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Back to our initial plan

For the “algorithms development” we mathematically formulate:

what is a programming language

what is a program

how to interpret programs

Formal Semantics of programs

To make its “analysis”, we mathematically formalise:

the notions of property and behaviour

the notions of specification and algorithm correctness

the notion of correctness proof

Formal Verification of programs
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On program verification

Formal development of programs/algorithms

Formal Specification: precise (mathematical) description of what a
program should do

Formal Verification: (mathematical) proof that a program satisfies a
given specification

Formal Development: development of programs/algorithms
following a systematic procedure that (mathematically) assures the
satisfaction of specification

Correctness − by − construction
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Hoare Triples

Outline

1 On program verification

2 Hoare Triples

3 Floyd-Hoare Calculus

4 Verification Conditions generation
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Hoare Triples

Program Specification

Pre-condition
Program Execution
===========⇒ Post-condition

“ x greater that y”
Program Execution
===========⇒ “ z is the diference between x and y”

“ x greater 0”
Program Execution
===========⇒ “ z is the square root of x”
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Hoare Triples

Partial correctness Specification

Hoare Triples

are expressions
{P} C {Q}

where

C is a program

P and Q are conditions on program variables used in C
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Hoare Triples

Partial Correctness

{P} C {Q} is true if

whenever C is executed in a state satisfying P

and if C terminates

then the state in which C terminates satisfies Q

Examples

{x = 1} x := x + 1 {x = 2}

from any state where x = 1,

whenever the program x := x + 1 terminates

it achieves at a state satisfying x = 2

{x = 1} x := x + 1 {x = 2} holds

{x = 1} x := x + 1 {x = 1} does not holds
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Hoare Triples

Hoare Triples

Exercise 1

Discuss the validity of the following Hoare triples:

1 {x = a ∧ y = b} x := y ; y := x {x = b ∧ y = a}

2 {x = a ∧ y = b} r := x ; x := y ; y := r {x = b ∧ y = a}
3 {true} C {Q}
4 {P} C {true}
5 {true} C {true}
6 {true} C {false}
7 {x = 1} while true do skip {x = 1}
8 {x = 1} while true do skip {false}
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Hoare Triples

Foundations for a design-by-contract
methodology?

A program to swap the values of variables x and y

{x = a ∧ y = b} C {x = b ∧ y = a}

Development process: to determine a program C that satisfies the triple.

The program
C ≡ ( r := x ; x := y ; y := r)

is a possible implementation, since

{x = a ∧ y = b} r := x ; x := y ; y := r {x = b ∧ y = a}

holds!
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Hoare Triples

Total correctness

[P] C [Q] is true if

whenever C is executed in a state satisfying P

then, the execution C terminates and

state in which C terminates, satisfies Q

Total correctness

Total correctness = termination + partial correctness

To prove that [P] C [Q] is true:

prove that C terminates

prove {P} C {Q}
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Hoare Triples

Total correctness

Exercise 2

Discuss the validity of the following Hoare triples:

1 [x = a ∧ y = b] x := y ; y := x [x = b ∧ y = a]

2 [x = a ∧ y = b] r := x ; x := y ; y := r [x = b ∧ y = a]

3 [true] C [Q]

4 [P] C [true]

5 [P] C [false]

6 [true] C [true]

7 [false] C [false]

8 [x = 1] while true do skip [x = 1]

9 [x = 1] while true do skip [false]
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Hoare Triples

Example

A concrete example

{true}
r := x ;

q := 0;

while y ≤ r do r := r − y ; q := q + 1

{r < y ∧ x = r + (y × q)}

This triple is true if whenever the execution of the program halts, then q is
the quotient and r is the reminder of the division of y by x
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Hoare Triples

Exercises

Exercise 3

1 Write a partial correctness specification which is true if and only if the
program C has the effect of multiplying the values of x and y and
storing the result in x.

2 Write a specification which is true if the execution of C always halts
when execution is started in a state satisfying P.
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Hoare Triples

The relevance to properly specify

“The program C must set y to the maximum of x and y”

First attempt:
[true] C [y = max(x , y)]

Possible implementation(s) for C :

if x ≥ y then y := x else skip

if x ≥ y then x := y else skip

y := x

. . .

Therefore the specification is wrong for our purposes!
A proper specification:

[x = a ∧ y = b] C [y = max(a, b)]
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Hoare Triples

Language to express specification

The predicate statements

Pred ∋ P ::= t | a = a | a > a | ¬P | P ∧ P | P ∨ P | P → P | ∀x .P | ∃x .P

for t ∈ B, a ∈ AExp, x ∈ Var

Usually, we use the usual notations (e.g. Odd(x), Even(x), Prime(x)) for
the well known predicates
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Floyd-Hoare Calculus

Outline

1 On program verification

2 Hoare Triples

3 Floyd-Hoare Calculus

4 Verification Conditions generation
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Floyd-Hoare Calculus

Floyd-Hoare Rules: Assignment

Substitution

P[a/x ]

denotes the result of substituting the expression a by all the occurrences
of the variable x

(x = y)[z/x ] ⇔ z = y

(x = y)[1/y ] ⇔ x = 1

(x = y)[x + 1/x ] ⇔ x + 1 = y
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Floyd-Hoare Calculus

Floyd-Hoare Rules: Assignment

Skip rule

{P} skip {P}
(sk)

A. Madeira ADA November 25, 2024 19 / 57



Floyd-Hoare Calculus

Floyd-Hoare Rules: Assignment

Assignment rule

{P[a/x ]} x := a {P}
(Assign)

Example 1

{y = 2} x := 2 {y = x} holds, since (y = 2)[x/y ] ⇔ (y = 2)

Exercise 4

Verify:

{x + 1 = n + 1} x := x + 1 {x = n + 1}
{a = a} x := a {x = a}
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Floyd-Hoare Calculus

Floyd-Hoare Rules: Assignment

Exercise 5

Other WRONG attempts on defining a rule for assignments are:

{P} x :=a {P[a/x]} and

{P} x :=a {P[x/a]}
Show that these rules are not sound.
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Floyd-Hoare Calculus

Floyd-Hoare Rules: Assignment

Alternative assignment rule (by Floyd)

{P} x := a {∃v .
(
x = (a[v/x ]) ∧ P[v/x ]

)
}
(Ass ′)

Actually we can prove that (Ass) and (Ass ′).

Exercise 6

Use it to show that {x = 1} x := x + 1 {x = 2}
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Floyd-Hoare Calculus

Floyd-Hoare Rules: Strengthening and
weakening

Precondition Strengthening

P ⇒ P ′ {P ′} C {Q}
{P} C {Q}

Post-condition Weakening

{P} C {Q ′} Q ′ ⇒ Q

{P} C {Q}
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Floyd-Hoare Calculus

Floyd-Hoare Rules: Strengthening and
weakening

Exercise 7

Show that:

{x = n} x := x + 1 {x = n + 1}

{true} x := a {x = a}
{r = a} q := 0 {r = a+ (y × q)}
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Floyd-Hoare Calculus

Floyd-Hoare Rules: Sequential composition

Sequential composition

{P} C1 {Q ′} {Q ′} C2 {Q}
{P} C1;C2 {Q}

Exercise 8

1 Write a program to swap the values of the variables x and y and
verify its correctness.

2 Prove that the program

x := x + y ; y := x − y ; x := x − y

does the same.

3 Prove that
{x = r + (y × q)} r := r − y ; q := q + 1 {x = r + (y × q)}
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x := x + y ; y := x − y ; x := x − y

does the same.

3 Prove that
{x = r + (y × q)} r := r − y ; q := q + 1 {x = r + (y × q)}
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Floyd-Hoare Calculus

Floyd-Hoare Rules: conditionals

Conditional

{P ∧ b} C1 {Q} {P ∧ ¬b} C2 {Q}
{P} if b then C1 else C2 {Q}

Exercise 9

Prove that
{true}
if x ≥ y then MAX := x else MAX := y

{MAX = max(x , y)}
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Floyd-Hoare Calculus

Floyd-Hoare Rules: conditionals

Exercise 10

Suppose that While language is now enriched with the command

if b then c

Introduce a suitable rule for the Floyd-Hoare Calculus and comment the
sentence: “this command is just an abbreviation of a While command.

Exercise 11

Prove that if {P ∧ b} c1 {Q} and {P ∧ ¬b} c2 {Q} then

{P} if b then c1 else (if ¬b then c2) {Q}
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Floyd-Hoare Calculus

Floyd-Hoare Rules: Conjunction and
disjunction

Specification conjunction

{P1} C {Q1} {P2} C {Q2}
{P1 ∧ P2} C {Q1 ∧ Q2}

Specification disjunction

{P1} C {Q1} {P2} C {Q2}
{P1 ∨ P2} C {Q1 ∨ Q2}
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Floyd-Hoare Calculus

Floyd-Hoare Rules: while rule

Invariants

P is said to be invariant of C whenever b holds

{P ∧ b} C {P}

Observe:

if executing C once preserves the truth of P

then, executing C any number of times also preserves the truth of P

While rule

{P ∧ b} C {P}
{P} while b do C {P ∧ ¬b}
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Floyd-Hoare Calculus

Floyd-Hoare Rules: while rule

Exercise 12

{x ≤ n} while x < n do x := x + 1 {x ≥ n}

Exercise 13

For x , y ∈ N, show that
{true}

r := x ;
q := 0;
while y ≤ r do ( r := r − y ; q := q + 1)

{x = r + (y × q) ∧ ¬(y ≤ r)}

Hint: invariant suggestion x = r + (y × q)
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Floyd-Hoare Calculus

Non termination programs

As observed before, while b do c is the unique command of While that
potentially causes non-termination

Exercise 14

Comment the statement:

{true} while true do x := 0 {false}
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Floyd-Hoare Calculus

Finding invariants

invariants shall reflect

what has been done and what remains to be done

hold at each iteration of the cycle

shall give the intended result when the cycle terminates

Example

{x = n ∧ y = 1}
while x ̸= 0 do y := y × x ; x := x − 1

{x = 0 ∧ y = n!}
“what was already calculated”: y

“what remains to be done”: x!

“final result”: n!

x!× y = n!
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Floyd-Hoare Calculus

Exercises

Exercise 15

Prove
{x = n ∧ y = 1}

while x ̸= 0 do y := y × x ; x := x − 1
{x = 0 ∧ y = n!}

Exercise 16

Prove
{x = 0 ∧ y = 1}

while x < N do x := x + 1; y := y × x
{y = n!}
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Floyd-Hoare Calculus

Exercises

Exercise 17

Determine a program c such that, for any a, b ∈ N,

{x = a ∧ y = b} c {z = ab}
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Verification Conditions generation

Outline

1 On program verification

2 Hoare Triples

3 Floyd-Hoare Calculus

4 Verification Conditions generation
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Verification Conditions generation

The verification of programs

Three ways to verify the vailidy of {P} c {Q}
Using the Floyd-Hoare calculus (as did in the previous section)

By calculating and prooving the generated verification conditions

By using weakest pre-conditions/strongest post-conditions
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Verification Conditions generation

The verification of programs

Verification Conditions generation

Use an algorithm to extract the “proof obligations” of {P} c {Q}, i.e. a
set of logic statements V = VC ({P} c {Q}) such that,

if V is true, then {P} c {Q} holds

Weakest pre-conditions (Dijsktra predicate transformers)

Use an algorithm to extract the “weakest precondition of c wrt Q”, i.e.
the weakest condition wpc(c ,Q) that makes the triple {wpc(c ,Q)} c {Q}
valid. Hence,

P → wpc(c,Q) is true iff {P} c {Q} holds
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Verification Conditions generation

Verification Conditions Generation

To verify the triple {P} c {Q}
1 annotate programs

2 calculate VC ({P} c {Q}) (recursive process)

3 if the (first-order) formulas of VC ({P} c {Q}) are proved, the triple
{P} c {Q} is valid

More operationally:

1 Input: a Hoare triple annotated with mathematical statements

2 An algorithm generates the set of verification conditions

3 The verification conditions are passed to a theorem prover which
attempts to prove them automatically. Often it requires human aid.

4 if the verification conditions are proved the triple {P} c {Q} is valid
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Verification Conditions generation

Program Annotations
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Verification Conditions generation

Program Annotations

A program is properly annotated (to the verification
conditions generation) if:

statements have been inserted at the following places:

before c2 in c1; c2 and c2 is not an assignment

after the “do” in whiles cycle while b do {I}c1
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Verification Conditions generation

Verification Conditions Generation

Assignments

VC ({P} x := a {Q}) = {P → Q[a/x ]}

Example

VC ({x = 0} x := x + 1 {x = 1}) = {x = 0 → (x = 1)[x + 1/x ]}
= {x = 0 → x = 0}
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Verification Conditions generation

Verification Conditions Generation

Skip

VC ({P} skip {Q}) = {P → Q}

Example

+++
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Verification Conditions generation

Verification Conditions Generation

Conditionals

VC ({P} if b then c1 else c2 {Q}) = VC ({P ∧ b} c1 {Q})
∪
VC ({P ∧ ¬b} c2 {Q})

Exercise 18

1 Suggest a rule for the command if b then c with the expected
semantics (if b then c ≡ if b then c else skip). Calculate
VC ({true} if x < 0 then x := −x {x ≥ 0})

2 Calculate

VC ({true} if x ≥ y then M := x else M := y {M = max(x , y)})

A. Madeira ADA November 25, 2024 43 / 57



Verification Conditions generation

Verification Conditions Generation

Sequential Compositions

1 If cn is not an assignment,
VC ({P} c1; . . . ; cn−1{R}cn {Q}) = VC ({P} c1; . . . ; cn−1 {R})

∪
VC ({R} cn {Q})

2 and
VC ({P} c1; . . . ; cn−1; x := a {Q}) =
VC ({P} c1; . . . ; cn−1 {Q[a/x ]})

Exercise 19

Calculate:

VC ({x = a ∧ y = b} r := x ; x := y ; y := r {x = b ∧ y = a})
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Verification Conditions generation

Verification Conditions Generation

While

VC ({P} while b do {I}c {Q}) = {P → I}
∪
{(I ∧ ¬b) → Q}
∪
VC ({I ∧ b} c {I})

Exercise 20

1 Calculate VC ({s = 2i} while i < n do i := i + 1; s := s × 2 {s = 2i})
2 Verify

{true}
r := x ;
q := 0;
while y ≤ r do r := r − y ; q := q + 1

{x = r + (y × q) ∧ ¬(y ≤ r)} using verification conditions. Hint: invariant
suggestion x = r + (y × q)
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Verification Conditions generation

Verification Conditions Generation

Exercise 21

Using verification conditions generator, prove that, for x , y naturals
{x = a ∧ y = b}

z := 1;
while y ≥ 1 do ( z := x × z ; y := y − 1)

{z = ab}
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Verification Conditions generation

Verification Conditions Generation

Theorem 1

If the statements VC ({P} c {Q}) are true, then {P} c {Q} holds

And the converse implication?

Consider the annotated triple

{true} while false do {false} x := 0 {true}

Try to to prove it

using Floyd-Hoare Logic (forget the annotations)

using the verification conditions generations

what do you conclude?

the converse implication does not hold!
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Verification Conditions generation

Predicate transformer

Goal: find the weakest pre-condition wpc(c ,Q,) for which the triple

{wpc(c ,Q)} c {Q}

Then
{P} c {Q} iff P → wpc(c ,Q)

A program is understood as a “predicates transformer”, that
transforms post-conditions and programs into “weakest
pre-conditions”

A. Madeira ADA November 25, 2024 48 / 57



Verification Conditions generation

Predicate transformer

Goal: find the weakest pre-condition wpc(c ,Q,) for which the triple

{wpc(c ,Q)} c {Q}

Then
{P} c {Q} iff P → wpc(c ,Q)

A program is understood as a “predicates transformer”, that
transforms post-conditions and programs into “weakest
pre-conditions”

A. Madeira ADA November 25, 2024 48 / 57



Verification Conditions generation

Predicate transformers

Assignment

wpc( x := a,Q) = Q[a/x ]

Exercise 22

Calculate

wpc( x := x + y , y > x)

wpc( y := 2× y , y < 5)

wpc( y := 2× y , even(y))
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Verification Conditions generation

Predicate transformers

Sequential Composition

wpc(c1; c2,Q) = wpc(c1,wpc(c2,Q))

Exercise 23

Calculate

wpc( x := z + 1; y := x + y , y > 5)

wpc( r := x ; x := y ; y := r , x = b ∧ y = a)
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Verification Conditions generation

Predicate transformers

Conditionals

wpc(if b then c1 else c2,Q) = (b → wpc(c1,Q)) ∧ (¬b → wpc(c2,Q))

Exercise 24

Calculate

wpc(if x ≤ y then m := x else m := y ,m = min(x , y))
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Verification Conditions generation

Exercise

Exercise 25

Prove

{x ≤ 7} x := 5; if x ≤ 7 then x := x + 2 else skip {x = 7}

using:

1 Weakest pre-conditions

2 Verification conditions

3 Hoare Logic
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Verification Conditions generation

Predicate transformers

While

can not in general compute a finite formula, other techniques shall be
considered (not in this course). A sound rule:

wpc(while b do c ,Q) = if b then wpc(c ,wpc(while b do c ,Q)) else Q
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Verification Conditions generation

Dijkstra’s Guarded Command Language
(GCL)

Guarded Command Language (GCL)

c := skip | x := a | c1; c2 | assert α | assume α | havoc x | c ||c

Hoare Logic Rules for GCL

semantics of skip and x := a define as for While language

(assert) P→α
{P} assert α {P∧α}

(assume) {P} assume α {P∧α}

(choice){P} c1 {Q} {P} c2 {Q}
{P} c1||c2 {Q}
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Verification Conditions generation

Dijkstra’s Guarded Command Language
(GCL)

Exercise 26

1 What is

wpc(assert P ,C )
wpc(assume P ,C )

2 Given conditions P and Q and a program C, determine a program C ′

in the Dijstra’s guarded language such that {P} C {Q} iff
{true} C ′ {true}. Prove it!
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Verification Conditions generation

Dijkstra’s Guarded Command Language
(GCL)

GCL captures Conditionals:

For instance,

{P} if b then c1 else c2 {Q} iff {P} assert b ; c1||assert ¬b ; c2 {Q}

We can integrate specification in the code:

{P} c {Q}

iff

{true} assume P ; c ; assert Q {true}

Exercise 27

Prove the previous observations!
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Verification Conditions generation

This was just an appetizer...
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