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MOTIVATIONS FOR THE SECTION

Modal Logic is now used in the practices of specification, modeling, and
verification of complex systems.

Specializations/adaptations TO OPERATIONALIZE THESE PRACTICES:

@ Enrich the accessibility relations with actions:

Modal — Multimodal

@ Interpret “programs,” i.e., structured combinations of actions:

Multimodal — Dynamic

@ Operational languages for defining the models: Process Algebras
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MuLTIMODAL LoGIC

OUTLINE

(@ MULTIMODAL LoOGIC
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MULTIMODAL LogGic

PROCESSES ARE TRANSITION SYSTEMS

Two COFFEE MACHINES

wi 51
R |
coin coin
wo So S3
Coje/ l tea coffeel l tea
w3 Wy S4 S5
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MuLTIMODAL LoGIC

MULTI-AGENT KNOWLEDGE SYSTEMS ARE
TRANSITION SYSTEMS

THE ENVELOPE GAME

012 —a—021
/C/ \"v/ \"\
102 a 120
N, 7
201 —a— 210

E.g., in state 012: Ana has the envelope with 0, Bob has the one with 1,
and Clara has the one with 2.
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MuLTIMODAL LoGIC

PROGRAMS ARE TRANSITION SYSTEMS

i < 5] {0} {0,2}

i=i+2;

int i = 0; 1=1+

do { o {24
assert(i <= 10); {.—1 {2,4}
i=i+2; [i > 5]

} while (i < 5); 1580 0
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MULTIMODAL LogGic

THE LANGUAGE

MULTIMODAL SIGNATURE

A signature is a pair (Prop, Act) where Prop and Act are (disjoint) sets of
propositional symbols and action or modality symbols, respectively.
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MULTIMODAL LogGic

THE LANGUAGE

MULTIMODAL SIGNATURE

A signature is a pair (Prop, Act) where Prop and Act are (disjoint) sets of
propositional symbols and action or modality symbols, respectively.

ForRMULAS

Let (Prop, Act) be a multimodal signature. The set of multimodal
formulas for (Prop, Act), denoted by MFm(Prop, Act), is defined by the
following grammar:

pu=plLlo—=¢]|[me

where p € Prop and m € Act
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MULTIMODAL LogGic

THE LANGUAGE

MULTIMODAL SIGNATURE

A signature is a pair (Prop, Act) where Prop and Act are (disjoint) sets of
propositional symbols and action or modality symbols, respectively.

ForRMULAS

Let (Prop, Act) be a multimodal signature. The set of multimodal
formulas for (Prop, Act), denoted by MFm(Prop, Act), is defined by the
following grammar:

pu=plLlo—=¢]|[me

where p € Prop and m € Act

ABBREVIATIONS
o (m)¢ = —[m]=¢
o « o e
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MuLTIMODAL LoGIC

MULTIMODAL MODELS AND STRUCTURES

MULTIMODAL MODELS AND STRUCTURES
A model for a signature (Prop, Act) is a pair M = (F, V), where:
o F=(W,R) is a Kripke structure, i.e.,
o W/ is a non-empty set (of states)

o R =(Rm)meact is a family of binary relations R,, C W x W, one for
each modality symbol m € Act

o V :Prop — P(W) is a valuation.
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MULTIMODAL LogGIc
MULTIMODAL SATISFACTION RELATION

SATISFACTION IN A MODEL M AT A STATE w

MwkET

M,wkEp iff  weV(p)

M,w = ¢1 — ¢2 iff  M,w ¢ or M,w = ¢

M,w E[m]¢ iff YwveW.(w,v)€ERn=>M,vEo
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MULTIMODAL LogGIc
MULTIMODAL SATISFACTION RELATION

SATISFACTION IN A MODEL M AT A STATE w

MwkET
M,wkEp iff  weV(p)
Mw = ¢ — 62 Mo ¢y or Myw = ¢
M,w = [m] ¢ iff YveW.(w,v)€Rn=>M,viEo
v
COROLLARY:
M,w =L
M, w == iff  M,wlo
M,w = ¢1 A ¢ iff M,w¢1 and M,w = ¢
M,w = ¢1V o iff M,wkE¢1 or M,wl ¢
M,w = (m)¢ iff  Jv € W such that (w,v) € Rmand M,v = ¢
v
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MULTIMODAL LogGic

MULTIMODAL SATISFACTION

SATISFACTION
A formula ¢ in MFm(Prop, Act) is:

o satisfiable in M if it is satisfied in some state w of M
globally satisfiable in M (M |= ¢) if it is satisfied in every state of M
valid (| ¢) if it is globally satisfied in all models over (Prop, Act)

©

©

o a semantic consequence of a set of formulas I' (I |= @) if for all models
M and for all states w, if M, w =T then M, w = ¢
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MuLTIMODAL LoGIC

EXERCISE

Verify whether:
@ M,skE=(aT S
M;s = [a]L
M,s = (b)T a a
M;s |= [b] L a
M,s = [a](b) T a
M;s = (a)(b) L
M, s |= [a](a) a][b] L a b
M,s = (a)((a)T A(b)T)
M,s = [a]((a) T v (b)T)
M,s = (a)([lla] L A (B)T) %3 54

© 666066 6 6 6 ¢
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MuLTIMODAL LoGIC

EXERciciO
S
Determine: a a
@ [la]l[b]L]wm a
@ [a)((a)T A (B) )l a 51 59
@ [lallal[b]-L]ps
@ [lal({a)T V(b)) a b,
S3 S4
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MuLTIMODAL LoGIC

EXERCISE

Find a model M for ({},{a, b, c}) that has a state w such that
simultaneously:

o M,w = (a)((b)(c)T A{c)T)
o M,w = (a)(b)([a] L A [b]LA[c] 1)
o M,w = [a[(b)([c] L A {a)T)
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MuLTIMODAL LoGIC

BISIMULATION

BISIMULATION (MULTIMODAL VERSION)

Let M = (W,R,V)and M = (W', R’, V') be two models for (Prop, Act).
A bisimulation between M and M’ is a relation B C W x W’ such that,
for any (w,w’) € B and for any a € Act, the following conditions hold:
(AToMm) w € V(p) iff w' € V/(p), for all p € Prop
(Z1a) if (w, v) € R, then there exists a v/ € W' such that
(w',v') € R, and (v,V') € B
(ZAg) if (W', V') € RY then there exists a v € W such that
(w,v) € Ry and (v,V') € B
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MuLTIMODAL LoGIC

HENNESSY-MILNER THEOREM (MULTIMODAL
VERSION)

IMAGE-FINITE MODEL

A model M = (W, R, V) is called image-finite if for every w € W, and
for every a € Act, the set Ry[w] = {v | (w, v) € R} is finite.
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MuLTIMODAL LoGIC

HENNESSY-MILNER THEOREM (MULTIMODAL
VERSION)

IMAGE-FINITE MODEL

A model M = (W, R, V) is called image-finite if for every w € W, and
for every a € Act, the set Ry[w] = {v | (w, v) € R} is finite.

HENNESSY-MILNER THEOREM

Let M and M’ be two image-finite models for (Prop, Act). Then, for any
w e W and w' € W/, the following are equivalent:

@ There exists a bisimulation B: M = M’ such that (w,w’) € B
@ For every ¢ € MFm(Prop, Act),

M,w = ¢ iff M w' =
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MULTIMODAL LogGic

EXAMPLES

TWO COFFEE MACHINES

w1 S1
l . Cy l .
coin coin
w2 52 53
COV l tea coffeel l tea
w3 Wy S4 S5

We have that wy +¢ s1, because:
o M, w; [ [coin]{coffee) T, and
o N, sy B~ [coin](coffee) T
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MuLTIMODAL LoGIC

EXERCISE
S t v
a a a a
S1 a b C t1 a V1 —b> V2 3 b
b b b b
S92 t2 V3
b

Show that s 4 t ¢ v.
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MULTIMODAL LogGic

EXAMPLE — TEMPORAL LOGICS

TEMPORAL LOGIC

o W is the set of time points

o There is a unique modality corresponding to the transitive closure of the
" next-time” relation
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MULTIMODAL LogGic

EXAMPLE — TEMPORAL LOGICS

TEMPORAL LogGIC
o W is the set of time points

o There is a unique modality corresponding to the transitive closure of the
" next-time” relation

(Until) M,w = ¢U ) TFF

There exists a v € W such that (w,v) € R and M,v = ¢, and for all u € W
such that (w, u) € R and (u,v) € R, we have that M, u |= ¢

(Since) M, w = ¢ S 1FF

There exists a v € W such that (v,w) € R and M, v |= %, and for all u such
that (v,u) € R and (u,w) € R, we have that M, u }=¢
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MULTIMODAL LogGic

OPERATIONALIZING MULTIMODAL LOGIC

WE CAN USE sets of actions in modalities

M, w ': <K> ¢ iff Elwe{w’|(w,w’)€Ra and aeK} - M, w' |: (b
M, w ): [K] ¢ iff vWE{W’|(W,W’)€Ra and a€K} - M, w' ): o
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MuLTIMODAL LoGIC

OPERATIONALIZING MULTIMODAL LOGIC

WE CAN USE sets of actions in modalities

M, w ): <K> ¢ iff EIWE{W’|(W,W’)€F\’a and aeK} - M, w' |: (b
M, w ): [K] ¢ iff Vwe{w’\(w,w’)e.‘?a and a€K} - M, w' ): ¢ )
NOTATION

The following is used:

o The symbol — to represent K = Act.
Eg (-)¢

o The expression —A to represent K = Act \ A.
E.g. [-A]p. Parentheses are omitted in singular sets. For example,
[—a]p denotes [—{a}]p
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MULTIMODAL LogGic

OPERATIONALIZING MULTIMODAL LOGIC

TYPICAL PROPERTIES
o inevitability of a: (=) T and [—a] L
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MULTIMODAL LogGic

OPERATIONALIZING MULTIMODAL LOGIC

TYPICAL PROPERTIES
o inevitability of a: (=) T and [—a] L
o progress: (—) T
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MULTIMODAL LogGic

OPERATIONALIZING MULTIMODAL LOGIC

TYPICAL PROPERTIES
o inevitability of a: (=) T and [—a] L
o progress: (—) T

o deadlock or termination: [—] L
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MULTIMODAL LogGic

ILLUSTRATION

TAXI NETWORK SPECIFICATION

Specify in Multimodal Logic the scenario of a taxi network described
below. Pay attention to the signature definition and then to the
specification of the relevant requirements.

o ¢p = In a taxi network, a car can pick up a passenger or be
allocated by the Dispatch to a pending service.

o ¢1 = This property applies only to cars in service.

o ¢ = If a car is allocated to a service, it must first pick up the
passenger and then plan the route.

o ¢3 = When an emergency is detected, a taxi becomes inactive.

@ ¢4 = A car in service is not inactive.
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MULTIMODAL LogGic

ILLUSTRATION

TAX1I NETWORK SPECIFICATION

@ ¢g = In a taxi network, a car can pick up a passenger or be allocated
by the Dispatch to a pending service.
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MULTIMODAL LogGic

ILLUSTRATION

TAX1I NETWORK SPECIFICATION

@ ¢g = In a taxi network, a car can pick up a passenger or be allocated
by the Dispatch to a pending service.

o ¢o = (rec,alo) T
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MULTIMODAL LogGic

ILLUSTRATION

TAX1I NETWORK SPECIFICATION

@ ¢g = In a taxi network, a car can pick up a passenger or be allocated
by the Dispatch to a pending service.

o ¢o = (rec,alo) T

@ ¢; = This property applies only to cars in service.
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MULTIMODAL LogGic

ILLUSTRATION

TAX1I NETWORK SPECIFICATION

@ ¢g = In a taxi network, a car can pick up a passenger or be allocated
by the Dispatch to a pending service.

o ¢o = (rec,alo) T
@ ¢1 = This property applies only to cars in service.

o ¢1 = |onservice] (rec,alo) T or ¢1 = [onservice] o
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MULTIMODAL LogGic

ILLUSTRATION

TAX1I NETWORK SPECIFICATION

@ ¢g = In a taxi network, a car can pick up a passenger or be allocated
by the Dispatch to a pending service.

o ¢o = (rec,alo) T
@ ¢; = This property applies only to cars in service.
o ¢1 = [onservice] (rec,alo) T or ¢1 = [onservice] ¢o

@ ¢, = If a car is allocated to a service, it must first pick up the
passenger and then plan the route.
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MULTIMODAL LogGic

ILLUSTRATION

TAX1I NETWORK SPECIFICATION

@ ¢g = In a taxi network, a car can pick up a passenger or be allocated
by the Dispatch to a pending service.

o ¢o = (rec,alo) T
@ ¢; = This property applies only to cars in service.
o ¢1 = [onservice] (rec,alo) T or ¢1 = [onservice] ¢o

@ ¢, = If a car is allocated to a service, it must first pick up the
passenger and then plan the route.

o ¢ = [alo] (rec) (plan) T

@ ¢3 = When an emergency is detected, a taxi becomes inactive.
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MULTIMODAL LogGic

ILLUSTRATION

TAX1I NETWORK SPECIFICATION

@ ¢g = In a taxi network, a car can pick up a passenger or be allocated
by the Dispatch to a pending service.

o ¢o = (rec,alo) T
@ ¢; = This property applies only to cars in service.
o ¢1 = [onservice] (rec,alo) T or ¢1 = [onservice] ¢o

@ ¢, = If a car is allocated to a service, it must first pick up the
passenger and then plan the route.

o ¢ = [alo] (rec) (plan) T
@ ¢3 = When an emergency is detected, a taxi becomes inactive.

o ¢3 = [sos][-] L
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MULTIMODAL LogGic

ILLUSTRATION

TAX1I NETWORK SPECIFICATION

@ ¢g = In a taxi network, a car can pick up a passenger or be allocated
by the Dispatch to a pending service.

o ¢o = (rec,alo) T
@ ¢; = This property applies only to cars in service.
o ¢1 = [onservice] (rec,alo) T or ¢1 = [onservice] ¢o

@ ¢, = If a car is allocated to a service, it must first pick up the
passenger and then plan the route.

o ¢ = [alo] (rec) (plan) T
@ ¢3 = When an emergency is detected, a taxi becomes inactive.
o ¢3= [sos] [-] L

@ ¢4 = A car in service is not inactive.
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MULTIMODAL LogGic

ILLUSTRATION

TAX1I NETWORK SPECIFICATION

@ ¢g = In a taxi network, a car can pick up a passenger or be allocated
by the Dispatch to a pending service.

o ¢o = (rec,alo) T
@ ¢; = This property applies only to cars in service.
o ¢1 = [onservice] (rec,alo) T or ¢1 = [onservice] ¢o

@ ¢, = If a car is allocated to a service, it must first pick up the
passenger and then plan the route.

o ¢ = [alo] (rec) (plan) T

@ ¢3 = When an emergency is detected, a taxi becomes inactive.
o ¢3= [sos] [-] L

@ ¢4 = A car in service is not inactive.

o ¢4 = [onservice] (=) T
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MuLTIMODAL LoGIC

EXERCISE

Formalise each of the following properties:
@ The occurrence of a and b is impossible.
The occurrence of a followed by b is impossible.
Only the occurrence of a is possible.
Once a occurred, b or ¢ may occur.
After a occurred followed by b, ¢ may occur.

Once a occurred, b or ¢ may occur but not both.

© © 6 6 © ©

a cannot occur before b.

©

There is only an initial transition labelled by a.
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MuLTIMODAL LoGIC

EXERCISE

Consider the following process

Start =% fw.Go + stop.0

Go =9 fw.bk.bk.Start + right.left.bk.Start

Formalize the following properties
@ After fw another fw is immediately possible
@ After fw followed by right, left is possible but bk is not.
® The action fw is the only possible one.
@ The third action is not fw.
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DyNamic Loaic

OUTLINE

@ Dynawmic Logic
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DyNamic Loaic

A Naive APPROACH

Is MULTI-MODAL LOGIC SUITABLE FOR REASONING ABOUT
PROGRAMS?

o considering one modality for each program in the language

o modeling the computation universe as the transition system that
interprets all these programs
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Dynamic LoaGic

Dynamic LoGic(s)

o Multi-modal logics designed to work with actions in a structured
way

Goal: Reason about programs

©

©

Ingredients:

o Atomic program notion

o Regular expressions over atomic programs

o Testing mechanisms for dealing with conditionals:
e.g. if _then_else_

These principles are sufficiently abstract to be adapted to various
computing paradigms ...

©
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DyNamic Loaic

INTUITIONS: DYNAMIC LOGIC FOR VERIFYING
IMPERATIVE PROGRAMS

o To handle classical imperative programs, what is the notion of an
atomic program, i.e., what is the set 1,7

o What is the notion of state?
o What is the notion of test?
Let 7 be the following program:
while x<3 do
x:=x+1
od

EXAMPLE:
If x =0, any execution of 7, if it terminates, results in a state where x = 2

x=0—=[((x<3?);x:=x+1)"(x>37)]x=2
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DyNamic Loaic

THE DyNAMIC Locic WE WILL CONSIDER IN THIS
COURSE:

o Atomic programs — sets of actions Act
o Tests — assertions in our logic

o Valuations allow the representation of local observations, i.e., what
we can observe beyond the dynamics
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DyNamic Loaic

GENERIC NOTION OF PROGRAM AND ITS
INTERPRETATION

SET OF PROGRAMS FOR ATOMIC PROGRAM SET Act
mi=almwr|n+n|at|e?

a € Act and ¢ a “state property”
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Dynamic LoaGic

INTERPRETATION OF PROGRAMS

HOW DO WE INTERPRET THESE PROGRAMS IN A MODEL
(Act, Prop)-MODEL M = (W, R, V)?

o A program 7 will be interpreted as a relation Prp, C W x W
recursively.

AToMIC PROGRAM
Pro=R,, ac Act

A.MADEIRA (U. AVEIRO) COMPUTATIONAL Logic MaAy 7, 2025
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Dynamic LoaGic

INTERPRETATION OF PROGRAMS

SEQUENTIAL PROGRAM
o Pry = Pryo Pry
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Dynamic LoaGic

INTERPRETATION OF PROGRAMS

NON DETERMINISTIC CHOICE
o Prryn = Prp U Pry

A.MADEIRA (U. AVEIRO) COMPUTATIONAL Logic
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DyNamic Loaic

INTERPRETATION OF PROGRAMS

ITERACTIVE CLOSURE
o Pry« = (Pr;)*, para
(Pry)* = UnZO(Prﬂ)”, onde

o (w,w') € (Pr.)sew=w
o (w,w') € (Prp)**! se (w,w') € (Pry)* o (Pry)

-
’

e
T
\ /

< _ 7/
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Dynamic LoaGic

INTERPRETATION OF PROGRAMS

TEST
o Prgo?:{(wvw) | M:W):SO}

p?
U
\ /

o
®

A.MADEIRA (U. AVEIRO) COMPUTATIONAL Logic
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DyNamic Loaic

EXERCISE

Express the standard commands of imperative programming as terms of
our algebra of programs. Namely:

o if o then 7 else 7’/
o while ¢ do 7 od

o repeat m until ¢
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Dynamic LoaGic

PROGRAMS INTERPRETATION - ABBREVIATURES

if p then 7 else 7’ = (¢?; 7) + (—?; )
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Dynamic LoaGic

PROGRAMS INTERPRETATION - ABBREVIATURES

while ¢ do m od = (p?;7)* —p?
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Dynamic LoaGic

PROGRAMS INTERPRETATION - ABBREVIATURES

repeat m until p = m; (—?; 7)*

T ¥

O\
—\@ - // \\
/ ~ o
/
™
(et )
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EXERCISE

DyNamic Loaic

Consider the ({a, b}, {p, g})-model
M represented in the left, such that
V(p) = {51753} € V(q) = {5752754}'
Interpret the following programs in
M:

©

©

©

(*]

(*]

(*]

(*]

(*]

a;b

b; a

a+b

(a;b)+ b
(p?);a

(a?);a+ (—q?)b
(a+ b)*
(pAq)?

A.MADEIRA (U. AVEIRO)
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Dynamic LoaGic

DyNnamMIc LoGic

(Act, Prop)-FORMULAS

Formulas:

= p | L | o= | [7]p, parape Prop
Programs:

To= a | mm | m4+x | 7 | ¢? with a€ Act

A.MADEIRA (U. AVEIRO) COMPUTATIONAL Logic MaAy 7, 2025
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DyNaAMIC LoGic
SATISFACTION RELATION IN DL

SATISFACTION FOR A MODEL M AT STATE w

M,wET

M,w Ep sse  w € V(p)

M,w = ¢1 — ¢2 iff  M,wl=¢1 or Myw = ¢o

M, wi= [7] ¢ iff VYve W.(w,v) e Pr,implies M,v = ¢
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Dynamic LoaGic

SATISFACTION RELATION IN DL

SATISFACTION FOR A MODEL M AT STATE w

M,wET
M,w Ep sse  w € V(p)
M,w = ¢1 — ¢2 iff  M,wledr or Miw = ¢
M, wl= [r] ¢ iff VYve W.(w,v) e Pr,implies M,v = ¢
v
COROLLARY:
M,w = L
M,w = —¢ iff  M,wlo
M,w = ¢1 A ¢2 iff M,wl=¢1 and M,w |= ¢2
M,w k= 61V é2 i M,w =61 or Myw = o
M, wk= (7) ¢ iff 3 ve Wsuchthat (w,v) € PrreM,vi=¢
v
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DyNamic Loaic

EXERCISE
Consider the ({a, b}, {p, q})-model
M in the left, assuming S
V(p) = {51753} € V(q) = {5752754}'
What are the correct statements: a a
o M,s=(a")q a
o M,s; = (p?,a;b+q?;,a,b)T a
S1 S92
o MiE=[(pnaq)?]L
Extend the operator [_],, to the a b
a

multi-modal case and calculate:
o [(p?;a;b+q?a;b)T]y,
o [[a*]a]lm S3
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DyNamic Loaic

EXERCISE

Consider the ({a, b, c}, {p, q})-model M = (W, R, V), with
W = {wi, wa, wz, wgq, ws } and such that :

o V(p) ={wi,ws}e V(q) =W,
o Ry ={(w1, ws), (w1, ws), (w1, ws), (w2, w3), (ws, w3)}
o Rp={(x,y) € W?|x =y},
o Re ={(w1,x)|x € W}
Check if:
o a) Mywy = [(a; b)]p V [b* + c]q
© b) M, w3 = [q7; blp — [c]q
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DyNamic Loaic

EXERCISE

Consider the ({a, b, c}, {p, q})-model M = (W, R, V), with
W ={-2,-1,0,1,2} and such that:

o V(p)={x € W|x >0} and V(q) = {x € W|x <1},
o Ry={(x,y) € W?|x <0,y >0}
o Ry ={(x,y) € W?|x =y}
o R.={(0,x)|x € W}
Check if:
o0 a) M,0=[(a+ b)lpV [b*+clq
o b) M,2 = [(p— q)7 blp — [c]-q
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Dynamic LoaGic

EXERCISE

VERIFY IF THE FOLLOWING PROPERTIES ARE VALID IN DL
o [a; Blp < [o][Ble
o [a+Ble < [alp AB]p
o [a*]e = ¢ Ala]le]"p
o [a](¢ = [ep) = (¢ = [@"]p)
o [p?Y < (v = ¥)

A.MADEIRA (U. AVEIRO) COMPUTATIONAL Logic MaAy 7, 2025

46 /97



DyNamic Loaic

AN HENNESSY MILNER THEOREM FOR PDL?

EXERCISE

o Observe that the semantics of dynamic logic for a (Prop, Act)-model
M is equivalent to the semantics of multimodal logic in the
"respective” (Prop, Prog(Act))-model M

o Verify that B: M = N if and only if B: M =N

o Conclude with the knowledge you have of (multi)modal logic
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DyNamic Loaic

MORE OPERATIONAL VERSION: ACTION SETS AS
ATOoMIC PROGRAMS

a=K|KUK|KNK
for K C Act.
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DyNamic Loaic

MORE OPERATIONAL VERSION: ACTION SETS AS
ATOoMIC PROGRAMS

a=K|KUK|KNK
for K C Act. Just like in the multimodal case, we represent:
o the set Act by —

o the set A\ {a} by —a
PROGRAMS

R=¢|a|RR|R+R|R"
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DyNamic Loaic

HENNESSY-MILNER WITH REGULAR MODALITIES

ON REGULAR MODALITIES
(R1+ Ra)p < (Ri)p V (Ra)gp
[R1 + Ro]e < [Ri]e A [Ra]e
(Ri.Ra) > (R1)(R2)p
[Ri-Ro]p <+ [Ru][Re]p

A.MADEIRA (U. AVEIRO) COMPUTATIONAL LoGIC MaAy 7, 2025
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DyNamic Loaic

REPRESENTATION OF MORE COMPLEX PATTERNS

o The property ¢ is true in all reachable states.
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DyNamic Loaic

REPRESENTATION OF MORE COMPLEX PATTERNS

o The property ¢ is true in all reachable states.

[l

o The property o is always accessible through action a.
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DyNamic Loaic

REPRESENTATION OF MORE COMPLEX PATTERNS

o The property ¢ is true in all reachable states.

[l

o The property o is always accessible through action a.

*71/ 4\, A
[7 ]\a/)r'

o The property ¢ is inevitable.
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DyNamic Loaic

REPRESENTATION OF MORE COMPLEX PATTERNS

o The property ¢ is true in all reachable states.

[l

o The property o is always accessible through action a.

[~l(abe

o The property ¢ is inevitable.

[ 1(=)¢
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DyNamic Loaic

REPRESENTATION OF MORE COMPLEX PATTERNS

o As long as an error does not happen, a deadlock will not occur.
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DyNamic Loaic

REPRESENTATION OF MORE COMPLEX PATTERNS

o As long as an error does not happen, a deadlock will not occur.

[(—error)*|(—)T
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DyNamic Loaic

REPRESENTATION OF MORE COMPLEX PATTERNS

o As long as an error does not happen, a deadlock will not occur.

[(—error)*|(—)T

o Whenever an a happens in a reachable state, an action b can be
subsequently performed, unless an ¢ happens, cancelling the need to
perform b.
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DyNamic Loaic

REPRESENTATION OF MORE COMPLEX PATTERNS

o As long as an error does not happen, a deadlock will not occur.

[(—error)*|(—)T

o Whenever an a happens in a reachable state, an action b can be
subsequently performed, unless an ¢ happens, cancelling the need to
perform b.

[—".a](—".(bUc))T
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DyNamic Loaic

REPRESENTATION OF MORE COMPLEX PATTERNS

o As long as an error does not happen, a deadlock will not occur.

[(—error)*|(—)T

o Whenever an a happens in a reachable state, an action b can be
subsequently performed, unless an ¢ happens, cancelling the need to
perform b.

[—".a](—".(bUc))T

o Whenever action a occurs, it must always be possible to do b
afterward, although doing b can be infinitely postponed.
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DyNamic Loaic

REPRESENTATION OF MORE COMPLEX PATTERNS

o As long as an error does not happen, a deadlock will not occur.

[(—error)*|(—)T

o Whenever an a happens in a reachable state, an action b can be
subsequently performed, unless an ¢ happens, cancelling the need to
perform b.

[—".a](—".(bUc))T

o Whenever action a occurs, it must always be possible to do b
afterward, although doing b can be infinitely postponed.

[=".a.(=b)"|(-"-b)T
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[ExTRA] DYNAMIC LOGIC FOR HYBRID SYSTEMS?

OUTLINE

@ [ExTrA] DYNAMIC LOGIC FOR HYBRID SYSTEMS?
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[ExTRA] DYNAMIC LOGIC FOR HYBRID SYSTEMS?

THE HYBRID AUTOMATON

THE THERMOSTAT

x> 21

x <19
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[ExTRA] DYNAMIC LOGIC FOR HYBRID SYSTEMS?

DyNaAMIC LOGIC FOR HYBRID SYSTEMS?

ANDRE PLATZER’S DIFFERENTIAL DYNAMIC LoGIC dL
o A logic developed to specify and verify properties of hybrid systems

o It has a powerful computational proof support — KeYmaera

A.MADEIRA (U. AVEIRO) COMPUTATIONAL Logic MaAy 7, 2025 54 /97



[ExTrA] DYNAMIC LOGIC FOR HYBRID SYSTEMS?

EVOLUCOES DISCRETAS VS. CONTINUAS

Evolugdo discreta Evolugdo Continua

[SRUCIEREFS
(SR CITRENN

Time — Time —

Hybrid = discretep + continuo

o digital controller actions, discrete event interaction, etc

@ physics entities, analogic controller actions, etc
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[ExTRA] DYNAMIC LOGIC FOR HYBRID SYSTEMS?

SYNTAX OF dL

HYBRID PROGRAMS

a,B3x:=0|x=0&x|aUB|a;B|a*|?x
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[ExTRA] DYNAMIC LOGIC FOR HYBRID SYSTEMS?

SYNTAX OF dL

HYBRID PROGRAMS

a,B3x:=0|x=0&x|aUB|a;B|a*|?x

dL-FORMULAS

G201 =061 <02 =¢|dNY|[a]d

where 60,67 and 0, are terms
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[ExTRA] DYNAMIC LOGIC FOR HYBRID SYSTEMS?

PLATZER’S dL — SEMANTICS

STATES:
They are functions V — R

INTERPRETATION OF PROGRAMS
The relation p(a) € & x & is defined as in first-order DL with
0 p(x:=0)={(u,v)|v(x) =0 forall y e V\ {x},u(y) = v(y)}

o p(x = 0&x) = {(¥(0), o(N)|e(t) E x,0 < t < r, for every solution ¢ :
[0,r] = S with any duration r}

o plaup) = p(a)Up(B)

pa; B) = p(a) o p(B)

o p(a*) = U,en (™), where o = id and o™ = o; "
(

o p(7x) = {(v,V)lv = x}
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[ExTRA] DYNAMIC LOGIC FOR HYBRID SYSTEMS?

PLATZER’S dL — SATISFACTION

©

v = (01 = 07) iff vy, = vp,

viE-piffvIEp

viEpAp iffvEpand vy

viEpVvp iffviEporviEp

v = [a]p iff for every (v, w) € p(a), w = p

v |= (a)p iff there exists a (v, w) € p(a), such that w = p

©

©

©

©

©
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[ExTRA] DYNAMIC LOGIC FOR HYBRID SYSTEMS?

BiorLocy CASE STUDY

CONTROLLER OF A BIOLOGICAL SYSTEM

EXAMPLE
X,:5—X X/:6_X
y'=6-y+u y'=1l-y+u
X<3ANy>2 xX>3Ny>2
x = —x x'=1—x
y'=b-y+u y'=-y+u
X<3Ny<2 x>3Ny <2

D. Figueiredo, Manuel Martins and M. Chaves.

Applying differential dynamic logic to reconfigurable biological networks,
Mathematical Biosciences, vol. 291, 10-20, 2017.
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[ExTRA] DYNAMIC LOGIC FOR HYBRID SYSTEMS?

BioLoGcicAL EXAMPLES

CONTROLLER OF A BIOLOGICAL SYSTEM

WE ANALYZE THE steady states

i.e., the values of x and y to which the system tends.

Control:
ou=2ifx>3andt>2

o u =0, otherwise

Using numerical methods, we know that (x, y) = (6, 3) is a candidate

A.MADEIRA (U. AVEIRO) COMPUTATIONAL LoGIC

MaAy 7, 2025
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[ExTRA] DYNAMIC LOGIC FOR HYBRID SYSTEMS?

BioLocicAL EXAMPLE

CONTROLLER IN A BIOLOGICAL SYSTEM

x'=5—x
y'=6-y+u

x'=6—x
y'=l-y+u

X<3ANy>2 x>3ANy>2
x'=—x xX'=1-x

y'=5-y+u y'=-y+u
x<3ANy<2 x>3Ny<?2

0 a1 =(x<3Ay<2u:=0
(X==-xy =5—-y4+ur7 =1&x <3Ny <2))

0 ap=(x>23ANy>2u:=2;
(X=6—xy=1—-y+u17=1&x>3Ay >2))

A.MADEIRA (U. AVEIRO) COMPUTATIONAL LoGIC
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[ExTRA] DYNAMIC LOGIC FOR HYBRID SYSTEMS?

BioLocicAL EXAMPLE

CONTROLLER IN A BIOLOGICAL SYSTEM

THE EVOLUTION OF THE SYSTEM CAN BE DESCRIBED BY THE
FOLLOWING HYBRID PROGRAM:

a=arUarUazUay
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[ExTRA] DYNAMIC LOGIC FOR HYBRID SYSTEMS?

BioLocicAL EXAMPLE

CONTROLLER IN A BIOLOGICAL SYSTEM

THE EVOLUTION OF THE SYSTEM CAN BE DESCRIBED BY THE
FOLLOWING HYBRID PROGRAM:

a=arUarUazUay

(x,y) = (6,3) 1S A STEADY STATE:

3¢ > 0(V0 < k < ¢((x—6)2+(y—3)2 = kAT = 0 — [a*](T = OV(x—6)>+(y-
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IN MCRL2

OUTLINE

@ DyNaMIC LOGIC IN PRACTICE: SPECIFICATION AND
VERIFICATION IN MCRL2
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IN MCRL2

THE MCRL2 TOOLSET

The so-called Process Algebras are formalisms for the specification of complex

transition systems (typically involving interaction and concurrency).
The mCRL2 offers:

0 a process algebra, based on ACP (Bergstra & Klop, 1982)
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IN MCRL2

THE MCRL2 TOOLSET

The so-called Process Algebras are formalisms for the specification of complex

transition systems (typically involving interaction and concurrency).
The mCRL2 offers:

0 a process algebra, based on ACP (Bergstra & Klop, 1982)

o with an axiomatic semantics
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IN MCRL2

THE MCRL2 TOOLSET

The so-called Process Algebras are formalisms for the specification of complex

transition systems (typically involving interaction and concurrency).
The mCRL2 offers:

0 a process algebra, based on ACP (Bergstra & Klop, 1982)

o with an axiomatic semantics

o and a Dynamic Logic used for the specification of properties over these
systems
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IN MCRL2

THE MCRL2 TOOLSET

The so-called Process Algebras are formalisms for the specification of complex
transition systems (typically involving interaction and concurrency).
The mCRL2 offers:

0 a process algebra, based on ACP (Bergstra & Klop, 1982)
o with an axiomatic semantics

o and a Dynamic Logic used for the specification of properties over these
systems

o tools for simulation and verification

www.mcrl2.org
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IN MCRL2

ACTIONS

INTERACTION THROUGH SETS OF MULTI-ACTIONS

o A multi-action is the basic unit of interaction that executes atomically.

a = 71lalad | ala

o Actions can be parameterized by data.

o The structure (Act, |, 7) forms an Abelian monoid.
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IN MCRL2

SEQUENTIAL PROCESSES

NON-DETERMINISTIC SEQUENTIAL BEHAVIOR

The set of processes P is defined by the grammar:

pu=al|d|p+tp|p-p]| Pd)

©

Choice (non-deterministic): +

©

Sequential composition: -
o Inaction or deadlock: &

o Processes parameterized by data: P(x: D) =p
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IN MCRL2

BASE AXIOMATICS TO MODEL SEQUENTIAL

BEHAVIOURS

A.MADEIRA (U. AVEIRO)

Al
A2
A3
A4
A5
A6
AT

Xty =y+x
(x+ty)+z =x+(y+2)
X+ X =X

(x+y)z =xz+y.z

(x.y).z = x.(y.z)
x+9 =X
0-x =9

COMPUTATIONAL LoGIC

May 7, 2025
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IN MCRL2

SEQUENTIAL PROCESSES

EXERCISE (AUTONOMOUS WORK)
Describe the following behaviours
0 a.bbd.c+a
o (a+b).b.c
o (a+b)e+idc
°a+(d+a)
o a(b+c)d.(b+c)

USING THE AXIOMATICS , SHOW THAT:

o0 d(at+b) =0d-a+d-b
0 a+(d+a) =

a
o itis true that a.(b+¢) = a.b+ac?

A.MADEIRA (U. AVEIRO) COMPUTATIONAL Logic MaAy 7, 2025
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IN MCRL2

CONDITIONALS

WE HAVE ALSO PROCESSES LIKE:
c—poq
where

o c is a condition

o p and g are processes
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IN MCRL2

CONDITIONALS

WE HAVE ALSO PROCESSES LIKE:

cC—poq
where
o c is a condition
o p and g are processes
v
AXIOMS:
CoND1 true —» xoy = x
CoND2 false » xoy =y
THEN ¢ - x = ¢ = x906 )
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IN MCRL2

MCRL2

EXAMPLES

act

proc

init

order, receive, keep, refund, return;
Buy = order.OrderedItem

OrderedItem = receive.ReceivedItem + refund.Buy;
ReceivedItem = return.OrderedItem + keep;

Buy;

A.MADEIRA (U. AVEIRO) COMPUTATIONAL LogGIC MaAy 7, 2025
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IN MCRL2

EXAMPLES

CLock V1

act set, alarm, reset;

proc P = set.R
R reset.P + alarm.R

init P

A.MADEIRA (U. AVEIRO) COMPUTATIONAL Logic

MaAy 7, 2025
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IN MCRL2

EXAMPLES

CLocK V2

act set:N, alarm, reset, tick;

proc P = (sum n:N . set(n).R(n)) + tick.P
R(n:N) = reset.P + ((n == 0) -> alarm.R(0) <> tick.R(n-1))

init P
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IN MCRL2

PARALLEL COMPOSITION

|| = interleaving + sincronization

o Interaction is a basic element of systems design
o can be seen as black-boxs configurations

o mCRL2: discipline such synchronization

pu=--|pllplplplel,
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IN MCRL2

PARALLEL COMPOSITION

AN EXAMPLE
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IN MCRL2

PARALLEL COMPOSITION

AN EXAMPLE
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IN MCRL2

PARALLEL COMPOSITION

AN EXAMPLE
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IN MCRL2

PARALLEL COMPOSITION

AN EXAMPLE

©
o alc o
o o o
/ d
o b|d o
\\\ii\ %j;///
.
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IN MCRL2

INTERACTION

COMMUNICATION [¢(p) (com)

o Applies the communication function C, forces synchronization and
renames it to a new action:

ail--lan = ¢

o Enforces communication via data parameters c, e.g.:

[alb—cy(a(8) | b(8)) = c(8)
[apsey(a(12) | b(8)) = a(12) | b(8)
[ alpcy(a(8) | a(12) [ b(8)) = a(12) | ¢(8)

o The left-hand sides of C must be disjoint, e.g., {a| b — c,a| d — j} is not
allowed

v
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IN MCRL2

INTERFACE CONTROL

EXERCISE

v{x,y}(r{a\c7>><,b\d7>y}(‘3'b H Cd))
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IN MCRL2

INTERFACE CONTROL

SN
LN
NSNS

%

M esrtta—y (@b [ )|
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IN MCRL2

INTERFACE CONTROL

©
) x o
o ) o
o y o
°

‘ Vit (Maje—>x,bld—>y1(a-b || c.d)) ‘
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IN MCRL2

INTERFACE CONTROL

BrLock: 9g(p) (BLOCK)

o Specifies which actions are **not** allowed to occur

o Data parameters do not interfere

Ogpy(d(12) + a(8) + (b(false,4) | c)) = d(12) + a(8)
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IN MCRL2

INTERFACE CONTROL

006.6)(Tp1g->yy(a-b || c.d)) |
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IN MCRL2

INTERFACE CONTROL

006.6)(Tp1g->yy(a-b || c.d)) |

©
/ C
o alc o
\ /
o o
o y o
.
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IN MCRL2

INTERFACE CONTROL

ENFORCE COMMUNICATION
o Vi (Map=er(p))

A.MADEIRA (U. AVEIRO) COMPUTATIONAL Logic
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IN MCRL2

INTERFACE CONTROL

ENFORCE COMMUNICATION
o Vi (Map=er(p))
o a{a,b}(r{a|b—>c}(p))
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IN MCRL2

INTERFACE CONTROL

RENAMING puy(p) (RENAME)

@ rename actions of p accordingly with a function M

pid—n (d(12) 4 s(8) | d(false) + d.a.d(7))
= h(12) + s(8) | h(false) + h.a.h(7)
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IN MCRL2

INTERFACE CONTROL

HIDING 74(p) (HIDE)

o hide (i.e. rename to 7) all the actions in H in any multi-actions of p.

714y (d(12) + s(8) | d(false) + h.a.d(7))
= T7+4+s(8)| 7+ hat = 7+5(8)+ har

o 7 and ¢ can not be renamed
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IN MCRL2

INTERFACE CONTROL

EXAMPLE

T(a} (T {pjd—>yy(a-b || c.d))
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IN MCRL2

INTERFACE CONTROL

EXAMPLE

T(a} (T {pjd—>yy(a-b || c.d))

NS
SN
NUZANZ

N

A.MADEIRA (U. AVEIRO)

COMPUTATIONAL LogIc

May 7, 2025 85 /97



IN MCRL2

EXAMPLE

BUFFERS

act inn,outt,ia,ib,o0a,ob,c : Bool;

proc BufferS = sum n: Bool.inn(n).outt(n).BufferS;

BufferA = rename({inn -> ia, outt -> oa}, BufferS);
BufferB = rename({inn -> ib, outt -> ob}, BufferS);

S = allow({ia,ob,c}, comm({oalib -> c}, BufferA || BufferB));

init hide({c}, 8);
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IN MCRL2

DATA TYPES

o Equalities: Equations, inequations and conditionals (if (-,-,-))

©

Basic types: Booleans, natural, reals, integers, ... with the usual operators

©

Sets, multisets, sequences ... with the usual operators

©

Definitions of functions, including A-notation

©

Inductive types: such as

sort BTree = struct leaf(Pos) | node(BTree, BTree)
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IN MCRL2

SIGNATURES AND DEFINITIONS

SORTS, FUNCTIONS, CONSTANTS, VARIABLES ...

sort S, A;
cons s,t:S, b:set(A);

map f: S xS ->A;
c: A;

var x:S;

eqn f(x,s) = s;
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IN MCRL2

SIGNATURES AND DEFINITIONS

A FUNCTIONAL LANGUAGE ...

sort BTree = struct leaf(Pos) | node(BTree, BTree);
map flatten: BTree -> List(Pos);
var n:Pos, t,r:BTree;
eqn flatten(leaf(n)) = [n];
flatten(node(t,r)) = flatten(t) ++ flatten(r);
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IN MCRL2

PROCESSES WITH DATA

Way?
o Data allows to make finite specifications of infinite systems

o data and parametrized processes

o sums with data types: >, s(n)

o conditional processes b — p< g
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IN MCRL2

EXAMPLES

COUNTER
act up, down;
setcounter:Pos;
proc Ctr(x:Pos) = up.Ctr(x+1)
+ (x>0) -> down.Ctr(x-1)

+ sum m:Pos. (setcounter(m).Ctr(m))

init Ctr(345);
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IN MCRL2

EXAMPLES

PRIME CHECKERS

map primes : Set(N);
eqn primes = n:NVpqen p,q > 1= (p*q) # n;
act yes, no;

ask:N;

proc Checker = sum n:N . ask(n)

init Checker

(n in primes -> yes <> no) . Checker
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IN MCRL2

EXAMPLES

DYNAMIC BINARY TREES

act left,right;

map N:Pos;

eqn N = 512;

proc X(n:Pos)=(n<=N)->(left.X(2*n)+right.X(2*n+1))<>delta;

init  X(1);
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IN MCRL2

OVERVIEW

THE VERIFICATION PROBLEM
o Given a specification of the system’s behaviour is in mCRL2

o and the system’s requirements are specified as properties in a temporal logic,

o a model checking algorithm decides whether the property holds for the
model: the property can be verified or refuted;

o sometimes, witnesses or counter examples can be provided
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IN MCRL2

TOOLSET FUNCTIONALITY

STRATEGIES TO HANDLE INFINITE MODELS AND SPECIFICATIONS

o The model specification is described in mCRL2 (x.mcrl2)

o This specification is linearized into the Linear Process Specification
format (x.1ps)

o In this format, the specification can be transformed and simulated

o Specifically, we can generate the associated Labeled Transition System
(x.1ts), simulate it, and test properties using the tool's boolean equation
solvers
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IN MCRL2

TOOLSET OVERVIEW

Lineariser

Solver

Manipulators Visualizers

Linear LTS
Process generator

BES
generator

Manipulators Solver

Manipulators

Manipulators
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IN MCRL2

TOOLSET OVERVIEW

TooL TUTORIAL
https:
//www.mcrl2.org/web/user_manual/tutorial/tutorial.html
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