

ELEMENTS OF LOGIC 2024/25

FIRST-ORDER LOGIC

EL 2024/25

Department of Mathematics, University of Aveiro
Alexandre Madeira
(madeira@ua.pt)

June 13, 2025

OUTLINE

- 1 SIGNATURES AND STRUCTURES
- 2 SYNTAX OF FIRST-ORDER LOGIC
- 3 FIRST ORDER LOGIC SATISFACTION
- 4 NATURAL DEDUCTION CALCULUS
- 5 SOUNDNESS AND COMPLETENESS

SIGNATURES

DEFINITION 1

First-order signature A **first-order signature** is a pair

$$\Sigma = (P, F)$$

where

- P is an \mathbb{N} -family of sets of **predicate symbols**
- F is an \mathbb{N} -family of sets of **operation symbols**

SIGNATURES

DEFINITION 1

First-order signature A **first-order signature** is a pair

$$\Sigma = (P, F)$$

where

- P is an \mathbb{N} -family of sets of **predicate symbols**
- F is an \mathbb{N} -family of sets of **operation symbols**

We use

- $f : s \times \cdots \times s \rightarrow s \in F$ to denote that $f \in F_n$ and
- $p : s \times \cdots \times s$ to denote that $p \in P_n$

SIGNATURES

Two representations for the same signature Σ :

REPRESENTATION 1

Σ is a first-order signature with

- **constant** symbols c_1 and c_2
- a **unary function** symbol f
- a **binary function symbol** g
- a **binary predicate symbol** r

SIGNATURES

Two representations for the same signature Σ :

REPRESENTATION 1

Σ is a first-order signature with

- **constant** symbols c_1 and c_2
- a **unary function** symbol f
- a **binary function symbol** g
- a **binary predicate symbol** r

REPRESENTATION 2

$\Sigma = (P, F)$, where

- $F_0 = \{c_1, c_2\}$
- $F_1 = \{f\}$, $F_2 = \{g\}$
- $F_k = \emptyset$ for any $k > 2$
- $P_2 = \{r\}$ e $P_k = \emptyset$ for any $k \neq 2$

EXAMPLES OF SIGNATURES

EXERCISE 1

Formalise suitable first-order signatures to specify

- *monoids*
- *ordered sets*
- *algebra of relations (worked on the previous chapter)*
- *natural numbers*
- *graphs*
- *...*

FIRST-ORDER STRUCTURES

DEFINITION 2

Σ -structures Let $\Sigma = (P, F)$ be a first-order signature. A **Σ -structure A** consists of

- a non-empty set $|A|$, called universe.
- for each predicate symbol $r \in P_n$, a set $r^A \subseteq |A|^n$.
- for each operation symbol $f \in F_n$, a function $f^A : |A|^n \rightarrow |A|$.

EXAMPLES OF Σ -STRUCTURES

Let us consider the first-order signature $\Sigma = (P, F)$, with

- $F_0 = \{c_1, c_2\}$
- $F_1 = \{f\}, F_2 = \{g\}$
- $F_k = \emptyset$ for any $k > 2$
- $P_2 = \{r\}$ e $P_k = \emptyset$ for any $k \neq 2$

TWO EXAMPLES OF Σ -STRUCTURES:

$$|A| = \{a, b\}$$

$$c_1^A = a \quad c_2^A = b$$

$$f^A(a) = a, \quad f^A(b) = a$$

$$g^A = \{(a, a) \mapsto a, (b, b) \mapsto a, (a, b) \mapsto b, (b, a) \mapsto b\}$$

$$r^A = \{(a, b), (b, a)\}$$

EXAMPLES OF Σ -STRUCTURES

Let us consider the first-order signature $\Sigma = (P, F)$, with

- $F_0 = \{c_1, c_2\}$
- $F_1 = \{f\}$, $F_2 = \{g\}$
- $F_k = \emptyset$ for any $k > 2$
- $P_2 = \{r\}$ e $P_k = \emptyset$ for any $k \neq 2$

TWO EXAMPLES OF Σ -STRUCTURES:

$$|A| = \{a, b\}$$

$$c_1^A = a \quad c_2^A = b$$

$$f^A(a) = a, \quad f^A(b) = a$$

$$g^A = \{(a, a) \mapsto a, (b, b) \mapsto a, (a, b) \mapsto b, (b, a) \mapsto b\}$$

$$r^A = \{(a, b), (b, a)\}$$

$$|B| = \{\heartsuit, \spadesuit\}$$

$$c_1^B = \heartsuit, \quad c_2^B = \spadesuit$$

$$f^B(\heartsuit) = \heartsuit \text{ and } f^B(\spadesuit) = \heartsuit$$

$$g^B(x, y) = \begin{cases} \heartsuit & \text{if } x = y \\ \spadesuit & \text{if } x \neq y \end{cases}$$

$$r^B = \{(x, y) \mid x \neq y, x, y \in |B|\}$$

EXERCISES

EXERCISE 2

- ① *Define two different structures for each one of the signatures introduced in Exercise 1*

EXERCISES

EXERCISE 2

- ① *Define two different structures for each one of the signatures introduced in Exercise 1*
- ② *What about singleton structures?*

MORPHISMS BETWEEN Σ -STRUCTURES

DEFINITION 3

Let $\Sigma = (P, F)$ be a first-order signature and A and B Σ -two structures. A **morphism between A and B** is a function

$$h : |A| \rightarrow |B|$$

such that:

- for any $r \in r_n$, and for any $a_1, \dots, a_n \in |A|$,

$$r^A(a_1, \dots, a_n) \text{ implies that } r^B(h(a_1), \dots, h(a_n))$$

- for any $f \in F_n$, and for any $a_1, \dots, a_n \in |A|$,

$$h(f^A(a_1, \dots, a_n)) = f^B(h(a_1), \dots, h(a_n))$$

EXERCISES

EXERCISE 3

- ① *Revisit the examples of Exercise 2 a introduce pairs of structures that are related by a morphism.*

OUTLINE

- 1 SIGNATURES AND STRUCTURES
- 2 SYNTAX OF FIRST-ORDER LOGIC
- 3 FIRST ORDER LOGIC SATISFACTION
- 4 NATURAL DEDUCTION CALCULUS
- 5 SOUNDNESS AND COMPLETENESS

FORMULÆ

Σ -TERMS

Let Σ be a signature and X a set of variable. The **set of Σ -terms in X** is the smallest set $T(\Sigma, X)$ such that:

- for any $x \in X$, $x \in T(\Sigma, X)$; (variables are terms)

FORMULÆ

Σ -TERMS

Let Σ be a signature and X a set of variable. The **set of Σ -terms in X** is the smallest set $T(\Sigma, X)$ such that:

- for any $x \in X$, $x \in T(\Sigma, X)$; (variables are terms)
- for any operation symbol $c \in F_0$, $c \in T(\Sigma, X)$; (constants are terms)

FORMULÆ

Σ -TERMS

Let Σ be a signature and X a set of variable. The **set of Σ -terms in X** is the smallest set $T(\Sigma, X)$ such that:

- for any $x \in X$, $x \in T(\Sigma, X)$; (variables are terms)
- for any operation symbol $c \in F_0$, $c \in T(\Sigma, X)$; (constants are terms)
- for any $f \in F_n$, if $t_1, \dots, t_n \in T(\Sigma, X)$, then $f(t_1, \dots, t_n) \in T(\Sigma, X)$;

EXERCISE 4

List the terms of the signatures introduced in the previous exercises

Σ -FORMULÆ

DEFINITION 4

Let $\Sigma = (P, F)$ be a signature. The **set of formulas** $\text{Fm}(\Sigma)$ is the smallest set with the such that:

- ① for any $t_1, \dots, t_n \in T(\Sigma, X)$ and for any $p \in P_n$,
 $p(t_1, \dots, t_n) \in \text{Fm}(\Sigma)$

Σ -FORMULÆ

DEFINITION 4

Let $\Sigma = (P, F)$ be a signature. The **set of formulas** $\text{Fm}(\Sigma)$ is the smallest set with the such that:

- ① for any $t_1, \dots, t_n \in T(\Sigma, X)$ and for any $p \in P_n$,
 $p(t_1, \dots, t_n) \in \text{Fm}(\Sigma)$
- ② for any $t_1, t_2 \in T(\Sigma, X)$, $t_1 = t_2 \in \text{Fm}(\Sigma)$

Σ -FORMULÆ

DEFINITION 4

Let $\Sigma = (P, F)$ be a signature. The **set of formulas** $\text{Fm}(\Sigma)$ is the smallest set with the such that:

- ① for any $t_1, \dots, t_n \in T(\Sigma, X)$ and for any $p \in P_n$,
 $p(t_1, \dots, t_n) \in \text{Fm}(\Sigma)$
- ② for any $t_1, t_2 \in T(\Sigma, X)$, $t_1 = t_2 \in \text{Fm}(\Sigma)$
- ③ for any $\varphi, \psi \in \text{Fm}(\Sigma)$, $\varphi \star \psi \in \text{Fm}(\Sigma)$, $\star \in \{\wedge, \vee, \rightarrow, \leftrightarrow\}$

Σ -FORMULÆ

DEFINITION 4

Let $\Sigma = (P, F)$ be a signature. The **set of formulas** $\text{Fm}(\Sigma)$ is the smallest set with the such that:

- ① for any $t_1, \dots, t_n \in T(\Sigma, X)$ and for any $p \in P_n$,
 $p(t_1, \dots, t_n) \in \text{Fm}(\Sigma)$
- ② for any $t_1, t_2 \in T(\Sigma, X)$, $t_1 = t_2 \in \text{Fm}(\Sigma)$
- ③ for any $\varphi, \psi \in \text{Fm}(\Sigma)$, $\varphi \star \psi \in \text{Fm}(\Sigma)$, $\star \in \{\wedge, \vee, \rightarrow, \leftrightarrow\}$
- ④ for any $\varphi \in \text{Fm}(\Sigma)$, $\neg\varphi \in \text{Fm}(\Sigma)$

Σ -FORMULÆ

DEFINITION 4

Let $\Sigma = (P, F)$ be a signature. The **set of formulas** $Fm(\Sigma)$ is the smallest set with the such that:

- ① for any $t_1, \dots, t_n \in T(\Sigma, X)$ and for any $p \in P_n$,
 $p(t_1, \dots, t_n) \in Fm(\Sigma)$
- ② for any $t_1, t_2 \in T(\Sigma, X)$, $t_1 = t_2 \in Fm(\Sigma)$
- ③ for any $\varphi, \psi \in Fm(\Sigma)$, $\varphi \star \psi \in Fm(\Sigma)$, $\star \in \{\wedge, \vee, \rightarrow, \leftrightarrow\}$
- ④ for any $\varphi \in Fm(\Sigma)$, $\neg\varphi \in Fm(\Sigma)$
- ⑤ for any $\varphi \in Fm(\Sigma)$, and $x \in X$, $\forall x. \varphi \in Fm(\Sigma)$ and $\exists x. \varphi \in Fm(\Sigma)$

EXERCISE 5

List the formulas of the signatures introduced in the previous exercises

FREE AND BOUNDED VARIABLES

DEFINITION 5

The set of **free variables of a term** $t \in T(\Sigma, X)$ is given by

- $FV(x) = \{x\}$, for any variable $x \in X$

FREE AND BOUNDED VARIABLES

DEFINITION 5

The set of **free variables of a term** $t \in T(\Sigma, X)$ is given by

- $FV(x) = \{x\}$, for any variable $x \in X$
- $FV(c) = \emptyset$, for any constant $c \in F_0$

FREE AND BOUNDED VARIABLES

DEFINITION 5

The set of **free variables of a term** $t \in T(\Sigma, X)$ is given by

- $FV(x) = \{x\}$, for any variable $x \in X$
- $FV(c) = \emptyset$, for any constant $c \in F_0$
- $FV(f(t_1, \dots, t_n)) = FV(t_1) \cup \dots \cup FV(t_n)$

FREE AND BOUNDED VARIABLES

DEFINITION 5

The set of **free variables of a term** $t \in T(\Sigma, X)$ is given by

- $FV(x) = \{x\}$, for any variable $x \in X$
- $FV(c) = \emptyset$, for any constant $c \in F_0$
- $FV(f(t_1, \dots, t_n)) = FV(t_1) \cup \dots \cup FV(t_n)$

The set of **free variables of a formula** $\varphi \in \text{Fm}(\Sigma)$ is given by

- $FV(P(t_1, \dots, t_n)) = FV(t_1) \cup \dots \cup FV(t_n)$

FREE AND BOUNDED VARIABLES

DEFINITION 5

The set of **free variables of a term** $t \in T(\Sigma, X)$ is given by

- $FV(x) = \{x\}$, for any variable $x \in X$
- $FV(c) = \emptyset$, for any constant $c \in F_0$
- $FV(f(t_1, \dots, t_n)) = FV(t_1) \cup \dots \cup FV(t_n)$

The set of **free variables of a formula** $\varphi \in \text{Fm}(\Sigma)$ is given by

- $FV(P(t_1, \dots, t_n)) = FV(t_1) \cup \dots \cup FV(t_n)$
- $FV(t_1 = t_2) = FV(t_1) \cup FV(t_2)$

FREE AND BOUNDED VARIABLES

DEFINITION 5

The set of **free variables of a term** $t \in T(\Sigma, X)$ is given by

- $FV(x) = \{x\}$, for any variable $x \in X$
- $FV(c) = \emptyset$, for any constant $c \in F_0$
- $FV(f(t_1, \dots, t_n)) = FV(t_1) \cup \dots \cup FV(t_n)$

The set of **free variables of a formula** $\varphi \in Fm(\Sigma)$ is given by

- $FV(P(t_1, \dots, t_n)) = FV(t_1) \cup \dots \cup FV(t_n)$
- $FV(t_1 = t_2) = FV(t_1) \cup FV(t_2)$
- $FV(\varphi \star \psi) = FV(\varphi) \cup FV(\psi)$, $\star \in \{\wedge, \vee, \rightarrow\}$

FREE AND BOUNDED VARIABLES

DEFINITION 5

The set of **free variables of a term** $t \in T(\Sigma, X)$ is given by

- $FV(x) = \{x\}$, for any variable $x \in X$
- $FV(c) = \emptyset$, for any constant $c \in F_0$
- $FV(f(t_1, \dots, t_n)) = FV(t_1) \cup \dots \cup FV(t_n)$

The set of **free variables of a formula** $\varphi \in \text{Fm}(\Sigma)$ is given by

- $FV(P(t_1, \dots, t_n)) = FV(t_1) \cup \dots \cup FV(t_n)$
- $FV(t_1 = t_2) = FV(t_1) \cup FV(t_2)$
- $FV(\varphi \star \psi) = FV(\varphi) \cup FV(\psi)$, $\star \in \{\wedge, \vee, \rightarrow\}$
- $FV(\neg\varphi) = FV(\varphi)$

FREE AND BOUNDED VARIABLES

DEFINITION 5

The set of **free variables of a term** $t \in T(\Sigma, X)$ is given by

- $FV(x) = \{x\}$, for any variable $x \in X$
- $FV(c) = \emptyset$, for any constant $c \in F_0$
- $FV(f(t_1, \dots, t_n)) = FV(t_1) \cup \dots \cup FV(t_n)$

The set of **free variables of a formula** $\varphi \in Fm(\Sigma)$ is given by

- $FV(P(t_1, \dots, t_n)) = FV(t_1) \cup \dots \cup FV(t_n)$
- $FV(t_1 = t_2) = FV(t_1) \cup FV(t_2)$
- $FV(\varphi \star \psi) = FV(\varphi) \cup FV(\psi)$, $\star \in \{\wedge, \vee, \rightarrow\}$
- $FV(\neg\varphi) = FV(\varphi)$
- $FV(\forall x\varphi) = FV(\varphi) \setminus \{x\}$

FREE AND BOUNDED VARIABLES

DEFINITION 5

The set of **free variables of a term** $t \in T(\Sigma, X)$ is given by

- $FV(x) = \{x\}$, for any variable $x \in X$
- $FV(c) = \emptyset$, for any constant $c \in F_0$
- $FV(f(t_1, \dots, t_n)) = FV(t_1) \cup \dots \cup FV(t_n)$

The set of **free variables of a formula** $\varphi \in Fm(\Sigma)$ is given by

- $FV(P(t_1, \dots, t_n)) = FV(t_1) \cup \dots \cup FV(t_n)$
- $FV(t_1 = t_2) = FV(t_1) \cup FV(t_2)$
- $FV(\varphi \star \psi) = FV(\varphi) \cup FV(\psi)$, $\star \in \{\wedge, \vee, \rightarrow\}$
- $FV(\neg\varphi) = FV(\varphi)$
- $FV(\forall x\varphi) = FV(\varphi) \setminus \{x\}$
- $FV(\exists x\varphi) = FV(\varphi) \setminus \{x\}$

FREE AND BOUNDED VARIABLES

- a term t is a **closed term** if $FV(t) = \emptyset$. The set of closed terms for Σ is denoted by $T(\Sigma, X)_c$

FREE AND BOUNDED VARIABLES

- a term t is a **closed term** if $FV(t) = \emptyset$. The set of closed terms for Σ is denoted by $T(\Sigma, X)_c$
- a formula φ is a **sentence** if $FV(\varphi) = \emptyset$. The set of sentences for Σ is denoted by $\text{Sen}(\Sigma)$

FREE AND BOUNDED VARIABLES

- a term t is a **closed term** if $FV(t) = \emptyset$. The set of closed terms for Σ is denoted by $T(\Sigma, X)_c$
- a formula φ is a **sentence** if $FV(\varphi) = \emptyset$. The set of sentences for Σ is denoted by $\text{Sen}(\Sigma)$
- a variable x is **bonded** in a formula φ , i.e. $x \in BV(\varphi)$, if it is in the scope of a quantifier.

FREE AND BOUNDED VARIABLES

- a term t is a **closed term** if $FV(t) = \emptyset$. The set of closed terms for Σ is denoted by $T(\Sigma, X)_c$
- a formula φ is a **sentence** if $FV(\varphi) = \emptyset$. The set of sentences for Σ is denoted by $\text{Sen}(\Sigma)$
- a variable x is **bonded** in a formula φ , i.e. $x \in BV(\varphi)$, if it is in the scope of a quantifier.
- Observation: $FV(\varphi) \cap BV(\varphi)$ need not to be empty!

FREE AND BOUNDED VARIABLES

- a term t is a **closed term** if $FV(t) = \emptyset$. The set of closed terms for Σ is denoted by $T(\Sigma, X)_c$
- a formula φ is a **sentence** if $FV(\varphi) = \emptyset$. The set of sentences for Σ is denoted by $\text{Sen}(\Sigma)$
- a variable x is **bonded** in a formula φ , i.e. $x \in BV(\varphi)$, if it is in the scope of a quantifier.
- Observation: $FV(\varphi) \cap BV(\varphi)$ need not to be empty!

EXERCISE 6

For each formula indicates whose variables are free, are bounded, or free and bounded:

- ① $(y < x) \vee (x^2 + x - y = 0)$
- ② $\exists x((y < x) \vee (x^2 + x - 2 = 0))$
- ③ $x > 0 \wedge \exists x(5 < x)$

SUBSTITUTION OPERATOR

DEFINITION 6 (SUBSTITUTION IN TERMS)

Let $s, t \in T(\Sigma, X)$ terms and $x \in X$ a variable. The substitution $s[t/x]$ is defined by

SUBSTITUTION OPERATOR

DEFINITION 6 (SUBSTITUTION IN TERMS)

Let $s, t \in T(\Sigma, X)$ terms and $x \in X$ a variable. The substitution $s[t/x]$ is defined by

$$\textcircled{1} \quad y[t/x] = \begin{cases} y & \text{if } y \neq x \\ t & \text{if } y = x \end{cases} \text{ for any variable } y \in X$$

$$\textcircled{2} \quad c[t/x] = c, \text{ for any constant } c \in F_0$$

$$\textcircled{3} \quad f(t_1, \dots, t_n)[t/x] = f(t_1[t/x], \dots, t_n[t/x])$$

SUBSTITUTION OPERATOR

DEFINITION 6 (SUBSTITUTION IN TERMS)

Let $s, t \in T(\Sigma, X)$ terms and $x \in X$ a variable. The substitution $s[t/x]$ is defined by

$$\textcircled{1} \quad y[t/x] = \begin{cases} y & \text{if } y \neq x \\ t & \text{if } y = x \end{cases} \text{ for any variable } y \in X$$

$$\textcircled{2} \quad c[t/x] = c, \text{ for any constant } c \in F_0$$

$$\textcircled{3} \quad f(t_1, \dots, t_n)[t/x] = f(t_1[t/x], \dots, t_n[t/x])$$

EXERCISE 7

...

SUBSTITUTION OPERATOR

DEFINITION 7 (SUBSTITUTION IN FORMULAS)

Let $\varphi \in \text{Fm}(\Sigma)$ be a formula, $x \in X$ a variable and $t \in T(\Sigma, X)$ a term. The substitution $\varphi[t/x]$ is defined by

- ① $R(t_1, \dots, t_n)[t/x] = R(t_1[t/x], \dots, t_n[t/x])$
- ② $(t_1 = t_2)[t/x] = (t_1[t/x] = t_2[t/x])$
- ③ $(\neg\varphi)[t/x] = \neg\varphi[t/x]$
- ④ $(\varphi \star \psi)[t/x] = \varphi[t/x] \star \psi[t/x]$, for any $\star \in \{\vee, \wedge, \rightarrow\}$
- ⑤ $(\forall y \varphi)[t/x] = \begin{cases} \forall y(\varphi[t/x]) & \text{if } x \neq y \\ \forall y \varphi & \text{if } x = y \end{cases}$
- ⑥ $(\exists y \varphi)[t/x] = \begin{cases} \exists y(\varphi[t/x]) & \text{if } x \neq y \\ \exists y \varphi & \text{if } x = y \end{cases}$

SUBSTITUTION OPERATOR

DEFINITION 7 (SUBSTITUTION IN FORMULAS)

Let $\varphi \in \text{Fm}(\Sigma)$ be a formula, $x \in X$ a variable and $t \in T(\Sigma, X)$ a term. The substitution $\varphi[t/x]$ is defined by

- ① $R(t_1, \dots, t_n)[t/x] = R(t_1[t/x], \dots, t_n[t/x])$
- ② $(t_1 = t_2)[t/x] = (t_1[t/x] = t_2[t/x])$
- ③ $(\neg\varphi)[t/x] = \neg\varphi[t/x]$
- ④ $(\varphi \star \psi)[t/x] = \varphi[t/x] \star \psi[t/x]$, for any $\star \in \{\vee, \wedge, \rightarrow\}$
- ⑤ $(\forall y \varphi)[t/x] = \begin{cases} \forall y(\varphi[t/x]) & \text{if } x \neq y \\ \forall y \varphi & \text{if } x = y \end{cases}$
- ⑥ $(\exists y \varphi)[t/x] = \begin{cases} \exists y(\varphi[t/x]) & \text{if } x \neq y \\ \exists y \varphi & \text{if } x = y \end{cases}$

EXERCISE 8

...

SUBSTITUTION PROCESS

ON THE SUBSTITUTION OF x BY A TERM t IN A FORMULA φ
we have to assure that:

- substitutions for bounded variables are forbid
(e.g. we can not replace x by y in $\exists x \neg(x = y)$)
this is assured by points 4 and 5 in previous definition

SUBSTITUTION PROCESS

ON THE SUBSTITUTION OF x BY A TERM t IN A FORMULA φ
we have to assure that:

- substitutions for bounded variables are forbid
(e.g. we can not replace x by y in $\exists x \neg(x = y)$)
this is assured by points 4 and 5 in previous definition
- we need to assure that free variable in t does not becomes bounded
after substitution in φ , i.e., that " **t is free for x in φ** "

SUBSTITUTION PROCESS

DEFINITION 8

The term t is free for x in φ if

- φ is atomic
- φ is of form $\varphi_1 * \varphi_2$, $* \in \{\vee, \wedge, \rightarrow\}$ and t is free for x in φ_1 and in φ_2
- φ is of form $\neg\psi$ and t is free for x in ψ
- φ is of form $\forall y\psi$: if $x \in FV(\psi)$ then $y \notin FV(t)$ and t is free for x in ψ
- φ is of form $\exists y\psi$: if $x \in FV(\psi)$ then $y \notin FV(t)$ and t is free for x in ψ

SUBSTITUTION PROCESS

EXERCISE 9

Check which terms are free in the following cases:

- ① x is free for x in $x = x$
- ② y is free for x in $x = x$
- ③ $x + y$ is free for y in $z = \bar{0}$
- ④ $\bar{0} + y$ is free for y in $\exists x(y = x)$
- ⑤ $x + y$ is free for z in $\exists w(w + x = \bar{0})$
- ⑥ $x + w$ is free for z in $\forall w(x + z = \bar{0})$
- ⑦ $x + y$ is free for z in $\forall w(x + z = \bar{0}) \wedge \exists y(z = y)$
- ⑧ $x + y$ is free for z in $\forall u(u = v) \rightarrow \forall z(z = y)$

SUBSTITUTION PROCESS

ASSUMPTION

From now we assume that all our substitutions are “free for”

EXTENDED SIGNATURE FOR $|A|$

DEFINITION 9

Let $\Sigma = (P, F)$ be a signature A be a Σ -structure. The **extended signature** $\Sigma^A = (F^A, P)$ of A is the signature that enriches Σ with a constant symbol for each value in $|A|$, i.e. such that $F_0^A = F_0 \cup \{\bar{a} \mid a \in |A|\}$ and $F_n^A = F_n$, for any $n \neq 0$.

OUTLINE

- 1 SIGNATURES AND STRUCTURES
- 2 SYNTAX OF FIRST-ORDER LOGIC
- 3 FIRST ORDER LOGIC SATISFACTION
- 4 NATURAL DEDUCTION CALCULUS
- 5 SOUNDNESS AND COMPLETENESS

INTERPRETATION OF TERMS

DEFINITION 10

An interpretation of the closed terms of Σ^A in A is a mapping

$$\llbracket - \rrbracket : T(\Sigma, X)_c \rightarrow |A|$$

such that

- $\llbracket \bar{c} \rrbracket = c$
- $\llbracket f(t_1, \dots, t_n) \rrbracket = f^A(\llbracket t_1 \rrbracket, \dots, \llbracket t_n \rrbracket)$

INTERPRETATION OF FORMULAS

DEFINITION 11

Let Σ be a signature and A a Σ -Structure. An interpretation of sentences is a mapping

$$\llbracket - \rrbracket_A : \text{Sen}(\Sigma) \rightarrow \{0, 1\}$$

where

- $\llbracket R(t_1, \dots, t_n) \rrbracket_A = \begin{cases} 1 & \text{if } (\llbracket t_1 \rrbracket, \dots, \llbracket t_n \rrbracket) \in R^A \\ 0 & \text{otherwise} \end{cases}$

INTERPRETATION OF FORMULAS

DEFINITION 11

Let Σ be a signature and A a Σ -Structure. An interpretation of sentences is a mapping

$$\llbracket - \rrbracket_A : \text{Sen}(\Sigma) \rightarrow \{0, 1\}$$

where

- $\llbracket R(t_1, \dots, t_n) \rrbracket_A = \begin{cases} 1 & \text{if } (\llbracket t_1 \rrbracket_A, \dots, \llbracket t_n \rrbracket_A) \in R^A \\ 0 & \text{otherwise} \end{cases}$
- $\llbracket t_1 = t_2 \rrbracket_A = \begin{cases} 1 & \text{if } \llbracket t_1 \rrbracket_A = \llbracket t_2 \rrbracket_A \\ 0 & \text{otherwise} \end{cases}$
- $\llbracket \varphi \wedge \psi \rrbracket_A = \min(\llbracket \varphi \rrbracket_A, \llbracket \psi \rrbracket_A)$

INTERPRETATION OF FORMULAS

DEFINITION 11

Let Σ be a signature and A a Σ -Structure. An interpretation of sentences is a mapping

$$\llbracket - \rrbracket_A : \text{Sen}(\Sigma) \rightarrow \{0, 1\}$$

where

- $\llbracket R(t_1, \dots, t_n) \rrbracket_A = \begin{cases} 1 & \text{if } (\llbracket t_1 \rrbracket_A, \dots, \llbracket t_n \rrbracket_A) \in R^A \\ 0 & \text{otherwise} \end{cases}$
- $\llbracket t_1 = t_2 \rrbracket_A = \begin{cases} 1 & \text{if } \llbracket t_1 \rrbracket_A = \llbracket t_2 \rrbracket_A \\ 0 & \text{otherwise} \end{cases}$
- $\llbracket \varphi \wedge \psi \rrbracket_A = \min(\llbracket \varphi \rrbracket_A, \llbracket \psi \rrbracket_A)$
- $\llbracket \varphi \vee \psi \rrbracket_A = \max(\llbracket \varphi \rrbracket_A, \llbracket \psi \rrbracket_A)$

INTERPRETATION OF FORMULAS

DEFINITION 11

Let Σ be a signature and A a Σ -Structure. An interpretation of sentences is a mapping

$$\llbracket - \rrbracket_A : \text{Sen}(\Sigma) \rightarrow \{0, 1\}$$

where

- $\llbracket R(t_1, \dots, t_n) \rrbracket_A = \begin{cases} 1 & \text{if } (\llbracket t_1 \rrbracket_A, \dots, \llbracket t_n \rrbracket_A) \in R^A \\ 0 & \text{otherwise} \end{cases}$
- $\llbracket t_1 = t_2 \rrbracket_A = \begin{cases} 1 & \text{if } \llbracket t_1 \rrbracket_A = \llbracket t_2 \rrbracket_A \\ 0 & \text{otherwise} \end{cases}$
- $\llbracket \varphi \wedge \psi \rrbracket_A = \min(\llbracket \varphi \rrbracket_A, \llbracket \psi \rrbracket_A)$
- $\llbracket \varphi \vee \psi \rrbracket_A = \max(\llbracket \varphi \rrbracket_A, \llbracket \psi \rrbracket_A)$
- $\llbracket \varphi \rightarrow \psi \rrbracket_A = \max(1 - \llbracket \varphi \rrbracket_A, \llbracket \psi \rrbracket_A)$

INTERPRETATION OF FORMULAS

DEFINITION 11

Let Σ be a signature and A a Σ -Structure. An interpretation of sentences is a mapping

$$\llbracket - \rrbracket_A : \text{Sen}(\Sigma) \rightarrow \{0, 1\}$$

where

- $\llbracket R(t_1, \dots, t_n) \rrbracket_A = \begin{cases} 1 & \text{if } (\llbracket t_1 \rrbracket_A, \dots, \llbracket t_n \rrbracket_A) \in R^A \\ 0 & \text{otherwise} \end{cases}$
- $\llbracket t_1 = t_2 \rrbracket_A = \begin{cases} 1 & \text{if } \llbracket t_1 \rrbracket_A = \llbracket t_2 \rrbracket_A \\ 0 & \text{otherwise} \end{cases}$
- $\llbracket \varphi \wedge \psi \rrbracket_A = \min(\llbracket \varphi \rrbracket_A, \llbracket \psi \rrbracket_A)$
- $\llbracket \varphi \vee \psi \rrbracket_A = \max(\llbracket \varphi \rrbracket_A, \llbracket \psi \rrbracket_A)$
- $\llbracket \varphi \rightarrow \psi \rrbracket_A = \max(1 - \llbracket \varphi \rrbracket_A, \llbracket \psi \rrbracket_A)$
- $\llbracket \neg \varphi \rrbracket_A = 1 - \llbracket \varphi \rrbracket_A$

INTERPRETATION OF FORMULAS

DEFINITION 11

Let Σ be a signature and A a Σ -Structure. An interpretation of sentences is a mapping

$$\llbracket - \rrbracket_A : \text{Sen}(\Sigma) \rightarrow \{0, 1\}$$

where

- $\llbracket R(t_1, \dots, t_n) \rrbracket_A = \begin{cases} 1 & \text{if } (\llbracket t_1 \rrbracket_A, \dots, \llbracket t_n \rrbracket_A) \in R^A \\ 0 & \text{otherwise} \end{cases}$
- $\llbracket t_1 = t_2 \rrbracket_A = \begin{cases} 1 & \text{if } \llbracket t_1 \rrbracket_A = \llbracket t_2 \rrbracket_A \\ 0 & \text{otherwise} \end{cases}$
- $\llbracket \varphi \wedge \psi \rrbracket_A = \min(\llbracket \varphi \rrbracket_A, \llbracket \psi \rrbracket_A)$
- $\llbracket \varphi \vee \psi \rrbracket_A = \max(\llbracket \varphi \rrbracket_A, \llbracket \psi \rrbracket_A)$
- $\llbracket \varphi \rightarrow \psi \rrbracket_A = \max(1 - \llbracket \varphi \rrbracket_A, \llbracket \psi \rrbracket_A)$
- $\llbracket \neg \varphi \rrbracket_A = 1 - \llbracket \varphi \rrbracket_A$
- $\llbracket \forall x \varphi \rrbracket_A = \min\{\llbracket \varphi[\bar{a}/x] \rrbracket_A, a \in |A|\}$

INTERPRETATION OF FORMULAS

DEFINITION 11

Let Σ be a signature and A a Σ -Structure. An interpretation of sentences is a mapping

$$\llbracket - \rrbracket_A : \text{Sen}(\Sigma) \rightarrow \{0, 1\}$$

where

- $\llbracket R(t_1, \dots, t_n) \rrbracket_A = \begin{cases} 1 & \text{if } (\llbracket t_1 \rrbracket_A, \dots, \llbracket t_n \rrbracket_A) \in R^A \\ 0 & \text{otherwise} \end{cases}$
- $\llbracket t_1 = t_2 \rrbracket_A = \begin{cases} 1 & \text{if } \llbracket t_1 \rrbracket_A = \llbracket t_2 \rrbracket_A \\ 0 & \text{otherwise} \end{cases}$
- $\llbracket \varphi \wedge \psi \rrbracket_A = \min(\llbracket \varphi \rrbracket_A, \llbracket \psi \rrbracket_A)$
- $\llbracket \varphi \vee \psi \rrbracket_A = \max(\llbracket \varphi \rrbracket_A, \llbracket \psi \rrbracket_A)$
- $\llbracket \varphi \rightarrow \psi \rrbracket_A = \max(1 - \llbracket \varphi \rrbracket_A, \llbracket \psi \rrbracket_A)$
- $\llbracket \neg \varphi \rrbracket_A = 1 - \llbracket \varphi \rrbracket_A$
- $\llbracket \forall x \varphi \rrbracket_A = \min\{\llbracket \varphi[\bar{a}/x] \rrbracket_A, a \in |A|\}$
- $\llbracket \exists x \varphi \rrbracket_A = \max\{\llbracket \varphi[\bar{a}/x] \rrbracket_A, a \in |A|\}$

INTERPRETATION OF FORMULAS

φ IS SATISFIED IN A :

$$A \models \varphi \text{ iff } \llbracket \varphi \rrbracket_A = 1$$

INTERPRETATION OF FORMULAS

φ IS SATISFIED IN A :

$$A \models \varphi \text{ iff } \llbracket \varphi \rrbracket_A = 1$$

- Note that, until now, we just see how to interpret sentences $\varphi \in \text{Sen}(\Sigma)$, i.e. formulas without free variables. The goal now is to know how to interpret any formula $\varphi \in \text{Fm}(\Sigma)$.

INTERPRETATION OF FORMULAS

DEFINITION 12

Universal closure Let $FV(\varphi) = \{z_1, \dots, z_k\}$. The **universal closure of φ** $CI(\varphi)$ is the formula

$$\forall z_1, \dots, z_k \varphi$$

INTERPRETATION OF FORMULAS

DEFINITION 12

Universal closure Let $FV(\varphi) = \{z_1, \dots, z_k\}$. The **universal closure of φ** $CI(\varphi)$ is the formula

$$\forall z_1, \dots, z_k \varphi$$

DEFINITION 13

Let A be a Σ -structure, $\varphi \in Fm(\Sigma)$ and $\Gamma \subseteq Fm(\Sigma)$. Then:

- ① $A \models \varphi$ iff $A \models CI(\varphi)$

INTERPRETATION OF FORMULAS

DEFINITION 12

Universal closure Let $FV(\varphi) = \{z_1, \dots, z_k\}$. The **universal closure of φ** $CI(\varphi)$ is the formula

$$\forall z_1, \dots, z_k \varphi$$

DEFINITION 13

Let A be a Σ -structure, $\varphi \in Fm(\Sigma)$ and $\Gamma \subseteq Fm(\Sigma)$. Then:

- ① $A \models \varphi$ iff $A \models CI(\varphi)$ – we say that **A is a model of φ**

INTERPRETATION OF FORMULAS

DEFINITION 12

Universal closure Let $FV(\varphi) = \{z_1, \dots, z_k\}$. The **universal closure of φ** $CI(\varphi)$ is the formula

$$\forall z_1, \dots, z_k \varphi$$

DEFINITION 13

Let A be a Σ -structure, $\varphi \in Fm(\Sigma)$ and $\Gamma \subseteq Fm(\Sigma)$. Then:

- ① $A \models \varphi$ iff $A \models CI(\varphi)$ – we say that **A is a model of φ**
- ② $A \models \Gamma$ iff $A \models \gamma$ for any $\gamma \in \Gamma$

INTERPRETATION OF FORMULAS

DEFINITION 12

Universal closure Let $FV(\varphi) = \{z_1, \dots, z_k\}$. The **universal closure of φ** $CI(\varphi)$ is the formula

$$\forall z_1, \dots, z_k \varphi$$

DEFINITION 13

Let A be a Σ -structure, $\varphi \in Fm(\Sigma)$ and $\Gamma \subseteq Fm(\Sigma)$. Then:

- ① $A \models \varphi$ iff $A \models CI(\varphi)$ – we say that **A is a model of φ**
- ② $A \models \Gamma$ iff $A \models \gamma$ for any $\gamma \in \Gamma$ – we say that **A is model of Γ**

INTERPRETATION OF FORMULAS

DEFINITION 12

Universal closure Let $FV(\varphi) = \{z_1, \dots, z_k\}$. The **universal closure of φ** $CI(\varphi)$ is the formula

$$\forall z_1, \dots, z_k \varphi$$

DEFINITION 13

Let A be a Σ -structure, $\varphi \in Fm(\Sigma)$ and $\Gamma \subseteq Fm(\Sigma)$. Then:

- ① $A \models \varphi$ iff $A \models CI(\varphi)$ – we say that **A is a model of φ**
- ② $A \models \Gamma$ iff $A \models \gamma$ for any $\gamma \in \Gamma$ – we say that **A is model of Γ**
- ③ $\models \varphi$ iff for any Σ -structure A , $A \models \varphi$

INTERPRETATION OF FORMULAS

DEFINITION 12

Universal closure Let $FV(\varphi) = \{z_1, \dots, z_k\}$. The **universal closure of φ** $CI(\varphi)$ is the formula

$$\forall z_1, \dots, z_k \varphi$$

DEFINITION 13

Let A be a Σ -structure, $\varphi \in Fm(\Sigma)$ and $\Gamma \subseteq Fm(\Sigma)$. Then:

- ① $A \models \varphi$ iff $A \models CI(\varphi)$ – we say that **A is a model of φ**
- ② $A \models \Gamma$ iff $A \models \gamma$ for any $\gamma \in \Gamma$ – we say that **A is model of Γ**
- ③ $\models \varphi$ iff for any Σ -structure A , $A \models \varphi$ – we say that **φ is valid**

INTERPRETATION OF FORMULAS

DEFINITION 12

Universal closure Let $FV(\varphi) = \{z_1, \dots, z_k\}$. The **universal closure of φ** $CI(\varphi)$ is the formula

$$\forall z_1, \dots, z_k \varphi$$

DEFINITION 13

Let A be a Σ -structure, $\varphi \in Fm(\Sigma)$ and $\Gamma \subseteq Fm(\Sigma)$. Then:

- ① $A \models \varphi$ iff $A \models CI(\varphi)$ – we say that **A is a model of φ**
- ② $A \models \Gamma$ iff $A \models \gamma$ for any $\gamma \in \Gamma$ – we say that **A is model of Γ**
- ③ $\models \varphi$ iff for any Σ -structure A , $A \models \varphi$ – we say that **φ is valid**
- ④ $\Gamma \models \varphi$ iff
for any Σ -structure A , if $A \models \Gamma$, then $A \models \varphi$

INTERPRETATION OF FORMULAS

DEFINITION 12

Universal closure Let $FV(\varphi) = \{z_1, \dots, z_k\}$. The **universal closure of φ** $CI(\varphi)$ is the formula

$$\forall z_1, \dots, z_k \varphi$$

DEFINITION 13

Let A be a Σ -structure, $\varphi \in Fm(\Sigma)$ and $\Gamma \subseteq Fm(\Sigma)$. Then:

- ① $A \models \varphi$ iff $A \models CI(\varphi)$ – we say that **A is a model of φ**
- ② $A \models \Gamma$ iff $A \models \gamma$ for any $\gamma \in \Gamma$ – we say that **A is model of Γ**
- ③ $\models \varphi$ iff for any Σ -structure A , $A \models \varphi$ – we say that **φ is valid**
- ④ $\Gamma \models \varphi$ iff
for any Σ -structure A , if $A \models \Gamma$, then $A \models \varphi$ – we say that **φ is a semantic consequence of Γ**

INTERPRETATION OF FORMULAS

SOME MORE NOTIONS

Let φ a formula and $FV(\varphi) = \{z_1, \dots, z_k\}$.

- φ is satisfied by $a_1, \dots, a_k \in |A|$ iff $A \models \varphi[\bar{a}_1, \dots, \bar{a}_k/z_1, \dots, z_k]$
- φ is satisfiable iff φ is satisfied for some $a_1, \dots, a_k \in |A|$

INTERPRETATION OF FORMULAS

SOME MORE NOTIONS

Let φ a formula and $FV(\varphi) = \{z_1, \dots, z_k\}$.

- φ is satisfied by $a_1, \dots, a_k \in |A|$ iff $A \models \varphi[\bar{a}_1, \dots, \bar{a}_k/z_1, \dots, z_k]$
- φ is satisfiable iff φ is satisfied for some $a_1, \dots, a_k \in |A|$

EXERCISE 10

Prove that

- φ is satisfiable in A if $FV(\varphi) = \{z_1, \dots, z_k\}$ and $A \models \exists z_1, \dots, z_k \varphi$

EXERCISES

EXERCISE 11

Let $\varphi \in \text{Sen}(\Sigma)$. Prove that:

① $A \models \varphi \wedge \psi$ iff $A \models \varphi$ and $A \models \psi$

EXERCISES

EXERCISE 11

Let $\varphi \in \text{Sen}(\Sigma)$. Prove that:

- ① $A \models \varphi \wedge \psi$ iff $A \models \varphi$ and $A \models \psi$
- ② $A \models \varphi \vee \psi$ iff $A \models \varphi$ or $A \models \psi$

EXERCISES

EXERCISE 11

Let $\varphi \in \text{Sen}(\Sigma)$. Prove that:

- ① $A \models \varphi \wedge \psi$ iff $A \models \varphi$ and $A \models \psi$
- ② $A \models \varphi \vee \psi$ iff $A \models \varphi$ or $A \models \psi$
- ③ $A \models \neg\varphi$ iff $A \not\models \varphi$

EXERCISES

EXERCISE 11

Let $\varphi \in \text{Sen}(\Sigma)$. Prove that:

- ① $A \models \varphi \wedge \psi$ iff $A \models \varphi$ and $A \models \psi$
- ② $A \models \varphi \vee \psi$ iff $A \models \varphi$ or $A \models \psi$
- ③ $A \models \neg\varphi$ iff $A \not\models \varphi$
- ④ $A \models \varphi \rightarrow \psi$ iff $A \models \varphi$ implies $A \models \psi$

EXERCISES

EXERCISE 11

Let $\varphi \in \text{Sen}(\Sigma)$. Prove that:

- ① $A \models \varphi \wedge \psi$ iff $A \models \varphi$ and $A \models \psi$
- ② $A \models \varphi \vee \psi$ iff $A \models \varphi$ or $A \models \psi$
- ③ $A \models \neg\varphi$ iff $A \not\models \varphi$
- ④ $A \models \varphi \rightarrow \psi$ iff $A \models \varphi$ implies $A \models \psi$
- ⑤ $A \models \exists x\varphi$ iff $A \models \varphi[\bar{a}/x]$, for some $a \in |A|$

EXERCISES

EXERCISE 11

Let $\varphi \in \text{Sen}(\Sigma)$. Prove that:

- ① $A \models \varphi \wedge \psi$ iff $A \models \varphi$ and $A \models \psi$
- ② $A \models \varphi \vee \psi$ iff $A \models \varphi$ or $A \models \psi$
- ③ $A \models \neg\varphi$ iff $A \not\models \varphi$
- ④ $A \models \varphi \rightarrow \psi$ iff $A \models \varphi$ implies $A \models \psi$
- ⑤ $A \models \exists x\varphi$ iff $A \models \varphi[\bar{a}/x]$, for some $a \in |A|$
- ⑥ $A \models \forall x\varphi$ iff $A \models \varphi[\bar{a}/x]$, for any $a \in |A|$

EXERCISES

EXERCISE 11

Let $\varphi \in \text{Sen}(\Sigma)$. Prove that:

- ① $A \models \varphi \wedge \psi$ iff $A \models \varphi$ and $A \models \psi$
- ② $A \models \varphi \vee \psi$ iff $A \models \varphi$ or $A \models \psi$
- ③ $A \models \neg\varphi$ iff $A \not\models \varphi$
- ④ $A \models \varphi \rightarrow \psi$ iff $A \models \varphi$ implies $A \models \psi$
- ⑤ $A \models \exists x\varphi$ iff $A \models \varphi[\bar{a}/x]$, for some $a \in |A|$
- ⑥ $A \models \forall x\varphi$ iff $A \models \varphi[\bar{a}/x]$, for any $a \in |A|$

EXERCISE 12

Which cases from the previous exercise remain correct if we consider formulas in general?

EXERCISES

EXERCISE 13

Let $\Sigma = (P, F)$ where $P = \emptyset$ and $F_0 = \{\text{zero}\}$, $F_1 = \{\text{succ}\}$, $F_2 = \{\text{add}, \text{mult}\}$. Let Nat be the Σ -structure with $|\text{Nat}| = \mathbb{N}$ and with the $\text{zero}^{\text{Nat}} = 0$, $\text{succ}^{\text{Nat}}(n) = n + 1$, $\text{add}^{\text{Nat}}(n, m) = n + m$ and $\text{mult}^{\text{Nat}}(n, m) = n * m$.

- ①
 - ① Give two distinct terms $t, s \in T(X, \Sigma_{\text{nat}})$ such that $\llbracket t \rrbracket_{\text{Nat}} = \llbracket s \rrbracket_{\text{Nat}} = 3$
 - ② Show that for any $n \in \mathbb{N}$, there is a term t such that $\llbracket t \rrbracket_{\text{Nat}} = n$
 - ③ Show that for any $n \in \mathbb{N}$, there are infinitely many terms t such that $t^{\text{Nat}} = n$
- ② Consider now the extended signature Σ^{Nat} . Determine
 - $\llbracket ((\bar{1} \rightarrow \bar{0}) \rightarrow (\neg \text{zero})) \wedge (\neg \bar{0} \rightarrow (\bar{1} \rightarrow \text{zero})) \rrbracket$

EXERCISES

EXERCISE 14

For any $\varphi \in \text{Sen}(\Sigma)$, and for any Σ -structure A , we have that $A \models \varphi$ or $A \models \neg\varphi$.

Prove, or refute the statement:

“For any $\varphi \in \text{Fm}(\Sigma)$, and for any Σ -structure A , we have that $A \models \varphi$ or $A \models \neg\varphi$.”

EXERCISES

EXERCISE 14

For any $\varphi \in \text{Sen}(\Sigma)$, and for any Σ -structure A , we have that $A \models \varphi$ or $A \models \neg\varphi$.

Prove, or refute the statement:

“For any $\varphi \in \text{Fm}(\Sigma)$, and for any Σ -structure A , we have that $A \models \varphi$ or $A \models \neg\varphi$.”

EXERCISE 15

Show that, for any term $t \in T(\Sigma^A, X)_c$

- $A \models t = \overline{[t]_A}$
- $A \models \varphi(t) \leftrightarrow \varphi(\overline{[t]_A})$

PROPERTIES OF FIRST-ORDER-LOGIC

SOME USEFUL VALIDITIES

$$\textcircled{1} \models \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$$

PROPERTIES OF FIRST-ORDER-LOGIC

SOME USEFUL VALIDITIES

$$① \models \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$$

$$② \models \neg \exists x \varphi \leftrightarrow \forall x \neg \varphi$$

PROPERTIES OF FIRST-ORDER-LOGIC

SOME USEFUL VALIDITIES

- ① $\models \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$
- ② $\models \neg \exists x \varphi \leftrightarrow \forall x \neg \varphi$
- ③ $\models \forall x \varphi \leftrightarrow \neg \exists x \neg \varphi$

PROPERTIES OF FIRST-ORDER-LOGIC

SOME USEFUL VALIDITIES

$$① \models \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$$

$$② \models \neg \exists x \varphi \leftrightarrow \forall x \neg \varphi$$

$$③ \models \forall x \varphi \leftrightarrow \neg \exists x \neg \varphi$$

$$④ \models \exists x \varphi \leftrightarrow \neg \forall x \neg \varphi$$

PROPERTIES OF FIRST-ORDER-LOGIC

SOME USEFUL VALIDITIES

- ① $\models \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$
- ② $\models \neg \exists x \varphi \leftrightarrow \forall x \neg \varphi$
- ③ $\models \forall x \varphi \leftrightarrow \neg \exists x \neg \varphi$
- ④ $\models \exists x \varphi \leftrightarrow \neg \forall x \neg \varphi$
- ⑤ $\models \forall x \forall y \varphi \leftrightarrow \forall y \forall x \varphi$

PROPERTIES OF FIRST-ORDER-LOGIC

SOME USEFUL VALIDITIES

- ① $\models \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$
- ② $\models \neg \exists x \varphi \leftrightarrow \forall x \neg \varphi$
- ③ $\models \forall x \varphi \leftrightarrow \neg \exists x \neg \varphi$
- ④ $\models \exists x \varphi \leftrightarrow \neg \forall x \neg \varphi$
- ⑤ $\models \forall x \forall y \varphi \leftrightarrow \forall y \forall x \varphi$
- ⑥ $\models \exists x \exists y \varphi \leftrightarrow \exists y \exists x \varphi$

PROPERTIES OF FIRST-ORDER-LOGIC

SOME USEFUL VALIDITIES

- ① $\models \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$
- ② $\models \neg \exists x \varphi \leftrightarrow \forall x \neg \varphi$
- ③ $\models \forall x \varphi \leftrightarrow \neg \exists x \neg \varphi$
- ④ $\models \exists x \varphi \leftrightarrow \neg \forall x \neg \varphi$
- ⑤ $\models \forall x \forall y \varphi \leftrightarrow \forall y \forall x \varphi$
- ⑥ $\models \exists x \exists y \varphi \leftrightarrow \exists y \exists x \varphi$
- ⑦ $\models \forall x (\varphi \wedge \psi) \leftrightarrow \forall x \varphi \wedge \forall x \psi$

PROPERTIES OF FIRST-ORDER-LOGIC

SOME USEFUL VALIDITIES

- ① $\models \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$
- ② $\models \neg \exists x \varphi \leftrightarrow \forall x \neg \varphi$
- ③ $\models \forall x \varphi \leftrightarrow \neg \exists x \neg \varphi$
- ④ $\models \exists x \varphi \leftrightarrow \neg \forall x \neg \varphi$
- ⑤ $\models \forall x \forall y \varphi \leftrightarrow \forall y \forall x \varphi$
- ⑥ $\models \exists x \exists y \varphi \leftrightarrow \exists y \exists x \varphi$
- ⑦ $\models \forall x (\varphi \wedge \psi) \leftrightarrow \forall x \varphi \wedge \forall x \psi$
- ⑧ $\models \exists x (\varphi \vee \psi) \leftrightarrow \exists x \varphi \vee \exists x \psi$

PROPERTIES OF FIRST-ORDER-LOGIC

SOME USEFUL VALIDITIES

- ① $\models \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$
- ② $\models \neg \exists x \varphi \leftrightarrow \forall x \neg \varphi$
- ③ $\models \forall x \varphi \leftrightarrow \neg \exists x \neg \varphi$
- ④ $\models \exists x \varphi \leftrightarrow \neg \forall x \neg \varphi$
- ⑤ $\models \forall x \forall y \varphi \leftrightarrow \forall y \forall x \varphi$
- ⑥ $\models \exists x \exists y \varphi \leftrightarrow \exists y \exists x \varphi$
- ⑦ $\models \forall x (\varphi \wedge \psi) \leftrightarrow \forall x \varphi \wedge \forall x \psi$
- ⑧ $\models \exists x (\varphi \vee \psi) \leftrightarrow \exists x \varphi \vee \exists x \psi$

EXERCISE 16

Prove it!

PROPERTIES OF FIRST-ORDER LOGIC

SOME USEFUL VALIDITIES

① $\models \forall x \varphi(x) \leftrightarrow \varphi$, if $x \notin FV(\varphi)$

PROPERTIES OF FIRST-ORDER LOGIC

SOME USEFUL VALIDITIES

- ① $\models \forall x \varphi(x) \leftrightarrow \varphi$, if $x \notin FV(\varphi)$
- ② $\models \exists x \varphi(x) \leftrightarrow \varphi$, if $x \notin FV(\varphi)$

PROPERTIES OF FIRST-ORDER LOGIC

SOME USEFUL VALIDITIES

- ① $\models \forall x \varphi(x) \leftrightarrow \varphi$, if $x \notin FV(\varphi)$
- ② $\models \exists x \varphi(x) \leftrightarrow \varphi$, if $x \notin FV(\varphi)$
- ③ $\models \forall x (\varphi(x) \vee \psi) \leftrightarrow (\forall x (\varphi(x)) \vee \psi)$, if $x \notin FV(\psi)$

PROPERTIES OF FIRST-ORDER LOGIC

SOME USEFUL VALIDITIES

- ① $\models \forall x \varphi(x) \leftrightarrow \varphi$, if $x \notin FV(\varphi)$
- ② $\models \exists x \varphi(x) \leftrightarrow \varphi$, if $x \notin FV(\varphi)$
- ③ $\models \forall x(\varphi(x) \vee \psi) \leftrightarrow (\forall x(\varphi(x)) \vee \psi)$, if $x \notin FV(\psi)$
- ④ $\models \exists x(\varphi(x) \wedge \psi) \leftrightarrow (\exists x(\varphi(x)) \wedge \psi)$, if $x \notin FV(\psi)$

EXERCISE 17

Prove it!

PROPERTIES OF FIRST-ORDER LOGIC

SOME USEFUL VALIDITIES

- ① $\models \forall x \varphi(x) \leftrightarrow \varphi$, if $x \notin FV(\varphi)$
- ② $\models \exists x \varphi(x) \leftrightarrow \varphi$, if $x \notin FV(\varphi)$
- ③ $\models \forall x(\varphi(x) \vee \psi) \leftrightarrow (\forall x(\varphi(x)) \vee \psi)$, if $x \notin FV(\psi)$
- ④ $\models \exists x(\varphi(x) \wedge \psi) \leftrightarrow (\exists x(\varphi(x)) \wedge \psi)$, if $x \notin FV(\psi)$

EXERCISE 17

Prove it!

EXERCISE 18

Show that it is not true that:

- $\forall x(\varphi(x) \vee \psi(x)) \rightarrow \forall x \varphi(x) \vee \forall x \psi(x)$

PROPERTIES OF FIRST-ORDER LOGIC

SOME USEFUL VALIDITIES

- ① $\models \forall x \varphi(x) \leftrightarrow \varphi$, if $x \notin FV(\varphi)$
- ② $\models \exists x \varphi(x) \leftrightarrow \varphi$, if $x \notin FV(\varphi)$
- ③ $\models \forall x(\varphi(x) \vee \psi) \leftrightarrow (\forall x(\varphi(x)) \vee \psi)$, if $x \notin FV(\psi)$
- ④ $\models \exists x(\varphi(x) \wedge \psi) \leftrightarrow (\exists x(\varphi(x)) \wedge \psi)$, if $x \notin FV(\psi)$

EXERCISE 17

Prove it!

EXERCISE 18

Show that it is not true that:

- $\forall x(\varphi(x) \vee \psi(x)) \rightarrow \forall x \varphi(x) \vee \forall x \psi(x)$
- $\exists x \varphi(x) \wedge \exists x \psi(x) \rightarrow \exists x(\varphi(x) \wedge \psi(x))$

THE IDENTITY

CHARACTERISTIC PROPERTIES OF IDENTITY

- ① $\forall x (x = x)$
- ② $\forall xy(x = y \rightarrow y = x)$
- ③ $\forall xyz((x = y \wedge y = z) \rightarrow x = z)$
- ④ $\forall x_1 \dots x_n y_1 \dots y_n ((\bigwedge_{i \leq n} x_i = y_i) \rightarrow (t(x_1, \dots, x_n) = t(y_1, \dots, y_n)))$
- ⑤ $\forall x_1 \dots x_n y_1 \dots y_n ((\bigwedge_{i \leq n} x_i = y_i) \rightarrow (\varphi(x_1, \dots, x_n) \rightarrow \varphi(y_1, \dots, y_n)))$

EXAMPLES – GROUPS

EXERCISE 19

- Introduce a signature Σ^{group} to express the structure of a group
- Introduce a $\Gamma \subseteq \text{Fm}(\Sigma^{\text{group}})$ the class of groups
- Introduce two structures A and B that are models of Γ

EXERCISE 20

- Introduce a signature Σ^{ring} to express the structure of a ring
- Introduce a $\Gamma \subseteq \text{Fm}(\Sigma^{\text{ring}})$ the class of rings
- Introduce two structures A and B that are models of Γ

EXAMPLES

PROJECTIVE GEOMETRY

- We consider the signature $\Sigma^{PG} = (P, F)$,
 - where $F_n = \emptyset$, $n \in \mathbb{N}$ and
 - $P_2 = \{I\}$ and $P_k = \emptyset$, $k \neq 2$
- and the abbreviations: $\Pi(x) \equiv \exists y(I(x, y))$ and $\Lambda(y) \equiv \exists x(I(x, y))$
- and the axiomatization:^a
 - $\forall x(\Pi(x) \leftrightarrow \neg\Lambda(x))$
 - $\forall xy(\Pi(x) \wedge \Pi(y) \rightarrow \exists z(I(x, z) \wedge I(y, z)))$
 - $\forall uv(\Lambda(u) \wedge \Lambda(v) \rightarrow \exists z(I(x, u) \wedge I(x, v)))$
 - $\forall xyuv((I(x, u) \wedge I(y, u) \wedge I(y, v)) \rightarrow (x = y \vee u = v))$
 - $\exists x_0x_1x_2x_3u_0u_1u_2u_3$

$$(\bigwedge I(x_i, y_i) \wedge \bigwedge_{j=i-1 \pmod 3} I(x_i, u_j) \wedge \bigwedge_{j \neq i-1 \pmod 3, j \neq i} \neg I(x_i, u_j))$$

^aSee [vanDalen], Sec 3.7

OUTLINE

- ① SIGNATURES AND STRUCTURES
- ② SYNTAX OF FIRST-ORDER LOGIC
- ③ FIRST ORDER LOGIC SATISFACTION
- ④ NATURAL DEDUCTION CALCULUS
- ⑤ SOUNDNESS AND COMPLETENESS

BACK TO PROPOSITIONAL LOGIC

	Introduction Rules	Elimination Rules
\wedge	$\frac{\psi \quad \varphi}{\psi \wedge \varphi}$	$\frac{\psi \wedge \varphi}{\psi}$ $\frac{\psi \wedge \varphi}{\varphi}$ $\frac{[\psi] \quad [\varphi]}{\mathcal{D} \quad \mathcal{D}}$
\vee	$\frac{\psi}{\psi \vee \varphi}$ $\frac{\varphi}{\psi \vee \varphi}$	$\frac{\psi \vee \varphi \quad \xi \quad \xi}{\xi}$
\rightarrow	$\frac{[\psi]}{\mathcal{D}}$ $\frac{\varphi}{\psi \rightarrow \varphi}$	$\frac{\psi \quad \psi \rightarrow \varphi}{\varphi}$
\neg	$\frac{[\psi]}{\mathcal{D}}$ $\frac{\perp}{\neg \psi}$	$\frac{[\neg \psi]}{\mathcal{D}}$ $\frac{\perp}{\psi}$
\perp	$\frac{\neg \varphi \quad \varphi}{\perp}$	$\frac{\perp}{\varphi}$

NATURAL DEDUCTION FOR FIRST-ORDER LOGIC

THE CALCULUS FOR NATURAL DEDUCTION FOR FIRST-ORDER LOGIC is given by extending the Natural Deduction rules for Propositional Logic (in the previous slide) with

- **elimination and introduction rules for \forall**
- **elimination and introduction rules for \exists**

INTRODUCTION RULE FOR THE UNIVERSAL QUANTIFIER

INTRODUCTION OF \forall

$[x_0]$ fresh

⋮

$$\frac{\varphi[x_0/x]}{\forall x \varphi} (I_{\forall})$$

where fresh means that x_0 may not occur free in any hypothesis on which φ depends

ELIMINATION RULE FOR THE UNIVERSAL QUANTIFIER

ELIMINATION OF \forall

$$\frac{\forall x \varphi}{\varphi[t/x]} (E_{\forall})$$

if x is free for t in φ

NATURAL DEDUCTION RULES FOR UNIVERSAL QUANTIFIER

EXERCISE 21

Prove that:

- ① $\forall x(P(x) \rightarrow Q(x)), \forall xP(x) \vdash \forall xP(x) \rightarrow \forall xQ(x)$
- ② $\forall x \forall y P(x, y) \vdash \forall z \forall w P(z, w)$
- ③ $\forall x \forall y P(x, y) \vdash \forall y \forall x P(x, y)$
- ④ $\forall x(\neg P(x) \rightarrow Q(x)), \neg Q(t) \vdash P(t)$

NATURAL DEDUCTION RULES FOR UNIVERSAL QUANTIFIER

EXERCISE 22

Prove that:

- ① $\forall x \forall y \varphi(x, y) \rightarrow \forall y \forall x \varphi(x, y)$
- ② $\forall x (\varphi \wedge \psi) \rightarrow (\forall x \varphi \wedge \forall x \psi)$

EXERCISE 23

Prove that, if $x \notin FV(\varphi)$:

- ① $\vdash \forall x (\varphi \rightarrow \psi(x)) \rightarrow (\varphi \rightarrow \forall x \psi(x))$
- ② $\vdash \varphi \rightarrow \forall \varphi(x)$
- ③ $\vdash \forall \varphi(x) \rightarrow \varphi$

INTRODUCTION RULE FOR THE EXISTENTIAL QUANTIFIER

INTRODUCTION OF \exists

$$\frac{\varphi[t/x]}{\exists x\varphi}$$

if t is free for x in φ

ELIMINATION RULE FOR THE EXISTENTIAL QUANTIFIER

ELIMINATION OF \exists

$$\frac{\exists x \varphi \quad \varphi[x_0/x] \text{ (ass)} \quad \vdots}{\chi} \chi \text{ (E \vee)}$$

ELIMINATION RULE FOR THE EXISTENTIAL QUANTIFIER

EXERCISE 24

Show that

- ① $\forall x(P(x) \wedge Q(x)) \vdash \forall x(P(x) \vee Q(x))$
- ② $\forall x(P(x) \rightarrow Q(x)), \exists xP(x) \vdash \exists xQ(x)$
- ③ $\exists xP(x), \forall x\forall y(P(x) \rightarrow Q(y)) \vdash \forall yQ(y)$
- ④ $\exists xP(x) \vdash \neg\forall x\neg P(x)$
- ⑤ $\forall P(a, x, x), \forall x\forall y\forall z(P(x, y, z) \rightarrow P(f(x), y, f(z))) \vdash P(f(a), a, f(a))$

EXERCISE 25

Show that

- $\neg\exists xP(x) \vdash \forall x\neg P(x)$
- $\forall x\neg P(x) \vdash \neg\exists xP(x)$

NATURAL DEDUCTION WITH IDENTITY

IN THE PRESENCE OF IDENTITIES WE CONSIDER THE FOLLOWING RULES

$$\frac{}{x = x} \qquad \frac{x = y}{y = x} \qquad \frac{x = y \ y = z}{x = z}$$

$$\frac{x_1 = y_1, \dots, x_n = y_n}{t(x_1, \dots, x_n) = t(y_1, \dots, y_n)}$$

$$\frac{x_1 = y_1, \dots, x_n = y_n \ \varphi(x_1, \dots, x_n)}{\varphi(y_1, \dots, y_n)}$$

NATURAL DEDUCTION WITH IDENTITY

EXERCISE 26

Check

- ① $x = y, x^2 + y^2 > 5x \vdash 2y^2 > 5x$
- ② $x = y, x^2 + y^2 > 5x \vdash x^2 + y^2 > 5y$
- ③ $\vdash \forall x(x = x)$
- ④ $\vdash \forall z(z = x \rightarrow z = y) \rightarrow x = y$

OUTLINE

- ① SIGNATURES AND STRUCTURES
- ② SYNTAX OF FIRST-ORDER LOGIC
- ③ FIRST ORDER LOGIC SATISFACTION
- ④ NATURAL DEDUCTION CALCULUS
- ⑤ SOUNDNESS AND COMPLETENESS

SOUNDNESS

THE NATURAL DEDUCTION RULES FOR \forall IN TERMS OF \vdash

- $\Gamma \vdash \varphi(x) \Rightarrow \Gamma \vdash \forall x \varphi(x)$, if $x \notin FV(\Gamma)$
- $\Gamma \vdash \forall x \varphi(x) \Rightarrow \Gamma \vdash \varphi(t)$, if t is free for x in φ

SOUNDNESS

THE NATURAL DEDUCTION RULES FOR \forall IN TERMS OF \vdash

- $\Gamma \vdash \varphi(x) \Rightarrow \Gamma \vdash \forall x \varphi(x)$, if $x \notin FV(\Gamma)$
- $\Gamma \vdash \forall x \varphi(x) \Rightarrow \Gamma \vdash \varphi(t)$, if t is free for x in φ

DEFINITION 14

Let Γ be a set of formulae and let $\{x_1, x_2, \dots\} = \bigcup \{FV(\gamma) \mid \gamma \in \Gamma \cup \varphi\}$. If $\mathbf{a} = (a_1, a_2, \dots)$, $a_i \in |A|$, $i \leq 1$, then $\Gamma(\mathbf{a})$ denotes the set of formulas obtained from Γ by replacing simultaneously in all formulas in Γ x_i by \bar{a}_i . Hence,

- ① $A \models \Gamma(\mathbf{a})$ if $A \models \gamma$, for all $\gamma \in \Gamma(\mathbf{a})$
- ② $\Gamma \models \varphi$ if for any A and for any \mathbf{a} , $A \models \Gamma(\mathbf{a})$ implies $A \models \varphi(\mathbf{a})$

SOUNDNESS

THEOREM 15 (SOUNDNESS)

Let $\varphi \in \text{Fm}(\Sigma)$ and $\Gamma \subseteq \text{Fm}(\Sigma)$.

$\Gamma \vdash \varphi$ implies $\Gamma \vDash \varphi$

SOUNDNESS

THEOREM 15 (SOUNDNESS)

Let $\varphi \in \text{Fm}(\Sigma)$ and $\Gamma \subseteq \text{Fm}(\Sigma)$.

$\Gamma \vdash \varphi$ implies $\Gamma \vDash \varphi$

PROOF.

Proof by induction on the structure of proof trees.

Exercise!

GOING TO THE COMPLETENESS...

It is helpful to try to establish an analogy with completeness proof for Propositional Logic studied earlier

GOING TO THE COMPLETENESS...

It is helpful to try to establish an analogy with completeness proof for Propositional Logic studied earlier

EXISTENCE LEMMA

Let $\Gamma \subseteq \text{Fm}(\Sigma)$. **If Γ is consistent, then Γ has a model**

GOING TO THE COMPLETENESS...

It is helpful to try to establish an analogy with completeness proof for Propositional Logic studied earlier

EXISTENCE LEMMA

Let $\Gamma \subseteq \text{Fm}(\Sigma)$. **If Γ is consistent, then Γ has a model**

PROOF.

This is the hard part of the completeness proof. Done later.

GOING TO THE COMPLETENESS...

It is helpful to try to establish an analogy with completeness proof for Propositional Logic studied earlier

EXISTENCE LEMMA

Let $\Gamma \subseteq \text{Fm}(\Sigma)$. **If Γ is consistent, then Γ has a model**

PROOF.

This is the hard part of the completeness proof. Done later. □

OBSERVATION:

check the consistency characterization introduced during the presentation of propositional logic

GOING TO THE COMPLETENESS...

It is helpful to try to establish an analogy with completeness proof for Propositional Logic studied earlier

EXISTENCE LEMMA

Let $\Gamma \subseteq \text{Fm}(\Sigma)$. **If Γ is consistent, then Γ has a model**

PROOF.

This is the hard part of the completeness proof. Done later. □

OBSERVATION:

check the consistency characterization introduced during the presentation of propositional logic

EXERCISE 27

Assuming the Existence Lemma and the previous observation, prove that

$$\Gamma \models \varphi \text{ implies } \Gamma \vdash \varphi$$

THEORY AND HENKIN THEORIES

DEFINITION 16

Let $T \subseteq \text{Sen}(\Sigma)$

- ① T is a theory if, for any $\varphi \in \text{Sen}(\Sigma)$, $T \vdash \varphi$ implies that $\varphi \in T$

THEORY AND HENKIN THEORIES

DEFINITION 16

Let $T \subseteq \text{Sen}(\Sigma)$

- ① T is a theory if, for any $\varphi \in \text{Sen}(\Sigma)$, $T \vdash \varphi$ implies that $\varphi \in T$
- ② Γ is an axiom set for T if $T = \{\varphi \mid \Gamma \vdash \varphi\}$

THEORY AND HENKIN THEORIES

DEFINITION 16

Let $T \subseteq \text{Sen}(\Sigma)$

- ① T is a theory if, for any $\varphi \in \text{Sen}(\Sigma)$, $T \vdash \varphi$ implies that $\varphi \in T$
- ② Γ is an axiom set for T if $T = \{\varphi \mid \Gamma \vdash \varphi\}$
- ③ T is an Henkin theory if for each sentence $\exists x\varphi(x)$, there is a constant c such that $\exists x\varphi(x) \rightarrow \varphi(c) \in T$. The constant c is called a witness of $\exists x\varphi(x)$.

THEORIES EXTENSIONS

DEFINITION 17

Let T and T' be theories for Σ and Σ' .

- ① **T is an extension of T'** if $T \subseteq T'$
- ② **T is a conservative extension of T'** if $T' \cap \Sigma = T$, i.e. all theorem of T' in Σ are already theorems of T

THEORIES EXTENSIONS

DEFINITION 18

Let T be a theory for $\Sigma = (P, F)$.

- The signature Σ^* is obtained from Σ by
 - $P_0^* = P_0 \cup \{c_\varphi \mid \exists x \varphi(x)\}$, and $P_k^* = P_k$, $k > 0$
 - $F^* = F$
- $T^* = T \cup \{\exists x \varphi(x) \rightarrow \varphi(c_\varphi) \mid \exists x \varphi(x) \text{ closed, with witness } c_\varphi\}$

THEORIES EXTENSIONS

DEFINITION 18

Let T be a theory for $\Sigma = (P, F)$.

- The signature Σ^* is obtained from Σ by
 - $P_0^* = P_0 \cup \{c_\varphi \mid \exists x \varphi(x)\}$, and $P_k^* = P_k$, $k > 0$
 - $F^* = F$
- $T^* = T \cup \{\exists x \varphi(x) \rightarrow \varphi(c_\varphi) \mid \exists x \varphi(x) \text{ closed, with witness } c_\varphi\}$

LEMMA 19

T^* is a conservative extension of T

THEORIES EXTENSIONS

DEFINITION 18

Let T be a theory for $\Sigma = (P, F)$.

- The signature Σ^* is obtained from Σ by
 - $P_0^* = P_0 \cup \{c_\varphi \mid \exists x \varphi(x)\}$, and $P_k^* = P_k$, $k > 0$
 - $F^* = F$
- $T^* = T \cup \{\exists x \varphi(x) \rightarrow \varphi(c_\varphi) \mid \exists x \varphi(x) \text{ closed, with witness } c_\varphi\}$

LEMMA 19

T^* is a conservative extension of T

Note that there is no evidence that T^* is still an Henkin theory

THEORIES EXTENSIONS

THE T_ω CONSTRUCTION

T_ω is recursively defined as follows:

- $T_0 := T$
- $T_{n+1} = (T_n)^*$
- $T_\omega = \bigcup\{T_n \mid n \geq 0\}$

THEORIES EXTENSIONS

THE T_ω CONSTRUCTION

T_ω is recursively defined as follows:

- $T_0 := T$
- $T_{n+1} = (T_n)^*$
- $T_\omega = \bigcup\{T_n \mid n \geq 0\}$

LEMMA 20

T_ω is an Henkin theory

THEORIES EXTENSIONS

Remember from the Propositional Logic completeness proof:

LEMMA 21

Each consistent theory is contained in a maximally consistent theory

THEORIES EXTENSIONS

Remember from the Propositional Logic completeness proof:

LEMMA 21

Each consistent theory is contained in a maximally consistent theory

LEMMA 22

An extension of a Henkin theory is a Henkin theory

COMPLETENESS THEOREM

LEMMA 23 (MODEL EXISTENCE LEMMA)

If Γ is consistent, then Γ has a model

PROOF.

Check the construction of the **standard model** in the proof of Lemma 4.1.11 in Van Dalen: Logic and Structure.

COMPLETENESS THEOREM

LEMMA 23 (MODEL EXISTENCE LEMMA)

If Γ is consistent, then Γ has a model

PROOF.

Check the construction of the **standard model** in the proof of Lemma 4.1.11 in Van Dalen: Logic and Structure.

THEOREM 24 (COMPLETENESS THEOREM)

$\Gamma \models \varphi$ implies $\Gamma \vdash \varphi$

COMPLETENESS THEOREM

LEMMA 23 (MODEL EXISTENCE LEMMA)

If Γ is consistent, then Γ has a model

PROOF.

Check the construction of the **standard model** in the proof of Lemma 4.1.11 in Van Dalen: Logic and Structure.

THEOREM 24 (COMPLETENESS THEOREM)

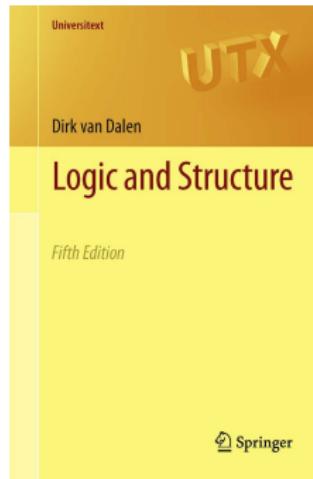
$\Gamma \models \varphi$ implies $\Gamma \vdash \varphi$

PROOF.

Exercise 27.

REFERENCES

The presentation of First-Order Logic done in this set of slides was based in the book



that is strongly recommended for the preparation of this course.