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Motivations for the Section

This section introduces the proof theory for modal logic

To that end, we introduce a general notion of logic;

We study the completeness of modal logic through the construction
of the canonical model

For this construction, we carefully examine the notions of sets of
consistent formulas and maximally consistent formulas

We also study the decidability of modal logic using the technique of
filtrations
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Generic Notion of Logic

Uniform Substitution

Substitution of a propositional variable by a formula

Let p ∈ Prop and A,B ∈ MFm(Prop):

if A ∈ Prop, then Sp
BA =

{
B, if A = p

A, if A ̸= p

Sp
B ⊥=⊥

If A = C → D, then Sp
BA = Sp

BC → Sp
BD

If A = □C , then Sp
BA = □Sp

BC

Instance

A is said to be an instance of B if A is obtained by uniform substitution
from B
e.g. □A ∨ ¬□A is an instance of the propositional formula p ∨ ¬p
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Generic Notion of Logic

Notion of Logic

Definition.

A logic is a set Λ ⊆ MFm(Prop) such that:

Λ contains all (modal) instances of classical tautologies,
i.e., all formulas obtained from a classical propositional
tautology by uniform substitution

Λ is closed under Modus Ponens
i.e., if A and A → B are in Λ, then B is in Λ
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Generic Notion of Logic

Notion of Logic

Proposition (Examples of Logics)

1 Let M be a model. Define ΛM = {A | M |= A}. Then ΛM is a logic.

2 Let C be a class of models. Define ΛC = {A | M |= A,M ∈ C}. Then
ΛC is a logic.

3 Let (Λi )i∈I be a family of logics. Then
⋂

i∈I Λi is a logic.

4 ...

Exercise

Verify the above proposition.
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Generic Notion of Logic

Notion of Logic

Definitions.

Let Λ be a logic.

The elements of Λ are called Λ-theorems.
We write ⊢ΛA when A is a Λ-theorem, i.e., when A ∈ Λ.

A is said to be Λ-deducible from Γ and we write Γ⊢ΛA, if

⊢ΛA or
there exist Bi ∈ Γ, i = 1, . . . , n, such that

(B1 → (B2 → (· · · → (Bn → A) . . . )) ∈ Λ

A set of formulas Γ ⊆ MFm(Prop) is said to be Λ-consistent if

Γ ̸⊢Λ ⊥
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Generic Notion of Logic

Notion of Logic

Definition

Let C be a class of structures or models and Λ a logic.

Λ is said to be sound with respect to C if for every formula A,

⊢ΛA ⇒ C |= A

Λ is said to be complete with respect to C if for every formula A,

C |= A ⇒ ⊢ΛA

Λ is said to be characterized by C if for every formula A,

C |= A ⇔ ⊢ΛA
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Generic Notion of Logic

Exercise: Prove the following properties

Let Λ be a logic. Show that:

1 ⊥ /∈ Λ ⇔ Λ ̸= MFm(Prop)

2 ⊢ΛA ⇔ ∅⊢ΛA

3 If ⊢ΛA then Γ⊢ΛA

4 If Λ ⊆ Λ′ then (Γ⊢ΛA ⇒ Γ⊢Λ′A)

5 If A ∈ Γ then Γ⊢ΛA

6 If Γ ⊆ ∆ and Γ⊢ΛA then ∆⊢ΛA

7 Γ ∪ {A}⊢ΛB ⇔ Γ⊢ΛA → B

8 If Γ⊢ΛA and {A}⊢ΛB then Γ⊢ΛB

9 If Γ⊢ΛA and Γ⊢ΛA → B then Γ⊢ΛB

10 Γ⊢ΛA if and only if there exists a finite sequence A0,A1, . . . ,Am = A
such that for all i ≤ m, each Ai ∈ Γ ∪ Λ or, otherwise,
Ak = (Aj → Ai ) for some j , k < i
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Generic Notion of Logic

Exercise: Prove the following properties

Let Λ be a logic. Show that:

11 If M,w |= Γ ∪ Λ and Γ⊢ΛA then M,w |= A
[Note: If ∆ ⊆ MFm(Prop), then
M,w |= ∆ ⇔ ∀A ∈ ∆, (M,w |= A)]

12 The set of classical tautologies is Λ-consistent, but MFm(Prop) is
not Λ-consistent

13 Γ is Λ-consistent ⇔ ∃A such that Γ⊬ΛA

14 Γ is Λ-consistent ⇔ ∄A : (Γ⊢ΛA & Γ⊢Λ¬A)
15 Γ⊢ΛA ⇔ Γ ∪ {¬A} is not Λ-consistent

16 Γ ∪ {A} is Λ-consistent ⇔ Γ⊬Λ¬A
17 If Γ is Λ-consistent, then either Γ ∪ {A} or Γ ∪ {¬A} is Λ-consistent
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Generic Notion of Logic

Λ-Consistent Sets

Definition

Let M = (W ,R,V ) be a model and w ∈ W . Define

Γw := {A ∈ MFm(Prop) | M,w |= A}

Proposition

The set Γw is

Λ-consistent, and

for each A ∈ MFm(Prop), either A ∈ Γw or ¬A ∈ Γw
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Generic Notion of Logic

Maximally Consistent Sets

Definition

A set Γ ⊆ MFm(Prop) is said to be maximally Λ-consistent (or simply
Λ-maximal) if:

Γ is Λ-consistent, and

for every A ∈ MFm(Prop), either A ∈ Γ or ¬A ∈ Γ
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Generic Notion of Logic

Exercise – Properties

Let Γ be a Λ-maximal set. Show that:

19 Γ ⊢Λ A ⇒ A ∈ Γ

20 A /∈ Γ ⇒ Γ ∪ {A} is not Λ-consistent

21 For all A ∈ MFm(Prop), A /∈ Γ ⇔ ¬A ∈ Γ

22 Λ ⊆ Γ

23 ⊥/∈ Γ

24 (A → B) ∈ Γ ⇔ (A ∈ Γ ⇒ B ∈ Γ)

25 (A ∧ B) ∈ Γ ⇔ A,B ∈ Γ

26 (A ∨ B) ∈ Γ ⇔ (A ∈ Γ or B ∈ Γ)

27 (A ↔ B) ∈ Γ ⇔ (A ∈ Γ ⇔ B ∈ Γ)
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Generic Notion of Logic

Does Every Λ-Consistent Set Have a
Λ-Maximal Extension?

Consider the following construction:

Let A1,A2,A3, . . . be an enumeration of all formulas in MFm(Prop), and
let Γ be a Λ-consistent set. Define the set

∆ =
⋃
n≥0

∆n

where:

∆0 = Γ

∆n+1 =

{
∆n ∪ {An}, if ∆n ∪ {An} is Λ-consistent

∆n ∪ {¬An}, otherwise
, for n ≥ 0
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Generic Notion of Logic

Does Every Λ-Consistent Set Have a
Λ-Maximal Extension?

Lemma

For every n, the set ∆n is Λ-consistent.

Lemma

For every formula A, exactly one of the formulas A or ¬A is in ∆.

If ∆ ⊢Λ B, then B ∈ ∆.

Lemma

Let (Σi )i∈N be an increasing family of sets of formulas (i.e.,
i < j ⇒ Σi ⊆ Σj). If every Σi is Λ-consistent, then

⋃
i∈NΣi is also

Λ-consistent.
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Generic Notion of Logic

Does Every Λ-Consistent Set Have a
Λ-Maximal Extension?

Lindenbaum Lemma

Every Λ-consistent set of formulas is contained in a Λ-maximal set.
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Normal Logics
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Normal Logics

Normal Logic

Definition

A logic Λ is called normal if it contains the axiom K:

□(A → B) → (□A → □B)

and is closed under the Necessitation Rule:

⊢Λ A ⇒ ⊢Λ □A
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Normal Logics

The Logic K

Proposition.

Let (Λi )i∈I be a family of normal logics. Then
⋂

i∈I Λi is a normal logic.

The Logic K

The Logic K is called the smallest normal logic, i.e., the logic

K :=
⋂

{Λ | Λ is a normal logic}
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Normal Logics

Exercise

Show that

for any class C of models (or structures), ΛC = {A | C |= A} is a normal
logic.
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Normal Logics

Properties

Exercise.

Let Λ be a normal logic. Then:

1 ⊢Λ A → (B → (A ∧ B))

2 ⊢Λ □(A → (B → (A ∧ B)))

3 ⊢Λ □(A → (B → (A ∧ B))) → (□A → □(B → (A ∧ B)))

4 ⊢Λ (□A → □(B → (A ∧ B)))

5 ⊢Λ □(B → (A ∧ B)) → (□B → □(A ∧ B))

6 ⊢Λ □A → (□B → □(A ∧ B))

7 ⊢Λ (□A ∧□B) → □(A ∧ B)
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Normal Logics

Properties

Exercise.

Let Λ be a normal logic. Then:

1 ⊢Λ□¬¬A ↔ □A & ⊢Λ♢¬¬A ↔ ♢A
2 ⊢ΛA → B ⇒ (⊢Λ□A → □B & ⊢Λ♢A → ♢B)
3 ⊢ΛA ↔ B ⇒ (⊢Λ□A ↔ □B & ⊢Λ♢A ↔ ♢B)
4 ⊢Λ♢¬A ↔ ¬□A

5 ⊢Λ(□A ∧□B) ↔ □(A ∧ B)

6 ⊢Λ(♢A ∨ ♢B) ↔ ♢(A ∨ B)

7 ⊢Λ(□A ∨□B) → □(A ∨ B)

8 ⊢Λ♢(A ∧ B) → (♢A ∧ ♢B)
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Normal Logics

Properties

Exercise.

Let Λ be a normal logic. Then:

1 ⊢Λ □¬¬A ↔ □A

2 ⊢Λ ♢¬¬A ↔ ♢A
3 ⊢Λ A → B ⇒ ⊢Λ ♢A → ♢B
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Normal Logics

Necessary Condition for the Normality of a
Logic

Proposition.

If Λ is a normal logic, then Γ⊢ΛA ⇒ {□B|B ∈ Γ}⊢Λ□A.
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Canonical Model and Completeness

Introduction

It is assumed in this section that Λ is a consistent normal logic
(i.e., Λ is Λ-consistent)
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Canonical Model and Completeness

Canonical Model

Definition

The canonical model of a consistent normal logic Λ is the structure

MΛ = (W Λ,RΛ,V Λ)

where:

W Λ = {w ⊆ MFm(Prop)|w is Λ-maximal}
wRΛv if and only if {A ∈ MFm(Prop) : □A ∈ w} ⊆ v

V Λ(p) = {w ∈ W Λ|p ∈ w}
The canonical structure of Λ is defined as the pair FΛ = (W Λ,RΛ).
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Canonical Model and Completeness

Truth Lemma

Lemma.

For any w ∈ W Λ, A ∈ MFm(Prop),

w ∈ [[A]]MΛ⇔ A ∈ w

Proof.

“⇒” Case A = □B:
w ∈ [[□B]]MΛ

⇔ w ∈ {w ∈ W Λ|RΛ[w ] ⊆ [[B]]MΛ} (defn. of [[ ]]MΛ )
⇔ w ∈ {w ∈ W Λ|∀v ∈ W Λ. wRΛv ⇒ v ∈ [[B]]MΛ} (simpl.)
⇔ w ∈ {w ∈ W Λ|∀v ∈ W Λ. wRΛv ⇒ B ∈ v)} (Inductive Hypothesis)
⇔ w ∈ {w ∈ W Λ|∀v ∈ W Λ. {C |□C ∈ w} ⊆ v ⇒ B ∈ v} (defn. RΛ)
⇔ ∀v ∈ W Λ. ({C |□C ∈ w} ⊆ v ⇒ B ∈ v) (simpl.)
⇔ B ∈ ∩{v ∈ W Λ|{C |□C ∈ w} ⊆ v} (set theory)
⇔ {C |□C ∈ w}⊢ΛB (Corollary of Lindenbaum’s Lemma)
⇒ {□C |□C ∈ w} ⊢Λ □B (Γ⊢ΛA ⇒ {□B|B ∈ Γ}⊢Λ□A)
⇒ w ⊢Λ □B (Γ ⊆ ∆, Γ ⊢Λ A ⇒ ∆ ⊢Λ A)
⇔ □B ∈ w (defn of Λ)

Other cases: Exercise
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Canonical Model and Completeness

Truth Lemma

Lemma.

For any w ∈ W Λ and A ∈ MFm(Prop),

w ∈ [[A]]MΛ⇔ A ∈ w

Proof.

“⇐” Case □B
Let us assume that A = □B ∈ w .
□B ∈ w ⇒ ∀v ∈ RΛ[w ]. B ∈ v (defn M)

⇒ ∀v ∈ RΛ[w ]. v ∈ [[B]]MΛ (I.H.)
⇒ RΛ[w ] ⊆ [[B]]MΛ (set theory)
⇔ w ∈ [[□B]]MΛ (defn. [[ ]]MΛ)

Other cases: Exercise
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Canonical Model and Completeness

Definition.

Let M be a model, F a structure, and C a class of models or structures. It
is said that:

M determines Λ if for every A ∈ MFm(Prop),

M |= A ⇔ ⊢Λ A

F determines Λ if for every A ∈ MFm(Prop),

F |= A ⇔ ⊢Λ A

C determines Λ if for every A ∈ MFm(Prop),

C |= A ⇔ ⊢Λ A
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Canonical Model and Completeness

Completeness

Corollary.

MΛ |= A ⇔ ⊢Λ A

Proof.

MΛ |= A
⇔ [[A]]MΛ= W Λ (and defn. of [[ ]]MΛ)
⇔ w ∈ [[A]]MΛ , for all w ∈ W Λ (set equality)
⇔ A ∈ w , for all w ∈ W Λ (Truth Lemma)
⇔ A ∈

⋂
W Λ (set theory)

⇔ A ∈ Λ (Lindenbaum’s Lemma)
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Canonical Model and Completeness

Completeness

Theorem (Characterization of K)

⊢KA ⇔ A is valid in all structures.
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Canonical Model and Completeness

Examples of Normal Logics

To demonstrate that a normal logic Λ is complete with respect to a class
of models (or modal structures) defined by certain properties, it is sufficient
to show that MΛ has that property.
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Canonical Model and Completeness

Examples of Normal Logics

A few classes ago:

T : □A → A valid in frames with reflexive relation
4 : □A → □□A valid in frames with transitive relation
B : A → □♢A valid in frames with symmetric relation

...
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Canonical Model and Completeness

Examples of Normal Logics

Theorem.

If a normal logic Λ contains one of the schemas from the previous slide,
then RΛ satisfies the corresponding property.

Proof.

Consider the case of transitivity:

Suppose □A → □□A ∈ Λ. Then, all the members of W Λ contain all
instances of this schema.

Assuming wRΛv and vRΛu. We have:

□A ∈ w ⇒
MP

□□A ∈ w ⇒
(def.RΛ)

□A ∈ v ⇒
(def.RΛ)

A ∈ u.

Thus, wRΛu.
Exercise: Prove the other cases.
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Canonical Model and Completeness

Examples of Normal Logics

T : □A → A
4 : □A → □□A
B : A → □♢A
W : □(□A → A) → □A

Some well-known logics:

S4 = KT4
S5 = KT4B
G = KW
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