

ELEMENTS OF LOGIC 2024/25

INTUITIVE SET THEORY

EL 2024/25

Department of Mathematics, University of Aveiro
Alexandre Madeira
(madeira@ua.pt)

March 18, 2025

OUTLINE

1 SETS

2 TAXONOMY OF BINARY RELATIONS

3 THE SIZE OF SETS

SETS

- **Informally:** a **set** is a collection of objects, considered as a single object.

SETS

- **Informally:** a **set** is a collection of objects, considered as a single object.
- The objects that constitute a set are called **elements** or **members** of the set. We write
 - $x \in a$ if x is an element of set a ;
 - and $x \notin a$, if not

SETS

- **Informally:** a **set** is a collection of objects, considered as a single object.
- The objects that constitute a set are called **elements** or **members** of the set. We write
 - $x \in a$ if x is an element of set a ;
 - and $x \notin a$, if not
- \emptyset is the set with no elements.

SETS

- **Informally:** a **set** is a collection of objects, considered as a single object.
- The objects that constitute a set are called **elements** or **members** of the set. We write
 - $x \in a$ if x is an element of set a ;
 - and $x \notin a$, if not
- \emptyset is the set with no elements.
- A set, itself, may be an element of some other set

SETS

- **Informally:** a **set** is a collection of objects, considered as a single object.
- The objects that constitute a set are called **elements** or **members** of the set. We write
 - $x \in a$ if x is an element of set a ;
 - and $x \notin a$, if not
- \emptyset is the set with no elements.
- A set, itself, may be an element of some other set
- **Actually, for mathematical purposes no other elements need ever be considered!**

SETS

- It does not matter how we **specify** the set, how we *order* its elements, or how **many times** we count its elements. **All that matters are what its elements are.**

SETS

- It does not matter how we **specify** the set, how we *order* its elements, or how **many times** we count its elements. **All that matters are what its elements are.**

DEFINITION 1 (EXTENSIONALITY)

If A and B are sets, then $A = B$ iff every element of A is also a element of B , and vice versa.

SETS

- It does not matter how we **specify** the set, how we *order* its elements, or how **many times** we count its elements. **All that matters are what its elements are.**

DEFINITION 1 (EXTENSIONALITY)

If A and B are sets, then $A = B$ iff every element of A is also an element of B , and vice versa.

EXAMPLE 2

$$\{1, 2, 3\} = \{2, 3, 1\} = \{3, 1, 2, 1, 2, 3\} = \dots$$

SETS

- It does not matter how we **specify** the set, how we *order* its elements, or how **many times** we count its elements. **All that matters are what its elements are.**

DEFINITION 1 (EXTENSIONALITY)

If A and B are sets, then $A = B$ iff every element of A is also a element of B , and vice versa.

EXAMPLE 2

$$\{1, 2, 3\} = \{2, 3, 1\} = \{3, 1, 2, 1, 2, 3\} = \dots$$

TO SEE THAT $A = B$

check that

- for any $a \in A$, we have $a \in B$; and
- for any $b \in B$, we have $b \in A$

DEFINING SETS

DEFINITION BY EXTENSION

- $A = \{a_1, a_2, \dots, a_n\}$, for sets with finite number of elements
- $A = \{a_1, a_2, \dots\}$, for sets with infinite number of elements

DEFINING SETS

DEFINITION BY EXTENSION

- $A = \{a_1, a_2, \dots, a_n\}$, for sets with finite number of elements
- $A = \{a_1, a_2, \dots\}$, for sets with infinite number of elements

DEFINITION BY COMPREHENSION

$$A = \{x \mid \varphi(x)\}$$

The set A is constituted by the elements x such that satisfies the property φ

DEFINING SETS

DEFINITION BY EXTENSION

- $A = \{a_1, a_2, \dots, a_n\}$, for sets with finite number of elements
- $A = \{a_1, a_2, \dots\}$, for sets with infinite number of elements

DEFINITION BY COMPREHENSION

$$A = \{x \mid \varphi(x)\}$$

The set A is constituted by the elements x such that satisfies the property φ

EXERCISE 1

Define by comprehension the sets:

- $A = \{2, 4, 6, \dots\}$,
- $B = \{a\}$, and
- $C = \{\}$

SUBSETS OF A SET

DEFINITION 3 (SUBSET)

If every element of a set A is also an element of B , then we say that A is a **subset** of B , and write $A \subseteq B$. If A is not a subset of B we write $A \not\subseteq B$. If $A \subseteq B$ but $A \neq B$, we write $A \subsetneq B$ and say that A is a **proper subset** of B .

EXAMPLE 4

- $\{a, b\} \subseteq \{a, b\}$, and $\{a, b\} \subsetneq \{a, b, c\}$
- $\emptyset \subseteq A$, for any set A

HENCE:

$A = B$ iff $A \subseteq B$ and $B \subseteq A$.

EXERCISE 2

Prove that there is at most one empty set, i.e., show that if A and B are sets without elements, then $A = B$.

SOME WELL KNOWN SETS

$$\mathbb{N} = \{0, 1, 2, 3, \dots\}$$

the set of natural numbers

$$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

the set of integers

$$\mathbb{Q} = \left\{ \frac{m}{n} \mid m, n \in \mathbb{Z} \text{ and } n \neq 0 \right\}$$

the set of rationals

$$\mathbb{R} = (-\infty, \infty)$$

the set of real numbers (the continuum)

SOME WELL KNOWN SETS

$$\mathbb{N} = \{0, 1, 2, 3, \dots\}$$

the set of natural numbers

$$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

the set of integers

$$\mathbb{Q} = \left\{ \frac{m}{n} \mid m, n \in \mathbb{Z} \text{ and } n \neq 0 \right\}$$

the set of rationals

$$\mathbb{R} = (-\infty, \infty)$$

the set of real numbers (the continuum)

EXAMPLE 5

SOME WELL KNOWN SETS

FINITE STRINGS ON \mathbb{B}

$$\mathbb{B}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, \dots\}.$$

INFINITE STRINGS ON A SET \mathbb{B}

$$\mathbb{B}^\omega = \{b_1 b_2 \dots \mid b_i \in \mathbb{B}, i \in \mathbb{N}\}$$

BASIC OPERATIONS ON SETS

If A is a set of sets, then $\bigcup A$ is the set of elements of elements of A :

$$\bigcup A = \{x \mid \text{there is a } B \in A \text{ so that } x \in B\}$$

$$\bigcap A = \{x \mid \text{for all } B \in A, x \in B\}$$

For a sequence of sets A_1, A_2, \dots

$$\bigcup_i A_i = \{x \mid x \text{ belongs to one of the } A_i\}$$

$$\bigcap_i A_i = \{x \mid x \text{ belongs to every } A_i\}.$$

For a property φ ,

$$\bigcup_{\varphi(x)} x = \bigcup \{x \mid \varphi(x)\}$$

$$\bigcap_{\varphi(x)} x = \bigcap \{x \mid \varphi(x)\}$$

BASIC OPERATIONS ON SETS

EXERCISE 3

*Let us consider the well known operations of **binary union** of two sets A and B:*

$$A \cup B = \{x \mid x \in A \vee x \in B\}$$

*and of **binary intersection** of two sets A and B*

$$A \cap B = \{x \mid x \in A \wedge x \in B\}$$

Show that they can be expressed by the union and intersection operators of a set.

EXERCISES

EXERCISE 4

Show that:

- ① if $A \subseteq B$, then $A \cup B = B$.
- ② if $A \subseteq B$, then $A \cap B = A$.
- ③ if $A \subsetneq B$, then $B \setminus A \neq \emptyset$.
- ④ if A is a set and $A \in B$, then $A \subseteq \bigcup B$.

EXERCISES

EXERCISE 4

Show that:

- ① if $A \subseteq B$, then $A \cup B = B$.
- ② if $A \subseteq B$, then $A \cap B = A$.
- ③ if $A \subsetneq B$, then $B \setminus A \neq \emptyset$.
- ④ if A is a set and $A \in B$, then $A \subseteq \bigcup B$.

EXERCISE 5

Suppose $s = \{\{a, b\}, \{a, d, e\}, \{a, d\}\}$. Determine $\bigcup s$ and $\bigcap s$

EXERCISES

EXERCISE 6

① $\bigcup_{x \in A} x = \bigcup A$

② $\bigcap_{x \in A} x = \bigcap A$

③ $\bigcup \{x\} = x$

④ $\bigcap \{x\} = x$

⑤ $\bigcup_{x \in \{s\}} x = s$

⑥ $\bigcap_{x \in \{s\}} x = s$

⑦ $\bigcup \emptyset = \emptyset$

⑧ $\bigcup_{x \in \emptyset} x = \emptyset$

POWERSET OF A SET

DEFINITION 6 (POWER SET)

The set consisting of all subsets of a set A is called the **power set of A** , written $\mathcal{P}(A)$.

$$\mathcal{P}(A) = \{B \mid B \subseteq A\}$$

EXAMPLE 7

$$\mathcal{P}(\{a, b, c\})$$

POWERSET OF A SET

DEFINITION 6 (POWER SET)

The set consisting of all subsets of a set A is called the **power set of A** , written $\mathcal{P}(A)$.

$$\mathcal{P}(A) = \{B \mid B \subseteq A\}$$

EXAMPLE 7

$$\mathcal{P}(\{a, b, c\}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$$

POWERSET OF A SET

EXERCISE 7

- ① Determine $\mathcal{P}(\{a, b, c, d\})$
- ② Determine $\mathcal{P}(\emptyset)$
- ③ Determine $\mathcal{P}(\{\emptyset\})$
- ④ Let X and Y be two sets. Prove or refute the following statements:
 - $X \subseteq Y$ iff $\mathcal{P}(X) \subseteq \mathcal{P}(Y)$
 - $\mathcal{P}(X) \cap \mathcal{P}(Y) = \mathcal{P}(X \cap Y)$
 - $\mathcal{P}(X) \cup \mathcal{P}(Y) = \mathcal{P}(X \cup Y)$
- ⑤ Show that if A has n elements, then $\mathcal{P}(A)$ has 2^n

ORDERED PAIRS AND CARTESIAN PRODUCTS

In sets the order on the enumeration of members is irrelevant:

$$\{x, y\} = \{y, x\}$$

However, we need also to deal with ordered pairs, where:

$$\text{if } x \neq y \text{ then } (x, y) \neq (y, x)$$

How should we deal with ordered pairs in set theory?

ORDERED PAIRS AND CARTESIAN PRODUCTS

How should we deal with ordered pairs in set theory?

IDENTITY OF PAIRS

$$(a, b) = (c, d) \text{ iff } a = c \text{ and } b = d.$$

ORDERED PAIRS AND CARTESIAN PRODUCTS

How should we deal with ordered pairs in set theory?

IDENTITY OF PAIRS

$$(a, b) = (c, d) \text{ iff } a = c \text{ and } b = d.$$

DEFINITION 8 (ORDERED PAIR)

$$(a, b) = \{\{a\}, \{a, b\}\}$$

DEFINITION 9 (CARTESIAN PRODUCT)

Given sets A and B , their **Cartesian product** $A \times B$ is defined by

$$A \times B = \{(x, y) \mid x \in A \text{ and } y \in B\}.$$

ORDERED PAIRS AND CARTESIAN PRODUCTS

EXERCISE 8

① *Prove that*

- $(a, b) = (c, d)$ iff $a = c$ and $b = d$.
- $\bigcup(x, y) = \{x, y\}$ and $\bigcap(x, y) = \{x\}$

② *How can we deal with tuples (a_1, \dots, a_n) ?*

③ *Let A be a set. List the elements of the set $A \times \emptyset$*

④ *Consider the following recursive definition:*

$$A^1 = A$$

$$A^{k+1} = A^k \times A$$

List the elements of the set $\{1, 2, 3\}^3$

⑤ *Prove: "If A has n elements and B has m elements, then $A \times B$ has $n \cdot m$ elements"*

ORDERED PAIRS AND CARTESIAN PRODUCTS

EXERCISE 9

Consider the following operator:

$$<< a, b, c >> = \{\{a\}, \{a, b\}, \{a, b, c\}\}$$

Comment the statement:

$$<< a, b, c >> = << x, y, z >> \text{ iff } a = x, b = y \text{ and } c = z$$

EXERCISE 10

Consider the following operator:

$$((a, b)) = \{\{b\}, \{a, b\}\}$$

Comment the statement:

$$((a, b)) = ((x, y)) \text{ iff } a = x \text{ and } b = y$$

SET THEORY IS A VERY SENSITIVE ISSUE...

Do all the properties φ define a set?

i.e. $\{x \mid \varphi(x)\}$ is a set, for any property φ ?

SET THEORY IS A VERY SENSITIVE ISSUE...

Do all the properties φ define a set?

i.e. $\{x \mid \varphi(x)\}$ is a set, for any property φ ?

For a given φ , the set $\{x \mid \varphi(x)\}$ is unique, if it exists.

SET THEORY IS A VERY SENSITIVE ISSUE...

Do all the properties φ define a set?

i.e. $\{x \mid \varphi(x)\}$ is a set, for any property φ ?

For a given φ , the set $\{x \mid \varphi(x)\}$ is unique, if it exists.

RUSSELL'S PARADOX

There exists a set $R = \{x \mid x \notin x\}$?

SET THEORY IS A VERY SENSITIVE ISSUE...

Do all the properties φ define a set?

i.e. $\{x \mid \varphi(x)\}$ is a set, for any property φ ?

For a given φ , the set $\{x \mid \varphi(x)\}$ is unique, if it exists.

RUSSELL'S PARADOX

There exists a set $R = \{x \mid x \notin x\}$?

If $R = \{x \mid x \notin x\}$ exists, then $R \in R$ iff $R \notin R$, which is a contradiction.

SET THEORY IS A VERY SENSITIVE ISSUE...

Do all the properties φ define a set?

i.e. $\{x \mid \varphi(x)\}$ is a set, for any property φ ?

For a given φ , the set $\{x \mid \varphi(x)\}$ is unique, if it exists.

RUSSELL'S PARADOX

There exists a set $R = \{x \mid x \notin x\}$?

If $R = \{x \mid x \notin x\}$ exists, then $R \in R$ iff $R \notin R$, which is a contradiction.

In order to avoid such kind of contradictions, Zermelo-Fraenkel introduced an axiomatics for sets

SET THEORY IS A VERY SENSITIVE ISSUE...

Do all the properties φ define a set?

i.e. $\{x \mid \varphi(x)\}$ is a set, for any property φ ?

For a given φ , the set $\{x \mid \varphi(x)\}$ is unique, if it exists.

RUSSELL'S PARADOX

There exists a set $R = \{x \mid x \notin x\}$?

If $R = \{x \mid x \notin x\}$ exists, then $R \in R$ iff $R \notin R$, which is a contradiction.

In order to avoid such kind of contradictions, Zermelo-Fraenkel introduced an axiomatics for sets

Namely, it shall be able to answer the questions:

- What are sets?
- What sets exist?

ZERMELO-FRAENKEL (ZF) AXIOMATICS

EXTENSIONALITY

$$\forall x. \forall y. [x = y \leftrightarrow \forall z. (z \in x \leftrightarrow z \in y)]$$

ZERMELO-FRAENKEL (ZF) AXIOMATICS

EXTENSIONALITY

$$\forall x. \forall y. [x = y \leftrightarrow \forall z. (z \in x \leftrightarrow z \in y)]$$

REPLACEMENT for $\varphi(x, y)$ such that $\forall x. \forall y. \forall z. [\varphi(x, y) \wedge \varphi(x, z) \rightarrow y = z]$,
we have

$$\forall z. \exists x. \forall y. [y \in x \leftrightarrow \exists u \in z. \varphi(u, y)]$$

ZERMELO-FRAENKEL (ZF) AXIOMATICS

EXTENSIONALITY

$$\forall x. \forall y. [x = y \leftrightarrow \forall z. (z \in x \leftrightarrow z \in y)]$$

REPLACEMENT for $\varphi(x, y)$ such that $\forall x. \forall y. \forall z. [\varphi(x, y) \wedge \varphi(x, z) \rightarrow y = z]$,
we have

$$\forall z. \exists x. \forall y. [y \in x \leftrightarrow \exists u \in z. \varphi(u, y)]$$

UNION

$$\forall z. \exists x. [\forall y. (y \in x \leftrightarrow \exists u \in z. (y \in u))]$$

ZERMELO-FRAENKEL (ZF) AXIOMATICS

EXTENSIONALITY

$$\forall x. \forall y. [x = y \leftrightarrow \forall z. (z \in x \leftrightarrow z \in y)]$$

REPLACEMENT for $\varphi(x, y)$ such that $\forall x. \forall y. \forall z. [\varphi(x, y) \wedge \varphi(x, z) \rightarrow y = z]$,
we have

$$\forall z. \exists x. \forall y. [y \in x \leftrightarrow \exists u \in z. \varphi(u, y)]$$

UNION

$$\forall z. \exists x. [\forall y. (y \in x \leftrightarrow \exists u \in z. (y \in u))]$$

POWERSET

$$\forall z. \exists x. [\forall y. (y \in x \leftrightarrow y \subseteq z)]$$

ZERMELO-FRAENKEL (ZF) AXIOMATICS

EXTENSIONALITY

$$\forall x. \forall y. [x = y \leftrightarrow \forall z. (z \in x \leftrightarrow z \in y)]$$

REPLACEMENT for $\varphi(x, y)$ such that $\forall x. \forall y. \forall z. [\varphi(x, y) \wedge \varphi(x, z) \rightarrow y = z]$,
we have

$$\forall z. \exists x. \forall y. [y \in x \leftrightarrow \exists u \in z. \varphi(u, y)]$$

UNION

$$\forall z. \exists x. [\forall y. (y \in x \leftrightarrow \exists u \in z. (y \in u))]$$

POWERSET

$$\forall z. \exists x. [\forall y. (y \in x \leftrightarrow y \subseteq z)]$$

INFINITE

$$\exists x. [\emptyset \in x \wedge \forall y \in x. (y \cup \{y\} \in x)]$$

ZERMELO-FRAENKEL (ZF) AXIOMATICS

EXTENSIONALITY

$$\forall x. \forall y. [x = y \leftrightarrow \forall z. (z \in x \leftrightarrow z \in y)]$$

REPLACEMENT for $\varphi(x, y)$ such that $\forall x. \forall y. \forall z. [\varphi(x, y) \wedge \varphi(x, z) \rightarrow y = z]$,
we have

$$\forall z. \exists x. \forall y. [y \in x \leftrightarrow \exists u \in z. \varphi(u, y)]$$

UNION

$$\forall z. \exists x. [\forall y. (y \in x \leftrightarrow \exists u \in z. (y \in u))]$$

POWERSET

$$\forall z. \exists x. [\forall y. (y \in x \leftrightarrow y \subseteq z)]$$

INFINITE

$$\exists x. [\emptyset \in x \wedge \forall y \in x. (y \cup \{y\} \in x)]$$

REGULARITY

$$\forall x. [x \neq \emptyset \rightarrow \exists y \in x. (y \cap x = \emptyset)]$$

OBSERVATIONS ON ZF AXIOMATICS

- The **axiomatic theory of sets** is a complex issue usually object of a complete UC
- there are in the literature **other equivalent presentations of ZF axiomatics**
- it follows some observations about the introduced axioms

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF EXTENSIONALITY

Two sets are equal iff they have the same elements

$$\forall x. \forall y. [x = y \leftrightarrow \forall z. (z \in x \leftrightarrow z \in y)]$$

Obs: Hence, $A = B$ when for all x , $x \in A$ iff $x \in B$

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF REPLACEMENT

As a consequence of this axiom (with the other ones) we can get the **axiom of separation**:

For any property φ ,

$$\forall z. \exists x. \forall y. [y \in x \leftrightarrow y \in z \wedge \varphi(y)]$$

that is on the basis of **definitions by comprehension**

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF REPLACEMENT

As a consequence of this axiom (with the other ones) we can get the **axiom of separation**:

For any property φ ,

$$\forall z. \exists x. \forall y. [y \in x \leftrightarrow y \in z \wedge \varphi(y)]$$

that is on the basis of **definitions by comprehension**

EXERCISE 11

Show that this axiom assure the existence of

- an emptyset
- the intersection set of a set
- the difference set between two sets, i.e. the set $A \setminus B = \{a \in A \mid a \notin B\}$

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF UNION

$$\forall z. \exists x. [\forall y. (y \in x \leftrightarrow \exists u \in z. (y \in u))]$$

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF UNION

$$\forall z. \exists x. [\forall y. (y \in x \leftrightarrow \exists u \in z. (y \in u))]$$

Obs: for any set of sets z , $x = \bigcup z$

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF UNION

$$\forall z. \exists x. [\forall y. (y \in x \leftrightarrow \exists u \in z. (y \in u))]$$

Obs: for any set of sets z , $x = \bigcup z$

AXIOM OF POWERSET

$$\forall z. \exists x. [\forall y. (y \in x \leftrightarrow y \subseteq z)]$$

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF UNION

$$\forall z. \exists x. [\forall y. (y \in x \leftrightarrow \exists u \in z. (y \in u))]$$

Obs: for any set of sets z , $x = \bigcup z$

AXIOM OF POWERSET

$$\forall z. \exists x. [\forall y. (y \in x \leftrightarrow y \subseteq z)]$$

Obs: for any z , we have $x = \mathcal{P}(z) = \{y \mid y \subseteq z\}$

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF INFINITY

there exists a set X having infinitely many members

$$\exists x. [\emptyset \in x \wedge \forall y \in x. (y \cup \{y\} \in x)]$$

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF INFINITY

there exists a set X having infinitely many members

$$\exists x. [\emptyset \in x \wedge \forall y \in x. (y \cup \{y\} \in x)]$$

Obs: this axiom assures the existence of infinite sets

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF INFINITY

there exists a set X having infinitely many members

$$\exists x. [\emptyset \in x \wedge \forall y \in x. (y \cup \{y\} \in x)]$$

Obs: this axiom assures the existence of infinite sets

Natural numbers (**Von Neumann Ordinals**):

$$0 = \emptyset \quad (1)$$

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF INFINITY

there exists a set X having infinitely many members

$$\exists x. [\emptyset \in x \wedge \forall y \in x. (y \cup \{y\} \in x)]$$

Obs: this axiom assures the existence of infinite sets

Natural numbers (**Von Neumann Ordinals**):

$$0 = \emptyset \tag{1}$$

$$1 = \{\emptyset\} \tag{2}$$

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF INFINITY

there exists a set X having infinitely many members

$$\exists x. [\emptyset \in x \wedge \forall y \in x. (y \cup \{y\} \in x)]$$

Obs: this axiom assures the existence of infinite sets

Natural numbers (**Von Neumann Ordinals**):

$$0 = \emptyset \tag{1}$$

$$1 = \{\emptyset\} \tag{2}$$

$$2 = \{\emptyset, \{\emptyset\}\} \tag{3}$$

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF INFINITY

there exists a set X having infinitely many members

$$\exists x. [\emptyset \in x \wedge \forall y \in x. (y \cup \{y\} \in x)]$$

Obs: this axiom assures the existence of infinite sets

Natural numbers (**Von Neumann Ordinals**):

$$0 = \emptyset \tag{1}$$

$$1 = \{\emptyset\} \tag{2}$$

$$2 = \{\emptyset, \{\emptyset\}\} \tag{3}$$

$$3 = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\} \tag{4}$$

$$\vdots \tag{5}$$

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF INFINITY

there exists a set X having infinitely many members

$$\exists x. [\emptyset \in x \wedge \forall y \in x. (y \cup \{y\} \in x)]$$

Obs: this axiom assures the existence of infinite sets

Natural numbers (**Von Neumann Ordinals**):

$$0 = \emptyset \tag{1}$$

$$1 = \{\emptyset\} \tag{2}$$

$$2 = \{\emptyset, \{\emptyset\}\} \tag{3}$$

$$3 = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\} \tag{4}$$

$$\vdots \tag{5}$$

$$\omega = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \dots\}$$

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF REGULARITY

$$\forall x. [x \neq \emptyset \rightarrow \exists y \in x. (y \cap x = \emptyset)]$$

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF REGULARITY

$$\forall x. [x \neq \emptyset \rightarrow \exists y \in x. (y \cap x = \emptyset)]$$

EXERCISE 12

Check that this axiom implies that there are not descending infinite chains as $\dots x_4 \in x_3 \in x_2 \in x_1$ – i.e. the order \in is well founded

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF REGULARITY

$$\forall x. [x \neq \emptyset \rightarrow \exists y \in x. (y \cap x = \emptyset)]$$

EXERCISE 12

Check that this axiom implies that there are not descending infinite chains as $\dots x_4 \in x_3 \in x_2 \in x_1$ – i.e. the order \in is well founded

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF REGULARITY

$$\forall x. [x \neq \emptyset \rightarrow \exists y \in x. (y \cap x = \emptyset)]$$

EXERCISE 12

Check that this axiom implies that there are not descending infinite chains as $\dots x_4 \in x_3 \in x_2 \in x_1$ – i.e. the order \in is well founded

EXERCISE 13

*Check that this axiom implies that there is no a set x such that $x \in x$, i.e.
 $\forall x. (x \notin x)$*

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF REGULARITY

$$\forall x. [x \neq \emptyset \rightarrow \exists y \in x. (y \cap x = \emptyset)]$$

EXERCISE 12

Check that this axiom implies that there are not descending infinite chains as $\dots x_4 \in x_3 \in x_2 \in x_1$ – i.e. the order \in is well founded

EXERCISE 13

Check that this axiom implies that there is no a set x such that $x \in x$, i.e. $\forall x. (x \notin x)$ in particular $x = \{x\}$ is not a set!

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF REGULARITY

$$\forall x. [x \neq \emptyset \rightarrow \exists y \in x. (y \cap x = \emptyset)]$$

EXERCISE 12

Check that this axiom implies that there are not descending infinite chains as $\dots x_4 \in x_3 \in x_2 \in x_1$ – i.e. the order \in is well founded

EXERCISE 13

Check that this axiom implies that there is no a set x such that $x \in x$, i.e. $\forall x. (x \notin x)$ in particular $x = \{x\}$ is not a set!

OBSERVATIONS ON ZF AXIOMATICS

AXIOM OF REGULARITY

$$\forall x. [x \neq \emptyset \rightarrow \exists y \in x. (y \cap x = \emptyset)]$$

EXERCISE 12

Check that this axiom implies that there are not descending infinite chains as $\dots x_4 \in x_3 \in x_2 \in x_1$ – i.e. the order \in is well founded

EXERCISE 13

Check that this axiom implies that there is no a set x such that $x \in x$, i.e. $\forall x. (x \notin x)$ in particular $x = \{x\}$ is not a set!

EXERCISE 14

Check that this axiom implies that there is no closed sequences $x_1 \in x_2 \in \dots \in x_1$

EXERCISES

EXERCISE 15

Check if the following sets are regular:

- ① $\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \dots\}$
- ② $\{a, \{a\}, \{\{a\}\}, \dots\}$

EXERCISES

EXERCISE 15

Check if the following sets are regular:

- ① $\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \dots\}$
- ② $\{a, \{a\}, \{\{a\}\}, \dots\}$

EXERCISE 16

Given a set a let us consider the following construction:

- $a^0 = a$
- $a^{k+1} = a^k \cup \{a^k\}$

For a given $k \in \mathbb{N}$, check the regularity of:

- ① a^k
- ② \emptyset^k

EXERCISES

EXERCISE 17

Let A be a set. Then $A \cap \{A\} = \emptyset$.

EXERCISE 18

Consider the following operator:

$$[a, b] = \{a, \{a, b\}\}$$

Comment the statement:

$$[a, b] = [x, y] \text{ iff } a = x \text{ and } b = y$$

AXIOM OF CHOICE – AXIOMATIC ZFC

THE AXIOM OF CHOICE (ZERMELO 1904)

“Given any (non-empty set) whose elements are pairwise disjoint non-empty sets, there is a set which contains precisely one element from each set belonging to it”

AXIOM OF CHOICE – AXIOMATIC ZFC

THE AXIOM OF CHOICE (ZERMELO 1904)

“Given any (non-empty set) whose elements are pairwise disjoint non-empty sets, there is a set which contains precisely one element from each set belonging to it”

MORE FORMALLY:

$$\begin{aligned} \forall y \quad & (\forall u \in y \\ & (u \neq \emptyset \wedge (\forall v \in y (v \neq u \rightarrow (u \cap v = \emptyset))) \\ & \rightarrow \\ & (\exists z \forall u \in y \exists w (z \cap y = \{w\})) \end{aligned}$$

AXIOM OF CHOICE

THE AXIOM OF CHOICE (ALTERNATIVE FORMALISATION)

“Given any (non-empty) set x whose elements are non-empty sets, there is a function f such that $f(a) \in a$, for each $a \in x$ ”

AXIOM OF CHOICE

THE AXIOM OF CHOICE (ALTERNATIVE FORMALISATION)

“Given any (non-empty) set x whose elements are non-empty sets, there is a function f such that $f(a) \in a$, for each $a \in x$ ”

FORMALLY:

$$\forall x [x \neq \emptyset \rightarrow (\exists (f : x \rightarrow \bigcup_{a \in x} a). \forall a \in x (f(a) \in a))]$$

AXIOM OF CHOICE

THE AXIOM OF CHOICE (ALTERNATIVE FORMALISATION)

“Given any (non-empty) set x whose elements are non-empty sets, there is a function f such that $f(a) \in a$, for each $a \in x$ ”

FORMALLY:

$$\forall x [x \neq \emptyset \rightarrow (\exists (f : x \rightarrow \bigcup_{a \in x} a). \forall a \in x (f(a) \in a))]$$

EXERCISE 19

Let $A = \{\{a\}, \{b\}, \{a, b\}\}$. Enumerate the choice functions for A .

AXIOM OF CHOICE

THE AXIOM OF CHOICE (ALTERNATIVE FORMALISATION)

“Given any (non-empty) set x whose elements are disjoint non-empty sets, there is a function f such that $f(a) \in a$, for each $a \in x$ ”

AXIOM OF CHOICE

THE AXIOM OF CHOICE (ALTERNATIVE FORMALISATION)

“Given any (non-empty) set x whose elements are disjoint non-empty sets, there is a function f such that $f(a) \in a$, for each $a \in x$ ”

- This function is called **choice function**
- What is more “controversial” in this axiom is the fact that we **do not know how to construct this function...**

AXIOM OF CHOICE

THE AXIOM OF CHOICE (ALTERNATIVE FORMALISATION)

“Given any (non-empty) set x whose elements are disjoint non-empty sets, there is a function f such that $f(a) \in a$, for each $a \in x$ ”

- This function is called **choice function**
- What is more “controversial” in this axiom is the fact that we **do not know how to construct this function...**

ANALOGY OF BERTRAND RUSSELL

- for an infinite set of **pairs of shoes**,

AXIOM OF CHOICE

THE AXIOM OF CHOICE (ALTERNATIVE FORMALISATION)

“Given any (non-empty) set x whose elements are disjoint non-empty sets, there is a function f such that $f(a) \in a$, for each $a \in x$ ”

- This function is called **choice function**
- What is more “controversial” in this axiom is the fact that we **do not know how to construct this function...**

ANALOGY OF BERTRAND RUSSELL

- for an infinite set of **pairs of shoes**, one can pick out the left shoe from each pair to obtain an appropriate set of shoes; **this makes it possible to define a choice function directly**

AXIOM OF CHOICE

THE AXIOM OF CHOICE (ALTERNATIVE FORMALISATION)

“Given any (non-empty) set x whose elements are disjoint non-empty sets, there is a function f such that $f(a) \in a$, for each $a \in x$ ”

- This function is called **choice function**
- What is more “controversial” in this axiom is the fact that we **do not know how to construct this function...**

ANALOGY OF BERTRAND RUSSELL

- for an infinite set of **pairs of shoes**, one can pick out the left shoe from each pair to obtain an appropriate set of shoes; **this makes it possible to define a choice function directly**
- For an infinite set of **pairs of socks**,

AXIOM OF CHOICE

THE AXIOM OF CHOICE (ALTERNATIVE FORMALISATION)

“Given any (non-empty) set x whose elements are disjoint non-empty sets, there is a function f such that $f(a) \in a$, for each $a \in x$ ”

- This function is called **choice function**
- What is more “controversial” in this axiom is the fact that we **do not know how to construct this function...**

ANALOGY OF BERTRAND RUSSELL

- for an infinite set of **pairs of shoes**, one can pick out the left shoe from each pair to obtain an appropriate set of shoes; **this makes it possible to define a choice function directly**
- For an infinite set of **pairs of socks**, there is no obvious way to make a function that forms a set out of **selecting one sock from each pair without invoking the axiom of choice**

AXIOM OF CHOICE

THIS IS A CONTROVERSIAL AXIOM

Apologists:

- Hilbert and Russel, ... Poincaré (late)

Resistant:

- Borel, Lebesgue, ... Poincaré (earlier)

AXIOM OF CHOICE

THIS IS A CONTROVERSIAL AXIOM

Apologists:

- Hilbert and Russel, ... Poincaré (late)

Resistant:

- Borel, Lebesgue, ... Poincaré (earlier)

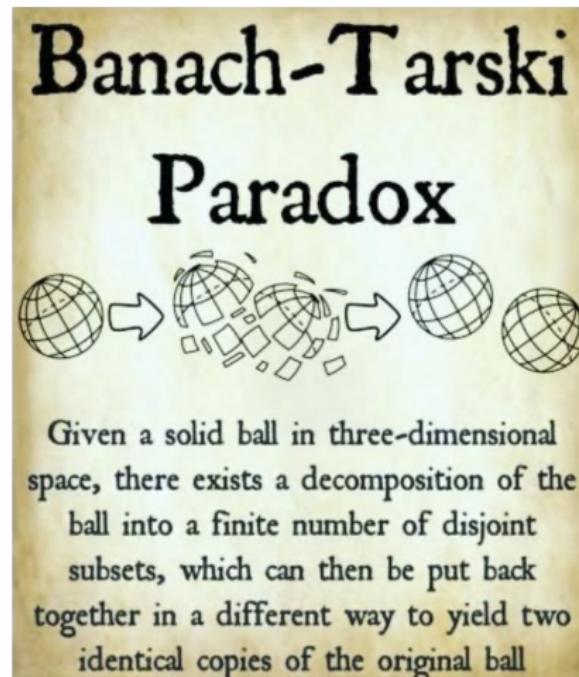
AXIOM OF CHOICE IS QUITE USEFUL

- Equivalent to the **Zorn Lemma**
- we use it to prove that any vectorial Space has a basis
- it is need to prove
 - **Compacity Theorem**
 - **Completeness Theorem for First-order Logic**

AXIOM OF CHOICE

HOWEVER, IT ENTAILS SOME “WEIRD” EFFECTS

- Assuming the Axiom of Choice we can prove:



OUTLINE

1 SETS

2 TAXONOMY OF BINARY RELATIONS

3 THE SIZE OF SETS

BINARY RELATIONS

DEFINITION 10 (BINARY RELATION)

A **binary relation** on a set A is a set

$$B \subseteq A \times A$$

BINARY RELATIONS

DEFINITION 10 (BINARY RELATION)

A **binary relation** on a set A is a set

$$B \subseteq A \times A$$

EXAMPLES

- ① $R = \{(n, m) \mid n, m \in \mathbb{N} \text{ and } n < m\}$
- ② $E = \{(n, m) \mid n > 5 \text{ or } m \times n \geq 34\}$
- ③ $S = \{(A, B) \mid A, B \subseteq U \text{ and } A \subseteq B\}$

BINARY RELATIONS

EXERCISE 20

List the elements of the relation \subseteq on the set $\mathcal{P}(\{a, b, c\})$.

PROPERTIES OF BINARY RELATIONS

DEFINITION 11

Let A be a set. A relation $R \subseteq A \times A$ is

- **reflexive**

PROPERTIES OF BINARY RELATIONS

DEFINITION 11

Let A be a set. A relation $R \subseteq A \times A$ is

- **reflexive** iff, for every $x \in A$, $(x, x) \in R$

PROPERTIES OF BINARY RELATIONS

DEFINITION 11

Let A be a set. A relation $R \subseteq A \times A$ is

- **reflexive** iff, for every $x \in A$, $(x, x) \in R$
- **transitive**

PROPERTIES OF BINARY RELATIONS

DEFINITION 11

Let A be a set. A relation $R \subseteq A \times A$ is

- **reflexive** iff, for every $x \in A$, $(x, x) \in R$
- **transitive** iff, whenever $(x, y) \in R$ and $(y, z) \in R$, then also $(x, z) \in R$

PROPERTIES OF BINARY RELATIONS

DEFINITION 11

Let A be a set. A relation $R \subseteq A \times A$ is

- **reflexive** iff, for every $x \in A$, $(x, x) \in R$
- **transitive** iff, whenever $(x, y) \in R$ and $(y, z) \in R$, then also $(x, z) \in R$
- **symmetric**

PROPERTIES OF BINARY RELATIONS

DEFINITION 11

Let A be a set. A relation $R \subseteq A \times A$ is

- **reflexive** iff, for every $x \in A$, $(x, x) \in R$
- **transitive** iff, whenever $(x, y) \in R$ and $(y, z) \in R$, then also $(x, z) \in R$
- **symmetric** iff, whenever $(x, y) \in R$, then also $(y, x) \in R$

PROPERTIES OF BINARY RELATIONS

DEFINITION 11

Let A be a set. A relation $R \subseteq A \times A$ is

- **reflexive** iff, for every $x \in A$, $(x, x) \in R$
- **transitive** iff, whenever $(x, y) \in R$ and $(y, z) \in R$, then also $(x, z) \in R$
- **symmetric** iff, whenever $(x, y) \in R$, then also $(y, x) \in R$
- **anti-symmetric**

PROPERTIES OF BINARY RELATIONS

DEFINITION 11

Let A be a set. A relation $R \subseteq A \times A$ is

- **reflexive** iff, for every $x \in A$, $(x, x) \in R$
- **transitive** iff, whenever $(x, y) \in R$ and $(y, z) \in R$, then also $(x, z) \in R$
- **symmetric** iff, whenever $(x, y) \in R$, then also $(y, x) \in R$
- **anti-symmetric** iff, whenever both $(x, y) \in R$ and $(y, x) \in R$, then $x = y$

PROPERTIES OF BINARY RELATIONS

DEFINITION 11

Let A be a set. A relation $R \subseteq A \times A$ is

- **reflexive** iff, for every $x \in A$, $(x, x) \in R$
- **transitive** iff, whenever $(x, y) \in R$ and $(y, z) \in R$, then also $(x, z) \in R$
- **symmetric** iff, whenever $(x, y) \in R$, then also $(y, x) \in R$
- **anti-symmetric** iff, whenever both $(x, y) \in R$ and $(y, x) \in R$, then $x = y$
- **connected**

PROPERTIES OF BINARY RELATIONS

DEFINITION 11

Let A be a set. A relation $R \subseteq A \times A$ is

- **reflexive** iff, for every $x \in A$, $(x, x) \in R$
- **transitive** iff, whenever $(x, y) \in R$ and $(y, z) \in R$, then also $(x, z) \in R$
- **symmetric** iff, whenever $(x, y) \in R$, then also $(y, x) \in R$
- **anti-symmetric** iff, whenever both $(x, y) \in R$ and $(y, x) \in R$, then $x = y$
- **connected** if for all $x, y \in A$, if $x \neq y$, then either $(x, y) \in R$ or $(y, x) \in R$

PROPERTIES OF BINARY RELATIONS

DEFINITION 11

Let A be a set. A relation $R \subseteq A \times A$ is

- **reflexive** iff, for every $x \in A$, $(x, x) \in R$
- **transitive** iff, whenever $(x, y) \in R$ and $(y, z) \in R$, then also $(x, z) \in R$
- **symmetric** iff, whenever $(x, y) \in R$, then also $(y, x) \in R$
- **anti-symmetric** iff, whenever both $(x, y) \in R$ and $(y, x) \in R$, then $x = y$
- **connected** if for all $x, y \in A$, if $x \neq y$, then either $(x, y) \in R$ or $(y, x) \in R$
- **irreflexive**

PROPERTIES OF BINARY RELATIONS

DEFINITION 11

Let A be a set. A relation $R \subseteq A \times A$ is

- **reflexive** iff, for every $x \in A$, $(x, x) \in R$
- **transitive** iff, whenever $(x, y) \in R$ and $(y, z) \in R$, then also $(x, z) \in R$
- **symmetric** iff, whenever $(x, y) \in R$, then also $(y, x) \in R$
- **anti-symmetric** iff, whenever both $(x, y) \in R$ and $(y, x) \in R$, then $x = y$
- **connected** if for all $x, y \in A$, if $x \neq y$, then either $(x, y) \in R$ or $(y, x) \in R$
- **irreflexive** if, for all $x \in A$, not $(x, x) \in R$

PROPERTIES OF BINARY RELATIONS

DEFINITION 11

Let A be a set. A relation $R \subseteq A \times A$ is

- **reflexive** iff, for every $x \in A$, $(x, x) \in R$
- **transitive** iff, whenever $(x, y) \in R$ and $(y, z) \in R$, then also $(x, z) \in R$
- **symmetric** iff, whenever $(x, y) \in R$, then also $(y, x) \in R$
- **anti-symmetric** iff, whenever both $(x, y) \in R$ and $(y, x) \in R$, then $x = y$
- **connected** if for all $x, y \in A$, if $x \neq y$, then either $(x, y) \in R$ or $(y, x) \in R$
- **irreflexive** if, for all $x \in A$, not $(x, x) \in R$
- **asymmetric** if for no pair $x, y \in A$ we have both $(x, y) \in R$ and $(y, x) \in R$.

PROPERTIES OF BINARY RELATIONS

EXERCISE 21

Give examples of relations that are

- ① *reflexive and symmetric but not transitive*
- ② *reflexive and anti-symmetric,*
- ③ *anti-symmetric, transitive but not reflexive, and*
- ④ *reflexive, symmetric, and transitive.*

PROPERTIES OF BINARY RELATIONS

DEFINITION 12

A relation $R \subseteq A \times A$ is a

- **preorder** if is both reflexive and transitive.
- **partial order** is a A preorder which is also anti-symmetric
- **linear order** is a partial order which is also connected
- **strict order** if it is irreflexive, asymmetric,
- **equivalence** if is is reflexive, symmetric and transitive

PROPERTIES OF BINARY RELATIONS

EXERCISE 22

Classify the following relations wrt the properties of Definition 12:

- *the identity relation $Id_A \subseteq A \times A$, i.e, the relation $Id_A = \{(a, a) \mid a \in A\}$*
- *the relation \subseteq on sets*
- *the relation \leqslant in integers*
- \mathbb{B}^* : $x \leqslant y$ iff $\text{len}(x) \leqslant \text{len}(y)$
- $n \mid m$ iff there is some integer k so that $m = kn$

EQUIVALENCE RELATIONS AND QUOTIENTS

DEFINITION 13

Let $R \subseteq A \times A$ be an equivalence relation. For each $x \in A$, the **equivalence class** of x in A is the set $[x]_R = \{y \in A \mid (x, y) \in R\}$. The *quotient* of A under R is $A/R = \{[x]_R \mid x \in A\}$, i.e., the set of these equivalence classes.

EQUIVALENCE RELATIONS AND QUOTIENTS

DEFINITION 13

Let $R \subseteq A \times A$ be an equivalence relation. For each $x \in A$, the **equivalence class** of x in A is the set $[x]_R = \{y \in A \mid (x, y) \in R\}$. The *quotient* of A under R is $A/R = \{[x]_R \mid x \in A\}$, i.e., the set of these equivalence classes.

PROPOSITION 2.1

If $R \subseteq A \times A$ is an equivalence relation, then $(x, y) \in R$ iff $[x]_R = [y]_R$.

PROOF.

Exercise!

EQUIVALENCE RELATIONS

EXERCISE 23

For any a , b , and $n \in \mathbb{N}$, say that $a \equiv_n b$ iff dividing a by n gives the same remainder as dividing b by n .

Show that \equiv_n is an equivalence relation, for any $n \in \mathbb{Z}^+$, and that \mathbb{N}/\equiv_n has exactly n members.

THE ALGEBRA OF RELATIONS

DEFINITION 14

- Let A be a set. The **identity in A** is the relation $id_A \subseteq A \times A$ defined by

$$id_A = \{(a, a) \mid a \in A\}$$

- Let $R \subseteq A \times B$ a relation. The **converse of R** is the relation

$$R^\circ = \{(b, a) \mid (a, b) \in R\}$$

- Let $R \subseteq A \times B$ and $S \subseteq B \times C$ two relations. The **composition of R with S** is the relation $R \cdot S$ defined as follows

$$R \cdot S = \{(a, c) \mid \exists b \in B. (a, b) \in R \text{ and } (b, c) \in S\}$$

THE ALGEBRA OF RELATIONS

EXERCISE 24

Let $R \subseteq A \times B$ and $S \subseteq B \times C$ two relations. Show that:

- ① $R^\circ \subseteq S$ iff $R \subseteq S^\circ$
- ② $R \subseteq S$ iff $R^\circ \subseteq S^\circ$
- ③ $R^{\circ\circ} = R$
- ④ $(R \cap S)^\circ = R^\circ \cap S^\circ$
- ⑤ $(R \cdot S)^\circ = S^\circ \cdot R^\circ$

THE ALGEBRA OF RELATIONS

Notions of Definition 14 can be used to characterize properties on relations:

EXERCISE 25

Note that for any $R \subseteq A \times A$ is reflexive iff $id_A \subseteq R$.

- Analogously, for any relation $R \subseteq A \times A$, characterize the notions of
 - ① *transitivity,*
 - ② *symmetry,*
 - ③ *anti-symmetry,*
 - ④ *connectivity and*
 - ⑤ *irreflexivity*

THE ALGEBRA OF RELATIONS

SOME SPECIAL RELATIONS

A relation $R \subseteq A \times B$ is

- **Entire** if

$$id_A \subseteq R \cdot R^\circ$$

THE ALGEBRA OF RELATIONS

SOME SPECIAL RELATIONS

A relation $R \subseteq A \times B$ is

- **Entire** if

$$id_A \subseteq R \cdot R^\circ$$

- **Simple** if

$$R^\circ \cdot R \subseteq id_B$$

THE ALGEBRA OF RELATIONS

SOME SPECIAL RELATIONS

A relation $R \subseteq A \times B$ is

- **Entire** if

$$id_A \subseteq R \cdot R^\circ$$

- **Simple** if

$$R^\circ \cdot R \subseteq id_B$$

EXERCISE 26

*Using this definition, characterize the relations that are **functions**.*

THE ALGEBRA OF RELATIONS

EXERCISE 27 (MONOTONICITY)

Prove that for any relations R, S and T :

- $S \subseteq T$ implies that $S \cdot R \subseteq T \cdot R$
- $S \subseteq T$ implies that $R \cdot S \subseteq R \cdot T$

THE ALGEBRA OF RELATIONS

EXERCISE 27 (MONOTONICITY)

Prove that for any relations R, S and T :

- $S \subseteq T$ implies that $S \cdot R \subseteq T \cdot R$
- $S \subseteq T$ implies that $R \cdot S \subseteq R \cdot T$

EXERCISE 28 (IDENTITY PRESERVATION)

Prove that for any relation $R \subseteq A \times B$,

- $R = id_A \cdot R = R \cdot id_B$

THE ALGEBRA OF RELATIONS

EXERCISE 27 (MONOTONICITY)

Prove that for any relations R, S and T :

- $S \subseteq T$ implies that $S \cdot R \subseteq T \cdot R$
- $S \subseteq T$ implies that $R \cdot S \subseteq R \cdot T$

EXERCISE 28 (IDENTITY PRESERVATION)

Prove that for any relation $R \subseteq A \times B$,

- $R = id_A \cdot R = R \cdot id_B$

EXERCISE 29 (GALOIS CONNECTION)

Let R, f and S binary relations. Prove that, if f is a function,

$$R \cdot f \subseteq S \text{ iff } R \subseteq S \cdot f^\circ$$

and

$$f^\circ \cdot R \subseteq S \text{ iff } R \subseteq f \cdot S$$

THE ALGEBRA OF RELATIONS

DEFINITION 15

Kernel and Images of a relation Let $R \subseteq A \times B$ a relation. The

- **Kernel of R** is the relation $\text{Ker}(R) \subseteq A \times A$ that relates the elements in A that share the same images under R

THE ALGEBRA OF RELATIONS

DEFINITION 15

Kernel and Images of a relation Let $R \subseteq A \times B$ a relation. The

- **Kernel of R** is the relation $\text{Ker}(R) \subseteq A \times A$ that relates the elements in A that share the same images under R , i.e.

$$\text{Ker}(R) = R \cdot R^\circ$$

THE ALGEBRA OF RELATIONS

DEFINITION 15

Kernel and Images of a relation Let $R \subseteq A \times B$ a relation. The

- **Kernel of R** is the relation $\text{Ker}(R) \subseteq A \times A$ that relates the elements in A that share the same images under R , i.e.

$$\text{Ker}(R) = R \cdot R^\circ$$

- **Image of R** is the relation $\text{Img}(R) \subseteq B \times B$ relates the elements in B that are images of same point under R

THE ALGEBRA OF RELATIONS

DEFINITION 15

Kernel and Images of a relation Let $R \subseteq A \times B$ a relation. The

- **Kernel of R** is the relation $\text{Ker}(R) \subseteq A \times A$ that relates the elements in A that share the same images under R , i.e.

$$\text{Ker}(R) = R \cdot R^\circ$$

- **Image of R** is the relation $\text{Img}(R) \subseteq B \times B$ relates the elements in B that are images of same point under R , i.e.

$$\text{Img}(R) = R^\circ \cdot R$$

THE ALGEBRA OF RELATIONS

EXERCISE 30

Prove that

- $R \subseteq S \Rightarrow Ker(R) \subseteq Ker(S)$
- $R \subseteq S \Rightarrow Img(R) \subseteq Img(S)$

THE ALGEBRA OF RELATIONS

EXERCISE 31

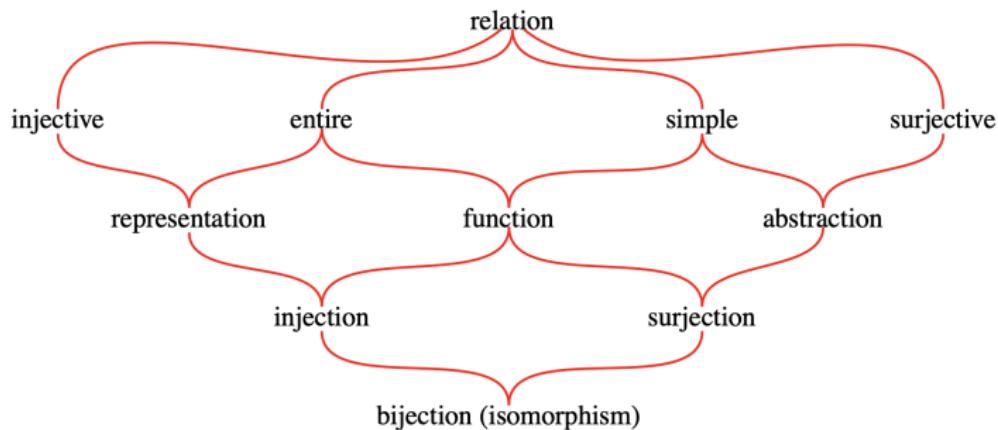
Using the Kernel and Image relations, characterize the relations that are

- *injective*
- *surjective*
- *entire and injective*
- *simple and surjective*
- *injective functions*
- *surjective functions*
- *bijections*

THE ALGEBRA OF RELATIONS

BINARY RELATION TAXONOMY ^a

^afrom *First Steps in Pointfree Functional Dependency Theory*. José Nuno Oliveira. 2005



EQUIVALENCE RELATIONS

EXERCISE 32

Prove or refute the following sentences:

- ① *The intersection of two equivalence relations is an equivalence relation*
- ② *The union of two equivalence relations is an equivalence relation*
- ③ *The composition of two equivalence relations is an equivalence relation*
- ④ *The converse of an equivalence relations is an equivalence relation*

OUTLINE

1 SETS

2 TAXONOMY OF BINARY RELATIONS

3 THE SIZE OF SETS

FINITE AND INFINITE SETS

DEFINITION 16 (FINITE AND INFINITE SETS)

A non-empty **set A is finite** if there is a positive integer n and a bijection from $\{0, \dots, n\}$ to A . Otherwise it is **infinite**.

The empty set is by convention taken to be finite.

EQUINUMEROUS SETS

DEFINITION 17

Equinumerous sets Two sets A and B are **equinumerous** if there is a bijection from A to B . We denote this by $A \sim B$.

EQUINUMEROUS SETS

DEFINITION 17

Equinumerous sets Two sets A and B are **equinumerous** if there is a bijection from A to B . We denote this by $A \sim B$.

EXERCISE 33

For any sets A , B and C , show that:

- ① $A \sim A$.
- ② If $A \sim B$, then $B \sim A$.
- ③ If $A \sim B$ and $B \sim C$, then $A \sim C$.
- ④ if $A \sim C$ and $B \sim D$, and $A \cap B = C \cap D = \emptyset$, then $A \cup B \sim C \cup D$.

A LESS INTUITIVE OBSERVATION?

EXERCISE 34

Comment the following statement:

There exists sets A and B such that $A \sim B$ but $A \subsetneq B$.

A LESS INTUITIVE OBSERVATION?

EXERCISE 34

Comment the following statement:

There exists sets A and B such that $A \sim B$ but $A \subsetneq B$.

Supposing now that A and B are finite. What we can conclude?

A LESS INTUITIVE OBSERVATION?

EXERCISE 34

Comment the following statement:

There exists sets A and B such that $A \sim B$ but $A \subsetneq B$.

Supposing now that A and B are finite. What we can conclude?

EXERCISE 35

Show that

- $\mathbb{N} \sim 2\mathbb{N} = \{0, 2, 4, \dots\}$
- $\mathbb{R} \sim \mathbb{R}^+$
- $\mathbb{R} \times \mathbb{R} \sim \mathbb{C}$

SETS DOMINATION

DEFINITION 18

For sets A and B , A is dominated by B if there is an injection from A to B . We write $A \leq B$. A is strictly dominated by B if $A \leq B$ and A is not equinumerous with B .

SETS DOMINATION

DEFINITION 18

For sets A and B , **A is dominated by B** if there is an injection from A to B . We write $A \leq B$. **A is strictly dominated by B** if $A \leq B$ and A is not equinumerous with B .

EXERCISE 36

Show that

- ① If A is a finite set, then $A \leq \mathbb{N}$.
- ② For any sets A and B , if $A \sim B$, then $A \leq B$.
- ③ For any set A , $A \leq A$.
- ④ For any sets A and B , if $A \subseteq B$, then $A \leq B$.
- ⑤ If $A \leq B$ and $A \sim C$, then $C \leq B$

SETS DOMINATION

DEFINITION 18

For sets A and B , **A is dominated by B** if there is an injection from A to B . We write $A \leq B$. **A is strictly dominated by B** if $A \leq B$ and A is not equinumerous with B .

EXERCISE 36

Show that

- ① If A is a finite set, then $A \leq \mathbb{N}$.
- ② For any sets A and B , if $A \sim B$, then $A \leq B$.
- ③ For any set A , $A \leq A$.
- ④ For any sets A and B , if $A \subseteq B$, then $A \leq B$.
- ⑤ If $A \leq B$ and $A \sim C$, then $C \leq B$

A is **smaller than** B , written $A < B$, iff there is an injection $f: A \rightarrow B$ but no a bijection $g: A \rightarrow B$, i.e., $A < B$ and $A \not\sim B$.

COUNTABLE SETS

An **enumeration** of a set A is a list (possibly infinite) of elements of A such that every element of A appears on the list at some finite position. If A has an enumeration, then A is said to be **countable**.

COUNTABLE SETS

An **enumeration** of a set A is a list (possibly infinite) of elements of A such that every element of A appears on the list at some finite position. If A has an enumeration, then A is said to be **countable**.

DEFINITION 19

An **enumeration** of a set $A \neq \emptyset$ is a surjective function $f: \mathbb{N} \rightarrow A$.

COUNTABLE SETS

An **enumeration** of a set A is a list (possibly infinite) of elements of A such that every element of A appears on the list at some finite position. If A has an enumeration, then A is said to be **countable**.

DEFINITION 19

An **enumeration** of a set $A \neq \emptyset$ is a surjective function $f: \mathbb{N} \rightarrow A$.

DEFINITION 20

A set A is **countable** if either

- ① it is finite, or
- ② it is infinite and $\mathbb{N} \sim A$

COUNTABLE SETS

EXERCISE 37

Show that:

- ① *Any subset of \mathbb{N} is countable*
- ② *If A is countable and $A \sim B$, then B is countable*

COUNTABLE SETS

EXERCISE 37

Show that:

- ① Any subset of \mathbb{N} is countable
- ② If A is countable and $A \sim B$, then B is countable

THEOREM 21 (OTHER CHARACTERIZATIONS FOR COUNTABLE SETS)

- ① A set A is countable iff there is an injection $f : A \rightarrow \mathbb{N}$ (i.e. $A \leq \mathbb{N}$)
- ② A non-empty set A is countable iff there is a surjection $f : \mathbb{N} \rightarrow A$

EXAMPLES OF ENUMERATIONS

EXAMPLE 22

- A function enumerating the naturals is simply the identity function given by $f(n) = n$.

EXAMPLES OF ENUMERATIONS

EXAMPLE 22

- A function enumerating the naturals is simply the identity function given by $f(n) = n$.
- The functions $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ given by

$$f(n) = 2n \text{ and}$$

$$g(n) = 2n + 1$$

enumerate the even positive integers and the odd positive integers, respectively.

EXAMPLES OF ENUMERATIONS

A POSSIBLE ENUMERATION OF THE SET \mathbb{Z} IS DONE BY the function

$$f(n) = (-1)^n \lceil \frac{(n-1)}{2} \rceil$$

(where $\lceil x \rceil$ rounds x up to the nearest integer):

$f(1)$	$f(2)$	$f(3)$	$f(4)$	$f(5)$	$f(6)$	$f(7)$	\dots
$-\lceil \frac{0}{2} \rceil$	$\lceil \frac{1}{2} \rceil$	$-\lceil \frac{2}{2} \rceil$	$\lceil \frac{3}{2} \rceil$	$-\lceil \frac{4}{2} \rceil$	$\lceil \frac{5}{2} \rceil$	$-\lceil \frac{6}{2} \rceil$	\dots
0	1	-1	2	-2	3	\dots	

EXERCISES

EXERCISE 38

Define an enumeration of the positive squares 1, 4, 9, 16, ...

EXERCISES

EXERCISE 38

Define an enumeration of the positive squares 1, 4, 9, 16, ...

EXERCISE 39

Show that if A and B are countable, the set $A \cup B$ is countable.

EXERCISES

EXERCISE 38

Define an enumeration of the positive squares 1, 4, 9, 16, ...

EXERCISE 39

Show that if A and B are countable, the set $A \cup B$ is countable.

EXERCISE 40

Show that if $B \subseteq A$ and A is countable, the set B is countable.

EXERCISES

EXERCISE 38

Define an enumeration of the positive squares 1, 4, 9, 16, ...

EXERCISE 39

Show that if A and B are countable, the set $A \cup B$ is countable.

EXERCISE 40

Show that if $B \subseteq A$ and A is countable, the set B is countable.

EXERCISE 41

Show by induction on n that if A_1, A_2, \dots, A_n are all countable, then the set $A_1 \cup \dots \cup A_n$ is countable.

CANTOR'S ZIG-ZAG METHOD

HOW TO ENUMERATE THE SET $\mathbb{N} \times \mathbb{N} = \{(n, m) \mid n, m \in \mathbb{N}\}$

	0	1	2	3	...
0	(0, 0)	(0, 1)	(0, 2)	(0, 3)	...
1	(1, 0)	(1, 1)	(1, 2)	(1, 3)	...
2	(2, 0)	(2, 1)	(2, 2)	(2, 3)	...
3	(3, 0)	(3, 1)	(3, 2)	(3, 3)	...
:	:	:	:	:	..

CANTOR'S ZIG-ZAG METHOD

HOW TO ENUMERATE THE SET $\mathbb{N} \times \mathbb{N} = \{(n, m) \mid n, m \in \mathbb{N}\}$

	0	1	2	3	...
0	(0, 0)	(0, 1)	(0, 2)	(0, 3)	...
1	(1, 0)	(1, 1)	(1, 2)	(1, 3)	...
2	(2, 0)	(2, 1)	(2, 2)	(2, 3)	...
3	(3, 0)	(3, 1)	(3, 2)	(3, 3)	...
⋮	⋮	⋮	⋮	⋮	⋮

CANTOR'S ZIG-ZAG METHOD

	0	1	2	3	4	...
0	0	1	3	6	10	...
1	2	4	7	11
2	5	8	12
3	9	13
4	14
⋮	⋮	⋮	⋮	⋮	⋮	⋮

CANTOR'S ZIG-ZAG METHOD

HENCE $\mathbb{N} \times \mathbb{N}$ IS ENUMERATED AS FOLLOWS:

$(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0), \dots$

CANTOR'S ZIG-ZAG METHOD

HENCE $\mathbb{N} \times \mathbb{N}$ IS ENUMERATED AS FOLLOWS:

$(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0), \dots$

PROPOSITION 3.1

$\mathbb{N} \times \mathbb{N}$ is *countable*.

CANTOR'S ZIG-ZAG METHOD

HENCE $\mathbb{N} \times \mathbb{N}$ IS ENUMERATED AS FOLLOWS:

$(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0), \dots$

PROPOSITION 3.1

$\mathbb{N} \times \mathbb{N}$ is *countable*.

PROOF.

It is easy to see that $f : \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ given by the Cantor's table is surjective. □

CANTOR'S ZIG-ZAG METHOD

HENCE $\mathbb{N} \times \mathbb{N}$ IS ENUMERATED AS FOLLOWS:

$(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0), \dots$

PROPOSITION 3.1

$\mathbb{N} \times \mathbb{N}$ is *countable*.

PROOF.

It is easy to see that $f : \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ given by the Cantor's table is surjective. \square

PAIRING FUNCTION

Can we back?

$$g(n, m) = \frac{(n + m + 1)(n + m)}{2} + n$$

AN EXAMPLE OF AN UNCONTABLE SET

PROPOSITION 3.2

\mathbb{B}^ω , the set of infinite $\{0, 1\}$ -strings, is **uncontable**

- **Cantor's diagonal method:** Suppose, that \mathbb{B}^ω is enumerable, i.e., suppose that there is a list $s_1, s_2, s_3, s_4, \dots$ of all elements of \mathbb{B}^ω .

AN EXAMPLE OF AN UNCONTABLE SET

PROPOSITION 3.2

\mathbb{B}^ω , the set of infinite $\{0, 1\}$ -strings, is **uncontable**

- **Cantor's diagonal method:** Suppose, that \mathbb{B}^ω is enumerable, i.e., suppose that there is a list $s_1, s_2, s_3, s_4, \dots$ of all elements of \mathbb{B}^ω . All of these lists can be represented in the table

	1	2	3	4	...
1	$s_1(1)$	$s_1(2)$	$s_1(3)$	$s_1(4)$...
2	$s_2(1)$	$s_2(2)$	$s_2(3)$	$s_2(4)$...
3	$s_3(1)$	$s_3(2)$	$s_3(3)$	$s_3(4)$...
4	$s_4(1)$	$s_4(2)$	$s_4(3)$	$s_4(4)$...
⋮	⋮	⋮	⋮	⋮	⋮

AN EXAMPLE OF AN UNCONTABLE SET

PROPOSITION 3.2

\mathbb{B}^ω , the set of infinite $\{0, 1\}$ -strings, is **uncontable**

- **Cantor's diagonal method:** Suppose, that \mathbb{B}^ω is enumerable, i.e., suppose that there is a list $s_1, s_2, s_3, s_4, \dots$ of all elements of \mathbb{B}^ω . All of these lists can be represented in the table

	1	2	3	4	...
1	$s_1(1)$	$s_1(2)$	$s_1(3)$	$s_1(4)$...
2	$s_2(1)$	$s_2(2)$	$s_2(3)$	$s_2(4)$...
3	$s_3(1)$	$s_3(2)$	$s_3(3)$	$s_3(4)$...
4	$s_4(1)$	$s_4(2)$	$s_4(3)$	$s_4(4)$...
⋮	⋮	⋮	⋮	⋮	⋮

- but the sequence $\bar{s}(n) = \begin{cases} 1 & \text{if } s_n(n) = 0 \\ 0 & \text{if } s_n(n) = 1. \end{cases}$ is not on the list.

Contradiction!

COUNTABLE AND UNCOUNTABLE SETS

EXERCISE 42

Prove or refute the following sentence:

- "(i) The set \mathbb{Q} is countable.*
- "(ii) Moreover, it is also dense, i.e. for any $x, y \in \mathbb{Q}$ with $x < y$, there is a $z \in \mathbb{Q}$ such that and $x < z$ and $z < y$ "*

COUNTABLE AND UNCONTABLE SETS

EXERCISE 42

Prove or refute the following sentence:

- "(i) The set \mathbb{Q} is contable.*
- "(ii) Moreover, it is also dense, i.e. for any $x, y \in \mathbb{Q}$ with $x < y$, there is a $z \in \mathbb{Q}$ such that and $x < z$ and $z < y$ "*

EXERCISE 43

Prove or refute the following sentence:

- "The set of reals in the interval $[0, 1)$ is uncontable"*

THE SIZE OF SETS

EXERCISE 44

Prove the Cantor Theorem:

For any set A , $A < \mathcal{P}(A)$.

EXERCISE 45

Show that $\mathcal{P}(\mathbb{N})$ is not countable.

THE SIZE OF SETS

THEOREM 23 (SCHRÖDER-BERNSTEIN)

If $A \leq B$ and $B \leq A$, then $A \sim B$.

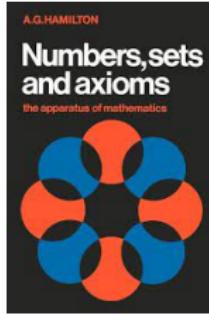
THE SIZE OF SETS

THEOREM 23 (SCHRÖDER-BERNSTEIN)

If $A \leq B$ and $B \leq A$, then $A \sim B$.

SOME CONSEQUENCES:

- Let I be an interval in \mathbb{R} which is not empty and not a singleton. Then $I \sim \mathbb{R}$
- $\mathbb{R} \sim \mathcal{P}(\mathbb{N})$
- ...



ELEMENTS OF LOGIC 2024/25

INTUITIVE SET THEORY

EL 2024/25

Department of Mathematics, University of Aveiro
Alexandre Madeira
(madeira@ua.pt)

March 18, 2025