

COMPUTATIONAL LOGIC 2024/25

REVIEWS – PROPOSITIONAL AND FIRST-ORDER LOGIC

Alexandre Madeira

Dept. of Mathematics, U. Aveiro

March 5, 2025

OUTLINE

1 REVIEW: PROPOSITIONAL LOGIC

2 REVISIONS: FIRST-ORDER LOGIC

SYNTAX OF Prop

SYMBOLS

- \perp, \rightarrow
 - A set Prop of propositional symbols (we will use p, q, r, \dots to refer to elements of Prop)
-
- \perp – called **falsum**
 - \rightarrow – called **implication**

FORMULAS

SET OF PROPOSITIONAL FORMULAS $\text{Fm}(\text{Prop})$

$$F_0 = \text{Prop} \cup \{\perp\}$$

$$F_{n+1} = F_n \cup \{A \rightarrow B : A, B \in F_n\}, n \geq 0$$

$$\text{Fm}(\text{Prop}) = \bigcup_{n \in \mathbb{N}} F_n$$

Or, using BNF syntax:

SET OF PROPOSITIONAL FORMULAS $\text{Fm}(\text{Prop})$

$$\varphi := \perp \mid p \mid \varphi \rightarrow \varphi$$

where $p \in \text{Prop}$

FORMULAS

SET OF PROPOSITIONAL FORMULAS $\text{Fm}(\text{Prop})$

$$F_0 = \text{Prop} \cup \{\perp\}$$

$$F_{n+1} = F_n \cup \{A \rightarrow B : A, B \in F_n\}, n \geq 0$$

$$\text{Fm}(\text{Prop}) = \bigcup_{n \in \mathbb{N}} F_n$$

Or, using BNF syntax:

SET OF PROPOSITIONAL FORMULAS $\text{Fm}(\text{Prop})$

$$\varphi := \perp \mid p \mid \varphi \rightarrow \varphi$$

where $p \in \text{Prop}$

EXERCISE

- $\text{Fm}(\emptyset)$
- $\text{Fm}(\{p, q\})$

INTERPRETATION OF FORMULAS

DEFINITION

A **valuation of Prop** is a function

$$f : \text{Prop} \longrightarrow \{0, 1\}.$$

DEFINITION

Let f be a valuation and A a formula. The **value \bar{f} of a formula $A \in \text{Fm}(\text{Prop})$ under f** is defined by:

$$\bar{f} : \text{Fm}(\text{Prop}) \longrightarrow \{0, 1\}.$$

$$\bar{f}(p) = f(p), \quad p \in \text{Prop}$$

$$\bar{f}(\perp) = 0 \quad \text{where}$$

$$\bar{f}(A \rightarrow B) = \bar{f}(A) \Rightarrow \bar{f}(B),$$

\Rightarrow	0	1
0	1	1
1	0	1

SATISFACTION

Let $A \in \text{Fm}(\text{Prop})$, $\Gamma \subseteq \text{Fm}(\text{Prop})$, and $f : \text{Prop} \rightarrow \{1, 0\}$ be a valuation. Then:

- f satisfies A , in symbols

$$f \models A$$

if $\bar{f}(A) = 1$;

- f satisfies Γ , in symbols

$$f \models \Gamma$$

if for every $A \in \Gamma$, $f \models A$;

- We write

$$\models A$$

if for every valuation $f : \text{Prop} \rightarrow \{0, 1\}$, $f \models A$.

FORMULAS

ABBREVIATIONS

Negation:

$$\neg A := A \rightarrow \perp$$

Verum:

$$\top := \neg \perp$$

Disjunction:

$$A \vee B := \neg A \rightarrow B$$

Conjunction:

$$A \wedge B := \neg(A \rightarrow \neg B)$$

Equivalence:

$$A \leftrightarrow B := (A \rightarrow B) \wedge (B \rightarrow A)$$

EXERCISES

VERIFY THAT:

$$f \models \neg A \text{ if and only if } f \not\models A$$

$$f \models A \vee B \text{ if and only if } f \models A \text{ or } f \models B$$

$$f \models A \wedge B \text{ if and only if } f \models A \text{ and } f \models B$$

TAUTOLOGY, CONTRADICTION, AND CONTINGENCY

DEFINITION

We say that:

- A is a **tautology** if and only if $\models A$
- A is a **contradiction** if and only if for every valuation $f : \text{Prop} \rightarrow \{0, 1\}$, $f \not\models A$
- A is a **contingency** if and only if there exist valuations $f, g : \text{Prop} \rightarrow \{0, 1\}$ such that $f \models A$ and $g \not\models A$

EXAMPLES

EXERCISE: IDENTIFY THE TAUTOLOGIES, CONTINGENCIES, AND CONTRADICTIONS:

- $(A \leftrightarrow (\neg B \vee C)) \rightarrow (\neg A \rightarrow B)$
- $(A \rightarrow (B \vee C)) \vee (A \rightarrow B)$
- $\neg(A \vee \neg A)$
- $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$

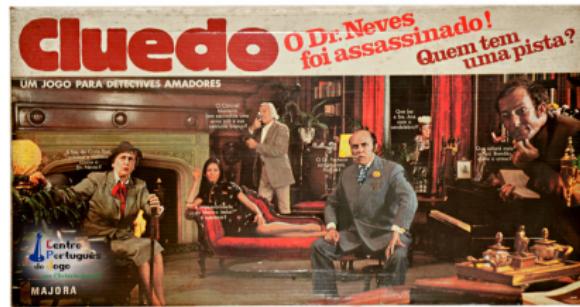
SAT PROBLEM

BOOLEAN SATISFIABILITY PROBLEM (**SAT Problem**)

Given a propositional formula, decide whether there exists a valuation that satisfies it.

- There are numerous computational problems (program verification, artificial intelligence, operations research, etc.) that can be encoded as a SAT problem.
- There are very efficient algorithms to handle this problem, even when involving a considerable number of variables.
- Extensions:
 - **MAX-SAT** – the maximum number of satisfiable clauses in a formula.
 - **SMT** – (Satisfiability Modulo Theories)

EXERCISE



NELLER, MARKOV, RUSSEL. CLUE DEDUCTION: PROFESSOR PLUM TEACHES LOGIC (2016)

Suppose that liars always speak what is false, and truth-tellers always speak what is true. Further suppose that Amy, Bob, and Cal are each either a liar or truth-teller. Amy says, "Bob is a liar." Bob says, "Cal is a liar." Cal says, "Amy and Bob are liars." Which, if any, of these people are truth-tellers?

EXERCISE

LOGIC IN ACTION. VAN BENTHEM ET AL. 2016

You want to throw a party, respecting people's incompatibilities. You know that:

- John comes if Mary or Ann comes.
- Ann Comes if Mary does not come.
- If Ann comes, John does not.

Can you invite people under these constraints?

THE CALCULUS OF Prop

Axioms: All formulas of the form

$$(A1) \ A \rightarrow (B \rightarrow A)$$

$$(A2) \ (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$(A3) \ (\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$$

Inference Rule: (Modus Ponens)

$$(MP) \quad \frac{A \quad A \rightarrow B}{B}$$

PROOF IN Prop

DEFINITION

Let A_1, \dots, A_n be a sequence of formulas of Prop.

A_1, \dots, A_n is a **demonstration** or **proof** (in Prop) if for each $i \in \{1, \dots, n\}$:

- (I) A_i is an axiom, or
- (II) A_i is inferred from two previous formulas in the sequence using the inference rule modus ponens.

EXAMPLE

PROPOSITIONAL CALCULUS Prop

$$(A1) \ A \rightarrow (B \rightarrow A)$$

$$(A2) \ (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$(A3) \ (\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$$

$$(MP) \quad \frac{A \quad A \rightarrow B}{B}$$

EXAMPLE

PROPOSITIONAL CALCULUS Prop

$$(A1) \ A \rightarrow (B \rightarrow A)$$

$$(A2) \ (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$(A3) \ (\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$$

$$(MP) \quad \frac{A \quad A \rightarrow B}{B}$$

PROVING IN Prop THAT $\vdash p \rightarrow p$

EXAMPLE

PROPOSITIONAL CALCULUS Prop

$$(A1) \ A \rightarrow (B \rightarrow A)$$

$$(A2) \ (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$(A3) \ (\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$$

$$(MP) \quad \frac{A \quad A \rightarrow B}{B}$$

PROVING IN Prop THAT $\vdash p \rightarrow p$

$$1. \ p \rightarrow ((q \rightarrow p) \rightarrow p)$$

EXAMPLE

PROPOSITIONAL CALCULUS Prop

$$(A1) \ A \rightarrow (B \rightarrow A)$$

$$(A2) \ (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$(A3) \ (\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$$

$$(MP) \quad \frac{A \quad A \rightarrow B}{B}$$

PROVING IN Prop THAT $\vdash p \rightarrow p$

$$1. \ p \rightarrow ((q \rightarrow p) \rightarrow p) \quad (A1)$$

EXAMPLE

PROPOSITIONAL CALCULUS Prop

$$(A1) \ A \rightarrow (B \rightarrow A)$$

$$(A2) \ (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$(A3) \ (\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$$

$$(MP) \quad \frac{A \quad A \rightarrow B}{B}$$

PROVING IN Prop THAT $\vdash p \rightarrow p$

$$1. \ p \rightarrow ((q \rightarrow p) \rightarrow p) \tag{A1}$$

$$2. \ (p \rightarrow ((q \rightarrow p) \rightarrow p)) \rightarrow ((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p))$$

EXAMPLE

PROPOSITIONAL CALCULUS Prop

$$(A1) \ A \rightarrow (B \rightarrow A)$$

$$(A2) \ (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$(A3) \ (\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$$

$$(MP) \quad \frac{A \quad A \rightarrow B}{B}$$

PROVING IN Prop THAT $\vdash p \rightarrow p$

$$1. \ p \rightarrow ((q \rightarrow p) \rightarrow p) \quad (A1)$$

$$2. \ (p \rightarrow ((q \rightarrow p) \rightarrow p)) \rightarrow ((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p)) \quad (A2)$$

EXAMPLE

PROPOSITIONAL CALCULUS Prop

$$(A1) \ A \rightarrow (B \rightarrow A)$$

$$(A2) \ (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$(A3) \ (\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$$

$$(MP) \quad \frac{A \quad A \rightarrow B}{B}$$

PROVING IN Prop THAT $\vdash p \rightarrow p$

1. $p \rightarrow ((q \rightarrow p) \rightarrow p)$ (A1)
2. $(p \rightarrow ((q \rightarrow p) \rightarrow p)) \rightarrow ((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p))$ (A2)
3. $((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p))$

EXAMPLE

PROPOSITIONAL CALCULUS Prop

$$(A1) \ A \rightarrow (B \rightarrow A)$$

$$(A2) \ (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$(A3) \ (\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$$

$$(MP) \quad \frac{A \quad A \rightarrow B}{B}$$

PROVING IN Prop THAT $\vdash p \rightarrow p$

1. $p \rightarrow ((q \rightarrow p) \rightarrow p)$ (A1)
2. $(p \rightarrow ((q \rightarrow p) \rightarrow p)) \rightarrow ((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p))$ (A2)
3. $((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p))$ (MP)1.,2.

EXAMPLE

PROPOSITIONAL CALCULUS Prop

$$(A1) \ A \rightarrow (B \rightarrow A)$$

$$(A2) \ (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$(A3) \ (\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$$

$$(MP) \quad \frac{A \quad A \rightarrow B}{B}$$

PROVING IN Prop THAT $\vdash p \rightarrow p$

1. $p \rightarrow ((q \rightarrow p) \rightarrow p)$ (A1)
2. $(p \rightarrow ((q \rightarrow p) \rightarrow p)) \rightarrow ((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p))$ (A2)
3. $((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p))$ (MP)1.,2.
4. $p \rightarrow (q \rightarrow p)$

EXAMPLE

PROPOSITIONAL CALCULUS Prop

$$(A1) \ A \rightarrow (B \rightarrow A)$$

$$(A2) \ (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$(A3) \ (\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$$

$$(MP) \quad \frac{A \quad A \rightarrow B}{B}$$

PROVING IN Prop THAT $\vdash p \rightarrow p$

1. $p \rightarrow ((q \rightarrow p) \rightarrow p)$ (A1)
2. $(p \rightarrow ((q \rightarrow p) \rightarrow p)) \rightarrow ((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p))$ (A2)
3. $((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p))$ (MP)1.,2.
4. $p \rightarrow (q \rightarrow p)$ A1

EXAMPLE

PROPOSITIONAL CALCULUS Prop

$$(A1) \ A \rightarrow (B \rightarrow A)$$

$$(A2) \ (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$(A3) \ (\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$$

$$(MP) \quad \frac{A \quad A \rightarrow B}{B}$$

PROVING IN Prop THAT $\vdash p \rightarrow p$

1. $p \rightarrow ((q \rightarrow p) \rightarrow p)$ (A1)
2. $(p \rightarrow ((q \rightarrow p) \rightarrow p)) \rightarrow ((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p))$ (A2)
3. $((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p))$ (MP)1.,2.
4. $p \rightarrow (q \rightarrow p)$ A1
5. $p \rightarrow p$

EXAMPLE

PROPOSITIONAL CALCULUS Prop

$$(A1) \ A \rightarrow (B \rightarrow A)$$

$$(A2) \ (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$(A3) \ (\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$$

$$(MP) \quad \frac{A \quad A \rightarrow B}{B}$$

PROVING IN Prop THAT $\vdash p \rightarrow p$

1. $p \rightarrow ((q \rightarrow p) \rightarrow p)$ (A1)
2. $(p \rightarrow ((q \rightarrow p) \rightarrow p)) \rightarrow ((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p))$ (A2)
3. $((p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow p))$ (MP)1.,2.
4. $p \rightarrow (q \rightarrow p)$ A1
5. $p \rightarrow p$ (MP)3.,4.

EXERCISE

EXERCISE

Prove in Prop that

$$B \rightarrow C, C \rightarrow D \vdash B \rightarrow D$$

DEDUCTION LEMMA (HERBRAND, 1930)

THEOREM:

Let $B, C \in \text{Fm}(\text{Prop})$, $\Gamma \subseteq \text{Fm}(\text{Prop})$. Then:

- If $\Gamma, B \vdash C$, then $\Gamma \vdash B \rightarrow C$.
- In particular, if $B \vdash C$, then $\vdash B \rightarrow C$.

DEDUCTION LEMMA (HERBRAND, 1930)

THEOREM:

Let $B, C \in \text{Fm}(\text{Prop})$, $\Gamma \subseteq \text{Fm}(\text{Prop})$. Then:

- If $\Gamma, B \vdash C$, then $\Gamma \vdash B \rightarrow C$.
- In particular, if $B \vdash C$, then $\vdash B \rightarrow C$.

EXERCISE

Prove that

$$B \rightarrow C, C \rightarrow D \vdash B \rightarrow D$$

using the Deduction Theorem.

SOUNDNESS AND COMPLETENESS OF PROPOSITIONAL CALCULUS

THEOREM (SOUNDNESS OF PROPOSITIONAL CALCULUS)

$$\vdash A \implies \models A.$$

THEOREM (COMPLETENESS OF PROPOSITIONAL CALCULUS)

$$\models A \implies \vdash A.$$

FINAL NOTE

- Logical calculi characterized by a **large number of axioms and a small number of inference rules** are referred to as **Hilbert calculi** (such as the Prop Calculus presented earlier).
- There are other **equivalent representations** in the literature, e.g., those that include additional axioms based on conjunctions and negations, or on disjunctions and negations.
- Alternatively, we can consider logical calculi with a **small number of axioms and a large number of inference rules**. These are called **natural deduction calculi**.
- In these calculi, proofs are more similar to the natural way we reason.

FINAL NOTE

NATURAL DEDUCTION CALCULUS FOR PROPOSITIONAL LOGIC

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \wedge I \quad \frac{\varphi \wedge \psi}{\varphi} \wedge E_1 \quad \frac{\varphi \wedge \psi}{\psi} \wedge E_2$$

$$\frac{\varphi}{\varphi \vee \psi} \vee I_1 \quad \frac{\psi}{\varphi \vee \psi} \vee I_2 \quad \frac{\varphi \vee \psi \quad \boxed{\begin{array}{c} \varphi \\ \vdots \\ \theta \end{array}} \quad \boxed{\begin{array}{c} \psi \\ \vdots \\ \theta \end{array}}}{\theta} \vee E$$

$$\frac{\boxed{\begin{array}{c} \varphi \\ \vdots \\ \psi \end{array}}}{\varphi \rightarrow \psi} \Rightarrow I \quad \frac{\varphi \quad \varphi \rightarrow \psi}{\psi} \Rightarrow E$$

$$\frac{\perp}{\varphi} \perp E$$

$$\frac{}{\varphi \vee \neg \varphi} \text{EM}$$

EXERCISE

USING NATURAL DEDUCTION, PROVE

- $\vdash p \rightarrow p$
- $B \rightarrow C, C \rightarrow D \vdash B \rightarrow D$
- $\neg\neg A \vdash A$

OUTLINE

1 REVIEW: PROPOSITIONAL LOGIC

2 REVISIONS: FIRST-ORDER LOGIC

CONTEXT

- A multi-sorted version of first-order logic is presented
- Logic is widely used in the specification of abstract data structures, adopted in specification processes

SIGNATURE AND FORMULAS

SIGNATURE

A signature in First-Order Logic consists of a triple

$$\Sigma = (S, F, P)$$

where

- S is a set of sorts
- F is an $S^* \times S$ -family of function symbols
- P is an S -family of predicate symbols

We use $f : s_1 \times \cdots \times s_n \rightarrow s \in F$ to denote that $f \in F_{s_1 \dots s_n, s}$ and $p : s_1 \times \cdots \times s_n$ to denote $p \in P_{s_1 \dots s_n}$

EXAMPLE OF SIGNATURE $\Sigma = (S, F, P)$

REPRESENTATION 1

- $S = \{s_1, s_2\}$
- $F_{\epsilon, s_1} = \{c_1\}, F_{\epsilon, s_2} = \{c_2\}$
- $F_{s_1, s_1} = \{f\}, F_{s_2 s_1, s_1} = \{g\}$
- $F_{\omega, s} = \emptyset$ for other $\omega \in S^*, s \in S$
- $P_{s_1 \times s_1} = \{r\}$ and $P_\omega = \emptyset$ for other $\omega \in S^*$

EXAMPLE OF SIGNATURE $\Sigma = (S, F, P)$

REPRESENTATION 1

- $S = \{s_1, s_2\}$
- $F_{\epsilon, s_1} = \{c_1\}, F_{\epsilon, s_2} = \{c_2\}$
- $F_{s_1, s_1} = \{f\}, F_{s_2 s_1, s_1} = \{g\}$
- $F_{\omega, s} = \emptyset$ for other $\omega \in S^*, s \in S$
- $P_{s_1 \times s_1} = \{r\}$ and $P_\omega = \emptyset$ for other $\omega \in S^*$

REPRESENTATION 2

ST s_1 s_2 OP $c_1 : \rightarrow s_1$ $c_2 : \rightarrow s_2$ $f : s_1 \rightarrow s_1$ $g : s_2 \times s_1 \rightarrow s_1$ RL $r : s_1 \times s_1$

EXAMPLES

Monoids

ST s ;

OP $\cdot : s \times s \rightarrow s$

$e : \rightarrow s$

EXAMPLES

Monoids

ST s ;OP $\cdot : s \times s \rightarrow s$ $e : \rightarrow s$

Natural Numbers

ST Nat ;OP $\text{suc} : \text{Nat} \rightarrow \text{Nat}$ $+ : \text{Nat} \times \text{Nat} \rightarrow \text{Nat}$

...

RL $\leq : \text{Nat} \times \text{Nat}$

...

FIRST-ORDER STRUCTURES

Σ -STRUCTURES

Let $\Sigma = (S, F, P)$ be a signature. A **Σ -structure A** consists of:

- an S -set $|A|$, i.e., for each $s \in S$, $|A|_s$ is a set;
- for each symbol $f : s_1 \times \cdots \times s_n \rightarrow s \in \Sigma$, a function $f^A : |A|_{s_1} \times \cdots \times |A|_{s_n} \rightarrow |A|_s$;
- for each symbol $r : s_1 \times \cdots \times s_n$, a set $r^A \subseteq |A|_{s_1} \times \cdots \times |A|_{s_n}$.

EXAMPLES OF Σ -STRUCTURES

Consider the signature Σ :

SORTS s_1, s_2

OP $c_1 : \rightarrow s_1, c_2 : \rightarrow s_2$

$f : s_1 \rightarrow s_1$

$g : s_2 \times s_1 \rightarrow s_2$

TWO EXAMPLES OF Σ -ALGEBRAS:

$$|A|_{s_1} = \{a, b\}, |A|_{s_2} = \{1, 2, 3\}$$

$$c_1^A = a, c_2^A = 3$$

$$f^A(a) = a, f^A(b) = a$$

$$g^A = \{(1, a) \mapsto 1, (1, b) \mapsto 1, (2, a) \mapsto 2, (2, b) \mapsto 2, (3, a) \mapsto 3, (3, b) \mapsto 3\}$$

EXAMPLES OF Σ -STRUCTURES

Consider the signature Σ :

SORTS s_1, s_2

OP $c_1 : \rightarrow s_1, c_2 : \rightarrow s_2$

$f : s_1 \rightarrow s_1$

$g : s_2 \times s_1 \rightarrow s_2$

TWO EXAMPLES OF Σ -ALGEBRAS:

$$|A|_{s_1} = \{a, b\}, |A|_{s_2} = \{1, 2, 3\}$$

$$c_1^A = a, c_2^A = 3$$

$$f^A(a) = a, f^A(b) = a$$

$$g^A = \{(1, a) \mapsto 1, (1, b) \mapsto 1, (2, a) \mapsto 2, (2, b) \mapsto 2, (3, a) \mapsto 3, (3, b) \mapsto 3\}$$

$$|B|_{s_1} = \{\bullet\}, |B|_{s_2} = \{\heartsuit, \spadesuit\}$$

$$c_1^B = \bullet, c_2^B = \spadesuit$$

$$f^B(\bullet) = \bullet$$

$$g^B = \{(\heartsuit, \bullet) \mapsto \heartsuit, (\spadesuit, \bullet) \mapsto \spadesuit\}$$

EXERCISE

EXERCISE

Define a Σ -structure for the signature of monoids and natural numbers defined earlier.

FIRST-ORDER FORMULAS

Σ -TERMS

Let Σ be a signature and $X = (X_s)_{s \in S}$ an S -set of variables for Σ . The **set of Σ -terms in X** is the smallest S -set $T(\Sigma, X)_s$ such that:

- $X_s \subseteq T(\Sigma, X)_s$; (variables)
- $F_{\epsilon, s} \subseteq T(\Sigma, X)_s$; (constants)
- For any $f : s_1 \times \cdots \times s_n \rightarrow s \in \Sigma$ and
 $t_1 \in T(\Sigma, X)_{s_1}, \dots, t_n \in T(\Sigma, X)_{s_n}$, $f(t_1, \dots, t_n) \in T(\Sigma, X)_s$;

EXERCISE

Enumerate the terms of the signatures defined earlier.

Σ -FORMULAS

Let $\Sigma = (S, F, P)$ be a signature. The **set $\text{Fm}(\Sigma)$ of Σ -formulas** is defined by the following grammar:

$$\varphi ::= \perp \mid t_s^1 \approx t_s^2 \mid r(t_1, \dots, t_n) \mid \varphi_1 \rightarrow \varphi_2 \mid \forall x : s. \varphi$$

where $t_i \in T(\Sigma, X)_{s_i}$, $i \in 1, \dots, n$ and $x \in X$

ABBREVIATIONS

Negation:

$$\neg\varphi := \varphi \rightarrow \perp$$

Verum:

$$\top := \neg\perp$$

Disjunction:

$$\varphi \vee \varphi' := \neg\varphi \rightarrow \varphi'$$

Conjunction:

$$\varphi \wedge \varphi' := \neg(\varphi \rightarrow \neg\varphi')$$

Equivalence:

$$\varphi \leftrightarrow \varphi' := (\varphi \rightarrow \varphi') \wedge (\varphi' \rightarrow \varphi)$$

Existential Quantification:

$$\exists x.\varphi := \neg\forall x.\neg\varphi$$

INTERPRETATION OF TERMS

A VALUATION FOR AN S -SET OF VARIABLES IN A (S, F, P) -STRUCTURE A

is an S -function $v : X \rightarrow |A|$, i.e., an S -family of functions $v_s : X_s \rightarrow |A|_s$

THE INTERPRETATION OF A (S, F, P) -TERM t

in a (S, F, P) -structure A and a valuation $v : X \rightarrow |A|$ is defined recursively:

- $t_A^v = c^A$, if $t = c$ (constant)
- $t_A^v = v(x)$, if $t = x$ (variable)
- $t_A^v = f^A(t_1^v, \dots, t_n^v)$, if $t = f(t_1, \dots, t_n)$

SATISFACTION

DEFINITION

Let Σ be a signature and A a Σ -structure and $v : X \rightarrow |A|$ a valuation for A . The **satisfaction relation of a formula** $\varphi \in \text{Fm}(\Sigma)$ **in a structure** A is defined recursively as follows:

- $A, v \models t \approx t'$ if $t_v^A = t_v'^A$;
- $A, v \models r(t_1, \dots, t_n)$ if $t_1^A \times \dots \times t_n^A \in r^A$
- $A, v \models \neg\varphi$ if it is false that $A, v \models \varphi$;
- $A, v \models \varphi_1 \rightarrow \varphi_2$ if $A, v \models \varphi_1$ implies $A, v \models \varphi_2$;
- $A, v \models \forall x : s. \varphi$ if $A, v\{x : s \mapsto a\} \models \varphi$ for all $a \in A_s$,
where $v\{x : s \mapsto a\}(x) = a$ and $v\{x : s \mapsto a\}(y) = v(y)$ for $y \neq x$.

We write $A \models \varphi$ if for every valuation $v : X \rightarrow |A|$, $A, v \models \varphi$.

EXAMPLES OF SPECIFICATIONS IN FOL: GROUPS

Spec GRUPO =

[S]

elt;

[F]

 $0_+ : \rightarrow \text{elt};$ $(-_:) : \text{elt} \rightarrow \text{elt};$ $+ : \text{elt}, \text{elt} \rightarrow \text{elt};$

[AX]

 $(\forall a, b, c : \text{elt}). (a + b) + c = a + (b + c);$ $(\forall a : \text{elt}). a + 0_+ = 0_+ + a = a;$ $(\forall a : \text{elt}). a + (-a) = 0_+;$ $(\forall a : \text{elt}). (-a) + a = 0_+;$

EXAMPLES OF SPECIFICATIONS IN FOL: ABELIAN GROUPS

Spec ABEL = enrich GRUPO by
[AX]

$(\forall a, b: \text{elt}). a + b = b + a;$

EXAMPLES OF SPECIFICATIONS IN FOL: ABELIAN GROUPS

Spec ABEL = enrich GRUPO by
 [AX]

$$(\forall a, b: \text{elt}). a + b = b + a;$$

Spec ANEL = enrich ABEL by
 [F]

$$\begin{aligned} * &: \text{elt}, \text{elt} \rightarrow \text{elt}; \\ 1: & \quad \rightarrow \text{elt}; \end{aligned}$$

[AX]

$$(\forall a: \text{elt}). (a * 1) = a;$$

$$(\forall a: \text{elt}). (1 * a) = a;$$

$$(\forall a, b, c: \text{elt}). (a * b) * c = a * (b * c);$$

$$(\forall a, b, c: \text{elt}). a * (b + c) = a * b + a * c;$$

$$(\forall a, b, c: \text{elt}). (a + b) * c = a * c + b * c;$$

EXAMPLES OF SPECIFICATIONS IN FOL: LISTS

Spec LISTS =

[S]

list, elt

[F]

nil: \rightarrow list; $___:$ elt,list \rightarrow list; $__:__:$ list,list \rightarrow list;

[AX]

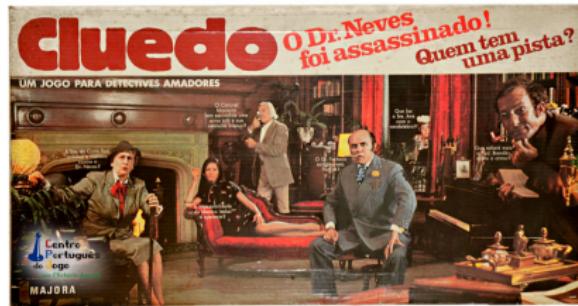
 $(\forall x:elt).(\forall l:list)x.l \neq l$ $(\forall x,x':elt)(\forall l,l':list).x.l = x'.l' \rightarrow x = x' \wedge l = l'$ $(\forall l:list).nil::l = l$ $(\forall x:elt)(\forall l,l':list).(x.l)::l' = x.(l::l')$

EXERCISE

Define a specification to express the following properties about binary relations:

- Carlos is a parent of Luís
- Mothers are women
- Every person has at least a mother or a father
- x is the grandfather of y
- Carlos has a grandfather

EXERCISE: CLUEDO 2



Consider the following sentences:

- ① All the invited friends and family members arrived late.
- ② There is at least one person who arrived on time.
- ③ There is at least one guest who is neither a family member nor a friend.

Formalize the following sentences and show that 3 is not a logical consequence of 1 and 2.

EXERCISE

Define a specification to express the following properties about binary relations:

- Symmetry
- Anti-symmetry
- Transitivity
- Reflexivity
- Determinism
- Connectivity
-