

Processes are transition systems

Two coffee machines

wi S1
E o |
coin coin
w2 s2 53

cojfe/ l tea coffeel l tea

w3 Wy S4 S5

Knowledge systems with multi-agents are transition
systems

The envelop game

012 ——021
/C/ \"v/ \"\
102 a 120
N, 7
201 —a— 210

E.g. at state 012: Ana has an envelop with 0, Bob one with 1 and
Clara with 2

Programs are transition systems

int i = 0;

do {
assert(i <= 10);
i = i+2;

} while (i < 5);

i < {0} {0,2}

1=2+2;

The language

Signatures
Signatures are pairs (Prop. Act) where Prop and Act are (disjoint)
sets of symbols of proposition and of actions

The language

Signatures
Signatures are pairs (Prop. Act) where Prop and Act are (disjoint)
sets of symbols of proposition and of actions

Formulas
Let (Prop, Act) a signature. The set of formulas for (Prop, Act), in
symbols Fm(Prop), is defined as follows:

pu=p |l L]le—=ellae

where p € Prop and a € Act

The language

Signatures
Signatures are pairs (Prop. Act) where Prop and Act are (disjoint)
sets of symbols of proposition and of actions

Formulas
Let (Prop, Act) a signature. The set of formulas for (Prop, Act), in
symbols Fm(Prop), is defined as follows:

pu=p|L]le—=e]lde
where p € Prop and a € Act
Abbreviates
> —pi=p— L
P1V 2 =701 = P2

>
> 1 Az = (1 — —p2)
> (a)¢ := —[a] ¢

>

Models

Models
A model for the signature (Prop, Act) is a pair M = (F, V),
where

» F = (W,(R.)acAct) is a Kripke structure, i.e.

> |/ is a non empty set (of states)
» (R.).cact is a family of binary relations R, C W x W, for
each modality symbol a € Act.

» V :Prop — P(W) is a valuation.

Multimodal satisfaction relation

Satisfaction for a model M in a state w
> M,wkEpifwe V(p)
> M,w = L is always false
> M,w E @1 — ¢ if it is false that M, w = 1 or M, w = 2
> M,w = [a]g if for any v € W, if (w,v) € R, then M,v |= ¢

Multimodal satisfaction relation

Satisfaction for a model M in a state w
> M,wkEpifwe V(p)
> M,w = L is always false
> M,w E @1 — ¢ if it is false that M, w = 1 or M, w = 2
> M,w = [a]g if for any v € W, if (w,v) € R, then M,v |= ¢

Corollary
> M,w = —g if is false that M,w = ¢
> MiwEpi Apsif Mw = 1 and M, w = @2
> MiwEp1Verif Miw =1 or Myw |= @2
> M,w = (a)yp if there exists a v € W such that (w,v) € R; and M, v = ¢

Multimodal satisfaction

Satisfaction
A formula ¢ € Fm(Prop) is

» satisfiable in M if it is satisfied in some state w of M

» globally satisfied in M (M |= ¢) if it is satisfied in all teh
states of M

» valid (= ¢) if it is globally satisfied in all the models for
(Prop, Act)

» is a semantical consequence of a set of formulas ' (I" & ¢)
i for any model M, and for every state w of M, if Myw =T
then M, w |= ¢

Exercise

Verify that :

1.

1

o

© ® N O U AW

M,s = (a)T

M,s = [a]L

M,s = (b)T

M,s = [b] L

M.s = [a)(b) T

. M;s = (a)(b) L

M,s = [al(a)la]lb] L
M,s = (a)((@)T A (B)T)
M, [E((@)T v (5)T)

- M. s = (a)([pl[a] L A (5)T)

Exercicio

Find a model M for ({},{a, b, c}) with a state w such that that
simultaneously verifies:

> M,w = (&)((6)()T A)T
> M,w = (a)(b)([al L A [61L A [e] L)
> M,w b [al(b)([c] L A (3)T)

Outline

(Standard) Dynamic Logics

Programs as modalities

Programs:

Assuming a set of atomic programs [1:
Ti=mo | mHw| || ?x

for mp € N1 and x a predicate

Programs interpretation

Sequential program
» Prp. = Pryo Pry

Programs interpretation

Non deterministic choice
» Proiq = PrpU Pry

Programs interpretation

[terative closure
» Pry« = (Pry)*, for
(Prz)* = Un<0(Pr7r)", where
> (w,w') € (Prﬂ) if w=w
> (w,w') € (Pry)"+1 if (w,w’) € (Prz)o (Prz)"

Programs interpretation

Tests
> Prcp?:{(W7W)‘M7W):(p}

p?
-
\ 1
N
¢ .

¥ P

Exercise:

Express the following standard commands as terms of out program
algebra:

» if © then 7 else 7’/
» while ¢ do 7 od
> repeat w until ¢

Programs interpretation

if ¢ then 7 else 7' = (p?;7) + (—p?; ')

Programs interpretation

while p do 7 od = (7, 7)*; —p?

Programs interpretation

repeat m until p = 7; (—¢?; 7)*

Exercise

Consider the

({3, b}a {P, q})—model
Mrepresented in the left, such

that V(p) = {s1,s3} e

V(q) = {57 2, 54}-

Interpret the following programs
in M:

a:b

VVvyVvyVvVVvyVvVYVYYVYYy
W

53

S4

Propositional dynamic logic (in a rush)

Signatures Are pairs (Prop. 1) where Prop and I are disjoint
sets of propositions, and atomic programs

Propositional dynamic logic (in a rush)

Signatures Are pairs (Prop. 1) where Prop and I are disjoint
sets of propositions, and atomic programs

Sentences ¢ = p[(m)p|[mly|~pleVeloAp
Tu=m |mHw | T T
and p € Prop

Propositional dynamic logic (in a rush)

Signatures Are pairs (Prop. 1) where Prop and I are disjoint
sets of propositions, and atomic programs
Sentences ¢ == p|(mo¢|[rle[~@leVe|lpAp
Tu=m |mHw | T T
and p € Prop
Models Models are Kripke structures, i.e. tuples (W, V, R)
> W is a set
» V :Prop — P(W) is a function
» R=(R: C W x W) en is an M-family of binary
relations

Propositional dynamic logic

Satisfaction » M,w = (m)p iff there is a w' € W such that
(w,w') € Ry and M, w' = ¢;
> ...

Program interpretation
ﬁ(7"-0) = Rﬁo
R(x?) = {(w, w)|M,w |= x}
(7 + ") = R(m) UR(w")
(m7') = R(m) - R(n')
(

R
R
R(7*) = R(7)* = U,en R(7"), where 7™ = m; 7"

Exercicio

Considere o ({a, b, c}, {p, g})-modelo M = (W, R, V), com
W = {w1, wa, w3, wa, ws } e tal que:
> V(p) = {wi,ws} e V(q) =W,
> Ry = {(w1,w3), (w1, wa), (w1, ws), (w2, wz), (ws, ws)}
> Ry ={(x,y) € W?|x =y},
» Re={(wi,x)|x € W}
Verifique se:
> a) M,w = [(a b)]p V [b" + clq
> b) M,ws = [q7; b]lp — [c]—q

Exercicio

Considere o ({a, b, c}, {p, g})-modelo M = (W, R, V), com
W ={-2,-1,0,1,2} e tal que:

> V(p) ={xe€ W|x >0} e V(q) ={x e W|x <1},

> R,={(x,y) € W?|x <0,y >0}

> Ry ={(x.y) € W2|x =y}

» R.={(0,x)|x € W}
Verifique se:

> a) M,0=[(a+ b)lpV[b*+clq

> b) M,2 = [(p— q)% blp — [c]~q

Exercicio

Verifique que as seguintes propriedades sao validas em PDL
> [o; Ble < [a][Ble
> [a+ Bl < [ale A[Ble
> [l = o Ala]la]"e
> [a*](¢ = [a]p) = (¢ = [a7]e
> [p?Y < (¢ = ¥)

From propositional to first order DL

Programs:
a,f3 x=0|atBlafla" |

States:
the space of variables valuations & — &

Programs interpretation
The accessibility relation p(«) € & < &S is recursively defined by:

> p(x:=0)={(u,v)|v(x) = 6 and for any y € V\ {x}, u(y) = v(y)}
> ...

By considering first order assignments:

verification of
{x =1}if x < 2thenx := x + lelse x := x * x{x = 2}

x=1-[x<2),x=x+1+((x<2)hx:=xxx]x=2

By considering first order assignments:

verification of
{x =1}if x < 2thenx := x + lelse x := x * x{x = 2}

x=1-[x<2),x=x+1+((x<2)hx:=xxx]x=2

x=1—[ifx <2thenx :=x+ lelsex := x * x|x =2

Supporting tools?

KeY project

[x]
File View Proof Options Tools

50 Apply Heuristics | O A10resume | £/ Run SIMPLIFY H 1% Goal Back Hil

Current Goal @ demo.ke
Proof z =

Proof

[Proof Tree
e,

KeY -- Prover ol ® 1 4
Help

==>

{i:=0}
int_induction
@ Closse case <{
hide_ri.
gdeo-azgr:!con while C i>0)
© [step Case i ==e 3
e [use case -

}>i=0

KR intagrated Deductive Software Dasign: Ready

P> A semi-automatic theorem prover based in dynamic logics
P see also KeY-Hoare

Reasoning about imperative programs with DL

Now, the verification of the Hoare triple

{Pre} Prog {Post}

corresponds to the dynamic logic validation of

Pre — [Prog] Post

Outline

Extension 1: A DL to hybrid programs

Dynamic Logic for hybrid systems?

Platzer's differential dynamic logic d.£
> logic developed for specifying and verifying properties of
hybrid systems

P> with a ‘relative complete calculus’ i.e., we can prove
properties of hybrid systems exactly as good as properties of
differential equations can be proved

» a powerful computational tool support — KeYmaera

Discrete vs. Continuous evolutions

N W s

A discrete evolution A continuous evolution

=N W s

Time — Time —

Hybrid = discrete + continuous

» digital controller actions, discrete event interaction, etc

» physics entities, analogic controller actions, etc

Platzer's d L — syntax

Hybrid Programs

a,B3x:=0]x=0&x|aUB|a;B|a*|?x

Platzer's d L — syntax

Hybrid Programs
a,B3x:=0]x=0&x|aUB|a;B|a*|?x

dL-formulas

6,001 =061 <6 —¢p|dNY|[a]d

where 60,67 and 0, are terms

Platzer's dL — semantics

States:
are functions)V — R

Programs interpretation
The relation p(a) © S x S is defined as for first order DL with
> p(x:=0)={(u,v)|v(x) =0 and for any y € V\ {x}, u(y) = v(y)}

> p(x = 0&x) = {((0), p(r))p(t) = x,0 < t < r, for ¢ :[0,r] =
S a solution of any duration r}

plaUB) = p(a) U p(B)

pla; B) = p(a) o p(B)

p(a*) = U,en p(@”), where o = id and o™ = a; 0"
(

p(?x) = {(v,v)lv & x}

vV v. vy

Platzer's dL — satisfaction

v = (01 = 02) iff vg, = v,

viE-piffvEp

viEpAp iffviEpand v Ep
viEpVvpiffviEporviEy

v = [a]p iff for any (v, w) € p(a), w = p

v = (a)p iff there is a (v, w) € p(«), such that w = p

vVvyvyVvVvyypy

Platzer's d L — axiomatisation

Some deduction rules examples

p(0) X—p
[x := 6]p(x) [*x]p
[][B]p
[ev; Blp
[a*](p — [a]p)
p— la*]p
i z[i[X:-Q]l);(t)]p, for y'(t) =6

Some deduction Rules

(o) —— T s S v A L s
SO = S ki:uy = t: ; : (Ar) 1; s : () j}\d;;
@ie () () SR
il () elen e ()32 (I
gy oAz
(=) g e e s e

Some deduction Rules

Fo(s(Xh, s X)) Fo(X) _ F QE(VX(2(X) - ¥(X)))

) @) e e BT ey e w = T sh 5y

ols(X1. . X)) F o(X)F o FQE(AX A/(D; - Ty))
@n= Tu(e(@) F (DVZ“Q:(:(‘) - 3w .. @, F W,

en ;VG(@HL) en A Gl D)

(o) oo F g oen e = e
(i) 27 = [0) (o) EY0 > 0((r) > (et — 1)
Pk a¥]e Fup(v) F {a*)Fv < 0(p(v))

Case Study from Biology

Controller in a biological system.

Example
X/:5—X X/:6_X
y'=6-—y+u y'=1l-y+u
XxX<3ANy>2 xX>3Ny>2
x'=—x x'=1-x
y=5—-y+u y=-y+u
x<3ANy<?2 x>3ANy<?2

D. Figueiredo, Manuel Martins and M. Chaves.
Applying differential dynamic logic to reconfigurable biological networks,
Mathematical Biosciences, vol. 291, 10-20, 2017.

Biological Examples.

Controller in a biological system.

we look for steady states
i.e., the values of x and y for which the system tends

Control:
> u=2 ifx>3and t>2

» u =0, otherwise.

Using numeric method we can obtain (x, y) = (6, 3) as steady
state candidate.

Biological Examples

Controller in a biological system.

XI:5—X X/:6_X
y'=6-y+u y'=1l-y+u
X<3ANy>2 x>3ANy>2
x' = —x x'=1-x
y'=b—-y+u y'=-y+u
x<3ANy<2 x>3Ny <2

> ;= (?x<3Ay<2,u:=0;
(X==x,¥=5—-y+u1m7=1&x<3Ay<2))
> .
> ay=(x>3Ay >2u:=2;
(X=6-xy =1-y+ur =1&x>3Ay>2)

Example in Biology

Controller in a biological system.

the evolution of the entire biological system can be described
by:

a=ayUarxUazUay

Example in Biology

Controller in a biological system.

the evolution of the entire biological system can be described
by:

a=arUarUazUay
(x,y) = (6,3) is a steady state:

Jc>0(V0<k<c((x—6)2+(y—3)2=kArT=0
— [*](T =0V (x —6)2 + (y — 3)% < k)))

Supporting tools?

KeYmaera X

KeYmaeraX Dashboard Models Proofs Theme - Help- O ®
Escalator B> Auto & Normalize 'O Step back =
Propositional -~ Quantifiers - Hybrid Programs - Differential Equations ~ Closing - Inspect ~
Exhaustive prop

=Goal3
-R notR -
L ot X22 [{’.7x>1 xi=x-1; u {x'=vatrue}}*] x=0
AR andR - x

e AL andL ‘ =
VR o Y2 loop =
L orlL L
SR implyR rr A
oL implyL -
©R cquivk) - P
ol equivl r - [@PA
~>CR comnuteEquivk
CL commuteEquivl] [a*]P—Pa[a][a']P
Cut ... cut

> A semi-automatic theorem prover to analyse cyber-physical
systems based in Key system

Outline

Extension 2: DL for weighted programs (a parametric perspective)

Construction parameter

Klenne Algebra

Generic model for
computations

Action Lattice

Residuated Lattice

Generic truth
space

Construction parameter

Klenne Algebra

Action Lattice

Generic model for
computations

Residuated Lattice

Generic truth
space

Action lattice (Pratt 90, Kozen 91)

A:(A,+,;70717*7*>7')

> (A +,;,0,1,%) is a Kleene algebra;

» — is a residue wrt ;

» (A, +,.) is a lattice wrt relation a< b=a+b=0>b

Action lattice axiomatisation

a+(b+c)
a+b

a+a

a+0

a; (b; c)

a;l

a;(b+c)

(a+ b); c

a; 0
1+a+(a%;a")

a;x < x

U n

(a+b)+c (1)

b+a (2)
a ®3)
O+a=a (4)
(a;b); e ©)
l,a=a (6)

(a;b) + (a;c) (7)
(a¢) + (bic) (8)
0;a=0 (9)
a* (10)
a*ix < x (11)

Action lattice axiomatisation

a+(b+c)
a+b

a+a

a+0

a; (b; c)

a;l

a;(b+c)

(a+ b); c

a; 0
1+a+(a%;a")

a;x < x

U n

(a+b)+c (1)

b+a (2)
a ®3)
O+a=a (4)
(a;b); e ©)
l,a=a (6)

(a;b) + (a;c) (7)
(a¢) + (bic) (8)
0;a=0 (9)
a* (10)
a*ix < x (11)

x;a<x
a;x<b
a—b
(x = x)*

NI IN T U

x;a" < x (12)
x < a— {13)
a— (b+€)4)
x —x (15)
a — (a;x)(16)

Action lattice axiomatisation

at+(b+c) = (a+b)+c (1) x;a<x = x;a" <x(12)
at+b = b+a (2) ax<b & x<a— {13)
ata = a 3) a—b < a—(b+6)4)
a+0 = O+a=a (4) (x—=x)* = x—x (15)
a;(b;c) = (aib);c (5) x < a—(a;x)(16)
al = la=a (6) a-(b-c) = (a-b)-c(17)
a(b+c) = (ab)+(ac) (7) a-b = b-a (18)
(a+b);c = (ac)+(b;c) (8) a-a = a (19)
a0 = 0;a=0 9) at(a-b) = a (20)
1+a+(a%;a") < a* (10) a-(a+b) = a (21)
ax<x = a“x<x (11) a(a—b) < b (22)

Examples

2 - linear two-values lattice

Examples

2 - linear two-values lattice

2 = ({T7J-}7Va AaJ—7Ta *, _>7/\)
VL T AL T —S|L T«
1| L T 1| L L 1T T 1| T
T T T T L T T 1 T T T
3 - linear three-value lattice
3=({T,u, L}, V,A, L, T,%,—,A)
vV | L u T Al L wu T — | L T *
1| L u T 1L L L 1 T T 11T
u u u T u |l wu wu u 1 T u | T
T T T T T|L wu T T | L T T T

Examples

t - the Lukasiewicz arithmetic lattice

t = ([0,1], max,®,0,1, %, —, min)
where
» x©y=max{0,y +x — 1},
» x>y = min{l,1—x+y} and
> « maps each point of [0, 1] to 1.

Examples

FW - the Floyd-Warshall algebra

NIT = ({J-707 17 R T}7 max, +7J—707 * mln)

> -+ extends addition on N by considering L as its absorbent
» max and min wrt theorder L <0< --- < T

T, fa=_lLorb=T *

b—a, ifb>aandabeN L0
0, ifa > banda,beN Pl
1 otherwise TIT

Parametric construction

Let us construct
GDL(A)

for a fixed action lattice

A:(AT+7;?O?17*74>7.)

Parametric construction

Let us construct
GDL(A)

for a fixed action lattice

A=(A+,:,0,1 %)

GDL(A)-signatures

are propositional dynamic logic signatures, i.e. pairs

(Prop, M)

GDL(A) — formulae

The set of programs Prog([M):
Tom|mw|n+ 7| wt

for mg € .

GDL(A) — formulae

The set of programs Prog([M):
Tom|mw| 4|7
for o € M. The set of formulas " A)(11, Prop):

p2TILiplpVelpAplp—pl(mpllrlp

for p € Prop and 7 € Prog(I).

GDL(A) — models

Based on [Conway 71] we consider the Kleene algebra
M, (A) = (Ma(A), +,:,0,1, %)
M,(A) is the space of (n x n)-matrices over A

M = A+ B defined by M,‘J = A,‘J + B,'J, i,j < n.
M = A; B defined by M; ; = > _(Ai; Bk;) for any i,j < n.

vV v vy

1 and 0 the identity and 0 matrices

- [2f3

M*:[F* | F*;B;D"

v

D*; C; F*
F=A+B;D";C.

GDL(A) — models

GDL(A)-models for (Prop,)
A= (W,V,(Ax)ren)
where
> W is a set (of states),
» V :Prop x W — A is a function,
» and A, € M,(A), with n standing for the cardinality of W.

Examples

For a classic PDL semantics

2= ({T’ J—}7 \/7 /\7 J—a T7 O /\)

LT LT
A’””/:[J_ T}'[J_ J_]:

[(J_/\J_)\/(T/\J_) (J_/\T)\/(T/\J_)]:[J_ 1
1L 1

(LAL)V(TAL) (LAT)V(TAL)

|

Examples

0.5

0.7
V2 V2
OO PO =R

2
For systems with uncertainty

t = ([0, 1], max,®,0,1, %, —, min)

Aﬂ+7r’ =
maX(A7n Aﬂ'/) =

Examples

0.5

0.7
V2 V2
OO PO =R

2
For systems with uncertainty

t = ([0, 1], max,®,0,1, %, —, min)

Aﬂ+7r’ =
maX(A7nA7r’) =
V2 V2
max | | © % 0 % |0 %
0 07 || ¥ 05 307

Examples

b
Ao (=) A (=)

For cost transitions systems
NIT =({L,0,1,..., T}, max,+, L,0,%,~, min)

o [La]_]r fF*+a+ b
Tl L b | L max{b*,b*+ L+ L*+a+ b}
[O a+ b*

1 b] where f = max{L,a+ b*+ L}

GDL(A) satisfaction

= W x Fmr(A)(I_L Prop) — A

GDL(A) satisfaction

= W x Fm" (N, Prop) — A

=T)=

1) =

Ep) = (w), for any p € Prop
wEpAp)=(wEDp) (wp)

wEpVvp)=(wkEp)+(wkp)
w =
w =
w =
w =

R T X%

p—p)=wkEp) = (wkE/p)
perp)=wkp—=p)(wiEp =)o)
(Mp) = S wew (Ax(w, w); (W' |= p))
[71p) = [Tew (Ax(w, w') = (W' = p))

vVvVvvyVvVvYvVvyVvVvyYvYyy

Example — GDL(2)

with \/(p 1) = Land V(p,s) =T

E?

W{Aﬂ'*(sla w'); (W' = p)}

s1) A(st E p)) V (Are(s1,92) A (s2 = p))
(p s1)) V(T A V(p,52))
LYV(TAT)

3

Sy
Am

RSN
>>

—~~
n
[t
(I | [e T

—H

‘we can achieve at a state satisfying p from s; through 7*

Example — GDL(NT ;)

b

with V(s;,p) = L and V(so,p) =0

(s1 = (m)p) =
= TwewlAr (s, W) (W = p)}
= max{Az(s1,51) + (51 = p), Ar=(51,%2) + (22 = p) }
= max{0+ L,a+ b*+ 0}
= a+b*

we can achieve at a state satisfying p from s; through 7* con-
suming a + b* cost unities

Example — GDL(t)

0.5

0.7
V2 V2
G A @) e

2

with V(p,s1) = 0.1, V(q,s1) = 0.5, V(p,s2) = § and
V(q, $) = 0.75

sif=(r+7')(p—q))
= max(0® (0.1 = 0.5), Y2 © (0.75 — 7))
25 (0.75 — T)
— Y omin(1,1-0.75+F)
2

= 2

Logic for imperative weighted programs?

x:=2%x:=x+y;(if x <3 then x :=x+1else y :=y x2)

On the Generation of Equational Dynamic Logics for
Weighted Imperative Programs. Leandro Gomes, Alexandre
Madeira, Manisha Jain, Luis Soares Barbosa. ICFEM 2019

Syntax of '(A)

A=(A+,;,0,1,% —,-)

Signatures of of '(A)
are pairs (X, 1), with
> > is a FOL signature
> MN={x:=t|xeXandte Tx(X)}

Programs

mu=m|o? | mm| T+ |, mo el

Formulas of T'(A)
pu=T[L[P(to,....ta) [VeloAple = ol (m)e][r]p

Interpretation of Atomic Programs

States are functions

w:XxR—=A
where A is the carrier of action lattice A
(X, M)-Models of ['(A)

are structures
M = (W, E)

where

> W C AX*R s a set of states;
> E: M x (W x W) — Ais a program grading function.

Interpretation of Atomic Programs

Interpretation of terms [t],: T£(X) — A%

> [xJw(r) = w(x,r)
» [c]w(r) =1if r =c and [c]w(r) = 0 otherwise

I the cardinality of the set solutions of f(rl,...,ri)=rin R

*'n

Interpretation of Atomic Programs

Example in T'(G)
Let us consider a state w such that w(x,1) = 0.5, w(x,2) =0.2,
w(y,1) = 0.1, w(y,2) = 0.4 and 0 otherwise for state w.

[x + ylw(3) =[x[w(1): [ylw(2) + <] (2); [y]w (1)
—w(x, 1); wly,2) + wx.2): (v 1)
=max(min(0.5;0.4), min(0.2;0.1))
=0.4

Interpretation of Atomic Programs

Interpretation of predicates [p],, : T£(X) — A

[p(ty,. ..t WfZ{HHWrJ'- (ri,...,rl) is true}

where [is the cardinality of the set of all possible values
(ri,...,rl) € R" satisfying p(ri,...,rl)in R

Example in ['(G)

w(x,2) = 0.3, w(x,3) =0.5, w(x,4) = 0.5, w(x, r) = 0 otherwise

[x < 3](w) = [x](2); [31(3) + [1(3): [31(3) =
max{min{0.3,1}, min{0.2.1}} = 0.3

Interpretation of atomic programs

Interpretation of atomic programs
[J%: N — AW
is the map defined by:

E(x:=t,(w,w")) if(w,w) € (x:=t)

0 otherwise

[x == t]%(w, w') = {

with

/ _ w(y,r)=w(y,r) ify#x
(ww)e b=t {W'(x, r) = [t]w(r) otherwise

interpretation of (composed) programs

The algebra of program grading functions

for an action lattice A = (A, +,;,0,1,%,—,-) and a set of states W, is
the structure
E=(Z(E),U,o,d,x,x*)

where:
» Z(E) is the universe of all the program grading functions
> (E(m) U E(m2))(w, w') = E(m1, (w, w)) + E(m2, (w, w'))
> (E(m) o E(m2))(w, w') = ZW E(my, (w, w")); E(m2, (", w'))
w''e

interpretation of (composed) programs

The interpretation of a composed program

in a model is a map
[-]: Prg(Z, X) — AWV*W

where
» [mo] = [m0]°, for each my € Prgy(A)
> [l =[x 0[]
» [r+ 7] = [x]U[r']
> [*] = [~]"

where, for r € AW rr(w w') = 3 rk(w, w').

Satisfaction

The graded Satisfaction relation
for a model M € Mod ™ (A), consists of a function

=ra) 0 W x Fm™®(A) — A

recursively defined by

> (wErm T)=1

> (W Fr@a) L) =0

> (w =rea) p(t, -5 ta)) = [p(t, -5 ta)]w
> (W Fra) ¢ = ¢') = (W Era) ») = (W Era) ¢')
> (w Erm) (M) = Xew (I7l(w, w'); (W' Era) ¢))
> (w Fra) [7le) = Awew ([[W]](Wa w') = (W' Era) 90))

Satisfaction

Interpretation of tests:

Classic interpretation
Rz = {(w, w)lw [= ¢}

In this work

0 otherwise

7w, w') = {(W S @) ifw=w

[[lustration

if x<3then x:=x+1lelse y =y x2

=S((x<3)x:=x4+1)+(((x<3) = L)y =y x2)](w,v)
=[(x<3)?x:=x+1](w,v)+ [((x <3) =)7y =y x2]|(w,v)

= [(x <3)?[(w, w); [x := x + 1]o(w, v) + [((x < 3) — L)?[(w. w); [y =y x 2]o(w. v)
=(wEx<3)E(x=x+1L(w,v)+(wEx<3) > (wE0),E(ly =y x2(w,v))

[(2) — classic programs

w(x,2) =T and w(x,r) =1, r#2and v(x,3) =T and v(x,r) = L, r #3,
(TAT)VUT = L)AT)=T

[(G) — fuzzy programs

max{min{0.3,0.7}, min{0.3 — 0, 0.09}} = 0.3

[(R) — resources dependent programs
min{3+7,0+9} =9

Outline

Extension 3: Dynamic Logic for quantum programs

Dynamic Logics for Quantum Programs?

Quantum logics have a long tradition...
» (Von Neumann-Birkhoff, 36)/ (Mackey, 56)/ (Piron, 76)...
“Logics for quantum mechanics”

» unlike in Classic Mechanics, Quantum Mechanics requires
giving up basic principles of classical proposition logic
— Orthocomplemented lattices

Dynamic Logics for Quantum Programs?

Quantum logics have a long tradition...
» (Von Neumann-Birkhoff, 36)/ (Mackey, 56)/ (Piron, 76)...
“Logics for quantum mechanics”

» unlike in Classic Mechanics, Quantum Mechanics requires
giving up basic principles of classical proposition logic
— Orthocomplemented lattices

(Feynman,82) — seminal idea of quantum computing —

Dynamic Logics for Quantum Programs?

Quantum logics have a long tradition...
» (Von Neumann-Birkhoff, 36)/ (Mackey, 56)/ (Piron, 76)...
“Logics for quantum mechanics”

» unlike in Classic Mechanics, Quantum Mechanics requires
giving up basic principles of classical proposition logic
— Orthocomplemented lattices

(Feynman,82) — seminal idea of quantum computing —

» Challenge:
logics for the specification and verification of quantum
algorithms

Dynamic Logics for Quantum Programs?

Dynamic Logics are suitable to verify a wide class of
computational systems

Quantum Computing is an exception?

Dynamic Logics for Quantum Programs?

Dynamic Logics are suitable to verify a wide class of
computational systems

Quantum Computing is an exception?

» Hoare Logics for Quantum programs — (M. Ying, 12),
(Kakutani, 09), ...

Dynamic Logics for Quantum Programs?

Dynamic Logics are suitable to verify a wide class of
computational systems

Quantum Computing is an exception?

» Hoare Logics for Quantum programs — (M. Ying, 12),
(Kakutani, 09), ...
» Dynamic turn in quantum logic of Baltag-Smets

» Quantum Logic as ‘Dynamic logic of Quantum
Measurements and Quantum Evolutions’
» evolved to fit the verification of quantum algorithms

Baltag - Smets Quantum Dynamic Logics

Since 2004,
» LQM - logic of the quantum measurements
P single quantum systems
> LQA - logic of quantum actions
» unitary transformations (quantum-gates) as atomic programs
» LQP - logic of compound quantum systems
» ®-composition of H-subspaces and spatial modalities
» PLPQ - probabilistic quantum programs
» probabilistic modalities
> .

Principles of the approach

Let us fix and Hilbert space H and a signature (Prop, U)
» Syntax is the classic one — atomic actions are quantum gates
(unitary transformations)
» Quantum Kripke frame M = (W, S, U):
» W is the one-dimensional subspaces of H (i.e. the rays)
> S is a set of testable properties (i.e. st S = S+, for

St={teW|tlsseS})
» for each ue U, R, : W — W is an unitary transformation (a

quantum gate)

Principles of the approach

(Classic) Tests Vs Measurements (evolutions)

> classic case: 7@ means that — “© holds in the tested state”

> Rop = {(w,w)lw [= ¢}
> M, w E[?¢]¢ iff M;w | ¢ implies M, w = 9

Principles of the approach

(Classic) Tests Vs Measurements (evolutions)

> classic case: 7@ means that — “© holds in the tested state”
> Ryp ={(w,w)lw = ¢}
> M, w E[?¢]¢ iff M;w | ¢ implies M, w = 9
» quantum case:, 7 means that — “¢ holds after the test”
> Ro, = {(s,t)|Proj,(v) = t,v € s}, for Proj, : H — H is the
projection onto the closed linear subspace that the set of states
satisfying ¢ generates
> M, w E[?¢]y
iff for all v € w, M, Proj,(v) = ¢ implies M, Proj,(v) = v

(There are more slides to put here ...)

A brief overview in Dynamic Logics

Alexandre Madeira
Mathematics Dep, U. Aveiro

universidade
de aveiro

February 10, 2026,
Software Foundations, MAP-i 25/26
DMat, U.Aveiro

	Why Program Logics?
	Preliminairs: Modal Logic in a rush
	(Standard) Dynamic Logics
	Extension 1: A DL to hybrid programs
	Extension 2: DL for weighted programs (a parametric perspective)
	Extension 3: Dynamic Logic for quantum programs

