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Motivations for the Section

Modal Logic is now used in the practices of specification, modeling, and
verification of complex systems.

Specializations/adaptations to operationalize these practices:

1 Enrich the accessibility relations with actions:

Modal → Multimodal

2 Interpret “programs,” i.e., structured combinations of actions:

Multimodal → Dynamic

3 Operational languages for defining the models: Process Algebras
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Multimodal Logic

Outline

1 Multimodal Logic

2 Dynamic Logic

3 [Extra] Dynamic Logic for Hybrid Systems?

4 Dynamic Logic in Practice: Specification and
Verification in mCRL2
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Multimodal Logic

Processes are Transition Systems

Two Coffee Machines
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Multimodal Logic

Multi-agent Knowledge Systems are
Transition Systems

The Envelope Game

012 a

c b

021

c b

102 a

b

120

c

201 a 210

E.g., in state 012: Ana has the envelope with 0, Bob has the one with 1,
and Clara has the one with 2.
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Multimodal Logic

Programs are Transition Systems
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Multimodal Logic

The Language

Multimodal Signature

A signature is a pair (Prop,Act) where Prop and Act are (disjoint) sets of
propositional symbols and action or modality symbols, respectively.

Formulas

Let (Prop,Act) be a multimodal signature. The set of multimodal
formulas for (Prop,Act), denoted by MFm(Prop,Act), is defined by the
following grammar:

ϕ ::= p | ⊥ | ϕ→ ϕ | [m]ϕ

where p ∈ Prop and m ∈ Act

Abbreviations

⟨m⟩ϕ := ¬[m]¬ϕ
· · ·
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Multimodal Logic

Multimodal Models and Structures

Multimodal Models and Structures

A model for a signature (Prop,Act) is a pair M = ⟨F ,V ⟩, where:
F = ⟨W ,R⟩ is a Kripke structure, i.e.,

W is a non-empty set (of states)
R = (Rm)m∈Act is a family of binary relations Rm ⊆ W ×W , one for
each modality symbol m ∈ Act

V : Prop → P(W ) is a valuation.
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Multimodal Logic

Multimodal Satisfaction Relation

Satisfaction in a model M at a state w

M,w |= ⊤
M,w |= p iff w ∈ V (p)

M,w |= ϕ1 → ϕ2 iff M,w ̸|= ϕ1 or M,w |= ϕ2

M,w |= [m]ϕ iff ∀v ∈ W . (w , v) ∈ Rm ⇒ M, v |= ϕ

Corollary:

M,w ̸|= ⊥
M,w |= ¬ϕ iff M,w ̸|= ϕ

M,w |= ϕ1 ∧ ϕ2 iff M,w |= ϕ1 and M,w |= ϕ2

M,w |= ϕ1 ∨ ϕ2 iff M,w |= ϕ1 or M,w |= ϕ2

M,w |= ⟨m⟩ϕ iff ∃v ∈ W such that (w , v) ∈ Rm and M, v |= ϕ
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Multimodal Logic

Multimodal Satisfaction

Satisfaction

A formula ϕ in MFm(Prop,Act) is:

satisfiable in M if it is satisfied in some state w of M

globally satisfiable in M (M |= ϕ) if it is satisfied in every state of M

valid (|= ϕ) if it is globally satisfied in all models over (Prop,Act)

a semantic consequence of a set of formulas Γ (Γ |= ϕ) if for all models
M and for all states w , if M,w |= Γ then M,w |= ϕ
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Multimodal Logic

Exercise

Verify whether:

1 M, s |= ⟨a⟩⊤
2 M, s |= [a]⊥
3 M, s |= ⟨b⟩⊤
4 M, s |= [b]⊥
5 M, s |= [a]⟨b⟩⊤
6 M, s |= ⟨a⟩⟨b⟩⊥
7 M, s |= [a]⟨a⟩[a][b]⊥
8 M, s |= ⟨a⟩(⟨a⟩⊤ ∧ ⟨b⟩⊤)

9 M, s |= [a](⟨a⟩⊤ ∨ ⟨b⟩⊤)

10 M, s |= ⟨a⟩([b][a]⊥ ∧ ⟨b⟩⊤)
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Multimodal Logic

Exerćıcio

Determine:

1 [[[a][b]⊥]]M
2 [[⟨a⟩(⟨a⟩⊤ ∧ ⟨b⟩⊤)]]M
3 [[[a][a][b]⊥]]M
4 [[[a](⟨a⟩⊤ ∨ ⟨b⟩⊤)]]M
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Multimodal Logic

Exercise

Find a model M for ({}, {a, b, c}) that has a state w such that
simultaneously:

M,w |= ⟨a⟩(⟨b⟩⟨c⟩⊤ ∧ ⟨c⟩⊤)

M,w |= ⟨a⟩⟨b⟩([a]⊥ ∧ [b]⊥ ∧ [c]⊥)

M,w |= [a]⟨b⟩([c]⊥ ∧ ⟨a⟩⊤)
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Multimodal Logic

Bisimulation

Bisimulation (Multimodal version)

Let M = (W ,R,V ) and M ′ = (W ′,R ′,V ′) be two models for (Prop,Act).
A bisimulation between M and M ′ is a relation B ⊆ W ×W ′ such that,
for any (w ,w ′) ∈ B and for any a ∈ Act, the following conditions hold:

(Atom) w ∈ V (p) iff w ′ ∈ V ′(p), for all p ∈ Prop

(Zig) if (w , v) ∈ Ra then there exists a v ′ ∈ W ′ such that
(w ′, v ′) ∈ R ′

a and (v , v ′) ∈ B

(Zag) if (w ′, v ′) ∈ R ′
a then there exists a v ∈ W such that

(w , v) ∈ Ra and (v , v ′) ∈ B
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Multimodal Logic

Hennessy-Milner Theorem (Multimodal
Version)

Image-finite model

A model M = (W ,R,V ) is called image-finite if for every w ∈ W , and
for every a ∈ Act, the set Ra[w ] = {v | (w , v) ∈ R} is finite.

Hennessy-Milner Theorem

Let M and M ′ be two image-finite models for (Prop,Act). Then, for any
w ∈ W and w ′ ∈ W ′, the following are equivalent:

1 There exists a bisimulation B : M ⇌ M ′ such that (w ,w ′) ∈ B

2 For every φ ∈ MFm(Prop,Act),

M,w |= φ iff M ′,w ′ |= φ
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Multimodal Logic

Examples

Two coffee machines
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We have that w1 ̸∼ s1, because:

M,w1 |= [coin]⟨coffee⟩⊤, and

N, s1 ̸|= [coin]⟨coffee⟩⊤
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Multimodal Logic

Exercise

Show that s ̸∼ t ̸∼ v .
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Multimodal Logic

Example – Temporal Logics

Temporal Logic

W is the set of time points

There is a unique modality corresponding to the transitive closure of the
”next-time” relation

(Until) M,w |= ϕU ψ iff

There exists a v ∈ W such that (w , v) ∈ R and M, v |= ψ, and for all u ∈ W
such that (w , u) ∈ R and (u, v) ∈ R, we have that M, u |= ϕ

(Since) M,w |= ϕS ψ iff

There exists a v ∈ W such that (v ,w) ∈ R and M, v |= ψ, and for all u such
that (v , u) ∈ R and (u,w) ∈ R, we have that M, u |= ϕ
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Multimodal Logic

Operationalizing Multimodal Logic

We can use sets of actions in modalities

M,w |= ⟨K ⟩ϕ iff ∃w∈{w ′|(w ,w ′)∈Ra and a∈K} . M,w ′ |= ϕ

M,w |= [K ]ϕ iff ∀w∈{w ′|(w ,w ′)∈Ra and a∈K} . M,w ′ |= ϕ

Notation

The following is used:

The symbol − to represent K = Act.
E.g. ⟨−⟩φ
The expression −A to represent K = Act \ A.
E.g. [−A]φ. Parentheses are omitted in singular sets. For example,
[−a]φ denotes [−{a}]φ
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Multimodal Logic

Operationalizing Multimodal Logic

Typical Properties

inevitability of a: ⟨−⟩⊤ and [−a]⊥

progress: ⟨−⟩⊤

deadlock or termination: [−]⊥
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Multimodal Logic

Illustration

Taxi Network Specification

Specify in Multimodal Logic the scenario of a taxi network described
below. Pay attention to the signature definition and then to the
specification of the relevant requirements.

ϕ0 = In a taxi network, a car can pick up a passenger or be
allocated by the Dispatch to a pending service.

ϕ1 = This property applies only to cars in service.

ϕ2 = If a car is allocated to a service, it must first pick up the
passenger and then plan the route.

ϕ3 = When an emergency is detected, a taxi becomes inactive.

ϕ4 = A car in service is not inactive.
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Multimodal Logic

Illustration

Taxi Network Specification

ϕ0 = In a taxi network, a car can pick up a passenger or be allocated
by the Dispatch to a pending service.

ϕ0 = ⟨rec , alo⟩⊤

ϕ1 = This property applies only to cars in service.

ϕ1 = [onservice] ⟨rec , alo⟩⊤ or ϕ1 = [onservice]ϕ0

ϕ2 = If a car is allocated to a service, it must first pick up the
passenger and then plan the route.

ϕ2 = [alo] ⟨rec⟩ ⟨plan⟩⊤

ϕ3 = When an emergency is detected, a taxi becomes inactive.

ϕ3 = [sos] [−]⊥

ϕ4 = A car in service is not inactive.

ϕ4 = [onservice] ⟨−⟩⊤
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Multimodal Logic

Exercise

Formalise each of the following properties:

1 The occurrence of a and b is impossible.

2 The occurrence of a followed by b is impossible.

3 Only the occurrence of a is possible.

4 Once a occurred, b or c may occur.

5 After a occurred followed by b, c may occur.

6 Once a occurred, b or c may occur but not both.

7 a cannot occur before b.

8 There is only an initial transition labelled by a.
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Multimodal Logic

Exercise

Consider the following process

Start =df fw .Go + stop.0

Go =df fw .bk.bk .Start + right.left.bk.Start

Formalize the following properties

1 After fw another fw is immediately possible

2 After fw followed by right, left is possible but bk is not.

3 The action fw is the only possible one.

4 The third action is not fw .
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Dynamic Logic

Outline

1 Multimodal Logic

2 Dynamic Logic

3 [Extra] Dynamic Logic for Hybrid Systems?

4 Dynamic Logic in Practice: Specification and
Verification in mCRL2
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Dynamic Logic

A Näıve Approach

Is Multi-modal Logic suitable for reasoning about
programs?

considering one modality for each program in the language

modeling the computation universe as the transition system that
interprets all these programs
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Dynamic Logic

Dynamic Logic(s)

Multi-modal logics designed to work with actions in a structured
way

Goal: Reason about programs

Ingredients:

Atomic program notion
Regular expressions over atomic programs
Testing mechanisms for dealing with conditionals:
e.g. if then else

These principles are sufficiently abstract to be adapted to various
computing paradigms ...
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Dynamic Logic

Intuitions: Dynamic Logic for Verifying
Imperative Programs

To handle classical imperative programs, what is the notion of an
atomic program, i.e., what is the set Π0?

What is the notion of state?

What is the notion of test?

Let π be the following program:

wh i l e x<3 do
x :=x+1

od

Example:

If x = 0, any execution of π, if it terminates, results in a state where x = 2

x = 0 → [((x < 3?); x := x + 1)∗; (x ≥ 3?)]x = 2
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Dynamic Logic

The Dynamic Logic We Will Consider in This
Course:

Atomic programs — sets of actions Act

Tests — assertions in our logic

Valuations allow the representation of local observations, i.e., what
we can observe beyond the dynamics

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 29 / 97



Dynamic Logic

Generic Notion of Program and Its
Interpretation

Set of Programs for Atomic Program Set Act

π := a | π;π | π + π | π∗ | φ?

a ∈ Act and φ a “state property”
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Dynamic Logic

Interpretation of Programs

How do we interpret these programs in a model
(Act,Prop)-model M = (W ,R,V )?

A program π will be interpreted as a relation Prπ ⊆ W ×W
recursively.

Atomic Program

Pra = Ra, a ∈ Act

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 31 / 97



Dynamic Logic

Interpretation of Programs

Sequential Program

Prπ;π′ = Prπ ◦ Prπ′

π

π′

π;π′
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Dynamic Logic

Interpretation of Programs

Non deterministic choice

Prπ+π′ = Prπ ∪ Prπ′

π

π′

π ∪ π′
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Dynamic Logic

Interpretation of Programs

Iteractive closure

Prπ∗ = (Prπ)
∗, para

(Prπ)
∗ =

⋃
n≥0(Prπ)

n, onde

(w ,w ′) ∈ (Prπ)
0 se w = w ′

(w ,w ′) ∈ (Prπ)
k+1 se (w ,w ′) ∈ (Prπ)

k ◦ (Prπ)

π

π

π∗
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Dynamic Logic

Interpretation of Programs

Test

Prφ? = {(w ,w) | M,w |= φ}

φ ¬φ

φ?
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Dynamic Logic

Exercise

Express the standard commands of imperative programming as terms of
our algebra of programs. Namely:

if φ then π else π′

while φ do π od

repeat π until φ
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Dynamic Logic

Programs interpretation - abbreviatures

if φ then π else π′ ≡ (φ?;π) + (¬φ?;π′)

φ ¬φ

π

π′

π

π′

γ γ
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Dynamic Logic

Programs interpretation - abbreviatures

while φ do π od ≡ (φ?;π)∗;¬φ?

φ

φ

¬φ

φ

π

π

π

(φ?;π)∗;¬φ?
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Dynamic Logic

Programs interpretation - abbreviatures

repeat π until φ ≡ π; (¬φ?;π)∗

¬φ

φ

π

π

π

π; (¬φ?;π)∗
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Dynamic Logic

Exercise

Consider the ({a, b}, {p, q})-model
M represented in the left, such that
V (p) = {s1, s3} e V (q) = {s, s2, s4}.
Interpret the following programs in
M:

a; b

b; a

a+ b

(a; b) + b

a∗

(p?); a

(q?); a+ (¬q?)b
(a+ b)∗

(p ∧ q)?

(p ∧ q)?; a; b
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Dynamic Logic

Dynamic Logic

(Act,Prop)-formulas

Formulas:
φ ::= p | ⊥ | φ→ φ | [π]φ, para p ∈ Prop

Programs:
π ::= a | π;π | π + π | π∗ | φ?, with a ∈ Act
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Dynamic Logic

Satisfaction Relation in DL

Satisfaction for a model M at state w

M,w |= ⊤
M,w |= p sse w ∈ V (p)

M,w |= ϕ1 → ϕ2 iff M,w ̸|= ϕ1 or M,w |= ϕ2

M,w |= [π]ϕ iff ∀v ∈ W . (w , v) ∈ Prπ implies M, v |= ϕ

Corollary:

M,w ̸|= ⊥
M,w |= ¬ϕ iff M,w ̸|= ϕ

M,w |= ϕ1 ∧ ϕ2 iff M,w |= ϕ1 and M,w |= ϕ2

M,w |= ϕ1 ∨ ϕ2 iff M,w |= ϕ1 or M,w |= ϕ2

M,w |= ⟨π⟩ϕ iff ∃ v ∈ W such that (w , v) ∈ Prπ e M, v |= ϕ
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Dynamic Logic

Exercise

Consider the ({a, b}, {p, q})-model
M in the left, assuming
V (p) = {s1, s3} e V (q) = {s, s2, s4}.
What are the correct statements:

M, s |= ⟨a∗⟩q
M, s1 |= ⟨p?; a; b + q?; a; b⟩⊤
M |= [(p ∧ q)?]⊥

Extend the operator [[ ]]M to the
multi-modal case and calculate:

[[⟨p?; a; b + q?; a; b⟩⊤]]M
[[[a∗]q]]M
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Dynamic Logic

Exercise

Consider the ({a, b, c}, {p, q})-model M = (W ,R,V ), with
W = {w1,w2,w3,w4,w5} and such that :

V (p) = {w1,w3} e V (q) = W ,

Ra = {(w1,w3), (w1,w4), (w1,w5), (w2,w3), (w5,w3)}
Rb = {(x , y) ∈ W 2|x = y},
Rc = {(w1, x)|x ∈ W }

Check if:

a) M,w1 |= [(a; b)]p ∨ [b∗ + c]q

b) M,w3 |= [q?; b]p → [c]¬q
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Dynamic Logic

Exercise

Consider the ({a, b, c}, {p, q})-model M = (W ,R,V ), with
W = {−2,−1, 0, 1, 2} and such that:

V (p) = {x ∈ W |x > 0} and V (q) = {x ∈ W |x ≤ 1},
Ra = {(x , y) ∈ W 2|x ≤ 0, y ≥ 0}
Rb = {(x , y) ∈ W 2|x = y}
Rc = {(0, x)|x ∈ W }

Check if:

a) M, 0 |= [(a+ b)]p ∨ [b∗ + c]q

b) M, 2 |= [(p → q)?; b]p → [c]¬q
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Dynamic Logic

Exercise

Verify if the following properties are valid in DL

[α;β]φ↔ [α][β]φ

[α+ β]φ↔ [α]φ ∧ [β]φ

[α∗]φ→ φ ∧ [α][α]∗φ

[α∗](φ→ [α]φ) → (φ→ [α∗]φ)

[φ?]ψ ↔ (φ→ ψ)
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Dynamic Logic

An Hennessy Milner Theorem for PDL?

Exercise

Observe that the semantics of dynamic logic for a (Prop,Act)-model
M is equivalent to the semantics of multimodal logic in the
”respective” (Prop,Prog(Act))-model M̄

Verify that B : M ⇌ N if and only if B : M̄ ⇌ N̄

Conclude with the knowledge you have of (multi)modal logic
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Dynamic Logic

More Operational Version: Action Sets as
Atomic Programs

α := K | K ∪ K | K ∩ K

for K ⊆ Act.

Just like in the multimodal case, we represent:

the set Act by −
the set A \ {a} by −a

Programs

R := ϵ | α | R.R | R + R | R∗
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Dynamic Logic

Hennessy-Milner with regular modalities

on regular modalities

⟨R1 + R2⟩φ↔ ⟨R1⟩φ ∨ ⟨R2⟩φ
[R1 + R2]φ↔ [R1]φ ∧ [R2]φ

⟨R1.R2⟩φ↔ ⟨R1⟩⟨R2⟩φ
[R1.R2]φ↔ [R1][R2]φ
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Dynamic Logic

Representation of More Complex Patterns

The property φ is true in all reachable states.

[−∗]φ

The property φ is always accessible through action a.

[−∗]⟨a⟩φ

The property φ is inevitable.

[−∗]⟨−⟩φ
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Dynamic Logic

Representation of More Complex Patterns

As long as an error does not happen, a deadlock will not occur.

[(−error)∗]⟨−⟩⊤

Whenever an a happens in a reachable state, an action b can be
subsequently performed, unless an c happens, cancelling the need to
perform b.

[−∗.a]⟨−∗.(b ∪ c)⟩⊤

Whenever action a occurs, it must always be possible to do b
afterward, although doing b can be infinitely postponed.

[−∗.a.(−b)∗]⟨−∗.b⟩⊤
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[Extra] Dynamic Logic for Hybrid Systems?

Outline

1 Multimodal Logic

2 Dynamic Logic

3 [Extra] Dynamic Logic for Hybrid Systems?

4 Dynamic Logic in Practice: Specification and
Verification in mCRL2
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[Extra] Dynamic Logic for Hybrid Systems?

The Hybrid Automaton

The Thermostat

Off

x ′ = −0.1x
x ≥ 18

x = 20

On

x ′ = 5− 0, 1x
x ≤ 22

x > 21

x < 19
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[Extra] Dynamic Logic for Hybrid Systems?

Dynamic Logic for Hybrid Systems?

André Platzer’s Differential Dynamic Logic dL
A logic developed to specify and verify properties of hybrid systems

It has a powerful computational proof support — KeYmaera
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[Extra] Dynamic Logic for Hybrid Systems?

Evoluções Discretas vs. Cont́ınuas

1 2 3 4 5 6

1

2

3

4

Time →

Evolução discreta

1 2 3 4 5 6

1

2

3

4

Time →

Evolução Cont́ınua

Hybrid = discretep + cont́ınuo

digital controller actions, discrete event interaction, etc

physics entities, analogic controller actions, etc
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[Extra] Dynamic Logic for Hybrid Systems?

Syntax of dL

Hybrid Programs

α, β ∋ x := θ | x ′ = θ&χ | α ∪ β | α;β | α∗ | ?χ

dL-formulas

ϕ, ψ ∋ θ1 = θ2 | θ1 ≤ θ2 | ¬ϕ | ϕ ∧ ψ | [α]ϕ

where θ, θ1 and θ2 are terms
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[Extra] Dynamic Logic for Hybrid Systems?

Platzer’s dL – semantics

States:

They are functions V → R

Interpretation of Programs

The relation ρ(α) ⊆ S × S is defined as in first-order DL with

ρ(x := θ) = {(u, v)|v(x) = θ for all y ∈ V \ {x}, u(y) = v(y)}

ρ(x ′ = θ&χ) = {(φ(0), φ(r))|φ(t) |= χ, 0 ≤ t ≤ r , for every solution φ :
[0, r ] → S with any duration r}

ρ(α ∪ β) = ρ(α) ∪ ρ(β)

ρ(α;β) = ρ(α) ◦ ρ(β)

ρ(α∗) =
⋃

n∈N ρ(α
n), where α0 = id and αn+1 = α;αn

ρ(?χ) = {(v , v)|v |= χ}
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[Extra] Dynamic Logic for Hybrid Systems?

Platzer’s dL – satisfaction

v |= (θ1 = θ2) iff vθ1 = vθ2
v |= ¬ρ iff v ̸|= ρ

v |= ρ ∧ ρ′ iff v |= ρ and v |= ρ′

v |= ρ ∨ ρ′ iff v |= ρ or v |= ρ′

v |= [α]ρ iff for every (v ,w) ∈ ρ(α), w |= ρ

v |= ⟨α⟩ρ iff there exists a (v ,w) ∈ ρ(α), such that w |= ρ
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[Extra] Dynamic Logic for Hybrid Systems?

Biology Case Study
Controller of a Biological System

Example{
x ′ = 5− x

y ′ = 6− y + u

{
x ′ = 6− x

y ′ = 1− y + u

x < 3 ∧ y ≥ 2 x ≥ 3 ∧ y ≥ 2{
x ′ = −x

y ′ = 5− y + u

{
x ′ = 1− x

y ′ = −y + u

x < 3 ∧ y < 2 x ≥ 3 ∧ y < 2

D. Figueiredo, Manuel Martins and M. Chaves.
Applying differential dynamic logic to reconfigurable biological networks,
Mathematical Biosciences, vol. 291, 10-20, 2017.
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[Extra] Dynamic Logic for Hybrid Systems?

Biological Examples
Controller of a Biological System

We analyze the steady states

i.e., the values of x and y to which the system tends.

Control:

u = 2, if x ≥ 3 and t ≥ 2

u = 0, otherwise

Using numerical methods, we know that (x , y) = (6, 3) is a candidate
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[Extra] Dynamic Logic for Hybrid Systems?

Biological Example
Controller in a Biological System{

x ′ = 5− x

y ′ = 6− y + u

{
x ′ = 6− x

y ′ = 1− y + u

x < 3 ∧ y ≥ 2 x ≥ 3 ∧ y ≥ 2{
x ′ = −x

y ′ = 5− y + u

{
x ′ = 1− x

y ′ = −y + u

x < 3 ∧ y < 2 x ≥ 3 ∧ y < 2

α1 ≡ (?x < 3 ∧ y < 2; u := 0;
(x ′ = −x , y ′ = 5− y + u, τ ′ = 1 & x ≤ 3 ∧ y ≤ 2))

...

α4 ≡ (?x ≥ 3 ∧ y ≥ 2; u := 2;
(x ′ = 6− x , y ′ = 1− y + u, τ ′ = 1 & x ≥ 3 ∧ y ≥ 2))
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[Extra] Dynamic Logic for Hybrid Systems?

Biological Example
Controller in a Biological System

The evolution of the system can be described by the
following hybrid program:

α ≡ α1 ∪ α2 ∪ α3 ∪ α4

(x , y) = (6, 3) is a steady state:

∃c > 0(∀0 < k < c((x−6)2+(y−3)2 = k∧τ = 0 → [α∗](τ = 0∨(x−6)2+(y−3)2 < k)))
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Dynamic Logic in Practice: Specification and Verification
in mCRL2

Outline

1 Multimodal Logic

2 Dynamic Logic

3 [Extra] Dynamic Logic for Hybrid Systems?

4 Dynamic Logic in Practice: Specification and
Verification in mCRL2
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Dynamic Logic in Practice: Specification and Verification
in mCRL2

The mCRL2 Toolset

The so-called Process Algebras are formalisms for the specification of complex
transition systems (typically involving interaction and concurrency).
The mCRL2 offers:

a process algebra, based on ACP (Bergstra & Klop, 1982)

with an axiomatic semantics

and a Dynamic Logic used for the specification of properties over these
systems

tools for simulation and verification

www.mcrl2.org
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Dynamic Logic in Practice: Specification and Verification
in mCRL2

Actions

Interaction through sets of multi-actions

A multi-action is the basic unit of interaction that executes atomically.

α ::= τ | a | a(d) | α | α

Actions can be parameterized by data.

The structure ⟨Act, |, τ⟩ forms an Abelian monoid.
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Dynamic Logic in Practice: Specification and Verification
in mCRL2

Sequential Processes

Non-deterministic sequential behavior

The set of processes P is defined by the grammar:

p ::= α | δ | p + p | p · p | P(d)

Choice (non-deterministic): +

Sequential composition: ·

Inaction or deadlock: δ

Processes parameterized by data: P(x : D) = p
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Dynamic Logic in Practice: Specification and Verification
in mCRL2

Base axiomatics to model sequential
behaviours

A1 x + y = y + x

A2 (x + y) + z = x + (y + z)

A3 x + x = x

A4 (x + y).z = x .z + y .z

A5 (x .y).z = x .(y .z)

A6 x + δ = x

A7 δ · x = δ
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Dynamic Logic in Practice: Specification and Verification
in mCRL2

Sequential processes

Exercise (autonomous work)

Describe the following behaviours

a.b.δ.c + a

(a+ b).δ.c

(a+ b).e + δ.c

a+ (δ + a)

a.(b + c).d .(b + c)

Using the axiomatics , show that:

δ.(a+ b) = δ · a+ δ · b

a+ (δ + a) = a

it is true that a.(b + c) = a.b + a.c ?
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Dynamic Logic in Practice: Specification and Verification
in mCRL2

Conditionals

We have also processes like:

c → p ⋄ q

where

c is a condition

p and q are processes

Axioms:

Cond1 true → x ⋄ y = x

Cond2 false → x ⋄ y = y

Then c → x = c → x ⋄ δ
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mCRL2

Examples

act order, receive, keep, refund, return;

proc Buy = order.OrderedItem

OrderedItem = receive.ReceivedItem + refund.Buy;

ReceivedItem = return.OrderedItem + keep;

init Buy;
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Examples

Clock V1

act set, alarm, reset;

proc P = set.R

R = reset.P + alarm.R

init P

A.Madeira (U. Aveiro) Computational Logic May 7, 2025 71 / 97



Dynamic Logic in Practice: Specification and Verification
in mCRL2

Examples

Clock V2

act set:N, alarm, reset, tick;

proc P = (sum n:N . set(n).R(n)) + tick.P

R(n:N) = reset.P + ((n == 0) -> alarm.R(0) <> tick.R(n-1))

init P
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Parallel composition

∥ = interleaving + sincronization

Interaction is a basic element of systems design

can be seen as black-boxs configurations

mCRL2: discipline such synchronization

p ::= · · · | p ∥ p | p | p | pTp
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Parallel Composition

An example

a · b ∥ c · d
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Interaction

Communication ΓC (p) (com)

Applies the communication function C , forces synchronization and
renames it to a new action:

a1 | · · · | an → c

Enforces communication via data parameters c , e.g.:

Γ{a|b→c}(a(8) | b(8)) = c(8)

Γ{a|b→c}(a(12) | b(8)) = a(12) | b(8)
Γ{a|b→c}(a(8) | a(12) | b(8)) = a(12) | c(8)

The left-hand sides of C must be disjoint, e.g., {a | b → c , a | d → j} is not
allowed
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Interface control

Exercise

∇{x ,y}(Γ{a|c−>x ,b|d−>y}(a.b ∥ c.d))
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Interface control
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Interface control
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Interface Control

Block: ∂B(p) (block)

Specifies which actions are **not** allowed to occur

Data parameters do not interfere

∂{b}(d(12) + a(8) + (b(false, 4) | c)) = d(12) + a(8)
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Interface Control

∂{b,d}(Γ{b|d−>y}(a.b ∥ c .d))
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Interface Control

∂{b,d}(Γ{b|d−>y}(a.b ∥ c .d))
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Interface Control

Enforce communication

∇{c}(Γ{a|b→c}(p))

∂{a,b}(Γ{a|b→c}(p))
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Interface Control

Renaming ρM(p) (rename)

rename actions of p accordingly with a function M

ρ{d→h}(d(12) + s(8) | d(false) + d .a.d(7))

= h(12) + s(8) | h(false) + h.a.h(7)
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Interface Control

Hiding τH(p) (hide)

hide (i.e. rename to τ) all the actions in H in any multi-actions of p.

τ{d}(d(12) + s(8) | d(false) + h.a.d(7))

= τ + s(8) | τ + h.a.τ = τ + s(8) + h.a.τ

τ and δ can not be renamed
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Interface Control

Example

τ{a}(Γ{b|d−>y}(a.b ∥ c .d))
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Interface Control

Example
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Example

Buffers

act inn,outt,ia,ib,oa,ob,c : Bool;

proc BufferS = sum n: Bool.inn(n).outt(n).BufferS;

BufferA = rename({inn -> ia, outt -> oa}, BufferS);

BufferB = rename({inn -> ib, outt -> ob}, BufferS);

S = allow({ia,ob,c}, comm({oa|ib -> c}, BufferA || BufferB));

init hide({c}, S);
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Data types

Equalities: Equations, inequations and conditionals (if(-,-,-))

Basic types: Booleans, natural, reals, integers, ... with the usual operators

Sets, multisets, sequences ... with the usual operators

Definitions of functions, including λ-notation

Inductive types: such as

sort BTree = struct leaf(Pos) | node(BTree, BTree)
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Signatures and definitions

Sorts, functions, constants, variables ...

sort S, A;

cons s,t:S, b:set(A);

map f: S x S -> A;

c: A;

var x:S;

eqn f(x,s) = s;
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Signatures and definitions

A functional language ...

sort BTree = struct leaf(Pos) | node(BTree, BTree);

map flatten: BTree -> List(Pos);

var n:Pos, t,r:BTree;

eqn flatten(leaf(n)) = [n];

flatten(node(t,r)) = flatten(t) ++ flatten(r);
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Processes with data

Why?

Data allows to make finite specifications of infinite systems

data and parametrized processes

sums with data types:
∑

n:N s(n)

conditional processes b → p ⋄ q
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Examples

Counter

act up, down;

setcounter:Pos;

proc Ctr(x:Pos) = up.Ctr(x+1)

+ (x>0) -> down.Ctr(x-1)

+ sum m:Pos.(setcounter(m).Ctr(m))

init Ctr(345);
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Examples

Prime checkers

map primes : Set(N);

eqn primes = n : N ∀p,q∈N p, q > 1 ⇒ (p ∗ q) ̸= n;
act yes, no;

ask:N;

proc Checker = sum n:N . ask(n) . (n in primes -> yes <> no) . Checker

init Checker
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Examples

Dynamic binary trees

act left,right;

map N:Pos;

eqn N = 512;

proc X(n:Pos)=(n<=N)->(left.X(2*n)+right.X(2*n+1))<>delta;

init X(1);
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Overview

The verification problem

Given a specification of the system’s behaviour is in mCRL2

and the system’s requirements are specified as properties in a temporal logic,

a model checking algorithm decides whether the property holds for the
model: the property can be verified or refuted;

sometimes, witnesses or counter examples can be provided
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Toolset Functionality

Strategies to Handle Infinite Models and Specifications

The model specification is described in mCRL2 (x.mcrl2)

This specification is linearized into the Linear Process Specification
format (x.lps)

In this format, the specification can be transformed and simulated

Specifically, we can generate the associated Labeled Transition System
(x.lts), simulate it, and test properties using the tool’s boolean equation
solvers
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Toolset Overview

www.mcrl2.org
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Toolset Overview

Tool Tutorial

https:

//www.mcrl2.org/web/user_manual/tutorial/tutorial.html
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