ELEMENTS OF LocGIc 2024/25
INTUITIVE SET THEORY

EL 2024 /25
Department of Mathematics, University of Aveiro
Alexandre Madeira
(madeira@ua.pt)

March 18, 2025

A. MADEIRA EL2425 MARCH 18, 2025 1/69



SETS

OUTLINE

@ SETS

A. MADEIRA EL2425 MARCH 18, 2025 2 /69



SETS

SETS

o Informally: a set is a collection of objects, considered as a single
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o Informally: a set is a collection of objects, considered as a single
object.
o The objects that constitute a set are called elements or members of
the set. We write
o x € aif x is an element of set a;
o and x ¢ a, if not
o () is the set with no elements.
o A set, itself, may be an element of some other set
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SETS

SETS

Informally: a set is a collection of objects, considered as a single
object.
The objects that constitute a set are called elements or members of
the set. We write

o x € aif x is an element of set a;

o and x ¢ a, if not

©

©

(/) is the set with no elements.

©

A set, itself, may be an element of some other set

©

©

Actually, for mathematical purposes no other elements need
ever be considered!
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o It does not matter how we specify the set, how we order its elements,
or how many times we count its elements. All that matters are
what its elements are.
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DEFINITION 1 (EXTENSIONALITY)

If A and B are sets, then A = B iff every element of A is also a element
of B, and vice versa.
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o It does not matter how we specify the set, how we order its elements,
or how many times we count its elements. All that matters are
what its elements are.

DEFINITION 1 (EXTENSIONALITY)

If A and B are sets, then A = B iff every element of A is also a element
of B, and vice versa.

EXAMPLE 2

{1,2,3} = {2,3,1} = {3,1,2,1,2,3} = ...
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SETS

SETS

o It does not matter how we specify the set, how we order its elements,

or how many times we count its elements. All that matters are
what its elements are.

DEFINITION 1 (EXTENSIONALITY)

If A and B are sets, then A = B iff every element of A is also a element
of B, and vice versa.

EXAMPLE 2

{1,2,3} = {2,3,1} = {3,1,2,1,2,3} = ...

To SEE THAT A= B

check that
o for any a€ A, we have a € B; and
o for any be B, we have be A

v
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SETS
DEFINING SETS

DEFINITION BY EXTENSION

o A=1{a1,a,....a,}, for sets with finite number of elements

0 A= {a1,a,...}, for sets with infinite number of elements
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DEFINITION BY EXTENSION
o A=1{a1,a,....a,}, for sets with finite number of elements

0 A= {a1,a,...}, for sets with infinite number of elements

The set A is constituted by the elements x such that satisfies the property ¢
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SETS

DEFINING SETS

DEFINITION BY EXTENSION
0 A={a,a,..., a,}, for sets with finite number of elements

0 A= {a1,a,...}, for sets with infinite number of elements

The set A is constituted by the elements x such that satisfies the property ¢

EXERCISE 1

Define by comprehension the sets:

o A={2,46,...},

o B ={a}, and
o C={
A. MADEIRA EL2425 MARCH 18, 2025




SETS

SUBSETS OF A SET

DEFINITION 3 (SUBSET)

If every element of a set A is also an element of B, then we say that A is a
subset of B, and write A < B. If Ais not a subset of B we write A¢ B. If
A< B but A # B, we write A< B and say that A is a proper subset of B.

EXAMPLE 4
o {a,b} < {a, b}, and {a,b} < {a,b,c}
o < A, for any set A

HENCE:
A=Biff A Band BC A.

EXERCISE 2

Prove that there is at most one empty set, i.e., show that if A and B are sets
without elements, then A = B.
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SETS

SOME WELL KNOWN SETS

N=1{0,1,2,3,...}
the set of natural numbers
Z={.,-2,-1,0172,...}
the set of integers
@={%|m,neZandn7&0}
the set of rationals
R = (-, )

the set of real numbers (the continuum)
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SETS

SOME WELL KNOWN SETS

N=1{0,1,2,3,...}
the set of natural numbers
Z={.,-2,-1,0172,...}
the set of integers
Q={%|m,neZandn;«éO}
the set of rationals
R = (-, )

the set of real numbers (the continuum)

EXAMPLE 5 J
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SETS

SOME WELL KNOWN SETS

FINITE STRINGS ON B

B* = {¢,0,1,00,01,10, 11,
000,001,010, 011, 100, 101, 110, 111, 0000, . .. }.

INFINITE STRINGS ON A SET B

Bw={b1b2-~'|b,'€B,l'€N}
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SETS
BAsic OPERATIONS ON SETS

If Ais a set of sets, then UA is the set of elements of elements of A:
UA: {x | there is a B € A so that x € B}
(1A= {x|forall Be A xe B}

For a sequence of sets Ay, Ay, ...
UA,- = {x | x belongs to one of the A;}

ﬂA,- = {x | x belongs to every A;}.

For a property ¢,

U x=Ux et}

w(x)

() x = )ix| e}
w(x)
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SETS

BAsic OPERATIONS ON SETS

EXERCISE 3

Let us consider the well known opertions of binary union of two sets A and B:
AuB={x|xeAvxeB}

and of binary intersection of two sets A and B
AnB={x|xeAnxeB}

Show that they can be expressed by the union and intersection operators of a set.
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SETS

EXERCISES

EXERCISE 4
Show that:

@ ifAC B, then Au B =B.
@ ifAcC B, then An B = A.
@ ifA< B, then B\A # .
@ ifAisasetand Ae B, then A |JB.
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SETS

EXERCISES

EXERCISE 4
Show that:

@ ifAC B, then Au B =B.
@ ifAcC B, then An B = A.
@ ifA< B, then B\A # .
@ ifAisasetand Ae B, then A |JB.

EXERCISE 5
Suppose s = {{a, b}, {a,d, e}, {a, d}}. Determine|Js and (s
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SETS

EXERCISES

EXERCISE 6
Q UXEA X = U A
@ mxeA X = ﬂ A

@ Ulx} =x
@ N{x}=x

@ Usepx=s
@ Meeisyx=s
o Ug=9

@ UXGQXZQ
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SETS

POWERSET OF A SET

DEFINITION 6 (POWER SET)
The set consisting of all subsets of a set A is called the power set of A, written

P(A).
P(A) = {B|Bc A}

EXAMPLE 7
P({a, b, c})
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SETS

POWERSET OF A SET

DEFINITION 6 (POWER SET)
The set consisting of all subsets of a set A is called the power set of A, written

P(A).
P(A) = {B|Bc A}

EXAMPLE 7

P({a, b, c})={,{a}, {b}, {c}, {a, b}, {b, c},{a, c}, {a, b, c}} )
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SETS

POWERSET OF A SET

EXERCISE 7
@ Determine P({a, b, c,d})
@ Determine P()
@ Determine P({})
@ Let X and Y be two sets. Prove or refute the following statements:

o X C Y iffP(X) < P(Y)
o PX)nP(Y)=P(XAY)
o P(X)UP(Y)=P(XUY)

@ Show that if A has n elements, then P(A) has 2"
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SETS

ORDERED PAIRS AND CARTESIAN PRODUCTS

In sets the order on the enumeration of members is irrelevant:
{x.y} ={y.x}
However, we need also to lead with ordered pairs, where:

if x # y then (x,y) # (v, x)

How should we deal with ordered pairs in set theory?
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SETS

ORDERED PAIRS AND CARTESIAN PRODUCTS

How should we deal with ordered pairs in set theory?
IDENTITY OF PAIRS J

(a,b) = (c,d) iffa=cand b=d.
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SETS

ORDERED PAIRS AND CARTESIAN PRODUCTS

How should we deal with ordered pairs in set theory?

IDENTITY OF PAIRS

(a,b) = (c,d) iffa=cand b=d.

DEFINITION 8 (ORDERED PAIR)

(a,0) = {{a}, {a, b}}

DEFINITION 9 (CARTESIAN PRODUCT)
Given sets A and B, their Cartesian product A x B is defined by

Ax B={(x,y)|xeAand ye B}.
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SETS

ORDERED PAIRS AND CARTESIAN PRODUCTS

EXERCISE 8
@ Prove that

o (a,b) =(c,d) iffa=candb=d.
o Ulx,y) = {x,v} and (N(x,y) = {x}

@ How can we deal with tuples (ay,...,a,)?
@ Let A be a set. List the elements of the set A x (&
@ Consider the following recursive definition:
Al = A
AL = AF A
List the elements of the set {1,2,3}3

® Prove: “If A has n elements and B has m elements, then A x B has n-m
elements”

4
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SETS

ORDERED PAIRS AND CARTESIAN PRODUCTS

EXERCISE 9

Consider the following operator:

<<a,bc>>= {{a}a {aa b}, {aa b, C}}

Comment the statement:

<< a,b,c>>=<<x,y,z>> iffa=x,b=yandc=z

EXERCISE 10

Consider the following operator:

((a,b)) = {{b},{a, b}}

Comment the statement:

((2,6)) = ((x,)) iffa=x and b=y
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SETS

SET THEORY IS A VERY SENSITIVE ISSUE...

Do all the properties ¢ define a set?
i.e. {x|@(x)} is a set, for any property ©?
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i.e. {x|@(x)} is a set, for any property ©?

For a given ¢, the set {x | ¢(x)} is unique, if it exists.

RUSSELL’S PARADOX
There exists a set R = {x | x ¢ x} ? J

If R ={x| x ¢ x} exists, then R € R iff R ¢ R, which is a contradiction.
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Do all the properties ¢ define a set?
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For a given ¢, the set {x | ¢(x)} is unique, if it exists.

RUSSELL’S PARADOX
There exists a set R = {x | x ¢ x} ? J

If R ={x| x ¢ x} exists, then R € R iff R ¢ R, which is a contradiction.

In order to avoid such kind of contradictions, Zermelo-Fraenkel intro-
duced an axiomatics for sets
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SETS

SET THEORY IS A VERY SENSITIVE ISSUE...

Do all the properties ¢ define a set?
i.e. {x|@(x)} is a set, for any property ©?

For a given ¢, the set {x | ¢(x)} is unique, if it exists.

RUSSELL’S PARADOX
There exists a set R = {x | x ¢ x} ? J

If R ={x| x ¢ x} exists, then R € R iff R ¢ R, which is a contradiction.

In order to avoid such kind of contradictions, Zermelo-Fraenkel intro-
duced an axiomatics for sets

Namely, it shall be able to answer the questions:
o What are sets?

o What sets exist?
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SETS
ZERMELO-FRAENKEL (ZF) AXIOMATICS

EXTENSIONALITY
Vx.vy.[x =yoVz(zexo ze y)}
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SETS
ZERMELO-FRAENKEL (ZF) AXIOMATICS

EXTENSIONALITY
VxVy[x =y o Vz(zex o zey)]

REPLACEMENT for ¢(x,y) such that Vx.Vy.Vz.[o(x,y) A ¢(x,z) = y = z],
we have
VzIxVy.[y € x & Jue z.p(u,y)]
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SETS
ZERMELO-FRAENKEL (ZF) AXIOMATICS

EXTENSIONALITY
VxVy[x =y o Vz(zex o zey)]

REPLACEMENT for ¢(x, y) such that Vx.Vy.Vz.[o(x,y) A o(x,2) > y = z],

we have
VzIxVy.[y € x & Jue z.p(u,y)]
UNION
Vz3Ax.[Vy.(y € x & Jue z.(y € u))]
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SETS
ZERMELO-FRAENKEL (ZF) AXIOMATICS

EXTENSIONALITY
VxVy[x =y o Vz(zex o zey)]

REPLACEMENT for ¢(x, y) such that Vx.Vy.Vz.[o(x,y) A o(x,2) > y = z],

we have
VzIxVy.[y € x & Jue z.p(u,y)]
UNION
Vz3Ax.[Vy.(y € x & Jue z.(y € u))]
POWERSET
Vz3x.[Vy.(y € x & y S z)]
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SETS
ZERMELO-FRAENKEL (ZF) AXIOMATICS

EXTENSIONALITY
VxVy[x =y o Vz(zex o zey)]

REPLACEMENT for ¢(x,y) such that Vx.Vy.Vz.[o(x,y) A ¢(x,z) = y = z],
we have
Vz.3x.Vy.ly € x & Ju e z.p(u,y)]

UNION
Vz3Ax.[Vy.(y € x & Jue z.(y € u))]
POWERSET
Vz3x.[Vy.(y € x & y S z)]
INFINITE

Ix.[FexnVyex(yu{y}ex)]
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SETS
ZERMELO-FRAENKEL (ZF) AXIOMATICS

EXTENSIONALITY
VxVy[x =y o Vz(zex o zey)]

REPLACEMENT for ¢(x,y) such that Vx.Vy.Vz.[o(x,y) A ¢(x,z) = y = z],

we have

Vz.3x.Vy.ly € x & Ju e z.p(u,y)]

UNION
Vz3Ax.[Vy.(y € x & Jue z.(y € u))]

POWERSET

Vz3x.[Vy.(y € x & y S z)]

INFINITE
Ix.[FexnVyex(yu{y}ex)]

REGULARITY
Ux.[x # J —3dyex.(ynx=J)]
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SETS

OBSERVATIONS ON ZF AXIOMATICS

o The axiomatic theory of sets is a complex issue usually object of a
complete UC

o there are in the literature other equivalent presentations of ZF
axiomatics

o it follows some observations about the introduced axioms
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SETS

OBSERVATIONS ON ZF AXIOMATICS

AXI0M OF EXTENSIONALITY

Two sets are equal iff they have the same elements

VxVy. [x =y o Vz.(zex o zey)]
Obs: Hence, A= B when for all x, xe Aiff xe B
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SETS

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF REPLACEMENT

As a consequence of this axiom (with the other ones) we can get the axiom of
separation:

For any property ¢,

VzxVy.[yex o yeznp(y)]

that is on the basis of definitions by comprehension
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SETS

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF REPLACEMENT

As a consequence of this axiom (with the other ones) we can get the axiom of
separation:

For any property ¢,

VzxVy.[yex o yeznp(y)]

that is on the basis of definitions by comprehension

EXERCISE 11

Show that this axiom assure the existence of
O an emptyset
o the intersection set of a set

o the difference set between two sets, i.e. the set A\B ={ac A|a¢ B}
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SETS

OBSERVATIONS ON ZF AXIOMATICS

Ax1ioMm oF UNION

Vz.3x.[Vy.(y € x < Jue z.(y € u))]
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SETS

OBSERVATIONS ON ZF AXIOMATICS

Ax1ioMm oF UNION

Vz.3x.[Vy.(yex < Jue z.(y € u))]

Obs: for any set of sets z, x = J z

A. MADEIRA EL2425
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SETS

OBSERVATIONS ON ZF AXIOMATICS

Ax1ioMm oF UNION

Vz3Ax.[Vy.(y e x < Jue z.(y € u))]
Obs: for any set of sets z, x = | Jz

AXIOM OF POWERSET

Vz.3x.[Vy.(y e x oy € z)]

A. MADEIRA EL2425
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SETS

OBSERVATIONS ON ZF AXIOMATICS

Ax1ioMm oF UNION

Vz3Ax.[Vy.(y e x < Jue z.(y € u))]

Obs: for any set of sets z, x = | Jz

AXIOM OF POWERSET
Vz.3x.[Vy.(y e x < y € z)]
Obs: for any z, we have x =P(z) = {y | y € z}
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SETS
OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF INFINITY
there exists a set X having infinitely many members

Ix.[FexnVyex(yu{y}ex)]
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SETS
OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF INFINITY

there exists a set X having infinitely many members

Ix.[FexAVyex.(yul{y}ex)]

Obs: this axiom assures the existence of infinite sets
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SETS
OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF INFINITY

there exists a set X having infinitely many members

Ix.[FexnVyex(yu{y}ex)]

Obs: this axiom assures the existence of infinite sets
Natural numbers (Von Neumann Ordinals):

0 =9
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SETS
OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF INFINITY

there exists a set X having infinitely many members

Ix.[FexnVyex(yu{y}ex)]

Obs: this axiom assures the existence of infinite sets
Natural numbers (Von Neumann Ordinals):

0 =g
1 ={J}
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SETS
OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF INFINITY

there exists a set X having infinitely many members

Ix.[FexnVyex(yu{y}ex)]

Obs: this axiom assures the existence of infinite sets
Natural numbers (Von Neumann Ordinals):

0 =g
={dJ}
2 ={z.{z}h
A. MADEIRA EL2425
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SETS
OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF INFINITY

there exists a set X having infinitely many members

Ix.[FexnVyex(yu{y}ex)]

Obs: this axiom assures the existence of infinite sets
Natural numbers (Von Neumann Ordinals):

0 =g
1 ={J}
2 ={z.{z}h
3 ={@.{g}{d.{T}}}
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SETS
OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF INFINITY

there exists a set X having infinitely many members

Ix.[FexnVyex(yu{y}ex)]

Obs: this axiom assures the existence of infinite sets
Natural numbers (Von Neumann Ordinals):

0 =9

1 ={J}

2 ={g{oh

3 ={@.{z}{z.{o}}}

A. MADEIRA EL2425 MARCH 18, 2025
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SETS

OBSERVATIONS ON ZF AXIOMATICS

AX10M OF REGULARITY

Vxlx # @ = Iy e xly nx = D)
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SETS

OBSERVATIONS ON ZF AXIOMATICS

AX10M OF REGULARITY

Vxlx # @ = Iy e xly nx = D)

EXERCISE 12

Check that this axiom implies that there are not descending infinite chains as
...X4 E X3 € x2 € x1 —I.e. the order € is well founded
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SETS

OBSERVATIONS ON ZF AXIOMATICS

AX10M OF REGULARITY

Vxlx # @ = Iy e xly nx = D)

EXERCISE 12

Check that this axiom implies that there are not descending infinite chains as
...X4 E X3 € x2 € x1 —I.e. the order € is well founded

EXERCISE 13

Check that this axiom implies that there is no a set x such that x € x, i.e.
Vx.(x ¢ x)

A. MADEIRA EL2425 MARCH 18, 2025

26 /69



SETS

OBSERVATIONS ON ZF AXIOMATICS

AX10M OF REGULARITY

Vxlx # @ = Iy e xly nx = D)

EXERCISE 12

Check that this axiom implies that there are not descending infinite chains as
...X4 E X3 € x2 € x1 —I.e. the order € is well founded

EXERCISE 13

Check that this axiom implies that there is no a set x such that x € x, i.e.
Vx.(x ¢ x)in particular x = {x} is not a set!
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OBSERVATIONS ON ZF AXIOMATICS

AX10M OF REGULARITY

Vxlx # @ = Iy e xly nx = D)
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Check that this axiom implies that there are not descending infinite chains as
...X4 E X3 € x2 € x1 —I.e. the order € is well founded

EXERCISE 13

Check that this axiom implies that there is no a set x such that x € x, i.e.
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SETS

OBSERVATIONS ON ZF AXIOMATICS

AX10M OF REGULARITY

Vx.[x # -3y ex.(y nx = )]

EXERCISE 12

Check that this axiom implies that there are not descending infinite chains as
...X4 E X3 € x2 € x1 —I.e. the order € is well founded

EXERCISE 13

Check that this axiom implies that there is no a set x such that x € x, i.e.
Vx.(x ¢ x)in particular x = {x} is not a set!

EXERCISE 14

Check that this axiom implies that there is no closed sequences x; € x; € -+ - € x1

v
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SETS

EXERCISES

EXERCISE 15
Check if the following sets are regular:

o {7 {2}, {{g}},.. -}
@ {a,{a},{{a}},.. .}
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SETS

EXERCISES

EXERCISE 15
Check if the following sets are regular:

o {7 {2}, {{g}},.. -}
@ {a,{a},{{a}},.. .}

EXERCISE 16
Given a set a let us consider the following construction:
0a’=a
o 2kl = 2k U {ak)
For a given k € N, check the regularity of:
@ &

Q@ g*
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SETS

EXERCISES

EXERCISE 17
Let A be a set. Then An {A} = .

EXERCISE 18

Consider the following operator:

[37 b] = {av {av b}}

Comment the statement:

[a,b] =[x,y] iffa=xand b=y
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SETS

AxioM OF CHOICE — AXioMATIC ZFC

THE AXIOM OF CHOICE (ZERMELO 1904)

“Given any (non-empty set) whose elements are pairwise disjoint non-empty sets,
there is a set which contains precisely one element from each set belonging to it"
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SETS

AxioM OF CHOICE — AXioMATIC ZFC

THE AXIOM OF CHOICE (ZERMELO 1904)

“Given any (non-empty set) whose elements are pairwise disjoint non-empty sets,
there is a set which contains precisely one element from each set belonging to it"
v

MORE FORMALLY:

Yy (Vuey
(usrJAWveylv#u— (unv=C))

—

(3zVue yw(zny = {w}))
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SETS

AxioM OoF CHOICE

THE AXIOM OF CHOICE (ALTERNATIVE FORMALISATION)

“Given any (non-empty) set x whose elements are non-empty sets, there is a
function f such that f(a) € a, for each a € x”

A. MADEIRA EL2425 MARCH 18, 2025 30/69



SETS

AxioM OoF CHOICE

THE AXIOM OF CHOICE (ALTERNATIVE FORMALISATION)

“Given any (non-empty) set x whose elements are non-empty sets, there is a
function f such that f(a) € a, for each a € x”

FORMALLY:

Vx [x # & — (El(f X — Ua).Va € x(f(a) e a))]

aEex
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SETS

AxioM OoF CHOICE

THE AXIOM OF CHOICE (ALTERNATIVE FORMALISATION)

“Given any (non-empty) set x whose elements are non-empty sets, there is a
function f such that f(a) € a, for each a € x”

FORMALLY:

Vx [x # & — (El(f X — Ua).Va € x(f(a) e a))]

aEex

EXERCISE 19
Let A= {{a},{b},{a, b}}. Enumerate the choice functions for A.

A. MADEIRA EL2425 MARCH 18, 2025 30/69



SETS

AxioM OoF CHOICE

THE AXIOM OF CHOICE (ALTERNATIVE FORMALISATION)

“Given any (non-empty) set x whose elements are disjoint non-empty sets, there
is a function f such that f(a) € a, for each a € x"
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SETS

AxioM OoF CHOICE

THE AXIOM OF CHOICE (ALTERNATIVE FORMALISATION)

“Given any (non-empty) set x whose elements are disjoint non-empty sets, there
is a function f such that f(a) € a, for each a € x"

o This function is called choice function

o What is more “controversial” in this axiom is the fact that we do not know
how to construct this function...
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SETS

AxioM OoF CHOICE

THE AXIOM OF CHOICE (ALTERNATIVE FORMALISATION)

“Given any (non-empty) set x whose elements are disjoint non-empty sets, there
is a function f such that f(a) € a, for each a € x"

o This function is called choice function
o What is more “controversial” in this axiom is the fact that we do not know

how to construct this function...

ANALOGY OF BERTRAND RUSSELL
o for an infinite set of pairs of shoes,

o
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AxioM OoF CHOICE

THE AXIOM OF CHOICE (ALTERNATIVE FORMALISATION)

“Given any (non-empty) set x whose elements are disjoint non-empty sets, there
is a function f such that f(a) € a, for each a € x"

o This function is called choice function

o What is more “controversial” in this axiom is the fact that we do not know
how to construct this function...

ANALOGY OF BERTRAND RUSSELL

o for an infinite set of pairs of shoes, one can pick out the left shoe from
each pair to obtain an appropriate set of shoes; this makes it possible to
define a choice function directly

o
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SETS

AxioM OoF CHOICE

THE AXIOM OF CHOICE (ALTERNATIVE FORMALISATION)

“Given any (non-empty) set x whose elements are disjoint non-empty sets, there
is a function f such that f(a) € a, for each a € x"

o This function is called choice function

o What is more “controversial” in this axiom is the fact that we do not know
how to construct this function...

ANALOGY OF BERTRAND RUSSELL

o for an infinite set of pairs of shoes, one can pick out the left shoe from

each pair to obtain an appropriate set of shoes; this makes it possible to
define a choice function directly

o For an infinite set of pairs of socks,

.
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SETS

AxioM OoF CHOICE

THE AXIOM OF CHOICE (ALTERNATIVE FORMALISATION)

“Given any (non-empty) set x whose elements are disjoint non-empty sets, there
is a function f such that f(a) € a, for each a € x"

o This function is called choice function

o What is more “controversial” in this axiom is the fact that we do not know
how to construct this function...

ANALOGY OF BERTRAND RUSSELL

o for an infinite set of pairs of shoes, one can pick out the left shoe from
each pair to obtain an appropriate set of shoes; this makes it possible to
define a choice function directly

o For an infinite set of pairs of socks, there is no obvious way to make a
function that forms a set out of selecting one sock from each pair
without invoking the axiom of choice

o
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SETS

AxioM OoF CHOICE

THIS IS A CONTROVERSIAL AXIOM
Apologists:

o Hilbert and Russel,... Poincaré (late)
Resistant:

o Borel, Lebesgue, ... Poincaré (ealier)
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SETS

AxioM OoF CHOICE

THIS IS A CONTROVERSIAL AXIOM
Apologists:

o Hilbert and Russel,... Poincaré (late)

Resistant:

o Borel, Lebesgue, ... Poincaré (ealier)

AXx1oM OF CHOICE IS QUITE USEFUL

o Equivalent to the Zorn Lemma

O we use it to prove that any vectorial Space has a basis

0 it is need to prove

o Compacity Theorem
o Completeness Theorem for First-order Logic
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SETS
AxioMm 0 CHOICE

HOWEVER, IT ENTAILS SOME “WEIRD” EFFECTS

o Assuming the Axiom of Choice we can prove:

‘Banach-Tarski

B B )
(N %@ TV AR
gt I

Given a solid ball in three-dimensional
| space, there exists a decomposition of the
| ball into a finite number of disjoint
| subsets, which can then be put back
together in a different way to yield two
| identical copies of the original ball
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TAXONOMY OF BINARY RELATIONS

OUTLINE

@ TAXONOMY OF BINARY RELATIONS
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TAXONOMY OF BINARY RELATIONS

BINARY RELATIONS

DEFINITION 10 (BINARY RELATION)

A binary relation on a set A is a set

BCAx A
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TAXONOMY OF BINARY RELATIONS

BINARY RELATIONS

DEFINITION 10 (BINARY RELATION)

A binary relation on a set A is a set

BCAx A

EXAMPLES

@ R={(n,m)|n,meN and n< m}
@ E={(n,m)|n>50rmxnz34}
® S={(AB)|A,Bc Uand Ac B}
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TAXONOMY OF BINARY RELATIONS

BINARY RELATIONS

EXERCISE 20
List the elements of the relation < on the set P({a, b, c}). J
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TAXONOMY OF BINARY RELATIONS

PROPERTIES OF BINARY RELATIONS

DEFINITION 11

Let A be a set. A relation RC Ax A'is

o reflexive
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DEFINITION 11

Let A be a set. A relation RC Ax A'is

o reflexive iff, for every x € A, (x,x) € R
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TAXONOMY OF BINARY RELATIONS

PROPERTIES OF BINARY RELATIONS

DEFINITION 11
Let A be a set. A relation RC Ax A'is
o reflexive iff, for every x € A, (x,x) € R

@ transitive
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TAXONOMY OF BINARY RELATIONS

PROPERTIES OF BINARY RELATIONS

DEFINITION 11
Let A be a set. A relation RC Ax A'is
o reflexive iff, for every x € A, (x,x) € R

o transitive iff, whenever (x,y) € R and (y,z) € R, then also (x,z) € R
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TAXONOMY OF BINARY RELATIONS

PROPERTIES OF BINARY RELATIONS

DEFINITION 11
Let A be a set. Arelation RS Ax Als
o reflexive iff, for every x € A, (x,x) € R
o transitive iff, whenever (x,y) € R and (y,z) € R, then also (x,z) € R

@ symmetric

A. MADEIRA EL2425 MARCH 18, 2025 37/69



TAXONOMY OF BINARY RELATIONS

PROPERTIES OF BINARY RELATIONS

DEFINITION 11
Let A be a set. Arelation RS Ax Als
o reflexive iff, for every x € A, (x,x) € R
o transitive iff, whenever (x,y) € R and (y,z) € R, then also (x,z) € R

o symmetric iff, whenever (x,y) € R, then also (y,x) € R
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TAXONOMY OF BINARY RELATIONS

PROPERTIES OF BINARY RELATIONS

DEFINITION 11

Let A be a set. Arelation RS Ax Als
o reflexive iff, for every x € A, (x,x) € R
o transitive iff, whenever (x,y) € R and (y,z) € R, then also (x,z) € R
o symmetric iff, whenever (x,y) € R, then also (y,x) € R

@ anti-symmetric
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TAXONOMY OF BINARY RELATIONS

PROPERTIES OF BINARY RELATIONS

DEFINITION 11

Let A be a set. Arelation RS Ax Als
o reflexive iff, for every x € A, (x,x) € R
o transitive iff, whenever (x,y) € R and (y,z) € R, then also (x,z) € R
o symmetric iff, whenever (x,y) € R, then also (y,x) € R

o anti-symmetric iff, whenever both (x,y) € R and (y,x) € R, then x =y

A. MADEIRA EL2425 MARCH 18, 2025 37/69



TAXONOMY OF BINARY RELATIONS

PROPERTIES OF BINARY RELATIONS

DEFINITION 11

Let A be aset. A relation RS Ax Ais
o reflexive iff, for every x € A, (x,x) € R
o transitive iff, whenever (x,y) € R and (y,z) € R, then also (x,z) € R
o symmetric iff, whenever (x,y) € R, then also (y,x) € R
o anti-symmetric iff, whenever both (x,y) € R and (y,x) € R, then x =y

@ connected
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TAXONOMY OF BINARY RELATIONS

PROPERTIES OF BINARY RELATIONS

DEFINITION 11

Let A be aset. A relation RS Ax Ais
o reflexive iff, for every x € A, (x,x) € R
o transitive iff, whenever (x,y) € R and (y,z) € R, then also (x,z) € R
o symmetric iff, whenever (x,y) € R, then also (y,x) € R
o anti-symmetric iff, whenever both (x,y) € R and (y,x) € R, then x =y

o connected if for all x,y € A, if x # y, then either (x,y) e Ror (y,x) e R
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PROPERTIES OF BINARY RELATIONS

DEFINITION 11
Let A be aset. A relation RS Ax Ais
o reflexive iff, for every x € A, (x,x) € R
o transitive iff, whenever (x,y) € R and (y,z) € R, then also (x,z) € R
o symmetric iff, whenever (x,y) € R, then also (y,x) € R
o anti-symmetric iff, whenever both (x,y) € R and (y,x) € R, then x =y
o connected if for all x,y € A, if x # y, then either (x,y) e Ror (y,x) e R
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TAXONOMY OF BINARY RELATIONS

PROPERTIES OF BINARY RELATIONS

DEFINITION 11
Let A be aset. A relation RS Ax Ais
o reflexive iff, for every x € A, (x,x) € R
o transitive iff, whenever (x,y) € R and (y,z) € R, then also (x,z) € R
o symmetric iff, whenever (x,y) € R, then also (y,x) € R
o anti-symmetric iff, whenever both (x,y) € R and (y,x) € R, then x =y
o connected if for all x,y € A, if x # y, then either (x,y) e Ror (y,x) e R

o irreflexive if, for all x € A, not (x,x) € R
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TAXONOMY OF BINARY RELATIONS

PROPERTIES OF BINARY RELATIONS

DEFINITION 11
Let A be aset. A relation RS Ax Ais
o reflexive iff, for every x € A, (x,x) € R
o transitive iff, whenever (x,y) € R and (y,z) € R, then also (x,z) € R
o symmetric iff, whenever (x,y) € R, then also (y,x) € R
o anti-symmetric iff, whenever both (x,y) € R and (y,x) € R, then x =y
o connected if for all x,y € A, if x # y, then either (x,y) e Ror (y,x) e R

o irreflexive if, for all x € A, not (x,x) € R

o asymmetric if for no pair x,y € A we have both (x,y) € R and (y,x) € R.

V.
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TAXONOMY OF BINARY RELATIONS

PROPERTIES OF BINARY RELATIONS

EXERCISE 21

Give examples of relations that are
@ reflexive and symmetric but not transitive
reflexive and anti-symmetric,

anti-symmetric, transitive but not reflexive, and

© © ¢

reflexive, symmetric, and transitive.
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TAXONOMY OF BINARY RELATIONS

PROPERTIES OF BINARY RELATIONS

DEFINITION 12

A relation RS Ax Ais a
o preorder if is both reflexive and transitive.
o partial order is a A preorder which is also anti-symmetric
o linear order is a partial order which is also connected

o strict order if it is irreflexive, asymmetric,

o equivalence if is is reflexive, symmetric and transitive
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TAXONOMY OF BINARY RELATIONS

PROPERTIES OF BINARY RELATIONS

EXERCISE 22
Classify the following relations wrt the properties of Definition 12:

o the identity relation lda € A x A, i.e, the relation Idy = {(a,a) | a € A}

the relation € on sets

©

©

the relation < in integers

o B*: x <y iff len(x) < len(y)

©

n | m iff there is some integer k so that m = kn
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TAXONOMY OF BINARY RELATIONS

EQUIVALENCE RELATIONS AND QUOTIENTS

DEFINITION 13

Let R € A x A be an equivalence relation. For each x € A, the equivalence class
of x in Ais the set [x]g = {y € A| (x,y) € R}. The quotient of A under R is
A/R = {[x]r | x € A}, i.e., the set of these equivalence classes.
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TAXONOMY OF BINARY RELATIONS

EQUIVALENCE RELATIONS AND QUOTIENTS

DEFINITION 13

Let R € A x A be an equivalence relation. For each x € A, the equivalence class

of x in Ais the set [x]g = {y € A| (x,y) € R}. The quotient of A under R is
A/R = {[x]r | x € A}, i.e., the set of these equivalence classes.

PROPOSITION 2.1
If R € A x A is an equivalence relation, then (x,y) € R iff [x]r = [y]r-

PRrROOF.
Exercise!
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TAXONOMY OF BINARY RELATIONS

EQUIVALENCE RELATIONS

EXERCISE 23
For any a, b, and n € N, say that a =, b iff dividing a by n gives the same
remainder as dividing b by n.

Show that =, is an equivalence relation, for any n € Z*, and that N/ =, has
exactly n members.
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TAXONOMY OF BINARY RELATIONS

THE ALGEBRA OF RELATIONS
DEFINITION 14
o Let A be a set. The identity in A is the relation ida € A x A defined by

ida = {(a,a) | a € A}

o Let R < A x B a relation. The converse of R is the relation

R® = {(b,a) | (a,b) € R}

o Let R Ax Band S € B x C two relations. The composition of R with
S is the relation R - S defined as follows

R-S={(a,c)|dbe B.(a,b) € R and (b,c) € S}

v
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TAXONOMY OF BINARY RELATIONS

THE ALGEBRA OF RELATIONS

EXERCISE 24
Let RS Ax B and S < B x C two relations. Show that:

@ RPCSIffRCSS®
@ RS SIifFRPCSS®
@ R°=R

@ (RnS)°=R°nS°
® (R-S)°=8S5°-R°
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TAXONOMY OF BINARY RELATIONS

THE ALGEBRA OF RELATIONS

Notions of Definition 14 can be used to characterize properties on relations:

EXERCISE 25
Note that for any R € A x A is reflexive iff idy € R.

o Analogously, for any relation R < A x A, characterize the notions of

e

transitivity,

@ symmetry,

@ anti-symmetry,
@ connectivity and
@ irreflexivity
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TAXONOMY OF BINARY RELATIONS

THE ALGEBRA OF RELATIONS

SOME SPECIAL RELATIONS
A relation R Ax B is

o Entire if
idi 2 R-R°
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TAXONOMY OF BINARY RELATIONS

THE ALGEBRA OF RELATIONS

SOME SPECIAL RELATIONS
A relation R Ax B is

o Entire if
idy € R-R°
o Simple if
R°-RC idg
V.
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TAXONOMY OF BINARY RELATIONS

THE ALGEBRA OF RELATIONS

SOME SPECIAL RELATIONS
A relation R Ax B is

o Entire if
idi 2 R-R°

o Simple if
R°-R < idg

EXERCISE 26

Using this definition, characterize the relations that are functions.
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TAXONOMY OF BINARY RELATIONS

THE ALGEBRA OF RELATIONS

EXERCISE 27 (MONOTONICITY)

Prove that for any relations R, S and T:
0 Sc T impliesthat S-R< T R
0 Sc T impliesthat R-S<cR- T
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TAXONOMY OF BINARY RELATIONS

THE ALGEBRA OF RELATIONS

EXERCISE 27 (MONOTONICITY)
Prove that for any relations R, S and T:

0 Sc T impliesthat S-R< TR
@ SC T impliesthat R-SCR-T

EXERCISE 28 (IDENTITY PRESERVATION)

Prove that for any relation R < A x B,
@ R=ids-R=R-idg
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TAXONOMY OF BINARY RELATIONS

THE ALGEBRA OF RELATIONS

EXERCISE 27 (MONOTONICITY)
Prove that for any relations R, S and T:

0 Sc T impliesthat S-R< TR
@ SC T impliesthat R-SCR-T

EXERCISE 28 (IDENTITY PRESERVATION)

Prove that for any relation R < A x B,
@ R=ids-R=R-idg

EXERCISE 29 (GALOIS CONNECTION)

Let R, f and S binary relations. Prove that, if f is a function,

R-fcSiffRcS.-f°

and
fC-RcCSiffRcCf-S
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TAXONOMY OF BINARY RELATIONS

THE ALGEBRA OF RELATIONS

DEFINITION 15
Kernel and Images of a relation Let R € A x B a relation. The

o Kernel of R is the relation Ker(R) € A x A that relates the elements in A
that share the same images under R
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TAXONOMY OF BINARY RELATIONS

THE ALGEBRA OF RELATIONS

DEFINITION 15
Kernel and Images of a relation Let R € A x B a relation. The

o Kernel of R is the relation Ker(R) € A x A that relates the elements in A
that share the same images under R , i.e.

Ker(R) =R -R°

o Image of R is the relation Img(R) € B x B relates the elements in B that
are images of same point under R
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TAXONOMY OF BINARY RELATIONS

THE ALGEBRA OF RELATIONS

DEFINITION 15
Kernel and Images of a relation Let R € A x B a relation. The

o Kernel of R is the relation Ker(R) € A x A that relates the elements in A
that share the same images under R , i.e.

Ker(R) = R-R°

o Image of R is the relation Img(R) € B x B relates the elements in B that
are images of same point under R, i.e.

Img(R) =R°-R
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TAXONOMY OF BINARY RELATIONS

THE ALGEBRA OF RELATIONS

EXERCISE 30
Prove that

o Rc S= Ker(R) < Ker(S)
o Rc S = Img(R) = Img(S)
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TAXONOMY OF BINARY RELATIONS

THE ALGEBRA OF RELATIONS

EXERCISE 31

Using the Kernel and Image relations, characterize the relations that are
o injective
o surjective
o entire and injective
o simple and surjective
o injective functions
o surjective functions

o bijections
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TAXONOMY OF BINARY RELATIONS

THE ALGEBRA OF RELATIONS

BINARY RELATION TAXONOMY 2

“from First Steps in Pointfree Functional Dependency Theory. José Nuno Oliveira.

2005
f\/rew'on
/J\R/ﬂ
injective entire simple surjective
representation function abstraction
injection surjection

bijection (isomorphism)
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TAXONOMY OF BINARY RELATIONS

EQUIVALENCE RELATIONS

EXERCISE 32
Prove or refute the following sentences:

@ The intersection of two equivalence relations is an equivalence relation
@ The union of two equivalence relations is an equivalence relation
@ The composition of two equivalence relations is an equivalence relation

@ The converse of an equivalence relations is an equivalence relation

A. MADEIRA EL2425 MARCH 18, 2025
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THE SIZE OF SETS

OUTLINE

@ THE SIZE OF SETS
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THE SIZE OF SETS

FINITE AND INFINITE SETS

DEFINITION 16 (FINITE AND INFINITE SETS)

A non-empty set A is finite if there is a positive integer n and a bijection from
{0,...,n} to A. Otherwise it is infinite.
The empty set is by convention taken to be finite.
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THE SIZE OF SETS

EQUINUMEROUS SETS

DEFINITION 17

Equinumerous sets Two sets A and B are equinumerous if there is a bijection
from A to B. We denote this by A ~ B.
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THE SIZE OF SETS

EQUINUMEROUS SETS

DEFINITION 17

Equinumerous sets Two sets A and B are equinumerous if there is a bijection
from A to B. We denote this by A ~ B.

EXERCISE 33
For any sets A, B and C, show that:

@ A~A
@ IfA~ B, then B ~ A.
@ IfA~Band B~ C, then A~ C.

@ ifA~Cand B~D,andAnB=CnD =, then AuB~ CuD.
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A LESS INTUITIVE OBSERVATION?

EXERCISE 34

Comment the following statement:
There exists sets A and B such that A ~ B but A < B.
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Comment the following statement:
There exists sets A and B such that A ~ B but A < B.
Supposing now that A and B are finite. What we can conclude?
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THE SIZE OF SETS

A LESS INTUITIVE OBSERVATION?

EXERCISE 34

Comment the following statement:
There exists sets A and B such that A ~ B but A < B.
Supposing now that A and B are finite. What we can conclude?

EXERCISE 35
Show that

o N~2N=1{0,2,4,...}
o R~R*
o RxR~C

A. MADEIRA EL2425 MARCH 18, 2025
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SETS DOMINATION

DEFINITION 18

For sets A and B, A is dominated by B if there is an injection from A to B. We

write A < B. A is strictly dominated by B if A< B and A is not equinumerous
with B.
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SETS DOMINATION

DEFINITION 18

For sets A and B, A is dominated by B if there is an injection from A to B. We
write A < B. A is strictly dominated by B if A< B and A is not equinumerous
with B.

o

EXERCISE 36
Show that

@ If A is a finite set, then A < N.

@ For any sets A and B, if A~ B, then A< B.
@ Foranyset A, A< A.

@ Forany sets A and B, if A< B, then A< B.
® IfA<BandA~C,thenC<B
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THE SIZE OF SETS

SETS DOMINATION

DEFINITION 18

For sets A and B, A is dominated by B if there is an injection from A to B. We
write A < B. A is strictly dominated by B if A< B and A is not equinumerous
with B.

v

EXERCISE 36
Show that

@ If A is a finite set, then A < N.

@ For any sets A and B, if A~ B, then A< B.
@ Foranyset A, A< A.

@ Forany sets A and B, if A< B, then A< B.
® IfA<BandA~C,thenC<B

Ais smaller than B, written A < B, iff there is an injection f: A— B but no a
bijection g: A— B, i.e., A< Band A% B.
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COUNTABLE SETS

An enumeration of a set A is a list (possibly infinite) of element of A such that
every element of A appears on the list at some finite position. If A has an
enumeration, then A is said to be countable.
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An enumeration of a set A is a list (possibly infinite) of element of A such that
every element of A appears on the list at some finite position. If A has an
enumeration, then A is said to be countable.

DEFINITION 19

An enumeration of a set A # J is a surjective function f: N — A. J
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THE SIZE OF SETS

COUNTABLE SETS

An enumeration of a set A is a list (possibly infinite) of element of A such that
every element of A appears on the list at some finite position. If A has an
enumeration, then A is said to be countable.

DEFINITION 19

An enumeration of a set A # (J is a surjective function f: N — A.

DEFINITION 20
A set A is countable if either

@ it is finite, or
@ itis infiniteand N~ A
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COUNTABLE SETS

EXERCISE 37
Show that:

@ Any subset of N is countable
@ If A is coutable and A ~ B, then B is countable
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THE SIZE OF SETS

COUNTABLE SETS

EXERCISE 37
Show that:

@ Any subset of N is countable
@ If A is coutable and A ~ B, then B is countable

THEOREM 21 (OTHER CHARACTERIZATIONS FOR COUNTABLE SETS)

@ A set A is countable iff there is an injection f : A— N (ie. A<N)

@ A non-empty set A is countable iff there is a surjection f : N — A

A. MADEIRA EL2425 MARCH 18, 2025
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EXAMPLES OF ENUMERATIONS

EXAMPLE 22

o A function enumerating the naturals is simply the identity function given by
f(n) =n.
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THE SIZE OF SETS

EXAMPLES OF ENUMERATIONS

EXAMPLE 22

o A function enumerating the naturals is simply the identity function given by
f(n) =n.

o The functions f: N —- N and g: N — N given by
f(n) =2n and
g(n)=2n+1

enumerate the even positive integers and the odd positive integers,
respectively.
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THE SIZE OF SETS

EXAMPLES OF ENUMERATIONS

A POSSIBLE ENUMERATION OF THE SET Z IS DONE BY

the function ( 0
no

f(m) = (-1

(where [x] rounds x up to the nearest integer):
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EXERCISES

EXERCISE 38
Define an enumeration of the positive squares 1, 4, 9, 16, ... J

A. MADEIRA EL2425 MARCH 18, 2025 62 /69



THE SIZE OF SETS

EXERCISES

EXERCISE 38

Define an enumeration of the positive squares 1, 4, 9, 16, ... J

EXERCISE 39

Show that if A and B are countable, the set A U B is countable. J
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Show that if A and B are countable, the set A U B is countable.

EXERCISE 40
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THE SIZE OF SETS

EXERCISES

EXERCISE 38
Define an enumeration of the positive squares 1, 4, 9, 16, ...

EXERCISE 39
Show that if A and B are countable, the set A U B is countable.

EXERCISE 40
Show that if B < A and A is countable, the set B is countable.

EXERCISE 41

Show by induction on n that if Ay, As, ..., A, are all coutable, then the set
Airu--- U A, is countable.
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THE SIZE OF SETS

CANTOR’S ZIG-ZAG METHOD

How TO ENUMERATE THE SET N x N = {(n, m) | n, m € N}

0 1 2 3
0| (0,0) [ (0,1) [ (0,2) | (0,3)
11,011 [ (L2 [(13)
2 (20 [ (21) [ (22 [(23)
31303116263
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THE SIZE OF SETS

CANTOR’S ZIG-ZAG METHOD

How TO ENUMERATE THE SET N x N = {(n, m) | n,m € N}

0 1 2 3
01,0101 ]2 (03
1110111213
2120121 ](22) (23
31,0161 ]B2](353)
v
CANTOR’S ZIG-ZAG METHOD
0 1 2 3 4
0| 0 1 3 6 10
1] 2 4 7 |11
2|5 8 | 12
3|19 |13
4| 14
v
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CANTOR’S ZIG-ZAG METHOD

HENCE N x N IS ENUMERATED AS FOLLOWS: J

(0,0),(0,1),(1,0),(0,2),(1,1),(2,0),(0,3),(1,2),(2,1),(3,0),...
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HENCE N x N IS ENUMERATED AS FOLLOWS:
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ProrosiTION 3.1
N x N /s contable. J
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CANTOR’S ZIG-ZAG METHOD

HENCE N x N IS ENUMERATED AS FOLLOWS:

(0,0),(0,1),(1,0),(0,2),(1,1),(2,0),(0,3),(1,2),(2,1),(3,0),...

ProrosiTION 3.1
N x N /s contable.

PROOF.

It is easy to see that f : N — N x N given by the Cantor’s table is surjective. [J
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THE S1ZE

OF SETS

CANTOR’S ZIG-ZAG METHOD

HENCE N x N IS ENUMERATED AS FOLLOWS:

(0,0),(0,1),(1,0),(0,2), (1

,1),(2,0),(0,3), (1,2), (2,1), (3,0),. ..

ProrosiTION 3.1
N x N /s contable.

PROOF.

It is easy to see that f : N — N x N given by the Cantor’s table is surjective.

PAIRING FUNCTION
Can we back?

g(na ITI) =

(n+m+1)(n+m)

2

A. MADEIRA

EL2425

MARCH 18, 2025
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THE SIZE OF SETS
AN EXAMPLE OF AN UNCONTABLE SET

PROPOSITION 3.2 J

B, the set of infinite {0, 1}-strings, is uncontable

o Cantor’s diagonal method:Suppose, that B“ is enumerable, i.e., suppose
that there is a list s1, S5, 3, S4, ... of all elements of B«.
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AN EXAMPLE OF AN UNCONTABLE SET

PROPOSITION 3.2

B, the set of infinite {0, 1}-strings, is uncontable J
o Cantor’s diagonal method:Suppose, that B“ is enumerable, i.e., suppose
that there is a list s1, S, 3, S4, ... of all elements of B¥. All of these lists
can be represented in the table
1 2 3 4
1 51(1) 51(2) 51(3) 51(4)
2| 5(1) | s202) | %2(3) | 52(4)
3| s3(1) | s3(2) | s3(3) | s3(4)
41 s4(1) | s4(2) | sa(3) | sa(4)
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THE SIZE OF SETS
AN EXAMPLE OF AN UNCONTABLE SET

PROPOSITION 3.2 J

B, the set of infinite {0, 1}-strings, is uncontable

o Cantor’s diagonal method:Suppose, that B“ is enumerable, i.e., suppose

that there is a list s1, S, 3, S4, ... of all elements of B¥. All of these lists
can be represented in the table
1 2 3 4
1 51(1) 51(2) 51(3) 51(4)
2| 5(1) | s202) | %2(3) | 52(4)
3| s3(1) | s3(2) | s3(3) | s3(4)
41 s4(1) | s4(2) | sa(3) | sa(4)

if sp(n) =0
if sp(n) = 1.

o but the sequence 5(n) is not on the list.

I
—
o =

Contradiction!
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THE SIZE OF SETS

COUNTABLE AND UNCONTABLE SETS

EXERCISE 42
Prove or refute the following sentence:

“(i) The set Q is contable.
(ii) Moreover, it is also dense, i.e. for any x,y € Q with x <y, thereisaz€ Q

such that and x < z and z < y"
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THE SIZE OF SETS

COUNTABLE AND UNCONTABLE SETS

EXERCISE 42
Prove or refute the following sentence:

“(i) The set Q is contable.
(ii) Moreover, it is also dense, i.e. for any x,y € Q with x <y, thereisaz€ Q

such that and x < z and z < y"
v

EXERCISE 43

Prove or refute the following sentence:
“The set of reals in the interval [0,1) is uncontable”
v
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THE SIZE OF SETS

EXERCISE 44

Prove the Cantor Theorem:
For any set A, A < P(A).

EXERCISE 45
Show that P(N) is not contable.
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THEOREM 23 (SCHRODER-BERNSTEIN)
IfFA< B and B <A, then A~ B. J
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THE SIZE OF SETS

THEOREM 23 (SCHRODER-BERNSTEIN)
IfA< B and B < A, then A ~ B.

SOME CONSEQUENCES:

o Let / be an interval in R which is not empty and not a singleton. Then
I ~R

o R~P(N)

Qo ...

Numbers,sets
and axioms

v
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