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SIGNATURES AND STRUCTURES

SIGNATURES

DEFINITION 1

First-order signature A first-order signature is a pair
¥ =(P,F)
where

o P is an N-family of sets of predicate symbols

o F is an N-family of sets of operation symbols
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SIGNATURES AND STRUCTURES

SIGNATURES

DEFINITION 1

First-order signature A first-order signature is a pair
Y = (P,F)

where

o P is an N-family of sets of predicate symbols

o F is an N-family of sets of operation symbols
We use

o f:sx---x5s-—se [ todenote that f € F,, and

© p:sx---xstodenote that pe P,
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SIGNATURES AND STRUCTURES

SIGNATURES

Two representations for the same signature X:

REPRESENTATION 1

Y is a first-order signature with
o constant symbols ¢; and ¢
o a unary function symbol f

o a binary function symbol g

o a binary predicate symbol r
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SIGNATURES AND STRUCTURES

SIGNATURES

Two representations for the same signature X:

REPRESENTATION 2
¥ = (P, F), where
o Fo ={a,c}
o Fu={f}, Fo = {g}
o Fy = forany k > 2

o Py ={r}e Py=( for any
‘ k # 2

REPRESENTATION 1

Y is a first-order signature with
o constant symbols ¢; and ¢
o a unary function symbol f
o a binary function symbol g

o a binary predicate symbol r
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SIGNATURES AND STRUCTURES

EXAMPLES OF SIGNATURES

EXERCISE 1

Formalise suitable first-order signatures to specify
© monoids

o ordered sets

©

algebra of relations (worked on the previous chapter)
o natural numbers

o graphs
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SIGNATURES AND STRUCTURES

FIRST-ORDER STRUCTURES

DEFINITION 2

Y -structures Let ¥ = (P, F) be a first-order signature. A > -structure A
consists of

o a non-empty set |A|, called universe.
o for each predicate symbol r € P, a set rA < |A|".

o for each operation symbol f € F,, a function f4: |A|" — |A|.
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SIGNATURES AND STRUCTURES

EXAMPLES OF 2-STRUCTURES

Let us consider the first-order signature ¥ = (P, F), with
Qo FO = {Cl, C2}

o AL ={f}, F2={g}
o Fp = for any k > 2
o P, ={r}eP,= forany k # 2

TwO EXAMPLES OF 2 -STRUCTURES:

Al = {a, b}
f=acl=0»b

fA( Y=a, fA(b) = a

= {(a,a) — a,(b,b) —
( b) — b, (b, a)'—>b}
= {(a, b), (b, a)}

A. MADEIRA EL2324 JUNE 13, 2025

7/59



SIGNATURES AND STRUCTURES

EXAMPLES OF 2-STRUCTURES

Let us consider the first-order signature ¥ = (P, F), with
Qo FO = {Cl, Cz}

o AL ={f}, F2={g}
o Fp = for any k > 2
o P, ={r}eP,= forany k # 2

TwO EXAMPLES OF 2 -STRUCTURES:

Al = {a, b} 1Bl = (V. 4]
f=acl=0»b =05 =4
fA( ) = a, fA(b) =23 fB(Q?) = Q and fB(Q) =0
={(a,a) — a, (b, b) — _ )V ifx=y
( b) > b(b@Hb} gﬂ&m—{‘ if x £ y
= {(a,b), (b, a)} rB={(x.y) | x#y,x,y€|Bl}
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SIGNATURES AND STRUCTURES

EXERCISES

EXERCISE 2

@ Define two different structures for each one of the signatures
introduced in Exercise 1
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SIGNATURES AND STRUCTURES

EXERCISES

EXERCISE 2

@ Define two different structures for each one of the signatures
introduced in Exercise 1

@ What about singleton structures?
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SIGNATURES AND STRUCTURES

MORPHISMS BETWEEN 2 -STRUCTURES

DEFINITION 3

Let ¥ = (P, F) be a first-order signature and A and B X-two structures.
A morphism between A and B is a function

b Al — |B|
such that:
o for any r € r,, and for any ai,...,a, € |A|,
r(a1, ..., a,) implies that rB(h(ay),..., h(a,))
o for any f € Fp,, and for any a1,...,a, € |A],
h(fA(a1,...,a,)) = fB(h(a1),..., h(an)) )
A. MADEIRA
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SIGNATURES AND STRUCTURES

EXERCISES

EXERCISE 3

@ Revisit the examples of Exercise 2 a introduce pairs of structures that
are related by a morphism.
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SYNTAX OF FIRST-ORDER LOGIC

OUTLINE

@ SYNTAX OF FIRST-ORDER LOGIC
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SYNTAX OF FIRST-ORDER LOGIC

FORMULE

3> -TERMS

Let X be a signature and X a set of variable. The set of > -terms in X is
the smallest set T(X, X) such that:

o for any x € X, x € T(X, X); (variables are terms)
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FORMULAE

3> -TERMS

Let X be a signature and X a set of variable. The set of > -terms in X is
the smallest set T(X, X) such that:

o for any x € X, x € T(X, X); (variables are terms)
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SYNTAX OF FIRST-ORDER LOGIC

FORMULAE

3> -TERMS

Let X be a signature and X a set of variable. The set of > -terms in X is
the smallest set T(X, X) such that:

o for any x € X, x € T(X, X); (variables are terms)
o for any operation symbol c € Fy, c € T(X, X); (constants are terms)
o forany feF, if t1,....tpe T(X,X), then f(t1,...,ty) € T(X, X);

EXERCISE 4

List the terms of the signatures introduced in the previous exercises
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SYNTAX OF FIRST-ORDER LOGIC

Y -FORMULZE

DEFINITION 4
Let ¥ = (P, F) be a signature. The set of formulas Fm(X) is the
smallest set with the such that:
@ for any t1,...,t, € T(X,X) and for any p € P,
p(ti, ..., ty) € Fm(X)
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SYNTAX OF FIRST-ORDER LOGIC

Y -FORMULZE

DEFINITION 4

Let ¥ = (P, F) be a signature. The set of formulas Fm(X) is the
smallest set with the such that:

@ forany ti,...,t,€ T(X,X) and for any p € Py,
p(ti, ..., ty) € Fm(X)
@ for any ty,th € T(Z,X), tp =t € Fm(Z)
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SYNTAX OF FIRST-ORDER LOGIC

Y -FORMULZAE

DEFINITION 4

Let ¥ = (P, F) be a signature. The set of formulas Fm(X) is the
smallest set with the such that:

@ forany ti,...,t,€ T(X,X) and for any p € Py,
p(ti, ..., ty) € Fm(X)

@ forany t;,tr € T(Z,X), tp =t € Fm(Z)
@ forany p,p e Fm(X), o x ¢ € Fm(X), x € {A, v,—, <}
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SYNTAX OF FIRST-ORDER LOGIC

Y -FORMULZAE

DEFINITION 4

Let ¥ = (P, F) be a signature. The set of formulas Fm(X) is the
smallest set with the such that:

@ for any t1,...,t, € T(X,X) and for any p € P,
p(ti, ..., ty) € Fm(X)

@ for any ty,tp € T(Z,X), tp =t € Fm(Z)
@ for any o, € Fm(X), p x1p € Fm(X), » € {A, v, >, <}
@ for any p € Fm(X), —p € Fm(X)
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SYNTAX OF FIRST-ORDER LOGIC

Y -FORMULZAE

DEFINITION 4

Let ¥ = (P, F) be a signature. The set of formulas Fm(X) is the
smallest set with the such that:

@ for any t1,...,t, € T(X,X) and for any p € P,
p(ti, ..., ty) € Fm(X)

@ forany t;,to e T(X,X), t1 = tp € Fm(X)

@ for any o, € Fm(X), p x1p € Fm(X), » € {A, v, >, <}

@ for any p € Fm(X), —p € Fm(X)

@ for any p € Fm(X), and x € X, Vx.¢ € Fm(X) and Ix.p € Fm(X)

EXERCISE 5

List the formulas of the signatures introduced in the previous exercises
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SYNTAX OF FIRST-ORDER LOGIC

FREE AND BOUNDED VARIABLES

DEFINITION 5
The set of free variables of a term t ¢ T(X, X) is given by
o FV(x) = {x}, for any variable x € X
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SYNTAX OF FIRST-ORDER LOGIC

FREE AND BOUNDED VARIABLES

DEFINITION 5

The set of free variables of a term t ¢ T(X, X) is given by
o FV(x) = {x}, for any variable x € X
o FV(c) = &, for any constant c € F
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SYNTAX OF FIRST-ORDER LOGIC

FREE AND BOUNDED VARIABLES

DEFINITION 5

The set of free variables of a term t € T(2, X) is given by
o FV(x) = {x}, for any variable x € X
o FV(c) = &, for any constant c € F
o FV(f(t1,....ty)) = FV(t1) u--- U FV(t,)
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SYNTAX OF FIRST-ORDER LOGIC

FREE AND BOUNDED VARIABLES

DEFINITION 5

The set of free variables of a term t € T(2, X) is given by
o FV(x) = {x}, for any variable x € X
o FV(c) = &, for any constant c € F
o FV(f(t1,....ty)) = FV(t1) u--- U FV(t,)

The set of free variables of a formula ¢ € Fim(X) is given by
o FV(P(t1,...,tn)) = FV(t1) u---u FV(tp)
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SYNTAX OF FIRST-ORDER LOGIC

FREE AND BOUNDED VARIABLES

DEFINITION 5

The set of free variables of a term t € T(2, X) is given by
o FV(x) = {x}, for any variable x € X
o FV(c) = &, for any constant c € F
o FV(f(t1,....ty)) = FV(t1) u--- U FV(t,)

The set of free variables of a formula ¢ € Fim(X) is given by
o FV(P(t1,...,tn)) = FV(t1) u---u FV(tp)
o FV(t1 = tp) = FV(t1) u FV(t)
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SYNTAX OF FIRST-ORDER LOGIC

FREE AND BOUNDED VARIABLES

DEFINITION 5
The set of free variables of a term t € T(2, X) is given by
o FV(x) = {x}, for any variable x € X
o FV(c) = &, for any constant c € F
o FV(f(t1,....ty)) = FV(t1) u--- U FV(t,)
The set of free variables of a formula ¢ € Fim(X) is given by
o FV(P(t1,...,tn)) = FV(t1) u---u FV(tp)
o FV(t1 = tp) = FV(t1) u FV(t)
o FV(px¢) = FV(p) U FV(¢), x € {n, v, =}
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SYNTAX OF FIRST-ORDER LOGIC

FREE AND BOUNDED VARIABLES

DEFINITION 5

The set of free variables of a term t € T(2, X) is given by
o FV(x) = {x}, for any variable x € X
o FV(c) = &, for any constant c € F
o FV(f(t1,....ty)) = FV(t1) u--- U FV(t,)

The set of free variables of a formula ¢ € Fim(X) is given by

° FV(P(tl,.. t) = FV(t1) u--- U FV(t,)
o FV(ty = tp) = FV(tl) U FV(ty)

o FV(px 1) = FV(p) U FV(¥), x€ {n, v, >}
o FV(—p) = FV(p)
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SYNTAX OF FIRST-ORDER LOGIC

FREE AND BOUNDED VARIABLES

DEFINITION 5
The set of free variables of a term t € T(2, X) is given by
o FV(x) = {x}, for any variable x € X
o FV(c) = &, for any constant c € F
o FV(f(t1,....ty)) = FV(t1) u--- U FV(t,)
The set of free variables of a formula ¢ € Fim(X) is given by
FV(P(tl,.. th) = FV(t1) u--- U FV(tp)
FV(t; = t) = FV(tl) U FV(t)
FV(px) = FV(p) U FV(¢), x € {A, v, =}
o FV(—¢p) = FV( )
FV(Vxp) = FV(p)\{x}

©

©

A. MADEIRA EL2324 JUNE 13, 2025

14/59



SYNTAX OF FIRST-ORDER LOGIC

FREE AND BOUNDED VARIABLES

DEFINITION 5

The set of free variables of a term t € T(2, X) is given by
o FV(x) = {x}, for any variable x € X
o FV(c) = &, for any constant c € F
o FV(f(t1,....ty)) = FV(t1) u--- U FV(t,)

The set of free variables of a formula ¢ € Fim(X) is given by

° FV(P(tl,.. th)) = FV(t1) U--- U FV(t,)

o FV(ti = tp) = FV(tl) U FV(t)

o FV(px1) = FV(p) v FV(§), x € {n, v, =}

o FV(=¢) = FV(¢)

o FV(Vxp) = FV(p)\{x}

o FV(3xp) = FV(p)\{x} )
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SYNTAX OF FIRST-ORDER LOGIC

FREE AND BOUNDED VARIABLES

o aterm tis a closed term if FV(t) = . The set of closed terms for
Y is denoted by T(X, X).
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SYNTAX OF FIRST-ORDER LOGIC

FREE AND BOUNDED VARIABLES

o aterm tis a closed term if FV(t) = . The set of closed terms for
Y is denoted by T(X, X).

o a formula ¢ is a sentence if FV(p) = ¢J. The set of sentences for ¥
is denoted by Sen(X)
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SYNTAX OF FIRST-ORDER LOGIC

FREE AND BOUNDED VARIABLES

o aterm tis a closed term if FV(t) = . The set of closed terms for
Y is denoted by T(X, X).

o a formula ¢ is a sentence if FV(p) = ¢J. The set of sentences for ¥
is denoted by Sen(X)

o a variable x is bonded in a formula ¢, i.e. x € BV(yp), if it is in the
scope of a quantifier.

A. MADEIRA EL2324 JUNE 13, 2025 15 /59



SYNTAX OF FIRST-ORDER LOGIC

FREE AND BOUNDED VARIABLES

o aterm tis a closed term if FV(t) = . The set of closed terms for
Y is denoted by T(X, X).

a formula ¢ is a sentence if FV(p) = ¢J. The set of sentences for ¥
is denoted by Sen(X)

a variable x is bonded in a formula ¢, i.e. x € BV (yp), if it is in the
scope of a quantifier.

Observation: FV/(p) n BV (p) need not to be empty!

©

©

©
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SYNTAX OF FIRST-ORDER LOGIC

FREE AND BOUNDED VARIABLES

o aterm tis a closed term if FV(t) = . The set of closed terms for
Y is denoted by T(X, X).

o a formula ¢ is a sentence if FV(p) = ¢J. The set of sentences for ¥
is denoted by Sen(X)

o a variable x is bonded in a formula ¢, i.e. x € BV(yp), if it is in the
scope of a quantifier.

o Observation: FV/(p) n BV(p) need not to be empty!

EXERCISE 6

For each formula indicates whose variables are free, are bounded, or free
and bounded:

@ (y<x)v(x®2+x—y=0)
@ Ix((y<x)v (x2+x—-2=0))
@ x>0nA3x(5<x)
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SYNTAX OF FIRST-ORDER LOGIC

SUBSTITUTION OPERATOR

DEFINITION 6 (SUBSTITUTION IN TERMS)

Let s,t € T(X, X) terms and x € X a variable. The substitution s[t/x] is
defined by
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SYNTAX OF FIRST-ORDER LOGIC

SUBSTITUTION OPERATOR

DEFINITION 6 (SUBSTITUTION IN TERMS)

Let s,t € T(X, X) terms and x € X a variable. The substitution s[t/x] is
defined by

if

@ y[t/x] = {y I y#x for any variable y € X
t ify=x

@ c[t/x] = c, for any constant ¢ € Fy

@ f(t,...,ta)[t/x] = F(ta[t/x],... ta[t/x])
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SYNTAX OF FIRST-ORDER LOGIC

SUBSTITUTION OPERATOR

DEFINITION 6 (SUBSTITUTION IN TERMS)

Let s,t € T(X, X) terms and x € X a variable. The substitution s[t/x] is

defined by
if
@ y[t/x] = {y I y#x for any variable y € X
t ify=x
@ c[t/x] = c, for any constant c € Fy
@ f(ty,... tn)[t/x] = F(ta[t/x], ... ta[t/x])

EXERCISE 7

A. MADEIRA EL2324
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SYNTAX OF FIRST-ORDER LOGIC

SUBSTITUTION OPERATOR

DEFINITION 7 (SUBSTITUTION IN FORMULAS)

Let ¢ € Fm(X) be a formula, x € X a variable and t € T(X, X) a term.

The substitution ¢[t/x] is defined by

@

o
@
Y
@

©

R(ty, ..., ty)[t/x] =

t; = fz)[f/X]

( (
(=)[t/x] = —¢lt/x]
(o )[t/x] = ¢l

(Vyp)[t/x] = {

Gye)lt/x] = {

R(ti[t/x], ..., ta[t/x])

ti[t/x] = to[t/x])

Yy ([t/x])
Vyep

Iy (elt/x])

dye

t/x] = [t/x], for any » € {v, A, >}

if x#y
if x=y

if x#y
if x=y

A. MADEIRA
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SYNTAX OF FIRST-ORDER LOGIC

SUBSTITUTION OPERATOR

DEFINITION 7 (SUBSTITUTION IN FORMULAS)

Let ¢ € Fm(X) be a formula, x € X a variable and t € T(X, X) a term.
The substitution ¢[t/x] is defined by

@ R(t1,...,tn)[t/x] = R(t1[t/x],..., ta[t/x])
@ (t1 = t)[t/x] = (t[t/x] = to[t/x])
@ (—o)[t/x] = —¢[t/x]
@ (p*)[t/x] = p[t/x] xP[t/x], for any » € {v, A, >}
@ (Vyp)lt/x] = {zy (elt/x]) !fxfy
Yo if x=y
Ay(plt/x]) ifx#y

® @yp)lt/x] - {HW ol

EXERCISE 8
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SYNTAX OF FIRST-ORDER LOGIC

SUBSTITUTION PROCESS

ON THE SUBSTITUTION OF x BY A TERM t IN A FORMULA ¢
we have to assure that:

o substitutions for bounded variables are forbid
(e.g. we can not replace x by y in 3x—(x = y))
this is assured by points 4 and 5 in previous definition
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SYNTAX OF FIRST-ORDER LOGIC

SUBSTITUTION PROCESS

ON THE SUBSTITUTION OF x BY A TERM t IN A FORMULA ¢
we have to assure that:

o substitutions for bounded variables are forbid
(e.g. we can not replace x by y in 3x—(x = y))
this is assured by points 4 and 5 in previous definition

o we need to assure that free variable in t does not becomes bounded
after substitution in ¢, i.e., that “t is free for x in "
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SYNTAX OF FIRST-ORDER LOGIC

SUBSTITUTION PROCESS

DEFINITION 8
The term t is free for x in ¢ if
o ( is atomic
o @ is of form 1 *x g, x € {v, A,—} and t is free for x in ¢1 and in ¢
o ¢ is of form —1) and t is free for x in ¥
o o is of form Yyv: if x € FV(¢) then y ¢ FV(t) and t is free for x in

(G
o @isof form Jyw: if x € FV(¢)) then y ¢ FV(t) and t is free for x in ¢

A. MADEIRA EL2324 JUNE 13, 2025 19 /59



SYNTAX OF FIRST-ORDER LOGIC

SUBSTITUTION PROCESS

EXERCISE 9
Check which terms are free in the following cases:
@ x is free for x in x = x
y is free for x in x = x
x+yisfreeforyinz=0

0 + y is free for y in Ix(y = x)

X + w is free for z in Vw(x + z = 0)

x+y isfree for z inVw(x +z=0) Ady(z =y)

@
®
@
@ x+y is free for z in Iw(w + x = 0)
o _
@
®

x+y is free for z in Vu(u = v) > Vz(z =y)
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SYNTAX OF FIRST-ORDER LOGIC

SUBSTITUTION PROCESS

From now we assume that all our substitutions are “free for”

ASSUMPTION J
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SYNTAX OF FIRST-ORDER LOGIC

EXTENDED SIGNATURE FOR |A|

DEFINITION 9

Let ¥ = (P, F) be a signature A be a X-structure. The extended
signature " = (F” P) of A is the signature that enriches ¥ with a
constant symbol for each value in |A|, i.e. such that

F =Fyu{alae|A]} and FA = F,, for any n # 0.

A. MADEIRA EL2324 JUNE 13, 2025 22 /59



FIRST ORDER LOGIC SATISFACTION

OUTLINE

@ FIRST ORDER LOGIC SATISFACTION
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FIRST ORDER LOGIC SATISFACTION

INTERPRETATION OF TERMS

DEeFINITION 10

An interpretation of the closed terms of ¥4 in A is a mapping
[-]: T(X,X)e — |A]

such that
o [¢]=c

o [f(tr,...,tn)] = FA([ta],- - -, [ta])

A. MADEIRA EL2324 JUNE 13, 2025
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FIRST ORDER LOGIC SATISFACTION

INTERPRETATION OF FORMULAS

DEFINITION 11
Let X be a signature and A a X-Structure. An interpretation of sentences is a mapping

[-]a : Sen(X) — {0,1}

where

° [[R(tl,...,tn)]]A={1 i ([al, . [tn]) € R

0 otherwise
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FIRST ORDER LOGIC SATISFACTION

INTERPRETATION OF FORMULAS

DEFINITION 11
Let X be a signature and A a X-Structure. An interpretation of sentences is a mapping

[-]a : Sen(X) — {0,1}
where

o [R(tr, ... tn)]a = {1 i ([al, . [tn]) € R

0 otherwise

0 [t1 = to]a = {1 if [t1]a = [t2]

0 otherwise

0 [o A ¢la = min([¢]a, [¥]a)
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FIRST ORDER LOGIC SATISFACTION

INTERPRETATION OF FORMULAS

DEFINITION 11

Let X be a signature and A a X-Structure. An interpretation of sentences is a mapping
[-]a : Sen(X) — {0,1}

where

o [R(tr, ... tn)]a = {1 i ([al, . [tn]) € R

0 otherwise

0 otherwise

0 [t1 = to]a = {1 if [t1]a = [t2]

0 [o A ¢la = min([¢]a, [¥]a)
0 [ov ¥)a = max([¢]a, [¢]a)
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FIRST ORDER LOGIC SATISFACTION

INTERPRETATION OF FORMULAS

DEFINITION 11

Let ¥ be a signature and A a X-Structure. An interpretation of sentences is a mapping
[-]a : Sen(X) — {0,1}
where

o [R(tr, ... tn)]a = {1 i ([al, . [tn]) € R

0 otherwise

S R
0 [ A ¢)a = min([e]a, [¢]a)
0 [ v ¥]a = max([¢]a, [¥]a)
0 [o = ¢Y]a = max(1 — [¢]a, [¥]a)

A. MADEIRA EL2324 JUNE 13, 2025



FIRST ORDER LOGIC SATISFACTION

INTERPRETATION OF FORMULAS

DEFINITION 11

Let ¥ be a signature and A a X-Structure. An interpretation of sentences is a mapping
[-]a : Sen(X) — {0,1}
where

o [R(tr, ... tn)]a = {1 i ([al, . [tn]) € R

0 otherwise

s {g e
[e A ¥]a = min([¢]a, [¥]a)

[e v ¥]a = max([©]a, [¥]a)

[ — ¥]a = max(1 — [¢]a, [¥]a)
[—ela=1-lvla

©

© © 0 ©
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FIRST ORDER LOGIC SATISFACTION

INTERPRETATION OF FORMULAS

DEFINITION 11

Let ¥ be a signature and A a X-Structure. An interpretation of sentences is a mapping
[-]a : Sen(X) — {0,1}

where

o [R(tr, ... tn)]a = {1 i ([al, . [tn]) € R

0 otherwise

1 if [t1]a = [t2]a
[t = el = {0 oth[irv}\]/ise el
[e A ¥la = min([¢]a, [¥]a)
[ v ¥la = max([¢]a, [¥]a)
[ = ¥la = max(1 — [¢]a; [¥]a)
[—¢la=1-[¢la
[Vxe]a = min{[w[a/x]]a, a € |Al}

©

© 0 0 0 ©
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FIRST ORDER LOGIC SATISFACTION

INTERPRETATION OF FORMULAS

DEFINITION 11

Let ¥ be a signature and A a X-Structure. An interpretation of sentences is a mapping
[-]a : Sen(X) — {0,1}

where

o [R(tr, ... tn)]a = {1 i ([al, . [tn]) € R

0 otherwise

1 if [t1]a = [t2]a
[t = el = {0 oth[irv}\]/ise el
[e A ¥la = min([¢]a, [¥]a)
[ v ¥la = max([¢]a, [¥]a)
[ = ¥la = max(1 — [¢]a; [¥]a)
[—¢la=1-[¢la
[Vxe]a = min{[w[a/x]]a, a € |Al}
[3xpla = max{[¢[a/x]]a, a € |Al}

©

© © ©6 06 0 ©
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FIRST ORDER LOGIC SATISFACTION

INTERPRETATION OF FORMULAS

@ IS SATISFIED IN A:

Al g iff [pla=1
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FIRST ORDER LOGIC SATISFACTION

INTERPRETATION OF FORMULAS

IS SATISFIED IN A:

Al piff [p]a=1

o Note that, until now, we just see how to interpret sentences
¢ € Sen(X), i.e. formulas without free variables. The goal now is to
know how to interpret any formula ¢ € Fm(X).
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FIRST ORDER LOGIC SATISFACTION

INTERPRETATION OF FORMULAS

DEFINITION 12

Universal closure Let FV(p) = {z1,...,zx}. The universal closure of ©
Cl(¢p) is the formula
Vzy, .., Zk @
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FIRST ORDER LOGIC SATISFACTION

INTERPRETATION OF FORMULAS

DEFINITION 12

Universal closure Let FV(p) = {z1,...,zx}. The universal closure of ©
Cl(¢p) is the formula
Vzy, .., Zk @

DEFINITION 13
Let A be a X-structure, p € Fm(X) and ' € Fm(X). Then:
@ AEpiff A= Cl(e)
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FIRST ORDER LOGIC SATISFACTION

INTERPRETATION OF FORMULAS

DEFINITION 12

Universal closure Let FV(p) = {z1,...,zx}. The universal closure of ©
Cl(¢p) is the formula
Vzy, .., Zk @

DEFINITION 13
Let A be a X-structure, p € Fm(X) and ' € Fm(X). Then:
@ AE ¢ iff A= Cl(¢) — we say that A is a model of ¢
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INTERPRETATION OF FORMULAS

DEFINITION 12

Universal closure Let FV(p) = {z1,...,zx}. The universal closure of ©
Cl(¢p) is the formula
Vzy, .., Zk @

DEFINITION 13

Let A be a X-structure, p € Fm(X) and ' € Fm(X). Then:
@ AE ¢ iff A= Cl(¢) — we say that A is a model of ¢
@ AETIiff Ay foranyyel
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INTERPRETATION OF FORMULAS

DEFINITION 12

Universal closure Let FV(p) = {z1,...,zx}. The universal closure of ©
Cl(¢p) is the formula
Vzy, .., Zk @

DEFINITION 13
Let A be a X-structure, p € Fm(X) and ' € Fm(X). Then:
@ AE ¢ iff A= Cl(¢) — we say that A is a model of ¢
@ AETff A=~ for any v € [ — we say that A is model of
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FIRST ORDER LOGIC SATISFACTION

INTERPRETATION OF FORMULAS

DEFINITION 12

Universal closure Let FV(p) = {z1,...,zx}. The universal closure of ©
Cl(¢p) is the formula
Vzy, .., Zk @

DEFINITION 13

Let A be a X-structure, p € Fm(X) and ' € Fm(X). Then:
@ AE ¢ iff A= Cl(¢) — we say that A is a model of ¢
@ AETff A=~ for any v € [ — we say that A is model of
@ [ o iff for any -structure A, A= ¢
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FIRST ORDER LOGIC SATISFACTION

INTERPRETATION OF FORMULAS

DEFINITION 12

Universal closure Let FV(p) = {z1,...,zx}. The universal closure of ©
Cl(¢p) is the formula
Vzy, .., Zk @

DEFINITION 13

Let A be a X-structure, p € Fm(X) and ' € Fm(X). Then:
@ AEpiff A= Cl(p) — we say that A is a model of
@ AETff A=~ for any v € [ — we say that A is model of
@ [ o iff for any -structure A, A |= ¢ — we say that ¢ is valid
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FIRST ORDER LOGIC SATISFACTION

INTERPRETATION OF FORMULAS

DEFINITION 12

Universal closure Let FV(p) = {z1,...,zx}. The universal closure of ©
Cl(¢p) is the formula
Vz1,.. ., 2k

DEFINITION 13

Let A be a X-structure, p € Fm(X) and ' € Fm(X). Then:
@ AEpiff A= Cl(p) — we say that A is a model of
@ AETff A=~ for any v € [ — we say that A is model of
@ [ o iff for any -structure A, A |= ¢ — we say that ¢ is valid

@I Epiff
for any X-structure A, if A=T, then A |= ¢
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FIRST ORDER LOGIC SATISFACTION

INTERPRETATION OF FORMULAS

DEFINITION 12

Universal closure Let FV(p) = {z1,...,zx}. The universal closure of ©
Cl(¢p) is the formula
Vzy, .., Zk @

DEFINITION 13
Let A be a X-structure, p € Fm(X) and ' € Fm(X). Then:
@ AE ¢ iff A= Cl(¢) — we say that A is a model of ¢
@ AETff A=~ for any v € [ — we say that A is model of
@ [ o iff for any -structure A, A |= ¢ — we say that ¢ is valid
@Ik giff
for any YX-structure A, if A=T, then A |= ¢ — we say that ¢ is a
semantic consequence of
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FIRST ORDER LOGIC SATISFACTION

INTERPRETATION OF FORMULAS

SOME MORE NOTIONS
Let ¢ a formula and FV(p) = {z1,..., z}.

o o is satisfied by a1, ..., ap e |AliIff AEpla,...,a

o ¢ is satisfiable iff ¢ is satisfied for some ay, ...,
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FIRST ORDER LOGIC SATISFACTION

INTERPRETATION OF FORMULAS

SOME MORE NOTIONS
Let ¢ a formula and FV(p) = {z1,..., z}.
o ¢ is satisfied by ay, ..., ap e |AlIff A= vlar,...,ak/z1, ..., zk]

o ¢ is satisfiable iff ¢ is satisfied for some aj, ..., a € |A|

EXERCISE 10
Prove that
o  is satisfiable in A if FV () = {z1,...,2z¢} and A= 3z1,...,zx ¢

v
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FIRST ORDER LOGIC SATISFACTION

EXERCISES

EXERCISE 11
Let ¢ € Sen(X). Prove that:

@ AEpAYiIffAEpand A=Yy
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Let ¢ € Sen(X). Prove that:
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@ AEeVvyYiffAEpo AEY
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FIRST ORDER LOGIC SATISFACTION

EXERCISES

EXERCISE 11
Let ¢ € Sen(X). Prove that:
D@ AEpAYiffAEpand Al
@ AEeVvyYiffAEpo AEY
@ AE—iffAEp
@ AE=p > Y iff Al @ implies A =
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FIRST ORDER LOGIC SATISFACTION

EXERCISES

EXERCISE 11
Let ¢ € Sen(X). Prove that:
@ AEpAYiIffAEpand A=Yy
@ AEeVvyYiffAEpo AEY
@ AE—iffAEp
@ A=y iff A= implies A =Y
® A= 3xp iff A= ¢[a/x], for some a € |A]|
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FIRST ORDER LOGIC SATISFACTION

EXERCISES

EXERCISE 11

Let ¢ € Sen(X). Prove that:

@ AEpAYiIffAEpand A=Yy

@ AEeVvyYiffAEpo AEY

@ AE—iffAEp

@ A=y iff A= implies A =Y

® A= 3xp iff A= ¢[a/x], for some a € |A]|
® AEVxp iff A= ¢[a/x], for any a€ |A|
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FIRST ORDER LOGIC SATISFACTION

EXERCISES

EXERCISE 11

Let ¢ € Sen(X). Prove that:

@ AEpAYiIffAEpand A=Yy

@ AEeVvyYiffAEpo AEY

@ AE—iffAEp

@ A=y iff A= implies A =Y

® A= 3xp iff A= ¢[a/x], for some a € |A]|
® AEVxp iff A= ¢[a/x], for any a€ |A|

EXERCISE 12

Which cases from the previous exercise remain correct if we consider
formulas in general?
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FIRST ORDER LOGIC SATISFACTION

EXERCISES

EXERCISE 13

Let ¥ = (P,F) where P = (J and Fy = {zero}, F1 = {succ},
F> = {add, mult}. Let Nat be the ¥-structure with |Nat| = N and with
the zeroN?t = 0, succNAt(n) = n+ 1, add™at(n,m) = n+ m and
multN?t(n, m) = n % m.
@ @ Give two distinct terms t,s € T(X, X pat) such that [t]nar = [S]nar = 3
@ Show that for any n € N, there is a term t such that [ty = n
@ S/{/KZW that for any n € N, there are infinitely many terms t such that
tht =n
@ Consider now the extended signature YNt Determine
o [((1 - 0) — (—zero)) A (=0 — (1 — zero))]
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FIRST ORDER LOGIC SATISFACTION

EXERCISES

EXERCISE 14

For any ¢ € Sen(X), and for any ¥-structure A, we have that A |= ¢ or
Al —op.
Prove, or refute the statement:

“For any ¢ € Fm(X), and for any Y -structure A, we have that A |= ¢
or Al —p.”

¥
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FIRST ORDER LOGIC SATISFACTION

EXERCISES

EXERCISE 14

For any ¢ € Sen(X), and for any ¥-structure A, we have that A |= ¢ or
Al —op.

Prove, or refute the statement:

“For any ¢ € Fm(X), and for any Y -structure A, we have that A |= ¢
or Al —p.”

v

EXERCISE 15

Show that, for any term t € T(ZA, X),
o At =1t]a
o Al o(t) < o([tla)
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FIRST ORDER LOGIC SATISFACTION

PROPERTIES OF FIRST-ORDER-LOGIC

SOME USEFUL VALIDITIES
@ = —Vxp o Ix—p
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FIRST ORDER LOGIC SATISFACTION

PROPERTIES OF FIRST-ORDER-LOGIC

SOME USEFUL VALIDITIES
@ = —Vxp o Ix—p
@ E —Ixp o Vx—p
@ EVxp o —Ix—p
@ = Ixp o ~Vx—p
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FIRST ORDER LOGIC SATISFACTION

PROPERTIES OF FIRST-ORDER-LOGIC

SOME USEFUL VALIDITIES
@ E —Vxp o Ix—p
@ E —Ixp o Vx—p
@ EVxp o —Ix—p
@ = Ixp o ~Vx—p
@ E VxVyp < VyVxp

A. MADEIRA EL2324 JUNE 13, 2025 32/59



FIRST ORDER LOGIC SATISFACTION

PROPERTIES OF FIRST-ORDER-LOGIC

SOME USEFUL VALIDITIES
@ E —Vxp o Ix—p
@ E —Ixp o Vx—p
@ EVxp o —Ix—p
@ = Ixp o ~Vx—p
@ E VxVyp < VyVxp
@ F Ixdyp o Jydxe
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FIRST ORDER LOGIC SATISFACTION

PROPERTIES OF FIRST-ORDER-LOGIC

SOME USEFUL VALIDITIES
@ E —Vxp o Ix—p
E —dxp < Vx—p
= Vxp < —Ix—p

= VxVyp < VyVxe
= 3xJyp < Jydxe

2
@
@ = Ixp o ~Vx—p
@
®
@ EVx(o A1) o Vxp A VX
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FIRST ORDER LOGIC SATISFACTION

PROPERTIES OF FIRST-ORDER-LOGIC

SOME USEFUL VALIDITIES
@ E —Vxp o Ix—p
E —dxp < Vx—p
= Vxp < —Ix—p
= 3xp o =Vx—p
= VxVyp < VyVxe
= 3xJyp < Jydxe
= Vx(p A1) < ¥Yxp A VX
E 3x(p v ¢) « Ixe v Ixy

© 66 6 6 6 6
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FIRST ORDER LOGIC SATISFACTION

PROPERTIES OF FIRST-ORDER-LOGIC

SOME USEFUL VALIDITIES
@ = —Vxp o Ix—p
E —dxp < Vx—p
= Vxp < —3Ix—p
= 3xp & =Vx—p
= VxVyp < VyVxe
= 3xJyp < Jydxe
= Vx(p A1) < ¥Yxp A VX
E 3x(p v ¢) « Ixe v Ixy

© 66 6 6 6 6

EXERCISE 16
Prove it!
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FIRST ORDER LOGIC SATISFACTION

PROPERTIES OF FIRST-ORDER LOGIC

SOME USEFUL VALIDITIES
@ E Vxp(x) < o, if x¢ FV(p)
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FIRST ORDER LOGIC SATISFACTION

PROPERTIES OF FIRST-ORDER LOGIC

SOME USEFUL VALIDITIES
@ E Vxp(x) < o, if x¢ FV(p)
@ E 3Ixp(x) < ¢, if x¢ FV(p)
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FIRST ORDER LOGIC SATISFACTION

PROPERTIES OF FIRST-ORDER LOGIC

SOME USEFUL VALIDITIES
@ = Vxp(x) « o, if x ¢ FV(p)
@ EIxp(x) « ¢, if x¢ FV(p)
@ = Vx(p(x) v i) o (Vx(p(x)) v ), if x ¢ FV ()
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FIRST ORDER LOGIC SATISFACTION

PROPERTIES OF FIRST-ORDER LOGIC

SOME USEFUL VALIDITIES
@ = Vxp(x) « o, if x ¢ FV(p)
@ = Ixp(x) < ¢, if x ¢ FV(9)
@ = Vx(p(x) v i) o (Vx(p(x)) v ), if x ¢ FV ()
@ | 3Ix(p(x) Av) < Ax(p(x)) A1), if x ¢ FV ()

EXERCISE 17
Prove it!
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FIRST ORDER LOGIC SATISFACTION

PROPERTIES OF FIRST-ORDER LOGIC

SOME USEFUL VALIDITIES
@ = Vxp(x) « o, if x ¢ FV(p)
@ = Ixp(x) < ¢, if x ¢ FV(9)
@ = Vx(p(x) v i) o (Vx(p(x)) v ), if x ¢ FV ()
@ | 3Ix(p(x) Av) < Ax(p(x)) A1), if x ¢ FV ()

EXERCISE 17
Prove it!

EXERCISE 18
Show that it is not true that:

o Vx(p(x) v ¥(x)) = Vxp(x) v ¥xip(x)
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FIRST ORDER LOGIC SATISFACTION

PROPERTIES OF FIRST-ORDER LOGIC

SOME USEFUL VALIDITIES
@ = Vxp(x) « o, if x ¢ FV(p)
@ = Ixp(x) < ¢, if x ¢ FV(9)
@ = Vx(p(x) v i) o (Vx(p(x)) v ), if x ¢ FV ()
@ | 3Ix(p(x) Av) < Ax(p(x)) A1), if x ¢ FV ()

EXERCISE 17
Prove it!

EXERCISE 18

Show that it is not true that:
o Vx(p(x) v 1h(x)) = Vxp(x) v Vxip(x)
o Ixp(x) A Ixtp(x) — Ix(p(x) A P(x))
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FIRST ORDER LOGIC SATISFACTION

THE IDENTITY

CHARACTERISTIC PROPERTIES OF IDENTITY
@ Yx (x = x)
@ Vxy(x=y —>y=x)
@ Vxyz(x=yAy=2z) > x=2)
@ Yxi..oxoyr- - Ya((ANicp i = i) = (t(x1, -, X0) = t(y1,-- -, ¥n)))
@ Yxi.. xoy1- - Ya((Njcn i = i) = (@(x1, -, X0) = @(¥1,- -, Yn))

v
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FIRST ORDER LOGIC SATISFACTION

EXAMPLES — GROUPS

EXERCISE 19

o Introduce a signature ¥8™"Pto express the structure of a group
o Introduce a I < Fm(X8™"P) the class of groups

o Introduce two structures A and B that are models of I

EXERCISE 20

o Introduce a signature ¥""8 to express the structure of a ring
o Introduce a T < Fm(X"™8) the class of rings

o Introduce two structures A and B that are models of T
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FIRST ORDER LOGIC SATISFACTION

EXAMPLES

PROJECTIVE GEOMETRY

o We consider the signature ¢ = (P, F),

o where F,, = ¢, ne N and

° 2={/}ande=®,k7$2
o and the abbreviations: M(x) = 3y(/(x,y)) and A(y) = 3Ix(I(x,y))
o and the axiomatization:?

o ¥x(N(x) < =A(x))

o Vxy(N(x) A N(y) — 3z(I(x,2) A I(y,2)))

o Yuv(A(u) A A(v) — Fz(I(x, u) A I(x,V)))

o Yxyuv((I(x,u) A l(y,u) Al(y,v)) > (x=yvu=v))

4] 3X0X1X2X3U0U1U2U3

(A1(xi,yi) A /\j:i—l(mod3) I(xi, uj) A /\j;éi—l(mod3),j;éi —1(x, uj))

?See [vanDalen], Sec 3.7
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NATURAL DEDUCTION CALCULUS

OUTLINE

@ NATURAL DEDUCTION CALCULUS
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NATURAL DEDUCTION CALCULUS

BACK TO PROPOSITIONAL LOGIC

A. MADEIRA

Introduction Rules

Elimination Rules

Yo Yrap Yy
Y AP ¥ ®
[¥] [¢]
D D
¥ ® Yve £ &
Yve YV 3
[¥]
D
® Y Yoo
P = ¢
[¥] [—¥]
D D
+ L
-y ¥
—p L
1 %
EL2324
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NATURAL DEDUCTION CALCULUS

NATURAL DEDUCTION FOR FIRST-ORDER LOGIC

THE CALCULUS FOR NATURAL DEDUCTION FOR FIRST-ORDER LOGIC

is given by extending the Natural Deduction rules for Propositional Logic
(in the previous slide) with

o elimination and introduction rules for V

o elimination and introduction rules for 3
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NATURAL DEDUCTION CALCULUS

INTRODUCTION RULE FOR THE UNIVERSAL
QUANTIFIER

INTRODUCTION OF V

[xo] fresh

olxo/x]

Vxg ()

where fresh means that xp may not occur free in any hypothesis on which
© depends
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NATURAL DEDUCTION CALCULUS

ELIMINATION RULE FOR THE UNIVERSAL QUANTIFIER

ELIMINATION OF VY

if x is free for t in
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NATURAL DEDUCTION CALCULUS

NATURAL DEDUCTION RULES FOR UNIVERSAL
QUANTIFIER

EXERCISE 21
Prove that:
@ Yx(P(x) > Q(x)),VxP(x) I VxP(x) — VxQ(x)
@ VxVyP(x,y) - YzVwP(z, w)
@ VxVyP(x,y) - VyVxP(x,y)
@ Vx(—P(x) = Q(x)), ~Q(t) - P(t)
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NATURAL DEDUCTION CALCULUS

NATURAL DEDUCTION RULES FOR UNIVERSAL
QUANTIFIER

EXERCISE 22

Prove that:
@ VxVyp(x,y) — VyVxp(x,y)
@ Vx(p A1) = (Yxp A V1))

EXERCISE 23

Prove that, if x ¢ FV () :
@ = Vx(p = ¥(x)) = (¢ = Vxip(x))
@ ¢ — Vo(x)
@ FVYo(x) - o
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NATURAL DEDUCTION CALCULUS

INTRODUCTION RULE FOR THE EXISTENTIAL
QUANTIFIER

INTRODUCTION OF 3

plt/x]
Ixp
if t is free for x in
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NATURAL DEDUCTION CALCULUS

ELIMINATION RULE FOR THE EXISTENTIAL
QUANTIFIER

ELIMINATION OF 1

[xo] fresh
plxo/x] (ass)

. :
X® X (Ev)
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NATURAL DEDUCTION CALCULUS

ELIMINATION RULE FOR THE EXISTENTIAL
QUANTIFIER

EXERCISE 24

Show that
@ Vx(P(x) A Q(x)) = ¥x(P(x) v Q(x))
@ Vx(P(x) = Q(x)),IxP(x) + IxQ(x)
® IP(x), YxVy(P(x) > Q) - ¥¥Q(y)
@ 3IxP(x) - —Vx—P(x

~— —

® VP(a,x,x),VxVyVz(P(x,y,z) — P(f(x),y,f(z))) - P(f(a),a, f(a))

v

EXERCISE 25

Show that
o —3IxP(x) - Vx—P(x)
0 Vx—=P(x) - —3IxP(x)
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NATURAL DEDUCTION CALCULUS

NATURAL DEDUCTION WITH IDENTITY

IN THE PRESENCE OF IDENTITIES WE CONSIDER THE FOLLOWING
RULES

X1 =Y1,---Xn = Yn
t(x1, ..y Xn) = t(Y1,- -+, ¥n)

XI = Y1,...Xp=Yn ©(X1,...,Xn)
©(Y15---»Yn)
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NATURAL DEDUCTION CALCULUS

NATURAL DEDUCTION WITH IDENTITY

EXERCISE 26

Check

@ x=y,x>+y?>5xF 2y? > bx

@ x=y,x>+y>>5xF x>+ y?>> 5y
@ - Vx(x =x)
@HVz(z=x—>z=y)>x=y
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OUTLINE

(&) SOUNDNESS AND COMPLETENESS
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SOUNDNESS AND COMPLETENESS

SOUNDNESS

THE NATURAL DEDUCTION RULES FOR V IN TERMS OF
o N p(x) =T Vxp(x), if x¢ FV(I)
o I Vxp(x) =T F ¢(t), if tis free for x in ¢
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SOUNDNESS AND COMPLETENESS

SOUNDNESS

THE NATURAL DEDUCTION RULES FOR V IN TERMS OF
o N p(x) =T Vxp(x), if x¢ FV(I)
o I Vxp(x) =T F ¢(t), if tis free for x in ¢

DEFINITION 14

Let I be a set of formulae and let {x1,x2,...} = J{FV(7) | vyeT up}. If
a=(aj,an...), aj€|A|,i <1, then I'(a) denotes the set of formulas
obtained from I' by replacing simultaneously in all formulas in I x; by &;.
Hence,

@ AET(a)if A, forall yeTl(a)

@ I |= ¢ if for any A and for any a, A |=T(a) implies A = ¢(a)
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SOUNDNESS AND COMPLETENESS

SOUNDNESS

THEOREM 15 (SOUNDNESS)
Let p € Fm(X) and I < Fm(X).

¢ implies T = ¢
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SOUNDNESS AND COMPLETENESS

SOUNDNESS

THEOREM 15 (SOUNDNESS)
Let p € Fm(X) and I < Fm(X).

¢ implies T = ¢

PRrOOF.

Proof by induction on the structure of proof trees.

Exercisel! Y
A. MADEIRA EL2324
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SOUNDNESS AND COMPLETENESS

(GOING TO THE COMPLETENESS...

It is helpful to try to establish an analogy with completeness proof for
Propositional Logic studied earlier
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(GOING TO THE COMPLETENESS...

It is helpful to try to establish an analogy with completeness proof for
Propositional Logic studied earlier
EXISTENCE LEMMA

Let € Fm(X). If T is consistent, then I has a model
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(GOING TO THE COMPLETENESS...

It is helpful to try to establish an analogy with completeness proof for
Propositional Logic studied earlier

EXISTENCE LEMMA

Let € Fm(X). If T is consistent, then I has a model

PRrOOF.

This is the hard part of the completeness proof. Done later.
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(GOING TO THE COMPLETENESS...

It is helpful to try to establish an analogy with completeness proof for
Propositional Logic studied earlier

EXISTENCE LEMMA

Let € Fm(X). If T is consistent, then I has a model

PROOF.
This is the hard part of the completeness proof. Done later. O

OBSERVATION:

check the consistency characterization introduced during the presentation of
propositional logic
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SOUNDNESS AND COMPLETENESS

(GOING TO THE COMPLETENESS...

It is helpful to try to establish an analogy with completeness proof for
Propositional Logic studied earlier

EXISTENCE LEMMA

Let € Fm(X). If T is consistent, then I has a model

PROOF.

This is the hard part of the completeness proof. Done later.

N

OBSERVATION:

check the consistency characterization introduced during the presentation of
propositional logic

EXERCISE 27

Assuming the Existence Lemma and the previous observation, prove that

=@ implies T+ ¢
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THEORY AND HENKIN THEORIES

DEFINITION 16
Let T < Sen(X)
@ T is a theory if, for any ¢ € Sen(X), T | ¢ implies that o ¢ T
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THEORY AND HENKIN THEORIES

DEFINITION 16

Let T < Sen(X)
@ T is a theory if, for any ¢ € Sen(X), T | ¢ implies that o ¢ T
@ lisan axiom set for T if T ={p |l I ¢}
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SOUNDNESS AND COMPLETENESS

THEORY AND HENKIN THEORIES

DEFINITION 16

Let T < Sen(X)
@ T is a theory if, for any ¢ € Sen(X), T | ¢ implies that o ¢ T
Q@ Iis an axiom set for T if T ={¢ |l - ¢}

@ 7 is an Henkin theory if for each sentence Ixp(x), there is a
constant ¢ such that 3xp(x) — ¢(c) € T. The constant c is called a
witness of Ixp(x).
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SOUNDNESS AND COMPLETENESS

THEORIES EXTENSIONS

DEFINITION 17
Let T and T’ be theories for £ and ¥'.
@ T isanextensionof T'"if T T’

@ 7T is a conservative extension of T"if T"nX = T, i.e. all theorem
of T" in X are already theorems of T
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SOUNDNESS AND COMPLETENESS

THEORIES EXTENSIONS

DEFINITION 18
Let T be a theory for ¥ = (P, F).
o The signature X* is obtained from ¥ by

° P§:P0U{C¢|3X%0(X)}v and P = Py, k>0
o F*=F

o T*" =T u {Ixp(x) = ¢(c,) | Ixp(x) closed, with witness ¢}
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THEORIES EXTENSIONS

DEFINITION 18
Let T be a theory for ¥ = (P, F).
o The signature X* is obtained from ¥ by
o Py =Pou{c,|Ixp(x)}, and P} = Py, k>0
o F¥—F

o T*" =T u {Ixp(x) = ¢(c,) | Ixp(x) closed, with witness ¢}

LEMMA 19

T* is a conservative extension of T
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SOUNDNESS AND COMPLETENESS

THEORIES EXTENSIONS

DEFINITION 18
Let T be a theory for ¥ = (P, F).
o The signature X* is obtained from ¥ by
o Py =Pou{c,|Ixp(x)}, and P} = Py, k>0
o F¥—F

o T*" =T u {Ixp(x) = ¢(c,) | Ixp(x) closed, with witness ¢}

LEMMA 19

T* is a conservative extension of T

Note that there is no evidence that T* is still an Henkin theory

A. MADEIRA EL2324 JUNE 13, 2025 55 /59
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THEORIES EXTENSIONS

THE T, CONSTRUCTION

T, is recursively defined as follows:
o To:=T
o Tn+1 = (Tn)*
o Ty =HTnln

\%

0}
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THEORIES EXTENSIONS

THE T, CONSTRUCTION

T, is recursively defined as follows:
o To:=T
o Tn+1 = (Tn)*
o Ty =JTn|n=0}

LEMMA 20

T, is an Henkin theory
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SOUNDNESS AND COMPLETENESS

THEORIES EXTENSIONS

Remember from the Propositional Logic completeness proof:

LEMMA 21

Each consistent theory is contained in a maximally consistent theory
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SOUNDNESS AND COMPLETENESS

THEORIES EXTENSIONS

Remember from the Propositional Logic completeness proof:

LEMMA 21
Each consistent theory is contained in a maximally consistent theory J

LEMMA 22
An extension of a Henkin theory is a Henkin theory J
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SOUNDNESS AND COMPLETENESS

COMPLETENESS THEOREM

LEMMA 23 (MODEL EXISTENCE LEMMA)

If T is consistent, then I has a model

PROOF.

Check the construction of the standard model in the proof of Lemma
4.1.11 in Van Dalen: Logic and Structure.
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COMPLETENESS THEOREM

LEMMA 23 (MODEL EXISTENCE LEMMA)

If T is consistent, then I has a model

PROOF.

Check the construction of the standard model in the proof of Lemma
4.1.11 in Van Dalen: Logic and Structure.
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=@ implies [ - ¢

A. MADEIRA EL2324 JUNE 13, 2025 58 /59



SOUNDNESS AND COMPLETENESS

COMPLETENESS THEOREM

LEMMA 23 (MODEL EXISTENCE LEMMA)

If T is consistent, then I has a model

PROOF.

Check the construction of the standard model in the proof of Lemma
4.1.11 in Van Dalen: Logic and Structure.

DJ
THEOREM 24 (COMPLETENESS THEOREM)
=@ implies [ - ¢
PRrOOF.
Exercise 27. U

A. MADEIRA EL2324 JUNE 13, 2025 58 /59



SOUNDNESS AND COMPLETENESS

REFERENCES

The presentation of First-Order Logic done in this set of slides was based
in the book

fl

Logicand Structure

Fifth Edition

&) Springer

that is strongly recommended for the preparation of this course.
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