

COMPUTATIONAL LOGIC 2024/25

PROOF SYSTEM FOR MODAL LOGIC

Alexandre Madeira

Dep. Matemática, U. Aveiro

May 21, 2025

MOTIVATIONS FOR THE SECTION

- This section introduces the **proof theory** for modal logic
- To that end, we introduce a **general notion of logic**;
- We study the **completeness** of modal logic through the construction of the **canonical model**
- For this construction, we carefully examine the notions of **sets of consistent formulas** and **maximally consistent formulas**
- We also study the **decidability** of modal logic using the technique of **filtrations**

OUTLINE

① GENERIC NOTION OF LOGIC

② NORMAL LOGICS

③ CANONICAL MODEL AND COMPLETENESS

UNIFORM SUBSTITUTION

SUBSTITUTION OF A PROPOSITIONAL VARIABLE BY A FORMULA

Let $p \in \text{Prop}$ and $A, B \in \text{MFm}(\text{Prop})$:

- if $A \in \text{Prop}$, then $S_B^p A = \begin{cases} B, & \text{if } A = p \\ A, & \text{if } A \neq p \end{cases}$
- $S_B^p \perp = \perp$
- If $A = C \rightarrow D$, then $S_B^p A = S_B^p C \rightarrow S_B^p D$
- If $A = \Box C$, then $S_B^p A = \Box S_B^p C$

INSTANCE

A is said to be an instance of B if A is obtained by uniform substitution from B

e.g. $\Box A \vee \neg \Box A$ is an instance of the propositional formula $p \vee \neg p$

NOTION OF LOGIC

DEFINITION.

A **logic** is a set $\Lambda \subseteq \text{MFm}(\text{Prop})$ such that:

- Λ contains all (modal) instances of classical tautologies,
i.e., **all formulas obtained from a classical propositional tautology by uniform substitution**
- Λ is closed under Modus Ponens
i.e., **if A and $A \rightarrow B$ are in Λ , then B is in Λ**

NOTION OF LOGIC

PROPOSITION (Examples of Logics)

- ① Let M be a model. Define $\Lambda_M = \{A \mid M \models A\}$. Then Λ_M is a logic.
- ② Let \mathcal{C} be a class of models. Define $\Lambda_{\mathcal{C}} = \{A \mid M \models A, M \in \mathcal{C}\}$. Then $\Lambda_{\mathcal{C}}$ is a logic.
- ③ Let $(\Lambda_i)_{i \in I}$ be a family of logics. Then $\bigcap_{i \in I} \Lambda_i$ is a logic.
- ④ ...

EXERCISE

Verify the above proposition.

NOTION OF LOGIC

DEFINITIONS.

Let Λ be a logic.

- The elements of Λ are called **Λ -theorems**.
We write $\vdash_{\Lambda} A$ when A is a Λ -theorem, i.e., when $A \in \Lambda$.
- A is said to be **Λ -deducible from Γ** and we write $\Gamma \vdash_{\Lambda} A$, if
 - $\vdash_{\Lambda} A$ or
 - there exist $B_i \in \Gamma$, $i = 1, \dots, n$, such that
$$(B_1 \rightarrow (B_2 \rightarrow (\dots \rightarrow (B_n \rightarrow A) \dots)) \in \Lambda$$
- A set of formulas $\Gamma \subseteq \text{MFm}(\text{Prop})$ is said to be **Λ -consistent** if

$$\Gamma \not\vdash_{\Lambda} \perp$$

NOTION OF LOGIC

DEFINITION

Let C be a class of structures or models and Λ a logic.

- Λ is said to be **sound with respect to C** if for every formula A ,

$$\vdash_{\Lambda} A \Rightarrow C \models A$$

- Λ is said to be **complete with respect to C** if for every formula A ,

$$C \models A \Rightarrow \vdash_{\Lambda} A$$

- Λ is said to be **characterized by C** if for every formula A ,

$$C \models A \Leftrightarrow \vdash_{\Lambda} A$$

EXERCISE: PROVE THE FOLLOWING PROPERTIES

LET Λ BE A LOGIC. SHOW THAT:

- ① $\perp \notin \Lambda \Leftrightarrow \Lambda \neq \text{MFm}(\text{Prop})$
- ② $\vdash_{\Lambda} A \Leftrightarrow \emptyset \vdash_{\Lambda} A$
- ③ If $\vdash_{\Lambda} A$ then $\Gamma \vdash_{\Lambda} A$
- ④ If $\Lambda \subseteq \Lambda'$ then $(\Gamma \vdash_{\Lambda} A \Rightarrow \Gamma \vdash_{\Lambda'} A)$
- ⑤ If $A \in \Gamma$ then $\Gamma \vdash_{\Lambda} A$
- ⑥ If $\Gamma \subseteq \Delta$ and $\Gamma \vdash_{\Lambda} A$ then $\Delta \vdash_{\Lambda} A$
- ⑦ $\Gamma \cup \{A\} \vdash_{\Lambda} B \Leftrightarrow \Gamma \vdash_{\Lambda} A \rightarrow B$
- ⑧ If $\Gamma \vdash_{\Lambda} A$ and $\{A\} \vdash_{\Lambda} B$ then $\Gamma \vdash_{\Lambda} B$
- ⑨ If $\Gamma \vdash_{\Lambda} A$ and $\Gamma \vdash_{\Lambda} A \rightarrow B$ then $\Gamma \vdash_{\Lambda} B$
- ⑩ $\Gamma \vdash_{\Lambda} A$ if and only if there exists a finite sequence $A_0, A_1, \dots, A_m = A$ such that for all $i \leq m$, each $A_i \in \Gamma \cup \Lambda$ or, otherwise, $A_k = (A_j \rightarrow A_i)$ for some $j, k < i$

EXERCISE: PROVE THE FOLLOWING PROPERTIES

LET Λ BE A LOGIC. SHOW THAT:

- ⑪ If $M, w \models \Gamma \cup \Lambda$ and $\Gamma \vdash_{\Lambda} A$ then $M, w \models A$
 [Note: If $\Delta \subseteq \text{MFm}(\text{Prop})$, then
 $M, w \models \Delta \Leftrightarrow \forall A \in \Delta, (M, w \models A)$]
- ⑫ The set of classical tautologies is Λ -consistent, but $\text{MFm}(\text{Prop})$ is not Λ -consistent
- ⑬ Γ is Λ -consistent $\Leftrightarrow \exists A$ such that $\Gamma \not\vdash_{\Lambda} A$
- ⑭ Γ is Λ -consistent $\Leftrightarrow \nexists A : (\Gamma \vdash_{\Lambda} A \ \& \ \Gamma \vdash_{\Lambda} \neg A)$
- ⑮ $\Gamma \vdash_{\Lambda} A \Leftrightarrow \Gamma \cup \{\neg A\}$ is not Λ -consistent
- ⑯ $\Gamma \cup \{A\}$ is Λ -consistent $\Leftrightarrow \Gamma \not\vdash_{\Lambda} \neg A$
- ⑰ If Γ is Λ -consistent, then either $\Gamma \cup \{A\}$ or $\Gamma \cup \{\neg A\}$ is Λ -consistent

Λ -CONSISTENT SETS

DEFINITION

Let $M = (W, R, V)$ be a model and $w \in W$. Define

$$\Gamma_w := \{A \in \text{MFm(Prop)} \mid M, w \models A\}$$

PROPOSITION

The set Γ_w is

- Λ -consistent, and
- for each $A \in \text{MFm(Prop)}$, either $A \in \Gamma_w$ or $\neg A \in \Gamma_w$

MAXIMALLY CONSISTENT SETS

DEFINITION

A set $\Gamma \subseteq \text{MFm}(\text{Prop})$ is said to be **maximally \wedge -consistent** (or simply **\wedge -maximal**) if:

- Γ is \wedge -consistent, and
- for every $A \in \text{MFm}(\text{Prop})$, either $A \in \Gamma$ or $\neg A \in \Gamma$

EXERCISE – PROPERTIES

LET Γ BE A Λ -MAXIMAL SET. SHOW THAT:

- ⑯ $\Gamma \vdash_{\Lambda} A \Rightarrow A \in \Gamma$
- ⑰ $A \notin \Gamma \Rightarrow \Gamma \cup \{A\}$ is not Λ -consistent
- ⑱ For all $A \in \text{MFm(Prop)}$, $A \notin \Gamma \Leftrightarrow \neg A \in \Gamma$
- ⑲ $\Lambda \subseteq \Gamma$
- ⑳ $\perp \notin \Gamma$
- ㉑ $(A \rightarrow B) \in \Gamma \Leftrightarrow (A \in \Gamma \Rightarrow B \in \Gamma)$
- ㉒ $(A \wedge B) \in \Gamma \Leftrightarrow A, B \in \Gamma$
- ㉓ $(A \vee B) \in \Gamma \Leftrightarrow (A \in \Gamma \text{ or } B \in \Gamma)$
- ㉔ $(A \leftrightarrow B) \in \Gamma \Leftrightarrow (A \in \Gamma \Leftrightarrow B \in \Gamma)$

DOES EVERY Λ -CONSISTENT SET HAVE A Λ -MAXIMAL EXTENSION?

CONSIDER THE FOLLOWING CONSTRUCTION:

Let A_1, A_2, A_3, \dots be an enumeration of all formulas in $\text{MFm}(\text{Prop})$, and let Γ be a Λ -consistent set. Define the set

$$\Delta = \bigcup_{n \geq 0} \Delta_n$$

where:

- $\Delta_0 = \Gamma$
- $\Delta_{n+1} = \begin{cases} \Delta_n \cup \{A_n\}, & \text{if } \Delta_n \cup \{A_n\} \text{ is } \Lambda\text{-consistent} \\ \Delta_n \cup \{\neg A_n\}, & \text{otherwise} \end{cases}$, for $n \geq 0$

DOES EVERY Λ -CONSISTENT SET HAVE A Λ -MAXIMAL EXTENSION?

LEMMA

For every n , the set Δ_n is Λ -consistent.

LEMMA

- For every formula A , exactly one of the formulas A or $\neg A$ is in Δ .
- If $\Delta \vdash_{\Lambda} B$, then $B \in \Delta$.

LEMMA

Let $(\Sigma_i)_{i \in \mathbb{N}}$ be an increasing family of sets of formulas (i.e., $i < j \Rightarrow \Sigma_i \subseteq \Sigma_j$). If every Σ_i is Λ -consistent, then $\bigcup_{i \in \mathbb{N}} \Sigma_i$ is also Λ -consistent.

DOES EVERY Λ -CONSISTENT SET HAVE A Λ -MAXIMAL EXTENSION?

LINDENBAUM LEMMA

Every Λ -consistent set of formulas is contained in a Λ -maximal set.

OUTLINE

1 GENERIC NOTION OF LOGIC

2 NORMAL LOGICS

3 CANONICAL MODEL AND COMPLETENESS

NORMAL LOGIC

DEFINITION

A logic Λ is called **normal** if it contains the axiom **K**:

$$\square(A \rightarrow B) \rightarrow (\square A \rightarrow \square B)$$

and is closed under the **Necessitation Rule**:

$$\vdash_{\Lambda} A \Rightarrow \vdash_{\Lambda} \square A$$

THE LOGIC K

PROPOSITION.

Let $(\Lambda_i)_{i \in I}$ be a family of normal logics. Then $\bigcap_{i \in I} \Lambda_i$ is a normal logic.

THE **Logic K**

The **Logic K** is called the smallest normal logic, i.e., the logic

$$K := \bigcap \{\Lambda \mid \Lambda \text{ is a normal logic}\}$$

EXERCISE

SHOW THAT

for any class C of models (or structures), $\Lambda_C = \{A \mid C \models A\}$ is a normal logic.

PROPERTIES

EXERCISE.

Let Λ be a normal logic. Then:

- ① $\vdash_{\Lambda} A \rightarrow (B \rightarrow (A \wedge B))$
- ② $\vdash_{\Lambda} \square(A \rightarrow (B \rightarrow (A \wedge B)))$
- ③ $\vdash_{\Lambda} \square(A \rightarrow (B \rightarrow (A \wedge B))) \rightarrow (\square A \rightarrow \square(B \rightarrow (A \wedge B)))$
- ④ $\vdash_{\Lambda} (\square A \rightarrow \square(B \rightarrow (A \wedge B)))$
- ⑤ $\vdash_{\Lambda} \square(B \rightarrow (A \wedge B)) \rightarrow (\square B \rightarrow \square(A \wedge B))$
- ⑥ $\vdash_{\Lambda} \square A \rightarrow (\square B \rightarrow \square(A \wedge B))$
- ⑦ $\vdash_{\Lambda} (\square A \wedge \square B) \rightarrow \square(A \wedge B)$

PROPERTIES

EXERCISE.

Let Λ be a normal logic. Then:

- ① $\vdash_{\Lambda} \Box \neg \neg A \leftrightarrow \Box A \quad \& \quad \vdash_{\Lambda} \Diamond \neg \neg A \leftrightarrow \Diamond A$
- ② $\vdash_{\Lambda} A \rightarrow B \Rightarrow (\vdash_{\Lambda} \Box A \rightarrow \Box B \quad \& \quad \vdash_{\Lambda} \Diamond A \rightarrow \Diamond B)$
- ③ $\vdash_{\Lambda} A \leftrightarrow B \Rightarrow (\vdash_{\Lambda} \Box A \leftrightarrow \Box B \quad \& \quad \vdash_{\Lambda} \Diamond A \leftrightarrow \Diamond B)$
- ④ $\vdash_{\Lambda} \Diamond \neg A \leftrightarrow \neg \Box A$
- ⑤ $\vdash_{\Lambda} (\Box A \wedge \Box B) \leftrightarrow \Box (A \wedge B)$
- ⑥ $\vdash_{\Lambda} (\Diamond A \vee \Diamond B) \leftrightarrow \Diamond (A \vee B)$
- ⑦ $\vdash_{\Lambda} (\Box A \vee \Box B) \rightarrow \Box (A \vee B)$
- ⑧ $\vdash_{\Lambda} \Diamond (A \wedge B) \rightarrow (\Diamond A \wedge \Diamond B)$

PROPERTIES

EXERCISE.

Let Λ be a normal logic. Then:

- ① $\vdash_{\Lambda} \Box \neg \neg A \leftrightarrow \Box A$
- ② $\vdash_{\Lambda} \Diamond \neg \neg A \leftrightarrow \Diamond A$
- ③ $\vdash_{\Lambda} A \rightarrow B \Rightarrow \vdash_{\Lambda} \Diamond A \rightarrow \Diamond B$

NECESSARY CONDITION FOR THE NORMALITY OF A LOGIC

PROPOSITION.

If Λ is a normal logic, then $\Gamma \vdash_{\Lambda} A \Rightarrow \{\Box B \mid B \in \Gamma\} \vdash_{\Lambda} \Box A$.

OUTLINE

1 GENERIC NOTION OF LOGIC

2 NORMAL LOGICS

3 CANONICAL MODEL AND COMPLETENESS

INTRODUCTION

It is assumed in this section that Λ is a **consistent normal logic** (i.e., Λ is Λ -consistent)

CANONICAL MODEL

DEFINITION

The **canonical model** of a consistent normal logic Λ is the structure

$$M^\Lambda = (W^\Lambda, R^\Lambda, V^\Lambda)$$

where:

- $W^\Lambda = \{w \subseteq \text{MFm}(\text{Prop}) \mid w \text{ is } \Lambda\text{-maximal}\}$
- $w R^\Lambda v \text{ if and only if } \{A \in \text{MFm}(\text{Prop}) : \Box A \in w\} \subseteq v$
- $V^\Lambda(p) = \{w \in W^\Lambda \mid p \in w\}$

The **canonical structure** of Λ is defined as the pair $F^\Lambda = (W^\Lambda, R^\Lambda)$.

TRUTH LEMMA

LEMMA.

For any $w \in W^\Lambda$, $A \in \text{MFm}(\text{Prop})$,

$$w \in \llbracket A \rrbracket_{M^\Lambda} \Leftrightarrow A \in w$$

PROOF.

“ \Rightarrow ” Case $A = \square B$:

$$w \in \llbracket \square B \rrbracket_{M^\Lambda}$$

$\Leftrightarrow w \in \{w \in W^\Lambda \mid R^\Lambda[w] \subseteq \llbracket B \rrbracket_{M^\Lambda}\}$	(defn. of $\llbracket \cdot \rrbracket_{M^\Lambda}$)
$\Leftrightarrow w \in \{w \in W^\Lambda \mid \forall v \in W^\Lambda. wR^\Lambda v \Rightarrow v \in \llbracket B \rrbracket_{M^\Lambda}\}$	(simpl.)
$\Leftrightarrow w \in \{w \in W^\Lambda \mid \forall v \in W^\Lambda. wR^\Lambda v \Rightarrow B \in v\}$	(Inductive Hypothesis)
$\Leftrightarrow w \in \{w \in W^\Lambda \mid \forall v \in W^\Lambda. \{C \mid \square C \in w\} \subseteq v \Rightarrow B \in v\}$	(defn. R^Λ)
$\Leftrightarrow \forall v \in W^\Lambda. (\{C \mid \square C \in w\} \subseteq v \Rightarrow B \in v)$	(simpl.)
$\Leftrightarrow B \in \cap\{v \in W^\Lambda \mid \{C \mid \square C \in w\} \subseteq v\}$	(set theory)
$\Leftrightarrow \{C \mid \square C \in w\} \vdash_\Lambda B$	(Corollary of Lindenbaum's Lemma)
$\Rightarrow \{\square C \mid \square C \in w\} \vdash_\Lambda \square B$	$(\Gamma \vdash_\Lambda A \Rightarrow \{\square B \mid B \in \Gamma\} \vdash_\Lambda \square A)$
$\Rightarrow w \vdash_\Lambda \square B$	$(\Gamma \subseteq \Delta, \Gamma \vdash_\Lambda A \Rightarrow \Delta \vdash_\Lambda A)$
$\Leftrightarrow \square B \in w$	(defn of Λ)

Other cases: Exercise

□

TRUTH LEMMA

LEMMA.

For any $w \in W^\wedge$ and $A \in \text{MFm}(\text{Prop})$,

$$w \in \llbracket A \rrbracket_{M^\wedge} \Leftrightarrow A \in w$$

PROOF.

“ \Leftarrow ” Case $\Box B$

Let us assume that $A = \Box B \in w$.

$$\begin{aligned} \Box B \in w &\Rightarrow \forall v \in R^\wedge[w]. B \in v && (\text{defn } M) \\ &\Rightarrow \forall v \in R^\wedge[w]. v \in \llbracket B \rrbracket_{M^\wedge} && (\text{I.H.}) \\ &\Rightarrow R^\wedge[w] \subseteq \llbracket B \rrbracket_{M^\wedge} && (\text{set theory}) \\ &\Leftrightarrow w \in \llbracket \Box B \rrbracket_{M^\wedge} && (\text{defn. } \llbracket \Box \rrbracket_{M^\wedge}) \end{aligned}$$

Other cases: Exercise

DEFINITION.

Let M be a model, F a structure, and C a class of models or structures. It is said that:

- **M determines Λ** if for every $A \in \text{MFm}(\text{Prop})$,

$$M \models A \Leftrightarrow \vdash_{\Lambda} A$$

- **F determines Λ** if for every $A \in \text{MFm}(\text{Prop})$,

$$F \models A \Leftrightarrow \vdash_{\Lambda} A$$

- **C determines Λ** if for every $A \in \text{MFm}(\text{Prop})$,

$$C \models A \Leftrightarrow \vdash_{\Lambda} A$$

COMPLETENESS

COROLLARY.

$$M^\Lambda \models A \Leftrightarrow \vdash_\Lambda A$$

PROOF.

$$\begin{aligned}
 & M^\Lambda \models A \\
 \Leftrightarrow & \llbracket A \rrbracket_{M^\Lambda} = W^\Lambda && \text{(and defn. of } \llbracket \cdot \rrbracket_{M^\Lambda} \text{)} \\
 \Leftrightarrow & w \in \llbracket A \rrbracket_{M^\Lambda}, \text{ for all } w \in W^\Lambda && \text{(set equality)} \\
 \Leftrightarrow & A \in w, \text{ for all } w \in W^\Lambda && \text{(Truth Lemma)} \\
 \Leftrightarrow & A \in \bigcap W^\Lambda && \text{(set theory)} \\
 \Leftrightarrow & A \in \Lambda && \text{(Lindenbaum's Lemma)}
 \end{aligned}$$

□

COMPLETENESS

THEOREM (CHARACTERIZATION OF K)

$\vdash_K A \Leftrightarrow A \text{ is valid in all structures.}$

EXAMPLES OF NORMAL LOGICS

To demonstrate that a normal logic Λ is complete with respect to a class of models (or modal structures) defined by certain properties, it is sufficient to show that M^Λ has that property.

EXAMPLES OF NORMAL LOGICS

A FEW CLASSES AGO:

- $T : \Box A \rightarrow A$ valid in frames with reflexive relation
- $4 : \Box A \rightarrow \Box \Box A$ valid in frames with transitive relation
- $B : A \rightarrow \Box \Diamond A$ valid in frames with symmetric relation
- \vdots

EXAMPLES OF NORMAL LOGICS

THEOREM.

If a normal logic Λ contains one of the schemas from the previous slide, then R^Λ satisfies the corresponding property.

PROOF.

Consider the case of transitivity:

- Suppose $\Box A \rightarrow \Box \Box A \in \Lambda$. Then, all the members of W^Λ contain all instances of this schema.
- Assuming $wR^\Lambda v$ and $vR^\Lambda u$. We have:

$$\Box A \in w \xrightarrow{MP} \Box \Box A \in w \xrightarrow{(\text{def. } R^\Lambda)} \Box A \in v \xrightarrow{(\text{def. } R^\Lambda)} A \in u.$$

Thus, $wR^\Lambda u$.

Exercise: Prove the other cases. □

EXAMPLES OF NORMAL LOGICS

$$\begin{aligned}T &: \square A \rightarrow A \\4 &: \square A \rightarrow \square \square A \\B &: A \rightarrow \square \diamond A \\W &: \square(\square A \rightarrow A) \rightarrow \square A\end{aligned}$$

SOME WELL-KNOWN LOGICS:

$$\begin{aligned}S4 &= KT4 \\S5 &= KT4B \\G &= KW\end{aligned}$$