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Syntax of Propositional Logic

Formulæ

Definition 1 (Set of propositional formulas)

Let Prop “ tp0, p1, p2, . . . u be a countable set of propositions (or propositional
variables). The set of propositional formulas is the smallest set FmpPropq with
the following properties:

K P FmpPropq

for any pi P Prop, pi P FmpPropq

for any φ P FmpPropq, p␣φq P FmpPropq

for any φ,φ1 P FmpPropq, pφ^ φ1q P FmpPropq

for any φ,φ1 P FmpPropq, pφ_ φ1q P FmpPropq

for any φ,φ1 P FmpPropq, pφÑ φ1q P FmpPropq

for any φ,φ1 P FmpPropq, pφØ φ1q P FmpPropq

A. Madeira EL2324 January 21, 2026 3 / 53



Syntax of Propositional Logic

Induction over formulas

Using the structure of formulas we can do inductive
proofs

Let A be a property, then Apφq holds for all φ P FmpPropq if

1 Appi q, for any pi P Prop and ApKq

2 Apφq implies App␣φqq

3 Apφq and Apφ1q implies that Appφ ‹ φ1qq, ‹ P t^,_,Ñ,Øu

Exercise 1

The number of brackets in any φ P FmpPropq is even.
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Syntax of Propositional Logic

Recursion over formulas

Using the structure of formulas we can make recursive defs

Let mapping HProp : PropY tKu Ñ A, H␣ : AÑ A and H‹ : Aˆ AÑ A with
‹ P t^,_,Ñ,Øu. Then, there exists exactly one mapping F : FmpPropq Ñ A
such that:

1 F ppi q “ HPropppi q, for any pi P Prop and F pKq “ HProppKq

2 F pp␣φqq “ H␣pF pφqq and

3 F ppφ ‹ ψqq “ H‹pF pφq,F pψqq

Exercise 2

Recursively define functions to:

1 the number of bracket occuring in a formula

2 determine the number of propositions occurring in a formula

3 determine the set of propositions occurring in a formula

4 determine the number of connectives occurring in a formula
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Syntax of Propositional Logic

Sub-formulas

Definition 2

Let φ P FmpPropq. The set of sub-formulas of φ is the smallest set
defined as follows:

if φ “ pi P Prop, Subpφq “ tφu

if φ “ ␣ψ, Subpφq “ t␣ψu Y Subpψq

if φ “ ψ ‹ ψ1, ‹ P t^,_,Ñ,Øu,
Subpφq “ tψ ‹ ψ1u Y Subpψq Y Subpψ1q

We say that ψ is a sub-formula of φ if ψ P Subpφq
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Syntax of Propositional Logic

Exercises

Exercise 3

Determine Subp␣pr Ñ pp ^ qqqq

Exercise 4

Show that the relation “is a subform of” is:

reflexive

transitive

Exercise 5

Show that any formula with n connectives has at most 2n ` 1
sub-formulas.
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Semantics of PL

Let us recall...Truth Tables

How to interpret Boolean Operators

negation:
␣

0 1
1 0

disjunction:
_ 0 1
0 0 1
1 1 1

conjunction:
^ 0 1
0 0 0
1 0 1

implication:
Ñ 0 1
0 1 1
1 0 1

equivalence:
Ø 0 1
0 1 0
1 0 1

This is enough to interpret any φ P FmpPropq:

p q p ^ q pp ^ qq Ñ p
1 1 1 1
1 0 0 1
0 1 0 1
0 0 0 1
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Semantics of PL

Truth tables

Exercise 6

Develop the truth table of the following formulas

pp _ qq _ r Ø p _ pq _ rq

␣ppp _ qq _ rq Ñ pq _ rq

. . .
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Semantics of PL

Valuations and Interpretations

Definition 3

A valuation is a function v : PropÑ t0, 1u. Given a valuation v , the
v-interpretation is the function

J¨Kv : FmpPropq Ñ t0, 1u

such that:

JKKv “ 0

for any p P Prop, JpKv “ vppq

J␣φKv “ 1´ JφKv
Jφ_ ψKv “ maxpJφKv , JψKv q
Jφ^ ψKv “ minpJφKv , JψKv q
JφÑ ψKv “ 0 iff JφKv “ 1 and JψKv “ 0

JφØ ψKv “ 1 iff JφKv “ JψKv
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Semantics of PL

Valuations and Interpretations

Back to the truth tables

p q p ^ q pp ^ qq Ñ p

v1 1 1 1 1

v2 1 0 0 1

v3 0 1 0 1

v4 0 0 0 1

Each line of the table corresponds to a valuation vi .

For instance, for line 1 we have the valuation v1 such that
v1ppq “ v1pqq “ 1. Hence, in the last column Jpp ^ qq Ñ pKv1 “ 1
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Semantics of PL

Valuations and Interpretations

Theorem 4

Let v and v 1 two valuations and φ P FmpPropq. If, vppq “ v 1ppq for any
proposition p occurring φ, we have that JφKv “ JφKv 1 .

For instance:

p ␣p p ^␣p

1 0 0

0 1 0

p q ␣p p ^␣p

1 1 0 0

0 1 1 0

1 0 0 0

0 0 1 0
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Semantics of PL

Tautologies and contradictions

Definition 5

A formula φ is a:

tautology if, for any valuation v , JφKv “ 1

contradiction if, for any valuation v , JφKv “ 0

A tautology and a contradiction

p q p ^ q pp ^ qq Ñ p

1 1 1 1

1 0 0 1

0 1 0 1

0 0 0 1

p ␣p p ^␣p

1 0 0

0 1 0

A. Madeira EL2324 January 21, 2026 14 / 53



Semantics of PL

Semantic consequence

Definition 6

Let Γ Ď FmpPropq be a set of propositional formulas and φ P FmpPropq
be a formula. We say that φ is a semantic consequence of Γ, in symbols

Γ |ù φ

if for any valuation v :
if for all γ P Γ, JγKv “ 1 implies that JφKv “ 1

Notation

we write φ0, . . . φn |ù φ to denote tφ0, . . . φnu |ù φ

we write |ù φ to denote H |ù φ hence, |ù φ iff φ is a tautology
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Semantics of PL

Semantic Consequence

Exercise 7

Check that

φ,ψ |ù φ^ ψ

φ,φÑ ψ |ù ψ

φÑ ψ,␣ψ |ù ␣φ

|ù φÑ φ

Exercise 8

Show that
φ |ù φ
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Semantics of PL

Semantic Consequence

Exercise 9

Show that:
if φ |ù ψ and ψ |ù γ, then φ |ù γ

Exercise 10

Show that

|ù φÑ ψ iff φ |ù ψ

Exercise 11

Show that

JφÑ ψKv “ 1 iff JφKv ď JψKv

A. Madeira EL2324 January 21, 2026 17 / 53



Semantics of PL

Semantic Consequence

Exercise 12 (Alternative presentation of interpretation of
formulas)

Show that:

Jφ^ ψKv “ JφKv ¨ JψKv
Jφ_ ψKv “ JφKv ` JψKv ´ JφKv ¨ JψKv
JφÑ ψKv “ 1´ JφKv ` JφKv ¨ JψKv
JφØ ψKv “ 1´ |JφKv ´ JψKv |
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Semantics of PL

Semantic Consequence

Exercise 13 (Neller, Markov, Russel. Clue Deduction:
Professor Plum Teaches Logic (2016) )

Suppose that liars always speak what is false, and truth-tellers always
speak what is true. Further suppose that Amy, Bob, and Cal are each
either a liar or truth-teller. Amy says, “Bob is a liar.” Bob says, “Cal is a
liar.” Cal says, “Amy and Bob are liars.” Which, if any, of these people are
truth-tellers?
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Semantics of PL

Semantic Consequence

Exercise 14 (Logic in Action. van Benthem et al. 2016)

You want to throw a party, respecting people’s incompatibilities. You
know that:

John comes if Mary or Ann comes.

Ann Comes if Mary does not come.

If Ann comes, John does not.

Can you invite people under these constraints?
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Semantics of PL

Properties of Propositional Logic

Exercise 15

Prove or refute that the following formulas are tautologies:

pp _ qq _ r Ø p _ pq _ rq

pp ^ qq ^ r Ø p ^ pq ^ rq

p _ q Ø q _ r

p ^ q Ø q ^ p

p _ pq ^ rq Ø pp _ qq ^ pp _ rq

p ^ pq _ rq Ø pp ^ qq _ pp ^ rq

␣pp ^ qq Ø ␣p _␣q

␣pp _ qq Ø ␣p ^␣q

q Ñ p ^ q

p ^ q Ñ q

␣␣p Ø p
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Semantics of PL

Substitution Lemma

Substitutions in propositional formulas

φrψ{ps “

$

’

’

’

’

&

’

’

’

’

%

φ if φ P Prop and φ ‰ p

ψ if φ P Prop and φ “ p

␣φ1rψ{ps if φ “ p␣φ1q

φ1rψ{ps ‹ φ2rψ{ps if φ “ φ1 ‹ φ2

Theorem 7 (Substitution Theorem)

Let p P Prop and φ1, φ2, ψ P FmpPropq.
If |ù φ1 Ø φ2, then |ù ψrφ1{ps Ø ψrφ2{ps
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Semantics of PL

Properties of Propositional Logic

Exercise 16
Prove or refute the following formulas are tautologies:

pφ_ ψq _ γ Ø φ_ pψ _ γq

pφ^ ψq ^ γ Ø φ^ pψ ^ γq

φ_ ψ Ø ψ _ φ

φ^ ψ Ø ψ ^ φ

φ_ pψ ^ γq Ø pφ_ ψq ^ pφ_ γq

φ^ pψ _ γq Ø pφ^ ψq _ pφ^ γq

␣pφ^ ψq Ø ␣φ_␣ψ

␣pφ_ ψq Ø ␣φ^␣ψ

φ_ φØ φ

φ^ ψ Ñ φ

␣␣φØ φ
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Semantics of PL

Other connective systems

As is well known, the set of connectives t␣,_,^,Ñ,Øu is not
minimal,
is not minimal, in the sense that a proper subset of these connectives
suffices to define the logic without any loss of expressivity.

For instance, using t␣,^u we can introduced the other connectives
by abbreviations:

φ_ ψ ” ␣p␣φ^␣ψq
φÑ ψ ” ␣φ_ ψ
. . . pExerciseq
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Semantics of PL

Other connective systems

Exercise 17

Show that the Sheaffer Stroke connective

| 0 1

0 1 1

1 1 0

is a enough to

represent propositional logic.

Theorem 8

For each n-ary connective ‹ defined by its valuation, there is a formula τ ,
containing only p1, . . . , pn, _ and ␣, such that |ù τ Ø ‹pp1, . . . , pnq

Proof.

See van Dalen Theorem 1.3.
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Natural Deduction Calculus

Semantics Consequences Vs Derivations

Using the introduced semantics we have a way to interpret propositional
formulas and to check consequences

Γ |ù φ

Now, we will introduce a set of rules to make derivations:

Γ $ φ

At the end we will prove their soundness:

Γ $ φ implies Γ |ù φ

and their completeness

Γ |ù φ implies Γ $ φ
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Natural Deduction Calculus

Natural Deduction CalculæStyle

There are different styles of calculus to derive

Γ $ φ

In this course we will use a Natural Deduction Calculus constituted by a
set of rules of form

premisses

conclusions
*conditions* (rule name)

Hence, a proof of Γ $ φ consists of a three rooted in φ and which leafs are
γ P Γ
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Natural Deduction Calculus

Natural Deduction Rules

Definition 9

Let φ,φ1, . . . , φn P FmpPropq. A (natural deduction) inference rule is
an expression

ψ1 . . . ψn

φ
.

Formulas ψi are the premisses or assumptions and φ is the conclusion

Example: the modus ponens rule

ψ ψ Ñ φ

φ
.

Hence, ψ,ψ Ñ φ $ φ
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Natural Deduction Calculus

Natural Deduction Rules

Some assumptions may be discharged

If I have

φ

D
ψ

we conclude that, assuming that φ is true, then ψ holds,
i.e. φ $ ψ.
But, hence

rφs

D
ψ

IÑφÑ ψ

we can conclude φÑ ψ without any assumption, i.e.
$ φÑ ψ
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Natural Deduction Calculus

Natural Deduction Rules

Derivations

A derivation of a formula φ from assumptions Γ is a finite tree of
formulas satisfying the following conditions:

1 The topmost formulas of the tree are either in Γ or are discharged by
an inference in the tree.

2 The bottommost formula of the tree is φ.

3 Every formula in the tree except the sentence φ at the bottom is a
premise of a correct application of an inference rule whose conclusion
stands directly below that formula in the tree.

We then say that φ is the conclusion of the derivation and Γ its
undischarged assumptions.
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Natural Deduction Calculus

Inference Rules

Conjunction rules

Introduction
φ ψ

φ^ ψ
pI^q

Elimination
φ^ ψ

φ
pE^q

φ^ ψ

ψ
pE^q

Disjunction rules

Introduction φ

φ_ ψ
pI_q

φ

ψ _ φ
pI_q

Elimination

rθs

D
φ

rψs

D
φ θ _ ψ

pE_qφ
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Natural Deduction Calculus

Inference Rules

Implication rules

Introduction

rφs

D
ψ

pIÑq
φÑ ψ

Elimination

φ φÑ ψ
pEÑq

ψ
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Natural Deduction Calculus

Inference Rules

Negation Rules

Introduction

rφs

D
K

pI␣q␣φ

Elimination

r␣φs

D
K

pE␣qφ
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Natural Deduction Calculus

Inference Rules

Bottom rules

Introduction

φ ␣φ
pIKq

K

Elimination

K
pEKqφ
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Natural Deduction Calculus

Natural Deduction Rules

Introduction Rules Elimination Rules

^
ψ φ

ψ ^ φ

ψ ^ φ

ψ

ψ ^ φ

φ

rψs rφs
D D

_
ψ

ψ _ φ

φ

ψ _ φ

ψ _ φ ξ ξ

ξ

rψs
D

Ñ
φ

ψ Ñ φ

ψ ψ Ñ φ

φ

rψs r␣ψs
D D

␣
K

␣ψ

K

ψ

K
␣φ φ

K

K

φ
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Natural Deduction Calculus

Examples

i) $ φÑ φ

rφs1
(Ñ int 1) φÑ φ

ii) $ pφ_ φq Ñ φ

rφs1 rφs1 rφ_ φs2
(_ elim 1) φ

(Ñ int 2) φ_ φÑ φ
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Natural Deduction Calculus

Examples

iii) $ pφÑ pψ Ñ ξqq Ñ ppφÑ ψq Ñ pφÑ ξqq

rφÑ pψ Ñ ξqs1 rφs2
(Ñ elim)

ψ Ñ ξ

rφs2 rφÑ ψs3

ψ
(Ñ elim)

ξ
(Ñ int 2)

φÑ ξ
(Ñ int 3)

pφÑ ψq Ñ pφÑ ξq
(Ñ int 1)

pφÑ pψ Ñ ξqq Ñ ppφÑ ψq Ñ pφÑ ξqq
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Natural Deduction Calculus

Exercises

Exercise 18

Prove that:

1 $ φÑ pψ Ñ φq

2 $ φÑ p␣φÑ ψq

3 $ pφÑ ψq Ñ rpψ Ñ σq Ñ pφÑ σqs

4 $ p␣ψ Ñ ␣φq Ñ pφÑ ψq

5 $ pφÑ ψq Ñ p␣ψ Ñ ␣φq

6 $ ␣␣φÑ φ

7 $ φÑ ␣␣φ

8 $
`

pφ^ ψq Ñ σ
˘

Ñ
`

φÑ pψ Ñ σq
˘
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Natural Deduction Calculus

Exercises

Exercise 19

1 α, θ $ β Ñ
`

pα^ βq ^ pα^ θq
˘

2 θ $ αÑ
`

β Ñ
`

pα^ βq ^ pα^ θq
˘˘

3 $ θ Ñ
`

αÑ
`

β Ñ
`

pα^ βq ^ pα^ θq
˘˘˘

Exercise 20

1 αÑ β, β Ñ θ $ αÑ θ

2 α^ β $ β ^ α
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Natural Deduction Calculus

Exercises

Exercise 21

Conclude the the following derivation justifying all the steps involved:
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Natural Deduction Calculus

Exercises

Exercise 22

Conclude the the following derivation justifying all the steps involved:
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Natural Deduction Calculus

Exercises

Exercise 23

Conclude the the following derivation justifying all the steps involved:
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Soundness and Completeness

Back to the motivations

We studied two ways to infer in Propositional Calculus:

Using Semantics
Γ |ù φ

Using Calculus
Γ $ φ

In this section we will prove

that |ù and $ are equivalent, in the sense that

Soundness Γ $ φ implies that Γ |ù φ

Completeness Γ |ù φ implies that Γ $ φ

A. Madeira EL2324 January 21, 2026 45 / 53



Soundness and Completeness

Soundness

Theorem 10

Γ $ φ implies that Γ |ù φ

Proof.

Exercise: use induction on the structure of derivations.
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Soundness and Completeness

Consistent set of formulas

Definition 11

Let Γ Ď FmpPropq a set of propositional formulas. The set Γ is
consistent if Γ & K

Lemma 12

The following three conditions are equivalent:

1 Γ is consistent

2 There is no φ such that Γ $ φ and Γ $ ␣φ

3 There is at least a φ such that Γ & φ
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Soundness and Completeness

Consistent set of formulas

Exercise 24

If there is a valuation v such that JγKv “ 1, for any γ P Γ, then Γ is
consistent.

Exercise 25

If ΓY t␣φu is inconsistent, then Γ $ φ

If ΓY tφu is inconsistent, then Γ $ ␣φ
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Soundness and Completeness

Maximal consistent set of formulas

Definition 13

A set Γ is maximally consistent iff

(i) Γ is consistent

(ii) for any Γ1 consistent, if Γ Ď Γ1 then Γ “ Γ1

A. Madeira EL2324 January 21, 2026 49 / 53



Soundness and Completeness

Maximal consistent set of formulas

Lemma 14

Each consistent set of formulas Γ is contained in a maximally consistent set of formulas Γ˚

Proof.

Hint: we recursively construct such set. In order to do that we use the fact that FmpPropq is
countable (since Prop is countable as well).

Lemma 15

If Γ is maximally consistent, then

Γ $ φ implies φ P Γ

Lemma 16

Let Γ be a maximally consistent set of formulas. Then

for all φ, either φ P Γ or ␣φ P Γ

for all φ,ψ,
pφÑ ψ P Γq iff pφ P Γ implies that ψ P Γq
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Soundness and Completeness

Completeness

Corollary 17

If Γ is maximally consistent, then

φ P Γ iff ␣φ R Γ and

␣φ P Γ iff φ R Γ

Lemma 18

If Γ is consistent, then there exists a valuation v such that JγKv “ 1 for
any γ P Γ.

Corollary 19

Γ & φ iff there is a valuation v such that JγKv “ 1, for any γ P Γ and
JφKv “ 0.
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Soundness and Completeness

Completeness

Theorem 20

Γ |ù φ implies that Γ $ φ

Finally, the Natural Deduction Calculus for Propositional Logic is sound
and complete

Corollary 21

Γ |ù φ iff Γ $ φ
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Soundness and Completeness

Soundness and Completness of Propositional
Logic

Corollary 22

Γ |ù φ iff Γ $ φ
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