

COMPUTATIONAL LOGIC 2024/25

BASIC NOTIONS IN MODAL LOGIC

Alexandre Madeira

Mathematics Dep. U. Aveiro

15 de maio de 2025

OUTLINE

- ① SYNTAX AND SEMANTICS OF PROPOSITIONAL MODAL LOGIC
- ② STRUCTURES AND MODELS
- ③ ALTERNATIVE APPROACH
- ④ MODAL LOGIC VS FIRST-ORDER LOGIC
- ⑤ BISIMULATION AND MODAL INVARIANCE

SYNTAX OF MODAL LOGIC

SYMBOLS

- \perp , \rightarrow , \square and
- a set Prop of propositional symbols (we will use p, q, r, \dots to refer to elements of Prop)

- \perp – called the element **falsum**
- \rightarrow – called the **implication**

MODAL FORMULAS

DEFINITION: MODAL FORMULAS

Modal Formulas ($MFm(\text{Prop})$):

$$F_0 = \text{Prop} \cup \{\perp\}$$

$$F_{n+1} = F_n \cup \{\Box A : A \in F_n\} \cup \{A \rightarrow B : A, B \in F_n\}, n \geq 0$$

$$MFm(\text{Prop}) = \bigcup_{n \in \mathbb{N}} F_n$$

MODAL FORMULAS

DEFINITION: MODAL FORMULAS

Modal Formulas ($MFm(\text{Prop})$):

$$F_0 = \text{Prop} \cup \{\perp\}$$

$$F_{n+1} = F_n \cup \{\Box A : A \in F_n\} \cup \{A \rightarrow B : A, B \in F_n\}, n \geq 0$$

$$MFm(\text{Prop}) = \bigcup_{n \in \mathbb{N}} F_n$$

USING BNF NOTATION:

$$\varphi := \perp \mid p \mid \varphi \rightarrow \varphi \mid \Box \varphi, p \in \text{Prop}$$

ABBREVIATIONS

- **Negation:** $\neg A := A \rightarrow \perp$
- **True:** $\top := \neg \perp$
- **Disjunction:** $A \vee B := \neg A \rightarrow B$
- **Conjunction:** $A \wedge B := \neg(A \rightarrow \neg B)$
- **Equivalence:** $A \leftrightarrow B := (A \rightarrow B) \wedge (B \rightarrow A)$
- **Diamond:** $\Diamond A := \neg \Box \neg A$

UNIFORM SUBSTITUTION AND INSTANCE

DEFINITION

Let A and B be two formulas and $p \in \text{Prop}$.

- The **uniform substitution** of p by B in A , denoted $A[B/p]$, is the formula obtained by replacing all occurrences of p in A by B .
- A' is an **instance** of A if A' is obtained from A by a finite number of simultaneous uniform substitutions.

UNIFORM SUBSTITUTION AND INSTANCE

DEFINITION

Let A and B be two formulas and $p \in \text{Prop}$.

- The **uniform substitution** of p by B in A , denoted $A[B/p]$, is the formula obtained by replacing all occurrences of p in A by B .
- A' is an **instance** of A if A' is obtained from A by a finite number of simultaneous uniform substitutions.

EXAMPLE

- $((r \vee p) \wedge q) \rightarrow (r \vee p)$ is an instance of $(x \wedge y) \rightarrow x$, since

$$((r \vee p) \wedge q) \rightarrow (r \vee p) \equiv ((x \wedge y) \rightarrow x)[(r \vee p)/x, q/y]$$

SUB-FORMULA

DEFINITION.

Given $A \in \text{MFm}(\text{Prop})$, the **set of subformulas of A** , $\text{Sub}(A)$, is defined recursively as follows:

- If $A \in \text{Prop} \cup \{\perp\}$, then $\text{Sub}(A) = \{A\}$;
- If $A = B \rightarrow C$, then $\text{Sub}(A) = \{A\} \cup \text{Sub}(B) \cup \text{Sub}(C)$;
- If $A = \Box B$, then $\text{Sub}(A) = \{A\} \cup \text{Sub}(B)$.

EXERCISE:

Determine the set of subformulas of $\Box((\Diamond p) \rightarrow (r \rightarrow \Box(r \rightarrow q)))$

OUTLINE

- 1 SYNTAX AND SEMANTICS OF PROPOSITIONAL MODAL LOGIC
- 2 STRUCTURES AND MODELS
- 3 ALTERNATIVE APPROACH
- 4 MODAL LOGIC VS FIRST-ORDER LOGIC
- 5 BISIMULATION AND MODAL INVARIANCE

STRUCTURES AND MODELS

A **modal structure** (or simply **structure**) for a set of propositions Prop is a pair

$$F = (W, R)$$

where

- W is a non-empty set, called the **set of states** (or worlds);
- $R \subseteq W \times W$ is a binary relation called the **accessibility relation**.

STRUCTURES AND MODELS

A **modal structure** (or simply **structure**) for a set of propositions Prop is a pair

$$F = (W, R)$$

where

- W is a non-empty set, called the **set of states** (or worlds);
- $R \subseteq W \times W$ is a binary relation called the **accessibility relation**.

A **model** is a triple

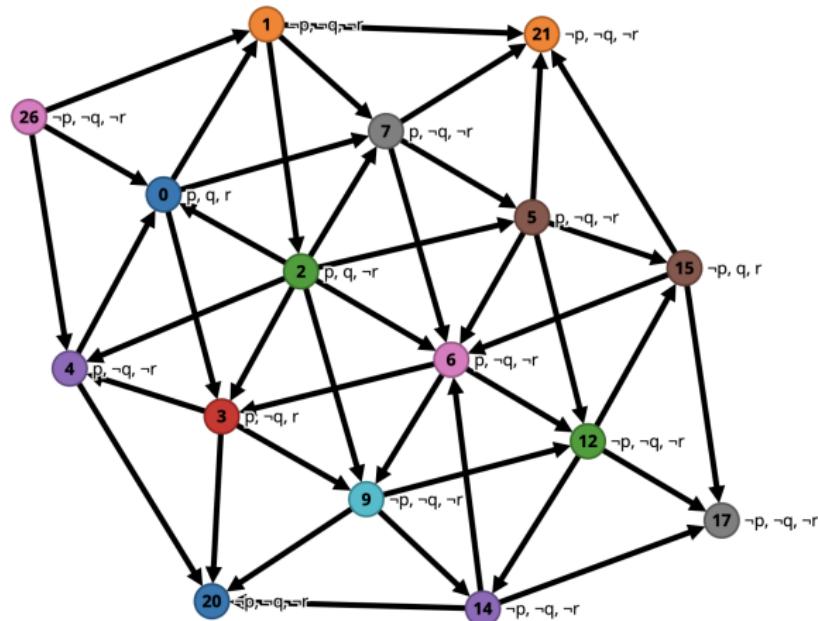
$$M = (W, R, V)$$

where

- (W, R) is a modal structure
- $V : \text{Prop} \rightarrow \mathcal{P}(W)$ is a function (called **valuation**).

EXAMPLES

EXAMPLE OF A MODEL FOR $\text{Prop} = \{p, q, r\}$



SATISFACTION

DEFINITION:

Let M be a model, $w \in W$, $p \in \text{Prop}$ and $A, B \in \text{MFm}(\text{Prop})$. We define:

- ① $M, w \models p$ iff $w \in V(p)$
- ② $M, w \not\models \perp$
- ③ $M, w \models A \rightarrow B$ iff, $M, w \models A$ implies $M, w \models B$
- ④ $M, w \models \Box A$ iff, $\forall v \in W, w R v \Rightarrow M, v \models A$

PROPERTIES

PROPOSITION:

- ① $M, w \models \neg A$ iff $M, w \not\models A$
- ② $M, w \models A \vee B$ iff $M, w \models A$ or $M, w \models B$
- ③ $M, w \models A \wedge B$ iff $M, w \models A$ and $M, w \models B$
- ④ $M, w \models A \leftrightarrow B$ iff $M, w \models A \Leftrightarrow M, w \models B$
- ⑤ $M, w \models \Diamond A$ iff there exists $v \in W$ such that wRv and $M, v \models A$

EXERCISE:

Prove the previous proposition.

DIFFERENT MEANINGS FOR $\Box A$ AND $\Diamond A$:

- **Necessity** - “ A is necessarily true”; “ A is possibly true”.
- **Deontic Logic** - A must necessarily be true (“ A ought to be true”)
- **Temporal Logic** - “ A is always true in the future”; “ A is eventually true (at some future time)”.
Normally, here a structure (S, R) is such that S is \mathbb{N}, \mathbb{R} or \mathbb{Q} and R is $<, \leq, >$ or \geq .
- **Dynamic Logic** - “every execution of the program makes A true”; “there exists an execution of the program that makes A true”

VALIDITY

DEFINITION:

Let $F = (W, R)$ be a structure, $M = (W, R, V)$ a model, and $A \in \text{MFm}(\text{Prop})$ a formula.

- A is said to be **true** in M , in symbols $M \models A$, if for all states $w \in W$, we have $M, w \models A$.
- A is said to be **valid** in a structure F , in symbols $F \models A$, if it is true in all models M in F ; i.e., for the valuation $V : \text{Prop} \rightarrow \mathcal{P}(W)$, $M \models A$.

EXERCISES

1. Consider the model $M = (W, R, V)$, where:

- $W = \{1, 2, 3, 4, 5, 6\}$
- for any $a, b \in W$, $a R b$ iff $a + b$ is even;
- $V(p) = \{1, 3, 5\}$ and $V(q) = \{2, 4, 6\}$.

Verify whether

- A) $M, 3 \models \Diamond(p \wedge \Diamond q)$
- B) $M, 2 \models \Box(p \wedge \Diamond \Box q)$
- C) $M \models \Diamond p$
- D) $M, 6 \models p \rightarrow \Diamond p$
- E) $M \models q \rightarrow \Diamond q$

2. Show that neither the formula $\Box \Diamond p \rightarrow \Diamond \Box p$ nor its negation is valid in all modal structures.

EXERCISES

3. Explain in your own words the following transition patterns:

- $\Box T$
- $\Diamond \perp$
- $\Diamond T$
- $\Box \perp$

PROPERTIES

PROPOSITION.

The following modal formulas are true in all models and therefore valid in all structures.

- ① $\Box \top$
- ② $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$
- ③ $\Diamond(A \rightarrow B) \rightarrow (\Box A \rightarrow \Diamond B)$
- ④ $\Box(A \rightarrow B) \rightarrow (\Diamond A \rightarrow \Diamond B)$
- ⑤ $\Box(A \wedge B) \leftrightarrow (\Box A \wedge \Box B)$
- ⑥ $\Diamond(A \vee B) \leftrightarrow (\Diamond A \vee \Diamond B)$

PROPERTIES

EXERCISE

Prove that the following modal formulas do not have the property of being valid in all structures:

- ① $\Box A \rightarrow A;$
- ② $\Box A \rightarrow \Box \Box A;$
- ③ $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Diamond B)$
- ④ $\Diamond \top$
- ⑤ $\Diamond A \rightarrow \Box A;$
- ⑥ $\Box(\Box A \rightarrow B) \vee \Box(\Box B \rightarrow A)$
- ⑦ $\Box(A \vee B) \rightarrow (\Box A \vee \Box B);$
- ⑧ $\Box(\Box A \rightarrow A) \rightarrow \Box A;$

OUTLINE

- 1 SYNTAX AND SEMANTICS OF PROPOSITIONAL MODAL LOGIC
- 2 STRUCTURES AND MODELS
- 3 ALTERNATIVE APPROACH
- 4 MODAL LOGIC VS FIRST-ORDER LOGIC
- 5 BISIMULATION AND MODAL INVARIANCE

ALTERNATIVE APPROACH

DEFINITION [VALUE OF A FORMULA IN THE MODEL]

Let $A \in \text{MFm}(\text{Prop})$ and $M = (W, R, V)$ be a model. We define

$\llbracket _ \rrbracket_M : \text{MFm}(\text{Prop}) \rightarrow \mathcal{P}(W)$ as follows:

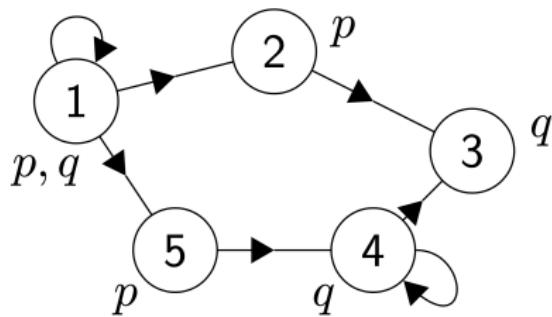
- If $A \in \text{Prop}$, $\llbracket A \rrbracket_M = V(A)$
- If $A = \perp$, $\llbracket A \rrbracket_M = \emptyset$
- If $A = B \rightarrow C$, $\llbracket A \rrbracket_M = \llbracket B \rrbracket_M^C \cup \llbracket C \rrbracket_M$, where $\llbracket B \rrbracket_M^C$ denotes the set $W \setminus \llbracket B \rrbracket_M$
- If $A = \Box B$, $\llbracket A \rrbracket_M = \{w \in W : R[w] \subseteq \llbracket B \rrbracket_M\}$, where $R[w] = \{v | (w, v) \in R\}$

PROPERTIES

PROPOSITION.

- ① $\llbracket \neg A \rrbracket_M = \llbracket A \rrbracket_M^C$
- ② $\llbracket \top \rrbracket_M = W$
- ③ $\llbracket A \vee B \rrbracket_M = \llbracket A \rrbracket_M \cup \llbracket B \rrbracket_M$
- ④ $\llbracket A \wedge B \rrbracket_M = \llbracket A \rrbracket_M \cap \llbracket B \rrbracket_M$
- ⑤ $\llbracket \Diamond A \rrbracket_M = \{w \in W \mid R[w] \cap \llbracket A \rrbracket_M \neq \emptyset\}$
- ⑥ $\llbracket A \rightarrow B \rrbracket_M = W \Leftrightarrow \llbracket A \rrbracket_M \subseteq \llbracket B \rrbracket_M$

EXERCISE



For the model M represented above, compute:

- ① $\llbracket \Diamond \top \rrbracket_M, \llbracket \Box \top \rrbracket_M, \llbracket \Diamond \perp \rrbracket_M, \llbracket \Box \perp \rrbracket_M$
- ② $\llbracket \Box p \rrbracket_M, \llbracket \Box \neg p \rrbracket_M, \llbracket \neg \Box p \rrbracket_M$
- ③ $\llbracket \Diamond q \rrbracket_M, \llbracket \Box q \rrbracket_M$
- ④ $\llbracket \Diamond q \wedge \Diamond \neg q \rrbracket_M, \llbracket \Box q \wedge \Box \neg q \rrbracket_M$
- ⑤ $\llbracket \Diamond \top \rightarrow \Diamond q \rrbracket_M$

EQUIVALENCE OF THE APPROACHES

PROPOSITION.

$$M, w \models A \Leftrightarrow w \in \llbracket A \rrbracket_M$$

DEMONSTRAÇÃO.

(**Exercise:** Prove the result by induction on the structure of formulas) □

EQUIVALENCE OF APPROACHES

COROLLARY.

$$M \models A \Leftrightarrow W = \llbracket A \rrbracket_M$$

DEMONSTRAÇÃO.

$$M \models A \Leftrightarrow \forall w \in W, M, w \models A \Leftrightarrow \forall w \in W, w \in \llbracket A \rrbracket_M \Leftrightarrow W = \llbracket A \rrbracket_M.$$

□

EXERCISE

Revisit the Exercise from Slide 17 and characterize the set of states where the properties are valid, now using the operator $\llbracket _\rrbracket_M$.

MODAL EQUIVALENCE

MODAL EQUIVALENCE

Two modal formulas A and A' are **modally equivalent** if for any model M and any $w \in W$,

$$M, w \models A \text{ if and only if } M, w \models A'$$

PROPOSITION.

- ① $\Diamond \top$ and $\Box A \rightarrow \Diamond A$ are valid exactly in the same models.
- ② $\Box \perp$ is valid only in structures where all of its points are final.

OUTLINE

- 1 SYNTAX AND SEMANTICS OF PROPOSITIONAL MODAL LOGIC
- 2 STRUCTURES AND MODELS
- 3 ALTERNATIVE APPROACH
- 4 MODAL LOGIC VS FIRST-ORDER LOGIC
- 5 BISIMULATION AND MODAL INVARIANCE

MODAL LOGIC VS FIRST-ORDER LOGIC

The following discusses some relationships between **Modal Logic and First-Order Logic**. Specifically:

- properties of binary relations that **can be** described in modal formulas
- properties of binary relations that **cannot be** described in modal formulas
- encoding Modal Logic in First-Order Logic

EXERCISE

① Using **First-Order Logic**, express the following properties about a binary relation $R \subseteq W \times W$.

- R is reflexive
- R is symmetric
- R is serial
- R is transitive
- R is Euclidean
- R is partially functional
- R is functional

EXERCISE

- ① Using **First-Order Logic**, express the following properties about a binary relation $R \subseteq W \times W$.
 - R is reflexive
 - R is symmetric
 - R is serial
 - R is transitive
 - R is Euclidean
 - R is partially functional
 - R is functional
- ② Express the same properties using **Modal Logic** on structures

THEOREM.

Let $R \subseteq W \times W$. R satisfies the first-order formula on the left if and only if **all** models $M = (W, R, V)$ satisfy the formula scheme on the right.

The Relation R is	Formula
Reflexive: $\forall w(wRw)$	$\square A \rightarrow A$
Symmetric: $\forall w, \forall v(wRv \rightarrow vRw)$	$A \rightarrow \square \diamond A$
Serial: $\forall w \exists v(wRv)$	$\square A \rightarrow \diamond A$
Transitive: $\forall w \forall v \forall z(wRv \wedge vRz \rightarrow wRz)$	$\square A \rightarrow \square \square A$
Euclidean: $\forall w \forall v \forall z(wRv \wedge wRz \rightarrow vRz)$	$\diamond A \rightarrow \square \diamond A$
Partially Functional: $\forall w, \forall v, \forall z(wRv \wedge wRz \rightarrow w = z)$	$\diamond A \rightarrow \square A$
Functional: $\forall w \exists ! v(wRv)$	$\diamond A \leftrightarrow \square A$
Weakly Dense: $\forall w \forall v(wRv \rightarrow \exists z(wRz \wedge zRv))$	$\square \square A \rightarrow \square A$
Weakly Connected: $\forall w \forall v \forall z(wRv \wedge wRz \rightarrow vRz \vee v = z \vee zRv)$	$\square(A \wedge \square A \rightarrow B)$ $\vee \square(B \wedge \square B \rightarrow A)$
Weakly Directed: $\forall w \forall v \forall z(wRv \wedge wRz \rightarrow \exists u(vRu \wedge zRu))$	$\diamond \square A \rightarrow \square \diamond A$

THERE ARE PROPERTIES THAT CANNOT BE EXPRESSED WITH MODAL FORMULAS:

THEOREM.

The following properties of binary relations cannot be defined using Modal Logic:

- $\forall x \neg(xRx)$ (Irreflexivity)
- $\forall x \forall y xRy \vee yRx \vee x = y$ (Trichotomy)

STANDARD TRANSLATION

STANDARD TRANSLATION

A formula A can be translated into a First-Order Logic formula $ST_x(A)$ with at most one free variable x . $ST_x(A)$ is defined inductively on the structure of A , as follows:

- $ST_x(p) = P(x)$
- $ST_x(\perp) = \perp$
- $ST_x(A \rightarrow B) = ST_x(A) \rightarrow ST_x(B)$
- $ST_x(\Box A) = \forall y.(R(x, y) \rightarrow ST_y(A))$

PROPOSITION.

- $ST_x(\top) = \top$
- $ST_x(A \vee B) = ST_x(A) \vee ST_x(B)$, $ST_x(A \wedge B) = ST_x(A) \wedge ST_x(B)$
- $ST_x(\Diamond A) = \exists y.(R(x, y) \wedge ST_y(A))$
- $ST_x(\neg A) = \neg ST_x(A)$

EXERCISES

CALCULATE:

- $ST_x(\neg \Box \neg p)$
- $ST_x(\Box p \rightarrow p)$
- $ST_x(\Box(p \vee \Diamond q))$

ST can also be applied (partially) to formula schemes.

CALCULATE:

- $ST_x(\Diamond A \rightarrow B)$

STANDARD TRANSLATION

THEOREM.

Let M be a model. Then

$$M, w \models A \text{ iff } \bar{M} \models^{FOL} ST_x(A)[x \mapsto w]$$

where \bar{M} is the corresponding first-order model to M , and \models^{FOL} represents the satisfaction relation in First-Order Logic.

COROLLARY

Let M be a model. Then

$$M \models A \text{ iff } \bar{M} \models^{FOL} \forall x. ST_x(A)$$

where \bar{M} is the corresponding first-order model to M .

OUTLINE

- ① SYNTAX AND SEMANTICS OF PROPOSITIONAL MODAL LOGIC
- ② STRUCTURES AND MODELS
- ③ ALTERNATIVE APPROACH
- ④ MODAL LOGIC VS FIRST-ORDER LOGIC
- ⑤ BISIMULATION AND MODAL INVARIANCE

BISIMULATION

BISIMULATION

Let $M = (W, R, V)$ and $M' = (W', R', V')$ be two models for Prop. A **bisimulation between M and M'** , denoted $B : M \rightleftharpoons M'$, is a relation $B \subseteq W \times W'$ such that, for all $(w, w') \in B$:

(ATOM) $w \in V(p)$ iff $w' \in V'(p)$, for all $p \in \text{Prop}$

(ZIG) if $(w, v) \in R$ then there exists a $w' \in W'$ such that $(w', v') \in R'$ and $(v, v') \in B$

(ZAG) if $(w', v') \in R'$ then there exists a $w \in W$ such that $(w, v) \in R$ and $(v, v') \in B$

EXAMPLES

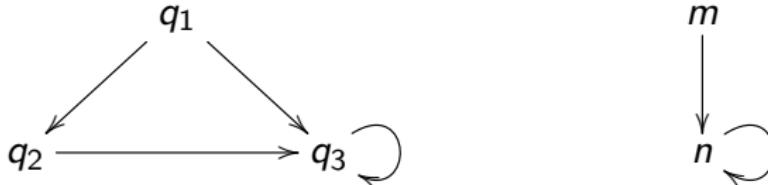
- the relation $=$ is a bisimulation
- \emptyset is a bisimulation

EXAMPLES

- the relation $=$ is a bisimulation
- \emptyset is a bisimulation

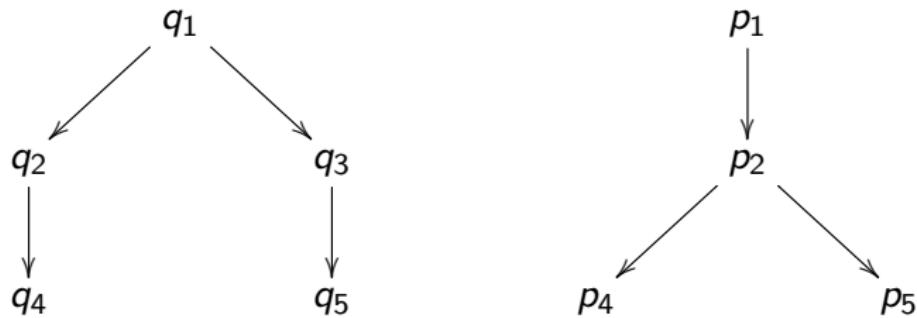
EXERCISE:

Consider the models M and M' for $\text{Prop} = \{p\}$ represented below. Suppose that $V'(p) = \{n\}$.



Determine V such that there exists a bisimulation $B : M \rightleftharpoons M'$ with $(q_1, n) \in B$.

EXAMPLES

CONSIDER THE FOLLOWING MODELS M AND M' 

where $V(p) = \{q_4\}$, $V(q) = \{q_5\}$, $V'(p) = \{p_4\}$, $V'(q) = \{p_5\}$. Is there a bisimulation B such that $(q_1, p_1) \in B$?

BISIMULATION

PROPERTIES

- ① If $B : M \rightleftharpoons M'$ and $S : M' \rightleftharpoons M''$, then $B \circ S : M \rightleftharpoons M''$, where $B \circ S = \{(w, w'') \mid \text{there exists a } w' \text{ such that } (w, w') \in B \text{ and } (w', w'') \in S\}$
- ② If $B : M \rightleftharpoons M'$, then $B^\circ : M' \rightleftharpoons M$ where $B^\circ = \{(w', w) \mid (w, w') \in B\}$ is a bisimulation
- ③ If $B : M \rightleftharpoons M'$ and $S : M \rightleftharpoons M'$, then $B \cup S : M \rightleftharpoons M'$

EXERCISE

Prove the previous properties

PROPERTIES OF BISIMULATION

EXERCISE

“The intersection of bisimulations is a bisimulation.”

Prove or disprove the above statement.

BISIMILARITY

BISIMILARITY

Let $M = (W, R, V)$, the **bisimilarity in M** is the relation

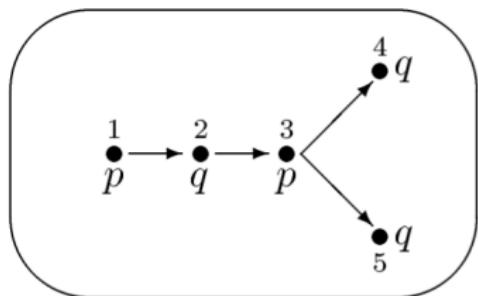
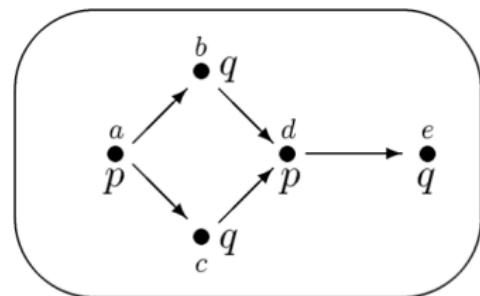
$$\sim := \{(w, v) \mid (w, v) \in B \text{ for some bisimulation } B \subseteq W \times W\}$$

EXERCISES:

Prove that the relation $\sim \subseteq W \times W$

- is a bisimulation between M and M , i.e., $\sim : M \rightleftharpoons M$
- is an equivalence relation in W

EXERCISE

SAY, JUSTIFYING, IF $1 \sim a$  a

^aExample taken from the book "Modal Logic. P. Blackburn, M. Rijke, and Y. Venema"

MODAL INVARIANCE

THEOREM (MODAL INVARIANCE)

Let $M = (W, R, V)$ and $M' = (W', R', V')$ be two models for Prop, and $B : M \rightleftharpoons M'$ be a bisimulation. Then, for any states $w \in W$, $w' \in W'$ such that $(w, w') \in B$, and for any formula $\varphi \in \text{MFm}(\text{Prop})$,

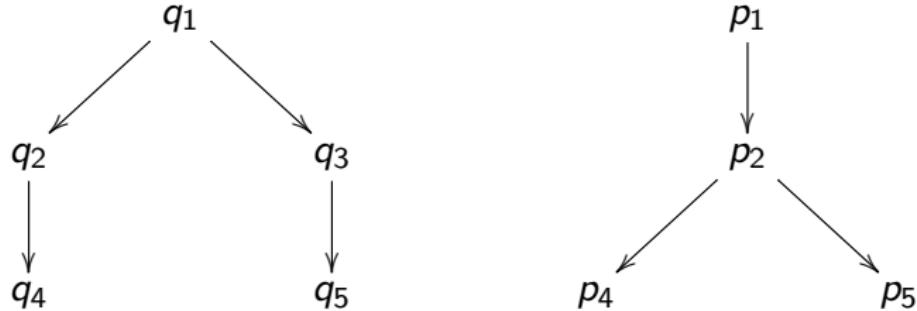
$$M, w \models \varphi \text{ iff } M', w' \models \varphi$$

Proof: Exercise (induction on the structure of formulas).

CONSEQUENCES

- To prove that two states are not bisimilar, it suffices to find a modal formula that distinguishes them, i.e., that is true in one and false in the other.

CONSIDER THE FOLLOWING MODELS M AND M'



where $V(p) = \{q_4\}$, $V(q) = \{q_5\}$, $V'(p) = \{p_4\}$, $V'(q) = \{p_5\}$.

Distinguish the states q_1 and p_1 with modal formulas.

HENNESSY-MILNER THEOREM

FINITE IMAGE MODEL

A model $M = (W, R, V)$ is said to have a **finite image** if for every $w \in W$, the set $R[w] = \{v \mid (w, v) \in R\}$ is finite.

HENNESSY-MILNER THEOREM

FINITE IMAGE MODEL

A model $M = (W, R, V)$ is said to have a **finite image** if for every $w \in W$, the set $R[w] = \{v \mid (w, v) \in R\}$ is finite.

HENNESSY-MILNER THEOREM

Let M and M' be two finite image models. Then, for any $w \in W$ and $w' \in W'$, the following conditions are equivalent:

- ① There exists a bisimulation $B : M \rightleftharpoons M'$ such that $(w, w') \in B$
- ② For all $\varphi \in \text{MFm}(\text{Prop})$,

$$M, w \models \varphi \text{ iff } M', w' \models \varphi$$