
Computational Logic
Multi-modal Logics

Alexandre Madeira

Dep. Matemática, U. Aveiro

May 7, 2025

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 1 / 97

Motivations for the Section

Modal Logic is now used in the practices of specification, modeling, and
verification of complex systems.

Specializations/adaptations to operationalize these practices:

1 Enrich the accessibility relations with actions:

Modal → Multimodal

2 Interpret “programs,” i.e., structured combinations of actions:

Multimodal → Dynamic

3 Operational languages for defining the models: Process Algebras

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 2 / 97

Multimodal Logic

Outline

1 Multimodal Logic

2 Dynamic Logic

3 [Extra] Dynamic Logic for Hybrid Systems?

4 Dynamic Logic in Practice: Specification and
Verification in mCRL2

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 3 / 97

Multimodal Logic

Processes are Transition Systems

Two Coffee Machines

w1

coin

��

s1
coin

~~
coin

��
w2

coffee

}}
tea

��

s2

coffee

��

s3

tea

��
w3 w4 s4 s5

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 4 / 97

Multimodal Logic

Multi-agent Knowledge Systems are
Transition Systems

The Envelope Game

012 a

c b

021

c b

102 a

b

120

c

201 a 210

E.g., in state 012: Ana has the envelope with 0, Bob has the one with 1,
and Clara has the one with 2.

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 5 / 97

Multimodal Logic

Programs are Transition Systems

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 6 / 97

Multimodal Logic

The Language

Multimodal Signature

A signature is a pair (Prop,Act) where Prop and Act are (disjoint) sets of
propositional symbols and action or modality symbols, respectively.

Formulas

Let (Prop,Act) be a multimodal signature. The set of multimodal
formulas for (Prop,Act), denoted by MFm(Prop,Act), is defined by the
following grammar:

ϕ ::= p | ⊥ | ϕ→ ϕ | [m]ϕ

where p ∈ Prop and m ∈ Act

Abbreviations

⟨m⟩ϕ := ¬[m]¬ϕ
· · ·

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 7 / 97

Multimodal Logic

The Language

Multimodal Signature

A signature is a pair (Prop,Act) where Prop and Act are (disjoint) sets of
propositional symbols and action or modality symbols, respectively.

Formulas

Let (Prop,Act) be a multimodal signature. The set of multimodal
formulas for (Prop,Act), denoted by MFm(Prop,Act), is defined by the
following grammar:

ϕ ::= p | ⊥ | ϕ→ ϕ | [m]ϕ

where p ∈ Prop and m ∈ Act

Abbreviations

⟨m⟩ϕ := ¬[m]¬ϕ
· · ·

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 7 / 97

Multimodal Logic

The Language

Multimodal Signature

A signature is a pair (Prop,Act) where Prop and Act are (disjoint) sets of
propositional symbols and action or modality symbols, respectively.

Formulas

Let (Prop,Act) be a multimodal signature. The set of multimodal
formulas for (Prop,Act), denoted by MFm(Prop,Act), is defined by the
following grammar:

ϕ ::= p | ⊥ | ϕ→ ϕ | [m]ϕ

where p ∈ Prop and m ∈ Act

Abbreviations

⟨m⟩ϕ := ¬[m]¬ϕ
· · ·

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 7 / 97

Multimodal Logic

Multimodal Models and Structures

Multimodal Models and Structures

A model for a signature (Prop,Act) is a pair M = ⟨F ,V ⟩, where:
F = ⟨W ,R⟩ is a Kripke structure, i.e.,

W is a non-empty set (of states)
R = (Rm)m∈Act is a family of binary relations Rm ⊆ W ×W , one for
each modality symbol m ∈ Act

V : Prop → P(W) is a valuation.

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 8 / 97

Multimodal Logic

Multimodal Satisfaction Relation

Satisfaction in a model M at a state w

M,w |= ⊤
M,w |= p iff w ∈ V (p)

M,w |= ϕ1 → ϕ2 iff M,w ̸|= ϕ1 or M,w |= ϕ2

M,w |= [m]ϕ iff ∀v ∈ W . (w , v) ∈ Rm ⇒ M, v |= ϕ

Corollary:

M,w ̸|= ⊥
M,w |= ¬ϕ iff M,w ̸|= ϕ

M,w |= ϕ1 ∧ ϕ2 iff M,w |= ϕ1 and M,w |= ϕ2

M,w |= ϕ1 ∨ ϕ2 iff M,w |= ϕ1 or M,w |= ϕ2

M,w |= ⟨m⟩ϕ iff ∃v ∈ W such that (w , v) ∈ Rm and M, v |= ϕ

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 9 / 97

Multimodal Logic

Multimodal Satisfaction Relation

Satisfaction in a model M at a state w

M,w |= ⊤
M,w |= p iff w ∈ V (p)

M,w |= ϕ1 → ϕ2 iff M,w ̸|= ϕ1 or M,w |= ϕ2

M,w |= [m]ϕ iff ∀v ∈ W . (w , v) ∈ Rm ⇒ M, v |= ϕ

Corollary:

M,w ̸|= ⊥
M,w |= ¬ϕ iff M,w ̸|= ϕ

M,w |= ϕ1 ∧ ϕ2 iff M,w |= ϕ1 and M,w |= ϕ2

M,w |= ϕ1 ∨ ϕ2 iff M,w |= ϕ1 or M,w |= ϕ2

M,w |= ⟨m⟩ϕ iff ∃v ∈ W such that (w , v) ∈ Rm and M, v |= ϕ

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 9 / 97

Multimodal Logic

Multimodal Satisfaction

Satisfaction

A formula ϕ in MFm(Prop,Act) is:

satisfiable in M if it is satisfied in some state w of M

globally satisfiable in M (M |= ϕ) if it is satisfied in every state of M

valid (|= ϕ) if it is globally satisfied in all models over (Prop,Act)

a semantic consequence of a set of formulas Γ (Γ |= ϕ) if for all models
M and for all states w , if M,w |= Γ then M,w |= ϕ

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 10 / 97

Multimodal Logic

Exercise

Verify whether:

1 M, s |= ⟨a⟩⊤
2 M, s |= [a]⊥
3 M, s |= ⟨b⟩⊤
4 M, s |= [b]⊥
5 M, s |= [a]⟨b⟩⊤
6 M, s |= ⟨a⟩⟨b⟩⊥
7 M, s |= [a]⟨a⟩[a][b]⊥
8 M, s |= ⟨a⟩(⟨a⟩⊤ ∧ ⟨b⟩⊤)

9 M, s |= [a](⟨a⟩⊤ ∨ ⟨b⟩⊤)

10 M, s |= ⟨a⟩([b][a]⊥ ∧ ⟨b⟩⊤)

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 11 / 97

Multimodal Logic

Exerćıcio

Determine:

1 [[[a][b]⊥]]M
2 [[⟨a⟩(⟨a⟩⊤ ∧ ⟨b⟩⊤)]]M
3 [[[a][a][b]⊥]]M
4 [[[a](⟨a⟩⊤ ∨ ⟨b⟩⊤)]]M

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 12 / 97

Multimodal Logic

Exercise

Find a model M for ({}, {a, b, c}) that has a state w such that
simultaneously:

M,w |= ⟨a⟩(⟨b⟩⟨c⟩⊤ ∧ ⟨c⟩⊤)

M,w |= ⟨a⟩⟨b⟩([a]⊥ ∧ [b]⊥ ∧ [c]⊥)

M,w |= [a]⟨b⟩([c]⊥ ∧ ⟨a⟩⊤)

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 13 / 97

Multimodal Logic

Bisimulation

Bisimulation (Multimodal version)

Let M = (W ,R,V) and M ′ = (W ′,R ′,V ′) be two models for (Prop,Act).
A bisimulation between M and M ′ is a relation B ⊆ W ×W ′ such that,
for any (w ,w ′) ∈ B and for any a ∈ Act, the following conditions hold:

(Atom) w ∈ V (p) iff w ′ ∈ V ′(p), for all p ∈ Prop

(Zig) if (w , v) ∈ Ra then there exists a v ′ ∈ W ′ such that
(w ′, v ′) ∈ R ′

a and (v , v ′) ∈ B

(Zag) if (w ′, v ′) ∈ R ′
a then there exists a v ∈ W such that

(w , v) ∈ Ra and (v , v ′) ∈ B

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 14 / 97

Multimodal Logic

Hennessy-Milner Theorem (Multimodal
Version)

Image-finite model

A model M = (W ,R,V) is called image-finite if for every w ∈ W , and
for every a ∈ Act, the set Ra[w] = {v | (w , v) ∈ R} is finite.

Hennessy-Milner Theorem

Let M and M ′ be two image-finite models for (Prop,Act). Then, for any
w ∈ W and w ′ ∈ W ′, the following are equivalent:

1 There exists a bisimulation B : M ⇌ M ′ such that (w ,w ′) ∈ B

2 For every φ ∈ MFm(Prop,Act),

M,w |= φ iff M ′,w ′ |= φ

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 15 / 97

Multimodal Logic

Hennessy-Milner Theorem (Multimodal
Version)

Image-finite model

A model M = (W ,R,V) is called image-finite if for every w ∈ W , and
for every a ∈ Act, the set Ra[w] = {v | (w , v) ∈ R} is finite.

Hennessy-Milner Theorem

Let M and M ′ be two image-finite models for (Prop,Act). Then, for any
w ∈ W and w ′ ∈ W ′, the following are equivalent:

1 There exists a bisimulation B : M ⇌ M ′ such that (w ,w ′) ∈ B

2 For every φ ∈ MFm(Prop,Act),

M,w |= φ iff M ′,w ′ |= φ

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 15 / 97

Multimodal Logic

Examples

Two coffee machines

w1

coin

��

s1
coin

~~
coin

��
w2

coffee

}}
tea

��

s2

coffee

��

s3

tea

��
w3 w4 s4 s5

We have that w1 ̸∼ s1, because:

M,w1 |= [coin]⟨coffee⟩⊤, and

N, s1 ̸|= [coin]⟨coffee⟩⊤

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 16 / 97

Multimodal Logic

Exercise

Show that s ̸∼ t ̸∼ v .

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 17 / 97

Multimodal Logic

Example – Temporal Logics

Temporal Logic

W is the set of time points

There is a unique modality corresponding to the transitive closure of the
”next-time” relation

(Until) M,w |= ϕU ψ iff

There exists a v ∈ W such that (w , v) ∈ R and M, v |= ψ, and for all u ∈ W
such that (w , u) ∈ R and (u, v) ∈ R, we have that M, u |= ϕ

(Since) M,w |= ϕS ψ iff

There exists a v ∈ W such that (v ,w) ∈ R and M, v |= ψ, and for all u such
that (v , u) ∈ R and (u,w) ∈ R, we have that M, u |= ϕ

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 18 / 97

Multimodal Logic

Example – Temporal Logics

Temporal Logic

W is the set of time points

There is a unique modality corresponding to the transitive closure of the
”next-time” relation

(Until) M,w |= ϕU ψ iff

There exists a v ∈ W such that (w , v) ∈ R and M, v |= ψ, and for all u ∈ W
such that (w , u) ∈ R and (u, v) ∈ R, we have that M, u |= ϕ

(Since) M,w |= ϕS ψ iff

There exists a v ∈ W such that (v ,w) ∈ R and M, v |= ψ, and for all u such
that (v , u) ∈ R and (u,w) ∈ R, we have that M, u |= ϕ

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 18 / 97

Multimodal Logic

Operationalizing Multimodal Logic

We can use sets of actions in modalities

M,w |= ⟨K ⟩ϕ iff ∃w∈{w ′|(w ,w ′)∈Ra and a∈K} . M,w ′ |= ϕ

M,w |= [K]ϕ iff ∀w∈{w ′|(w ,w ′)∈Ra and a∈K} . M,w ′ |= ϕ

Notation

The following is used:

The symbol − to represent K = Act.
E.g. ⟨−⟩φ
The expression −A to represent K = Act \ A.
E.g. [−A]φ. Parentheses are omitted in singular sets. For example,
[−a]φ denotes [−{a}]φ

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 19 / 97

Multimodal Logic

Operationalizing Multimodal Logic

We can use sets of actions in modalities

M,w |= ⟨K ⟩ϕ iff ∃w∈{w ′|(w ,w ′)∈Ra and a∈K} . M,w ′ |= ϕ

M,w |= [K]ϕ iff ∀w∈{w ′|(w ,w ′)∈Ra and a∈K} . M,w ′ |= ϕ

Notation

The following is used:

The symbol − to represent K = Act.
E.g. ⟨−⟩φ
The expression −A to represent K = Act \ A.
E.g. [−A]φ. Parentheses are omitted in singular sets. For example,
[−a]φ denotes [−{a}]φ

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 19 / 97

Multimodal Logic

Operationalizing Multimodal Logic

Typical Properties

inevitability of a: ⟨−⟩⊤ and [−a]⊥

progress: ⟨−⟩⊤

deadlock or termination: [−]⊥

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 20 / 97

Multimodal Logic

Operationalizing Multimodal Logic

Typical Properties

inevitability of a: ⟨−⟩⊤ and [−a]⊥

progress: ⟨−⟩⊤

deadlock or termination: [−]⊥

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 20 / 97

Multimodal Logic

Operationalizing Multimodal Logic

Typical Properties

inevitability of a: ⟨−⟩⊤ and [−a]⊥

progress: ⟨−⟩⊤

deadlock or termination: [−]⊥

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 20 / 97

Multimodal Logic

Illustration

Taxi Network Specification

Specify in Multimodal Logic the scenario of a taxi network described
below. Pay attention to the signature definition and then to the
specification of the relevant requirements.

ϕ0 = In a taxi network, a car can pick up a passenger or be
allocated by the Dispatch to a pending service.

ϕ1 = This property applies only to cars in service.

ϕ2 = If a car is allocated to a service, it must first pick up the
passenger and then plan the route.

ϕ3 = When an emergency is detected, a taxi becomes inactive.

ϕ4 = A car in service is not inactive.

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 21 / 97

Multimodal Logic

Illustration

Taxi Network Specification

ϕ0 = In a taxi network, a car can pick up a passenger or be allocated
by the Dispatch to a pending service.

ϕ0 = ⟨rec , alo⟩⊤

ϕ1 = This property applies only to cars in service.

ϕ1 = [onservice] ⟨rec , alo⟩⊤ or ϕ1 = [onservice]ϕ0

ϕ2 = If a car is allocated to a service, it must first pick up the
passenger and then plan the route.

ϕ2 = [alo] ⟨rec⟩ ⟨plan⟩⊤

ϕ3 = When an emergency is detected, a taxi becomes inactive.

ϕ3 = [sos] [−]⊥

ϕ4 = A car in service is not inactive.

ϕ4 = [onservice] ⟨−⟩⊤

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 22 / 97

Multimodal Logic

Illustration

Taxi Network Specification

ϕ0 = In a taxi network, a car can pick up a passenger or be allocated
by the Dispatch to a pending service.

ϕ0 = ⟨rec , alo⟩⊤

ϕ1 = This property applies only to cars in service.

ϕ1 = [onservice] ⟨rec , alo⟩⊤ or ϕ1 = [onservice]ϕ0

ϕ2 = If a car is allocated to a service, it must first pick up the
passenger and then plan the route.

ϕ2 = [alo] ⟨rec⟩ ⟨plan⟩⊤

ϕ3 = When an emergency is detected, a taxi becomes inactive.

ϕ3 = [sos] [−]⊥

ϕ4 = A car in service is not inactive.

ϕ4 = [onservice] ⟨−⟩⊤

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 22 / 97

Multimodal Logic

Illustration

Taxi Network Specification

ϕ0 = In a taxi network, a car can pick up a passenger or be allocated
by the Dispatch to a pending service.

ϕ0 = ⟨rec , alo⟩⊤

ϕ1 = This property applies only to cars in service.

ϕ1 = [onservice] ⟨rec , alo⟩⊤ or ϕ1 = [onservice]ϕ0

ϕ2 = If a car is allocated to a service, it must first pick up the
passenger and then plan the route.

ϕ2 = [alo] ⟨rec⟩ ⟨plan⟩⊤

ϕ3 = When an emergency is detected, a taxi becomes inactive.

ϕ3 = [sos] [−]⊥

ϕ4 = A car in service is not inactive.

ϕ4 = [onservice] ⟨−⟩⊤

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 22 / 97

Multimodal Logic

Illustration

Taxi Network Specification

ϕ0 = In a taxi network, a car can pick up a passenger or be allocated
by the Dispatch to a pending service.

ϕ0 = ⟨rec , alo⟩⊤

ϕ1 = This property applies only to cars in service.

ϕ1 = [onservice] ⟨rec , alo⟩⊤ or ϕ1 = [onservice]ϕ0

ϕ2 = If a car is allocated to a service, it must first pick up the
passenger and then plan the route.

ϕ2 = [alo] ⟨rec⟩ ⟨plan⟩⊤

ϕ3 = When an emergency is detected, a taxi becomes inactive.

ϕ3 = [sos] [−]⊥

ϕ4 = A car in service is not inactive.

ϕ4 = [onservice] ⟨−⟩⊤

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 22 / 97

Multimodal Logic

Illustration

Taxi Network Specification

ϕ0 = In a taxi network, a car can pick up a passenger or be allocated
by the Dispatch to a pending service.

ϕ0 = ⟨rec , alo⟩⊤

ϕ1 = This property applies only to cars in service.

ϕ1 = [onservice] ⟨rec , alo⟩⊤ or ϕ1 = [onservice]ϕ0

ϕ2 = If a car is allocated to a service, it must first pick up the
passenger and then plan the route.

ϕ2 = [alo] ⟨rec⟩ ⟨plan⟩⊤

ϕ3 = When an emergency is detected, a taxi becomes inactive.

ϕ3 = [sos] [−]⊥

ϕ4 = A car in service is not inactive.

ϕ4 = [onservice] ⟨−⟩⊤

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 22 / 97

Multimodal Logic

Illustration

Taxi Network Specification

ϕ0 = In a taxi network, a car can pick up a passenger or be allocated
by the Dispatch to a pending service.

ϕ0 = ⟨rec , alo⟩⊤

ϕ1 = This property applies only to cars in service.

ϕ1 = [onservice] ⟨rec , alo⟩⊤ or ϕ1 = [onservice]ϕ0

ϕ2 = If a car is allocated to a service, it must first pick up the
passenger and then plan the route.

ϕ2 = [alo] ⟨rec⟩ ⟨plan⟩⊤

ϕ3 = When an emergency is detected, a taxi becomes inactive.

ϕ3 = [sos] [−]⊥

ϕ4 = A car in service is not inactive.

ϕ4 = [onservice] ⟨−⟩⊤

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 22 / 97

Multimodal Logic

Illustration

Taxi Network Specification

ϕ0 = In a taxi network, a car can pick up a passenger or be allocated
by the Dispatch to a pending service.

ϕ0 = ⟨rec , alo⟩⊤

ϕ1 = This property applies only to cars in service.

ϕ1 = [onservice] ⟨rec , alo⟩⊤ or ϕ1 = [onservice]ϕ0

ϕ2 = If a car is allocated to a service, it must first pick up the
passenger and then plan the route.

ϕ2 = [alo] ⟨rec⟩ ⟨plan⟩⊤

ϕ3 = When an emergency is detected, a taxi becomes inactive.

ϕ3 = [sos] [−]⊥

ϕ4 = A car in service is not inactive.

ϕ4 = [onservice] ⟨−⟩⊤

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 22 / 97

Multimodal Logic

Illustration

Taxi Network Specification

ϕ0 = In a taxi network, a car can pick up a passenger or be allocated
by the Dispatch to a pending service.

ϕ0 = ⟨rec , alo⟩⊤

ϕ1 = This property applies only to cars in service.

ϕ1 = [onservice] ⟨rec , alo⟩⊤ or ϕ1 = [onservice]ϕ0

ϕ2 = If a car is allocated to a service, it must first pick up the
passenger and then plan the route.

ϕ2 = [alo] ⟨rec⟩ ⟨plan⟩⊤

ϕ3 = When an emergency is detected, a taxi becomes inactive.

ϕ3 = [sos] [−]⊥

ϕ4 = A car in service is not inactive.

ϕ4 = [onservice] ⟨−⟩⊤

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 22 / 97

Multimodal Logic

Illustration

Taxi Network Specification

ϕ0 = In a taxi network, a car can pick up a passenger or be allocated
by the Dispatch to a pending service.

ϕ0 = ⟨rec , alo⟩⊤

ϕ1 = This property applies only to cars in service.

ϕ1 = [onservice] ⟨rec , alo⟩⊤ or ϕ1 = [onservice]ϕ0

ϕ2 = If a car is allocated to a service, it must first pick up the
passenger and then plan the route.

ϕ2 = [alo] ⟨rec⟩ ⟨plan⟩⊤

ϕ3 = When an emergency is detected, a taxi becomes inactive.

ϕ3 = [sos] [−]⊥

ϕ4 = A car in service is not inactive.

ϕ4 = [onservice] ⟨−⟩⊤

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 22 / 97

Multimodal Logic

Exercise

Formalise each of the following properties:

1 The occurrence of a and b is impossible.

2 The occurrence of a followed by b is impossible.

3 Only the occurrence of a is possible.

4 Once a occurred, b or c may occur.

5 After a occurred followed by b, c may occur.

6 Once a occurred, b or c may occur but not both.

7 a cannot occur before b.

8 There is only an initial transition labelled by a.

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 23 / 97

Multimodal Logic

Exercise

Consider the following process

Start =df fw .Go + stop.0

Go =df fw .bk.bk .Start + right.left.bk.Start

Formalize the following properties

1 After fw another fw is immediately possible

2 After fw followed by right, left is possible but bk is not.

3 The action fw is the only possible one.

4 The third action is not fw .

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 24 / 97

Dynamic Logic

Outline

1 Multimodal Logic

2 Dynamic Logic

3 [Extra] Dynamic Logic for Hybrid Systems?

4 Dynamic Logic in Practice: Specification and
Verification in mCRL2

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 25 / 97

Dynamic Logic

A Näıve Approach

Is Multi-modal Logic suitable for reasoning about
programs?

considering one modality for each program in the language

modeling the computation universe as the transition system that
interprets all these programs

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 26 / 97

Dynamic Logic

Dynamic Logic(s)

Multi-modal logics designed to work with actions in a structured
way

Goal: Reason about programs

Ingredients:

Atomic program notion
Regular expressions over atomic programs
Testing mechanisms for dealing with conditionals:
e.g. if then else

These principles are sufficiently abstract to be adapted to various
computing paradigms ...

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 27 / 97

Dynamic Logic

Intuitions: Dynamic Logic for Verifying
Imperative Programs

To handle classical imperative programs, what is the notion of an
atomic program, i.e., what is the set Π0?

What is the notion of state?

What is the notion of test?

Let π be the following program:

wh i l e x<3 do
x :=x+1

od

Example:

If x = 0, any execution of π, if it terminates, results in a state where x = 2

x = 0 → [((x < 3?); x := x + 1)∗; (x ≥ 3?)]x = 2

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 28 / 97

Dynamic Logic

The Dynamic Logic We Will Consider in This
Course:

Atomic programs — sets of actions Act

Tests — assertions in our logic

Valuations allow the representation of local observations, i.e., what
we can observe beyond the dynamics

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 29 / 97

Dynamic Logic

Generic Notion of Program and Its
Interpretation

Set of Programs for Atomic Program Set Act

π := a | π;π | π + π | π∗ | φ?

a ∈ Act and φ a “state property”

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 30 / 97

Dynamic Logic

Interpretation of Programs

How do we interpret these programs in a model
(Act,Prop)-model M = (W ,R,V)?

A program π will be interpreted as a relation Prπ ⊆ W ×W
recursively.

Atomic Program

Pra = Ra, a ∈ Act

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 31 / 97

Dynamic Logic

Interpretation of Programs

Sequential Program

Prπ;π′ = Prπ ◦ Prπ′

π

π′

π;π′

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 32 / 97

Dynamic Logic

Interpretation of Programs

Non deterministic choice

Prπ+π′ = Prπ ∪ Prπ′

π

π′

π ∪ π′

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 33 / 97

Dynamic Logic

Interpretation of Programs

Iteractive closure

Prπ∗ = (Prπ)
∗, para

(Prπ)
∗ =

⋃
n≥0(Prπ)

n, onde

(w ,w ′) ∈ (Prπ)
0 se w = w ′

(w ,w ′) ∈ (Prπ)
k+1 se (w ,w ′) ∈ (Prπ)

k ◦ (Prπ)

π

π

π∗

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 34 / 97

Dynamic Logic

Interpretation of Programs

Test

Prφ? = {(w ,w) | M,w |= φ}

φ ¬φ

φ?

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 35 / 97

Dynamic Logic

Exercise

Express the standard commands of imperative programming as terms of
our algebra of programs. Namely:

if φ then π else π′

while φ do π od

repeat π until φ

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 36 / 97

Dynamic Logic

Programs interpretation - abbreviatures

if φ then π else π′ ≡ (φ?;π) + (¬φ?;π′)

φ ¬φ

π

π′

π

π′

γ γ

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 37 / 97

Dynamic Logic

Programs interpretation - abbreviatures

while φ do π od ≡ (φ?;π)∗;¬φ?

φ

φ

¬φ

φ

π

π

π

(φ?;π)∗;¬φ?

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 38 / 97

Dynamic Logic

Programs interpretation - abbreviatures

repeat π until φ ≡ π; (¬φ?;π)∗

¬φ

φ

π

π

π

π; (¬φ?;π)∗

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 39 / 97

Dynamic Logic

Exercise

Consider the ({a, b}, {p, q})-model
M represented in the left, such that
V (p) = {s1, s3} e V (q) = {s, s2, s4}.
Interpret the following programs in
M:

a; b

b; a

a+ b

(a; b) + b

a∗

(p?); a

(q?); a+ (¬q?)b
(a+ b)∗

(p ∧ q)?

(p ∧ q)?; a; b
A.Madeira (U. Aveiro) Computational Logic May 7, 2025 40 / 97

Dynamic Logic

Dynamic Logic

(Act,Prop)-formulas

Formulas:
φ ::= p | ⊥ | φ→ φ | [π]φ, para p ∈ Prop

Programs:
π ::= a | π;π | π + π | π∗ | φ?, with a ∈ Act

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 41 / 97

Dynamic Logic

Satisfaction Relation in DL

Satisfaction for a model M at state w

M,w |= ⊤
M,w |= p sse w ∈ V (p)

M,w |= ϕ1 → ϕ2 iff M,w ̸|= ϕ1 or M,w |= ϕ2

M,w |= [π]ϕ iff ∀v ∈ W . (w , v) ∈ Prπ implies M, v |= ϕ

Corollary:

M,w ̸|= ⊥
M,w |= ¬ϕ iff M,w ̸|= ϕ

M,w |= ϕ1 ∧ ϕ2 iff M,w |= ϕ1 and M,w |= ϕ2

M,w |= ϕ1 ∨ ϕ2 iff M,w |= ϕ1 or M,w |= ϕ2

M,w |= ⟨π⟩ϕ iff ∃ v ∈ W such that (w , v) ∈ Prπ e M, v |= ϕ

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 42 / 97

Dynamic Logic

Satisfaction Relation in DL

Satisfaction for a model M at state w

M,w |= ⊤
M,w |= p sse w ∈ V (p)

M,w |= ϕ1 → ϕ2 iff M,w ̸|= ϕ1 or M,w |= ϕ2

M,w |= [π]ϕ iff ∀v ∈ W . (w , v) ∈ Prπ implies M, v |= ϕ

Corollary:

M,w ̸|= ⊥
M,w |= ¬ϕ iff M,w ̸|= ϕ

M,w |= ϕ1 ∧ ϕ2 iff M,w |= ϕ1 and M,w |= ϕ2

M,w |= ϕ1 ∨ ϕ2 iff M,w |= ϕ1 or M,w |= ϕ2

M,w |= ⟨π⟩ϕ iff ∃ v ∈ W such that (w , v) ∈ Prπ e M, v |= ϕ

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 42 / 97

Dynamic Logic

Exercise

Consider the ({a, b}, {p, q})-model
M in the left, assuming
V (p) = {s1, s3} e V (q) = {s, s2, s4}.
What are the correct statements:

M, s |= ⟨a∗⟩q
M, s1 |= ⟨p?; a; b + q?; a; b⟩⊤
M |= [(p ∧ q)?]⊥

Extend the operator [[]]M to the
multi-modal case and calculate:

[[⟨p?; a; b + q?; a; b⟩⊤]]M
[[[a∗]q]]M

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 43 / 97

Dynamic Logic

Exercise

Consider the ({a, b, c}, {p, q})-model M = (W ,R,V), with
W = {w1,w2,w3,w4,w5} and such that :

V (p) = {w1,w3} e V (q) = W ,

Ra = {(w1,w3), (w1,w4), (w1,w5), (w2,w3), (w5,w3)}
Rb = {(x , y) ∈ W 2|x = y},
Rc = {(w1, x)|x ∈ W }

Check if:

a) M,w1 |= [(a; b)]p ∨ [b∗ + c]q

b) M,w3 |= [q?; b]p → [c]¬q

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 44 / 97

Dynamic Logic

Exercise

Consider the ({a, b, c}, {p, q})-model M = (W ,R,V), with
W = {−2,−1, 0, 1, 2} and such that:

V (p) = {x ∈ W |x > 0} and V (q) = {x ∈ W |x ≤ 1},
Ra = {(x , y) ∈ W 2|x ≤ 0, y ≥ 0}
Rb = {(x , y) ∈ W 2|x = y}
Rc = {(0, x)|x ∈ W }

Check if:

a) M, 0 |= [(a+ b)]p ∨ [b∗ + c]q

b) M, 2 |= [(p → q)?; b]p → [c]¬q

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 45 / 97

Dynamic Logic

Exercise

Verify if the following properties are valid in DL

[α;β]φ↔ [α][β]φ

[α+ β]φ↔ [α]φ ∧ [β]φ

[α∗]φ→ φ ∧ [α][α]∗φ

[α∗](φ→ [α]φ) → (φ→ [α∗]φ)

[φ?]ψ ↔ (φ→ ψ)

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 46 / 97

Dynamic Logic

An Hennessy Milner Theorem for PDL?

Exercise

Observe that the semantics of dynamic logic for a (Prop,Act)-model
M is equivalent to the semantics of multimodal logic in the
”respective” (Prop,Prog(Act))-model M̄

Verify that B : M ⇌ N if and only if B : M̄ ⇌ N̄

Conclude with the knowledge you have of (multi)modal logic

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 47 / 97

Dynamic Logic

More Operational Version: Action Sets as
Atomic Programs

α := K | K ∪ K | K ∩ K

for K ⊆ Act.

Just like in the multimodal case, we represent:

the set Act by −
the set A \ {a} by −a

Programs

R := ϵ | α | R.R | R + R | R∗

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 48 / 97

Dynamic Logic

More Operational Version: Action Sets as
Atomic Programs

α := K | K ∪ K | K ∩ K

for K ⊆ Act. Just like in the multimodal case, we represent:

the set Act by −
the set A \ {a} by −a

Programs

R := ϵ | α | R.R | R + R | R∗

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 48 / 97

Dynamic Logic

Hennessy-Milner with regular modalities

on regular modalities

⟨R1 + R2⟩φ↔ ⟨R1⟩φ ∨ ⟨R2⟩φ
[R1 + R2]φ↔ [R1]φ ∧ [R2]φ

⟨R1.R2⟩φ↔ ⟨R1⟩⟨R2⟩φ
[R1.R2]φ↔ [R1][R2]φ

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 49 / 97

Dynamic Logic

Representation of More Complex Patterns

The property φ is true in all reachable states.

[−∗]φ

The property φ is always accessible through action a.

[−∗]⟨a⟩φ

The property φ is inevitable.

[−∗]⟨−⟩φ

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 50 / 97

Dynamic Logic

Representation of More Complex Patterns

The property φ is true in all reachable states.

[−∗]φ

The property φ is always accessible through action a.

[−∗]⟨a⟩φ

The property φ is inevitable.

[−∗]⟨−⟩φ

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 50 / 97

Dynamic Logic

Representation of More Complex Patterns

The property φ is true in all reachable states.

[−∗]φ

The property φ is always accessible through action a.

[−∗]⟨a⟩φ

The property φ is inevitable.

[−∗]⟨−⟩φ

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 50 / 97

Dynamic Logic

Representation of More Complex Patterns

The property φ is true in all reachable states.

[−∗]φ

The property φ is always accessible through action a.

[−∗]⟨a⟩φ

The property φ is inevitable.

[−∗]⟨−⟩φ

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 50 / 97

Dynamic Logic

Representation of More Complex Patterns

As long as an error does not happen, a deadlock will not occur.

[(−error)∗]⟨−⟩⊤

Whenever an a happens in a reachable state, an action b can be
subsequently performed, unless an c happens, cancelling the need to
perform b.

[−∗.a]⟨−∗.(b ∪ c)⟩⊤

Whenever action a occurs, it must always be possible to do b
afterward, although doing b can be infinitely postponed.

[−∗.a.(−b)∗]⟨−∗.b⟩⊤

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 51 / 97

Dynamic Logic

Representation of More Complex Patterns

As long as an error does not happen, a deadlock will not occur.

[(−error)∗]⟨−⟩⊤

Whenever an a happens in a reachable state, an action b can be
subsequently performed, unless an c happens, cancelling the need to
perform b.

[−∗.a]⟨−∗.(b ∪ c)⟩⊤

Whenever action a occurs, it must always be possible to do b
afterward, although doing b can be infinitely postponed.

[−∗.a.(−b)∗]⟨−∗.b⟩⊤

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 51 / 97

Dynamic Logic

Representation of More Complex Patterns

As long as an error does not happen, a deadlock will not occur.

[(−error)∗]⟨−⟩⊤

Whenever an a happens in a reachable state, an action b can be
subsequently performed, unless an c happens, cancelling the need to
perform b.

[−∗.a]⟨−∗.(b ∪ c)⟩⊤

Whenever action a occurs, it must always be possible to do b
afterward, although doing b can be infinitely postponed.

[−∗.a.(−b)∗]⟨−∗.b⟩⊤

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 51 / 97

Dynamic Logic

Representation of More Complex Patterns

As long as an error does not happen, a deadlock will not occur.

[(−error)∗]⟨−⟩⊤

Whenever an a happens in a reachable state, an action b can be
subsequently performed, unless an c happens, cancelling the need to
perform b.

[−∗.a]⟨−∗.(b ∪ c)⟩⊤

Whenever action a occurs, it must always be possible to do b
afterward, although doing b can be infinitely postponed.

[−∗.a.(−b)∗]⟨−∗.b⟩⊤

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 51 / 97

Dynamic Logic

Representation of More Complex Patterns

As long as an error does not happen, a deadlock will not occur.

[(−error)∗]⟨−⟩⊤

Whenever an a happens in a reachable state, an action b can be
subsequently performed, unless an c happens, cancelling the need to
perform b.

[−∗.a]⟨−∗.(b ∪ c)⟩⊤

Whenever action a occurs, it must always be possible to do b
afterward, although doing b can be infinitely postponed.

[−∗.a.(−b)∗]⟨−∗.b⟩⊤

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 51 / 97

Dynamic Logic

Representation of More Complex Patterns

As long as an error does not happen, a deadlock will not occur.

[(−error)∗]⟨−⟩⊤

Whenever an a happens in a reachable state, an action b can be
subsequently performed, unless an c happens, cancelling the need to
perform b.

[−∗.a]⟨−∗.(b ∪ c)⟩⊤

Whenever action a occurs, it must always be possible to do b
afterward, although doing b can be infinitely postponed.

[−∗.a.(−b)∗]⟨−∗.b⟩⊤

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 51 / 97

[Extra] Dynamic Logic for Hybrid Systems?

Outline

1 Multimodal Logic

2 Dynamic Logic

3 [Extra] Dynamic Logic for Hybrid Systems?

4 Dynamic Logic in Practice: Specification and
Verification in mCRL2

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 52 / 97

[Extra] Dynamic Logic for Hybrid Systems?

The Hybrid Automaton

The Thermostat

Off

x ′ = −0.1x
x ≥ 18

x = 20

On

x ′ = 5− 0, 1x
x ≤ 22

x > 21

x < 19

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 53 / 97

[Extra] Dynamic Logic for Hybrid Systems?

Dynamic Logic for Hybrid Systems?

André Platzer’s Differential Dynamic Logic dL
A logic developed to specify and verify properties of hybrid systems

It has a powerful computational proof support — KeYmaera

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 54 / 97

[Extra] Dynamic Logic for Hybrid Systems?

Evoluções Discretas vs. Cont́ınuas

1 2 3 4 5 6

1

2

3

4

Time →

Evolução discreta

1 2 3 4 5 6

1

2

3

4

Time →

Evolução Cont́ınua

Hybrid = discretep + cont́ınuo

digital controller actions, discrete event interaction, etc

physics entities, analogic controller actions, etc

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 55 / 97

[Extra] Dynamic Logic for Hybrid Systems?

Syntax of dL

Hybrid Programs

α, β ∋ x := θ | x ′ = θ&χ | α ∪ β | α;β | α∗ | ?χ

dL-formulas

ϕ, ψ ∋ θ1 = θ2 | θ1 ≤ θ2 | ¬ϕ | ϕ ∧ ψ | [α]ϕ

where θ, θ1 and θ2 are terms

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 56 / 97

[Extra] Dynamic Logic for Hybrid Systems?

Syntax of dL

Hybrid Programs

α, β ∋ x := θ | x ′ = θ&χ | α ∪ β | α;β | α∗ | ?χ

dL-formulas

ϕ, ψ ∋ θ1 = θ2 | θ1 ≤ θ2 | ¬ϕ | ϕ ∧ ψ | [α]ϕ

where θ, θ1 and θ2 are terms

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 56 / 97

[Extra] Dynamic Logic for Hybrid Systems?

Platzer’s dL – semantics

States:

They are functions V → R

Interpretation of Programs

The relation ρ(α) ⊆ S × S is defined as in first-order DL with

ρ(x := θ) = {(u, v)|v(x) = θ for all y ∈ V \ {x}, u(y) = v(y)}

ρ(x ′ = θ&χ) = {(φ(0), φ(r))|φ(t) |= χ, 0 ≤ t ≤ r , for every solution φ :
[0, r] → S with any duration r}

ρ(α ∪ β) = ρ(α) ∪ ρ(β)

ρ(α;β) = ρ(α) ◦ ρ(β)

ρ(α∗) =
⋃

n∈N ρ(α
n), where α0 = id and αn+1 = α;αn

ρ(?χ) = {(v , v)|v |= χ}

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 57 / 97

[Extra] Dynamic Logic for Hybrid Systems?

Platzer’s dL – satisfaction

v |= (θ1 = θ2) iff vθ1 = vθ2
v |= ¬ρ iff v ̸|= ρ

v |= ρ ∧ ρ′ iff v |= ρ and v |= ρ′

v |= ρ ∨ ρ′ iff v |= ρ or v |= ρ′

v |= [α]ρ iff for every (v ,w) ∈ ρ(α), w |= ρ

v |= ⟨α⟩ρ iff there exists a (v ,w) ∈ ρ(α), such that w |= ρ

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 58 / 97

[Extra] Dynamic Logic for Hybrid Systems?

Biology Case Study
Controller of a Biological System

Example{
x ′ = 5− x

y ′ = 6− y + u

{
x ′ = 6− x

y ′ = 1− y + u

x < 3 ∧ y ≥ 2 x ≥ 3 ∧ y ≥ 2{
x ′ = −x

y ′ = 5− y + u

{
x ′ = 1− x

y ′ = −y + u

x < 3 ∧ y < 2 x ≥ 3 ∧ y < 2

D. Figueiredo, Manuel Martins and M. Chaves.
Applying differential dynamic logic to reconfigurable biological networks,
Mathematical Biosciences, vol. 291, 10-20, 2017.

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 59 / 97

[Extra] Dynamic Logic for Hybrid Systems?

Biological Examples
Controller of a Biological System

We analyze the steady states

i.e., the values of x and y to which the system tends.

Control:

u = 2, if x ≥ 3 and t ≥ 2

u = 0, otherwise

Using numerical methods, we know that (x , y) = (6, 3) is a candidate

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 60 / 97

[Extra] Dynamic Logic for Hybrid Systems?

Biological Example
Controller in a Biological System{

x ′ = 5− x

y ′ = 6− y + u

{
x ′ = 6− x

y ′ = 1− y + u

x < 3 ∧ y ≥ 2 x ≥ 3 ∧ y ≥ 2{
x ′ = −x

y ′ = 5− y + u

{
x ′ = 1− x

y ′ = −y + u

x < 3 ∧ y < 2 x ≥ 3 ∧ y < 2

α1 ≡ (?x < 3 ∧ y < 2; u := 0;
(x ′ = −x , y ′ = 5− y + u, τ ′ = 1 & x ≤ 3 ∧ y ≤ 2))

...

α4 ≡ (?x ≥ 3 ∧ y ≥ 2; u := 2;
(x ′ = 6− x , y ′ = 1− y + u, τ ′ = 1 & x ≥ 3 ∧ y ≥ 2))

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 61 / 97

[Extra] Dynamic Logic for Hybrid Systems?

Biological Example
Controller in a Biological System

The evolution of the system can be described by the
following hybrid program:

α ≡ α1 ∪ α2 ∪ α3 ∪ α4

(x , y) = (6, 3) is a steady state:

∃c > 0(∀0 < k < c((x−6)2+(y−3)2 = k∧τ = 0 → [α∗](τ = 0∨(x−6)2+(y−3)2 < k)))

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 62 / 97

[Extra] Dynamic Logic for Hybrid Systems?

Biological Example
Controller in a Biological System

The evolution of the system can be described by the
following hybrid program:

α ≡ α1 ∪ α2 ∪ α3 ∪ α4

(x , y) = (6, 3) is a steady state:

∃c > 0(∀0 < k < c((x−6)2+(y−3)2 = k∧τ = 0 → [α∗](τ = 0∨(x−6)2+(y−3)2 < k)))

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 62 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Outline

1 Multimodal Logic

2 Dynamic Logic

3 [Extra] Dynamic Logic for Hybrid Systems?

4 Dynamic Logic in Practice: Specification and
Verification in mCRL2

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 63 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

The mCRL2 Toolset

The so-called Process Algebras are formalisms for the specification of complex
transition systems (typically involving interaction and concurrency).
The mCRL2 offers:

a process algebra, based on ACP (Bergstra & Klop, 1982)

with an axiomatic semantics

and a Dynamic Logic used for the specification of properties over these
systems

tools for simulation and verification

www.mcrl2.org

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 64 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

The mCRL2 Toolset

The so-called Process Algebras are formalisms for the specification of complex
transition systems (typically involving interaction and concurrency).
The mCRL2 offers:

a process algebra, based on ACP (Bergstra & Klop, 1982)

with an axiomatic semantics

and a Dynamic Logic used for the specification of properties over these
systems

tools for simulation and verification

www.mcrl2.org

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 64 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

The mCRL2 Toolset

The so-called Process Algebras are formalisms for the specification of complex
transition systems (typically involving interaction and concurrency).
The mCRL2 offers:

a process algebra, based on ACP (Bergstra & Klop, 1982)

with an axiomatic semantics

and a Dynamic Logic used for the specification of properties over these
systems

tools for simulation and verification

www.mcrl2.org

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 64 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

The mCRL2 Toolset

The so-called Process Algebras are formalisms for the specification of complex
transition systems (typically involving interaction and concurrency).
The mCRL2 offers:

a process algebra, based on ACP (Bergstra & Klop, 1982)

with an axiomatic semantics

and a Dynamic Logic used for the specification of properties over these
systems

tools for simulation and verification

www.mcrl2.org

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 64 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Actions

Interaction through sets of multi-actions

A multi-action is the basic unit of interaction that executes atomically.

α ::= τ | a | a(d) | α | α

Actions can be parameterized by data.

The structure ⟨Act, |, τ⟩ forms an Abelian monoid.

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 65 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Sequential Processes

Non-deterministic sequential behavior

The set of processes P is defined by the grammar:

p ::= α | δ | p + p | p · p | P(d)

Choice (non-deterministic): +

Sequential composition: ·

Inaction or deadlock: δ

Processes parameterized by data: P(x : D) = p

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 66 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Base axiomatics to model sequential
behaviours

A1 x + y = y + x

A2 (x + y) + z = x + (y + z)

A3 x + x = x

A4 (x + y).z = x .z + y .z

A5 (x .y).z = x .(y .z)

A6 x + δ = x

A7 δ · x = δ

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 67 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Sequential processes

Exercise (autonomous work)

Describe the following behaviours

a.b.δ.c + a

(a+ b).δ.c

(a+ b).e + δ.c

a+ (δ + a)

a.(b + c).d .(b + c)

Using the axiomatics , show that:

δ.(a+ b) = δ · a+ δ · b

a+ (δ + a) = a

it is true that a.(b + c) = a.b + a.c ?

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 68 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Conditionals

We have also processes like:

c → p ⋄ q

where

c is a condition

p and q are processes

Axioms:

Cond1 true → x ⋄ y = x

Cond2 false → x ⋄ y = y

Then c → x = c → x ⋄ δ

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 69 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Conditionals

We have also processes like:

c → p ⋄ q

where

c is a condition

p and q are processes

Axioms:

Cond1 true → x ⋄ y = x

Cond2 false → x ⋄ y = y

Then c → x = c → x ⋄ δ

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 69 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

mCRL2

Examples

act order, receive, keep, refund, return;

proc Buy = order.OrderedItem

OrderedItem = receive.ReceivedItem + refund.Buy;

ReceivedItem = return.OrderedItem + keep;

init Buy;

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 70 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Examples

Clock V1

act set, alarm, reset;

proc P = set.R

R = reset.P + alarm.R

init P

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 71 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Examples

Clock V2

act set:N, alarm, reset, tick;

proc P = (sum n:N . set(n).R(n)) + tick.P

R(n:N) = reset.P + ((n == 0) -> alarm.R(0) <> tick.R(n-1))

init P

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 72 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Parallel composition

∥ = interleaving + sincronization

Interaction is a basic element of systems design

can be seen as black-boxs configurations

mCRL2: discipline such synchronization

p ::= · · · | p ∥ p | p | p | pTp

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 73 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Parallel Composition

An example

a · b ∥ c · d

⊚
c

��

a

��
a|c

��

◦

b|c

��

c

b

��

◦

a|d

��

d

��

a

~~
◦

c

��

◦
b

~~

d

b|d

��

◦
a

��
◦

d

◦
b

~~
•

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 74 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Parallel Composition

An example

a · b ∥ c · d

⊚
c

��

a

��
a|c

��

◦

b|c

��

c

b

��

◦

a|d

��

d

��

a

~~
◦

c

��

◦
b

~~

d

b|d

��

◦
a

��
◦

d

◦
b

~~
•

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 74 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Parallel Composition

An example

a · b | c · d

⊚

a|c

��

◦ ◦

◦ ◦
b

~~

d

b|d

��

◦

◦
d

◦
b

~~
•

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 75 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Parallel Composition

An example

a · b | c · d

⊚

a|c

��

◦ ◦

◦ ◦
b

~~

d

b|d

��

◦

◦
d

◦
b

~~
•

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 75 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Interaction

Communication ΓC (p) (com)

Applies the communication function C , forces synchronization and
renames it to a new action:

a1 | · · · | an → c

Enforces communication via data parameters c , e.g.:

Γ{a|b→c}(a(8) | b(8)) = c(8)

Γ{a|b→c}(a(12) | b(8)) = a(12) | b(8)
Γ{a|b→c}(a(8) | a(12) | b(8)) = a(12) | c(8)

The left-hand sides of C must be disjoint, e.g., {a | b → c , a | d → j} is not
allowed

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 76 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Interface control

Exercise

∇{x ,y}(Γ{a|c−>x ,b|d−>y}(a.b ∥ c.d))

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 77 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Interface control

⊚
c

��

a

��
x

��

◦

b|c

��

c

b

��

◦

a|d

��

d

��

a

~~
◦

c

��

◦
b

~~

d

y

��

◦
a

��
◦

d

◦
b

~~
•

Γ{a|c−>x,b|d−>y}(a.b ∥ c .d)

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 78 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Interface control

⊚

x

��

◦ ◦

◦ ◦

y

��

◦

◦ ◦

•

∇{x,y}(Γ{a|c−>x,b|d−>y}(a.b ∥ c .d))

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 79 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Interface Control

Block: ∂B(p) (block)

Specifies which actions are **not** allowed to occur

Data parameters do not interfere

∂{b}(d(12) + a(8) + (b(false, 4) | c)) = d(12) + a(8)

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 80 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Interface Control

∂{b,d}(Γ{b|d−>y}(a.b ∥ c .d))

⊚
c

��

a

��
a|c

��

◦
c

◦
a

~~
◦ ◦

y

��

◦

◦ ◦

•

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 81 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Interface Control

∂{b,d}(Γ{b|d−>y}(a.b ∥ c .d))

⊚
c

��

a

��
a|c

��

◦
c

◦
a

~~
◦ ◦

y

��

◦

◦ ◦

•

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 81 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Interface Control

Enforce communication

∇{c}(Γ{a|b→c}(p))

∂{a,b}(Γ{a|b→c}(p))

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 82 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Interface Control

Enforce communication

∇{c}(Γ{a|b→c}(p))

∂{a,b}(Γ{a|b→c}(p))

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 82 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Interface Control

Renaming ρM(p) (rename)

rename actions of p accordingly with a function M

ρ{d→h}(d(12) + s(8) | d(false) + d .a.d(7))

= h(12) + s(8) | h(false) + h.a.h(7)

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 83 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Interface Control

Hiding τH(p) (hide)

hide (i.e. rename to τ) all the actions in H in any multi-actions of p.

τ{d}(d(12) + s(8) | d(false) + h.a.d(7))

= τ + s(8) | τ + h.a.τ = τ + s(8) + h.a.τ

τ and δ can not be renamed

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 84 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Interface Control

Example

τ{a}(Γ{b|d−>y}(a.b ∥ c .d))

⊚
c

��

τ

��
c

��

◦

b|c

��

c

b

��

◦

d

��

d

��

τ

~~
◦

c

��

◦
b

~~

d

y

��

◦
τ

��
◦

d

◦
b

~~
•

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 85 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Interface Control

Example

τ{a}(Γ{b|d−>y}(a.b ∥ c .d))

⊚
c

��

τ

��
c

��

◦

b|c

��

c

b

��

◦

d

��

d

��

τ

~~
◦

c

��

◦
b

~~

d

y

��

◦
τ

��
◦

d

◦
b

~~
•

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 85 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Example

Buffers

act inn,outt,ia,ib,oa,ob,c : Bool;

proc BufferS = sum n: Bool.inn(n).outt(n).BufferS;

BufferA = rename({inn -> ia, outt -> oa}, BufferS);

BufferB = rename({inn -> ib, outt -> ob}, BufferS);

S = allow({ia,ob,c}, comm({oa|ib -> c}, BufferA || BufferB));

init hide({c}, S);

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 86 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Data types

Equalities: Equations, inequations and conditionals (if(-,-,-))

Basic types: Booleans, natural, reals, integers, ... with the usual operators

Sets, multisets, sequences ... with the usual operators

Definitions of functions, including λ-notation

Inductive types: such as

sort BTree = struct leaf(Pos) | node(BTree, BTree)

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 87 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Signatures and definitions

Sorts, functions, constants, variables ...

sort S, A;

cons s,t:S, b:set(A);

map f: S x S -> A;

c: A;

var x:S;

eqn f(x,s) = s;

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 88 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Signatures and definitions

A functional language ...

sort BTree = struct leaf(Pos) | node(BTree, BTree);

map flatten: BTree -> List(Pos);

var n:Pos, t,r:BTree;

eqn flatten(leaf(n)) = [n];

flatten(node(t,r)) = flatten(t) ++ flatten(r);

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 89 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Processes with data

Why?

Data allows to make finite specifications of infinite systems

data and parametrized processes

sums with data types:
∑

n:N s(n)

conditional processes b → p ⋄ q

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 90 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Examples

Counter

act up, down;

setcounter:Pos;

proc Ctr(x:Pos) = up.Ctr(x+1)

+ (x>0) -> down.Ctr(x-1)

+ sum m:Pos.(setcounter(m).Ctr(m))

init Ctr(345);

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 91 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Examples

Prime checkers

map primes : Set(N);

eqn primes = n : N ∀p,q∈N p, q > 1 ⇒ (p ∗ q) ̸= n;
act yes, no;

ask:N;

proc Checker = sum n:N . ask(n) . (n in primes -> yes <> no) . Checker

init Checker

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 92 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Examples

Dynamic binary trees

act left,right;

map N:Pos;

eqn N = 512;

proc X(n:Pos)=(n<=N)->(left.X(2*n)+right.X(2*n+1))<>delta;

init X(1);

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 93 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Overview

The verification problem

Given a specification of the system’s behaviour is in mCRL2

and the system’s requirements are specified as properties in a temporal logic,

a model checking algorithm decides whether the property holds for the
model: the property can be verified or refuted;

sometimes, witnesses or counter examples can be provided

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 94 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Toolset Functionality

Strategies to Handle Infinite Models and Specifications

The model specification is described in mCRL2 (x.mcrl2)

This specification is linearized into the Linear Process Specification
format (x.lps)

In this format, the specification can be transformed and simulated

Specifically, we can generate the associated Labeled Transition System
(x.lts), simulate it, and test properties using the tool’s boolean equation
solvers

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 95 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Toolset Overview

www.mcrl2.org

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 96 / 97

Dynamic Logic in Practice: Specification and Verification
in mCRL2

Toolset Overview

Tool Tutorial

https:

//www.mcrl2.org/web/user_manual/tutorial/tutorial.html

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 97 / 97

https://www.mcrl2.org/web/user_manual/tutorial/tutorial.html
https://www.mcrl2.org/web/user_manual/tutorial/tutorial.html

	Multimodal Logic
	Dynamic Logic
	[Extra] Dynamic Logic for Hybrid Systems?
	Dynamic Logic in Practice: Specification and Verification in mCRL2

