

FORMAL VERIFICATION OF PROGRAMS

SLIDES BLOCK 3

ADA 2024/25
Dep. de Matemática Universidade de Aveiro
Alexandre Madeira
(madeira@ua.pt)

November 25, 2024

REFERENCES

The main reference for this part of the course is the text:

- Mike Gordon: Specification and Verification I, lecture notes

BACK TO OUR INITIAL PLAN

FOR THE “ALGORITHMS DEVELOPMENT” WE MATHEMATICALLY FORMULATE:

- what is a **programming language**
- what is a **program**
- how to **interpret programs**

Formal Semantics of programs

BACK TO OUR INITIAL PLAN

FOR THE “ALGORITHMS DEVELOPMENT” WE MATHEMATICALLY FORMULATE:

- what is a **programming language**
- what is a **program**
- how to **interpret programs**

Formal Semantics of programs

TO MAKE ITS “ANALYSIS”, WE MATHEMATICALLY FORMALISE:

- the notions of **property** and **behaviour**
- the notions of **specification** and **algorithm correctness**
- the notion of **correctness proof**

Formal Verification of programs

FORMAL DEVELOPMENT OF PROGRAMS/ALGORITHMS

- **Formal Specification:** precise (mathematical) description of what a program should do
- **Formal Verification:** (mathematical) proof that a program satisfies a given specification
- **Formal Development:** development of programs/algorithms following a systematic procedure that (mathematically) assures the satisfaction of specification

FORMAL DEVELOPMENT OF PROGRAMS/ALGORITHMS

- **Formal Specification:** precise (mathematical) description of what a program should do
- **Formal Verification:** (mathematical) proof that a program satisfies a given specification
- **Formal Development:** development of programs/algorithms following a systematic procedure that (mathematically) assures the satisfaction of specification

Correctness – by – construction

OUTLINE

- ① ON PROGRAM VERIFICATION
- ② HOARE TRIPLES
- ③ FLOYD-HOARE CALCULUS
- ④ VERIFICATION CONDITIONS GENERATION

PROGRAM SPECIFICATION

Pre-condition $\xrightarrow{\text{Program Execution}}$ Post-condition

PROGRAM SPECIFICATION

Pre-condition $\xrightarrow{\text{Program Execution}}$ Post-condition

“ x greater than y ” $\xrightarrow{\text{Program Execution}}$ “ z is the difference between x and y ”

“ x greater than 0” $\xrightarrow{\text{Program Execution}}$ “ z is the square root of x ”

PARTIAL CORRECTNESS SPECIFICATION

HOARE TRIPLES
are expressions

$$\{P\} \ C \ \{Q\}$$

where

- C is a **program**
- P and Q are **conditions** on program variables used in C

PARTIAL CORRECTNESS

$\{P\} C \{Q\}$ IS TRUE IF

whenever C is executed in a state satisfying P

and if C terminates

then the state in which C terminates satisfies Q

PARTIAL CORRECTNESS

$\{P\} C \{Q\}$ IS TRUE IF

whenever C is executed in a state satisfying P

and if C terminates

then the state in which C terminates satisfies Q

EXAMPLES

$\{x = 1\} \quad x := x + 1 \quad \{x = 2\}$

from any state where $x = 1$,

whenever the program $x := x + 1$ terminates

it achieves at a state satisfying $x = 2$

PARTIAL CORRECTNESS

$\{P\} C \{Q\}$ IS TRUE IF

whenever C is executed in a state satisfying P

and if C terminates

then the state in which C terminates satisfies Q

EXAMPLES

$\{x = 1\} \ x := x + 1 \{x = 2\}$

from any state where $x = 1$,

whenever the program $x := x + 1$ terminates

it achieves at a state satisfying $x = 2$

- $\{x = 1\} \ x := x + 1 \{x = 2\}$ holds
- $\{x = 1\} \ x := x + 1 \{x = 1\}$ does not holds

HOARE TRIPLES

EXERCISE 1

Discuss the validity of the following Hoare triples:

- ① $\{x = a \wedge y = b\} \ x := y; y := x \{x = b \wedge y = a\}$

HOARE TRIPLES

EXERCISE 1

Discuss the validity of the following Hoare triples:

- ① $\{x = a \wedge y = b\} \quad x := y; \quad y := x \quad \{x = b \wedge y = a\}$
- ② $\{x = a \wedge y = b\} \quad r := x; \quad x := y; \quad y := r \quad \{x = b \wedge y = a\}$

HOARE TRIPLES

EXERCISE 1

Discuss the validity of the following Hoare triples:

- ① $\{x = a \wedge y = b\} \ x := y; y := x \{x = b \wedge y = a\}$
- ② $\{x = a \wedge y = b\} \ r := x; x := y; y := r \{x = b \wedge y = a\}$
- ③ $\{\text{true}\} C \{Q\}$

HOARE TRIPLES

EXERCISE 1

Discuss the validity of the following Hoare triples:

- ① $\{x = a \wedge y = b\} \ x := y; y := x \{x = b \wedge y = a\}$
- ② $\{x = a \wedge y = b\} \ r := x; x := y; y := r \{x = b \wedge y = a\}$
- ③ $\{\text{true}\} C \{Q\}$
- ④ $\{P\} C \{\text{true}\}$

HOARE TRIPLES

EXERCISE 1

Discuss the validity of the following Hoare triples:

- ① $\{x = a \wedge y = b\} \ x := y; y := x \{x = b \wedge y = a\}$
- ② $\{x = a \wedge y = b\} \ r := x; x := y; y := r \{x = b \wedge y = a\}$
- ③ $\{\text{true}\} C \{Q\}$
- ④ $\{P\} C \{\text{true}\}$
- ⑤ $\{\text{true}\} C \{\text{true}\}$

HOARE TRIPLES

EXERCISE 1

Discuss the validity of the following Hoare triples:

- ① $\{x = a \wedge y = b\} \ x := y; y := x \{x = b \wedge y = a\}$
- ② $\{x = a \wedge y = b\} \ r := x; x := y; y := r \{x = b \wedge y = a\}$
- ③ $\{\text{true}\} C \{Q\}$
- ④ $\{P\} C \{\text{true}\}$
- ⑤ $\{\text{true}\} C \{\text{true}\}$
- ⑥ $\{\text{true}\} C \{\text{false}\}$

HOARE TRIPLES

EXERCISE 1

Discuss the validity of the following Hoare triples:

- ① $\{x = a \wedge y = b\} \ x := y; y := x \{x = b \wedge y = a\}$
- ② $\{x = a \wedge y = b\} \ r := x; x := y; y := r \{x = b \wedge y = a\}$
- ③ $\{\text{true}\} C \{Q\}$
- ④ $\{P\} C \{\text{true}\}$
- ⑤ $\{\text{true}\} C \{\text{true}\}$
- ⑥ $\{\text{true}\} C \{\text{false}\}$
- ⑦ $\{x = 1\} \text{ while true do skip } \{x = 1\}$

HOARE TRIPLES

EXERCISE 1

Discuss the validity of the following Hoare triples:

- ① $\{x = a \wedge y = b\} \ x := y; y := x \{x = b \wedge y = a\}$
- ② $\{x = a \wedge y = b\} \ r := x; x := y; y := r \{x = b \wedge y = a\}$
- ③ $\{\text{true}\} C \{Q\}$
- ④ $\{P\} C \{\text{true}\}$
- ⑤ $\{\text{true}\} C \{\text{true}\}$
- ⑥ $\{\text{true}\} C \{\text{false}\}$
- ⑦ $\{x = 1\} \text{ while true do skip } \{x = 1\}$
- ⑧ $\{x = 1\} \text{ while true do skip } \{\text{false}\}$

FOUNDATIONS FOR A DESIGN-BY-CONTRACT METHODOLOGY?

A PROGRAM TO SWAP THE VALUES OF VARIABLES x AND y

$$\{x = a \wedge y = b\} \ C \ \{x = b \wedge y = a\}$$

Development process: to determine a program C that satisfies the triple.

FOUNDATIONS FOR A DESIGN-BY-CONTRACT METHODOLOGY?

A PROGRAM TO SWAP THE VALUES OF VARIABLES x AND y

$$\{x = a \wedge y = b\} \ C \ \{x = b \wedge y = a\}$$

Development process: to determine a program C that satisfies the triple.
The program

$$C \equiv (r := x; x := y; y := r)$$

is a possible implementation, since

$$\{x = a \wedge y = b\} \ r := x; x := y; y := r \ \{x = b \wedge y = a\}$$

holds!

TOTAL CORRECTNESS

$[P] C [Q]$ IS TRUE IF

whenever C is executed in a state satisfying P

then, the **execution C terminates** and

state in which C terminates, satisfies Q

TOTAL CORRECTNESS

$[P] C [Q]$ IS TRUE IF

whenever C is executed in a state satisfying P

then, the **execution C terminates** and

state in which C terminates, satisfies Q

TOTAL CORRECTNESS

Total correctness = termination + partial correctness

TOTAL CORRECTNESS

$[P] C [Q]$ IS TRUE IF

whenever **C is executed in a state satisfying P**

then, the **execution C terminates** and

state in which C terminates, satisfies Q

TOTAL CORRECTNESS

Total correctness = termination + partial correctness

To prove that $[P] C [Q]$ is true:

- prove that C terminates
- prove $\{P\} C \{Q\}$

TOTAL CORRECTNESS

EXERCISE 2

Discuss the validity of the following Hoare triples:

① $[x = a \wedge y = b] \ x := y; y := x [x = b \wedge y = a]$

TOTAL CORRECTNESS

EXERCISE 2

Discuss the validity of the following Hoare triples:

- ① $[x = a \wedge y = b] \ x := y; y := x [x = b \wedge y = a]$
- ② $[x = a \wedge y = b] \ r := x; x := y; y := r [x = b \wedge y = a]$

TOTAL CORRECTNESS

EXERCISE 2

Discuss the validity of the following Hoare triples:

- ① $[x = a \wedge y = b] \ x := y; y := x [x = b \wedge y = a]$
- ② $[x = a \wedge y = b] \ r := x; x := y; y := r [x = b \wedge y = a]$
- ③ $[\text{true}] \ C [Q]$

TOTAL CORRECTNESS

EXERCISE 2

Discuss the validity of the following Hoare triples:

- ① $[x = a \wedge y = b] \ x := y; y := x [x = b \wedge y = a]$
- ② $[x = a \wedge y = b] \ r := x; x := y; y := r [x = b \wedge y = a]$
- ③ $[true] C [Q]$
- ④ $[P] C [true]$

TOTAL CORRECTNESS

EXERCISE 2

Discuss the validity of the following Hoare triples:

- ① $[x = a \wedge y = b] \ x := y; y := x [x = b \wedge y = a]$
- ② $[x = a \wedge y = b] \ r := x; x := y; y := r [x = b \wedge y = a]$
- ③ $[true] C [Q]$
- ④ $[P] C [true]$
- ⑤ $[P] C [false]$

TOTAL CORRECTNESS

EXERCISE 2

Discuss the validity of the following Hoare triples:

- ① $[x = a \wedge y = b] \ x := y; y := x [x = b \wedge y = a]$
- ② $[x = a \wedge y = b] \ r := x; x := y; y := r [x = b \wedge y = a]$
- ③ $[true] C [Q]$
- ④ $[P] C [true]$
- ⑤ $[P] C [false]$
- ⑥ $[true] C [true]$

TOTAL CORRECTNESS

EXERCISE 2

Discuss the validity of the following Hoare triples:

- ① $[x = a \wedge y = b] \ x := y; y := x [x = b \wedge y = a]$
- ② $[x = a \wedge y = b] \ r := x; x := y; y := r [x = b \wedge y = a]$
- ③ $[true] C [Q]$
- ④ $[P] C [true]$
- ⑤ $[P] C [false]$
- ⑥ $[true] C [true]$
- ⑦ $[false] C [false]$

TOTAL CORRECTNESS

EXERCISE 2

Discuss the validity of the following Hoare triples:

- ① $[x = a \wedge y = b] \ x := y; y := x [x = b \wedge y = a]$
- ② $[x = a \wedge y = b] \ r := x; x := y; y := r [x = b \wedge y = a]$
- ③ $[true] C [Q]$
- ④ $[P] C [true]$
- ⑤ $[P] C [false]$
- ⑥ $[true] C [true]$
- ⑦ $[false] C [false]$
- ⑧ $[x = 1] \text{while } true \text{ do skip } [x = 1]$

TOTAL CORRECTNESS

EXERCISE 2

Discuss the validity of the following Hoare triples:

- ① $[x = a \wedge y = b] \ x := y; y := x [x = b \wedge y = a]$
- ② $[x = a \wedge y = b] \ r := x; x := y; y := r [x = b \wedge y = a]$
- ③ $[true] C [Q]$
- ④ $[P] C [true]$
- ⑤ $[P] C [false]$
- ⑥ $[true] C [true]$
- ⑦ $[false] C [false]$
- ⑧ $[x = 1] \text{while } true \text{ do skip } [x = 1]$
- ⑨ $[x = 1] \text{while } true \text{ do skip } [false]$

EXAMPLE

A CONCRETE EXAMPLE

{true}

 $r := x;$ $q := 0;$ $\text{while } y \leq r \text{ do } r := r - y; q := q + 1$ { $r < y \wedge x = r + (y \times q)$ }

This triple is true if whenever the execution of the program halts, then q is the quotient and r is the remainder of the division of y by x

EXERCISES

EXERCISE 3

- ① *Write a partial correctness specification which is true if and only if the program C has the effect of multiplying the values of x and y and storing the result in x .*
- ② *Write a specification which is true if the execution of C always halts when execution is started in a state satisfying P .*

THE RELEVANCE TO PROPERLY SPECIFY

“The program C must set y to the maximum of x and y ”

First attempt:

[true] C [$y = \max(x, y)$]

THE RELEVANCE TO PROPERLY SPECIFY

“The program C must set y to the maximum of x and y ”

First attempt:

$[\text{true}] \ C [y = \max(x, y)]$

POSSIBLE IMPLEMENTATION(S) FOR C :

- `if $x \geq y$ then $y := x$ else skip`

THE RELEVANCE TO PROPERLY SPECIFY

“The program C must set y to the maximum of x and y ”

First attempt:

$[\text{true}] \ C [y = \max(x, y)]$

POSSIBLE IMPLEMENTATION(S) FOR C :

- `if $x \geq y$ then $y := x$ else skip`
- `if $x \geq y$ then $x := y$ else skip`

THE RELEVANCE TO PROPERLY SPECIFY

“The program C must set y to the maximum of x and y ”

First attempt:

$[\text{true}] \ C [y = \max(x, y)]$

POSSIBLE IMPLEMENTATION(S) FOR C :

- `if $x \geq y$ then $y := x$ else skip`
- `if $x \geq y$ then $x := y$ else skip`
- $y := x$

THE RELEVANCE TO PROPERLY SPECIFY

“The program C must set y to the maximum of x and y ”

First attempt:

$[\text{true}] \ C [y = \max(x, y)]$

POSSIBLE IMPLEMENTATION(S) FOR C :

- `if $x \geq y$ then $y := x$ else skip`
- `if $x \geq y$ then $x := y$ else skip`
- $y := x$
- ...

Therefore the specification is wrong for our purposes!

THE RELEVANCE TO PROPERLY SPECIFY

“The program C must set y to the maximum of x and y ”

First attempt:

$[\text{true}] \ C [y = \max(x, y)]$

POSSIBLE IMPLEMENTATION(S) FOR C :

- `if $x \geq y$ then $y := x$ else skip`
- `if $x \geq y$ then $x := y$ else skip`
- $y := x$
- ...

Therefore the specification is wrong for our purposes!

A **proper specification**:

$[x = a \wedge y = b] \ C [y = \max(a, b)]$

LANGUAGE TO EXPRESS SPECIFICATION

THE PREDICATE STATEMENTS

$\text{Pred} \ni P ::= t \mid a = a \mid a > a \mid \neg P \mid P \wedge P \mid P \vee P \mid P \rightarrow P \mid \forall x. P \mid \exists x. P$

for $t \in \mathbb{B}$, $a \in \text{AExp}$, $x \in \text{Var}$

Usually, we use the usual notations (e.g. $\text{Odd}(x)$, $\text{Even}(x)$, $\text{Prime}(x)$) for the well known predicates

OUTLINE

- ① ON PROGRAM VERIFICATION
- ② HOARE TRIPLES
- ③ FLOYD-HOARE CALCULUS
- ④ VERIFICATION CONDITIONS GENERATION

FLOYD-HOARE RULES: ASSIGNMENT

SUBSTITUTION

$$P[a/x]$$

denotes the result of substituting the expression a by all the occurrences of the variable x

FLOYD-HOARE RULES: ASSIGNMENT

SUBSTITUTION

$$P[a/x]$$

denotes the result of substituting the expression a by all the occurrences of the variable x

- $(x = y)[z/x] \Leftrightarrow z = y$

FLOYD-HOARE RULES: ASSIGNMENT

SUBSTITUTION

$$P[a/x]$$

denotes the result of substituting the expression a by all the occurrences of the variable x

- $(x = y)[z/x] \Leftrightarrow z = y$
- $(x = y)[1/y] \Leftrightarrow x = 1$

FLOYD-HOARE RULES: ASSIGNMENT

SUBSTITUTION

$$P[a/x]$$

denotes the result of substituting the expression a by all the occurrences of the variable x

- $(x = y)[z/x] \Leftrightarrow z = y$
- $(x = y)[1/y] \Leftrightarrow x = 1$
- $(x = y)[x + 1/x] \Leftrightarrow x + 1 = y$

FLOYD-HOARE RULES: ASSIGNMENT

SKIP RULE

$$\overline{\{P\} \text{ skip } \{P\}}^{(sk)}$$

FLOYD-HOARE RULES: ASSIGNMENT

ASSIGNMENT RULE

$$\frac{}{\{P[a/x]\} \ x := a \ \{P\}} (\textit{Assign})$$

FLOYD-HOARE RULES: ASSIGNMENT

ASSIGNMENT RULE

$$\frac{}{\{P[a/x]\} \ x := a \ \{P\}} (\text{Assign})$$

EXAMPLE 1

$\{y = 2\} \ x := 2 \ \{y = x\}$ holds, since $(y = 2)[x/y] \Leftrightarrow (y = 2)$

EXERCISE 4

Verify:

- $\{x + 1 = n + 1\} \ x := x + 1 \ \{x = n + 1\}$
- $\{a = a\} \ x := a \ \{x = a\}$

FLOYD-HOARE RULES: ASSIGNMENT

EXERCISE 5

*Other **WRONG** attempts on defining a rule for assignments are:*

- $\{P\} \ x := a \ \{P[a/x]\}$ and
- $\{P\} \ x := a \ \overline{\{P[x/a]\}}$

Show that these rules are not sound.

FLOYD-HOARE RULES: ASSIGNMENT

ALTERNATIVE ASSIGNMENT RULE (BY FLOYD)

$$\frac{}{\{P\} \ x := a \ \{\exists v. (x = (a[v/x]) \wedge P[v/x])\}} (\text{Ass}')$$

Actually we can prove that (Ass) and (Ass') .

EXERCISE 6

Use it to show that $\{x = 1\} \ x := x + 1 \ \{x = 2\}$

FLOYD-HOARE RULES: STRENGTHENING AND WEAKENING

PRECONDITION STRENGTHENING

$$\frac{P \Rightarrow P' \quad \{P'\} C \{Q\}}{\{P\} C \{Q\}}$$

POST-CONDITION WEAKENING

$$\frac{\{P\} C \{Q'\} \quad Q' \Rightarrow Q}{\{P\} C \{Q\}}$$

FLOYD-HOARE RULES: STRENGTHENING AND WEAKENING

EXERCISE 7

Show that:

- $\{x = n\} \ x := x + 1 \ {x = n + 1}$

FLOYD-HOARE RULES: STRENGTHENING AND WEAKENING

EXERCISE 7

Show that:

- $\{x = n\} \ x := x + 1 \ {x = n + 1}$
- $\{\text{true}\} \ x := a \ {x = a}$
- $\{r = a\} \ q := 0 \ {r = a + (y \times q)}$

FLOYD-HOARE RULES: SEQUENTIAL COMPOSITION

SEQUENTIAL COMPOSITION

$$\frac{\{P\} \ C_1 \ \{Q'\} \quad \{Q'\} \ C_2 \ \{Q\}}{\{P\} \ C_1; C_2 \ \{Q\}}$$

EXERCISE 8

- ① *Write a program to swap the values of the variables x and y and verify its correctness.*

FLOYD-HOARE RULES: SEQUENTIAL COMPOSITION

SEQUENTIAL COMPOSITION

$$\frac{\{P\} \ C_1 \ \{Q'\} \quad \{Q'\} \ C_2 \ \{Q\}}{\{P\} \ C_1; C_2 \ \{Q\}}$$

EXERCISE 8

- ① *Write a program to swap the values of the variables x and y and verify its correctness.*
- ② *Prove that the program*

$$x := x + y; \ y := x - y; \ x := x - y$$

does the same.

FLOYD-HOARE RULES: SEQUENTIAL COMPOSITION

SEQUENTIAL COMPOSITION

$$\frac{\{P\} \ C_1 \ \{Q'\} \quad \{Q'\} \ C_2 \ \{Q\}}{\{P\} \ C_1; C_2 \ \{Q\}}$$

EXERCISE 8

- ① Write a program to swap the values of the variables x and y and verify its correctness.
- ② Prove that the program

$$x := x + y; \ y := x - y; \ x := x - y$$

does the same.

- ③ Prove that

$$\{x = r + (y \times q)\} \ r := r - y; \ q := q + 1 \ \{x = r + (y \times q)\}$$

FLOYD-HOARE RULES: CONDITIONALS

CONDITIONAL

$$\frac{\{P \wedge b\} \ C_1 \ \{Q\} \quad \{P \wedge \neg b\} \ C_2 \ \{Q\}}{\{P\} \text{ if } b \text{ then } C_1 \text{ else } C_2 \ \{Q\}}$$

EXERCISE 9

Prove that

$\{\text{true}\}$

if $x \geq y$ *then* $\text{MAX} := x$ *else* $\text{MAX} := y$

$\{\text{MAX} = \max(x, y)\}$

FLOYD-HOARE RULES: CONDITIONALS

EXERCISE 10

Suppose that While language is now enriched with the command

if b then c

Introduce a suitable rule for the Floyd-Hoare Calculus and comment the sentence: "this command is just an abbreviation of a While command.

EXERCISE 11

Prove that if $\{P \wedge b\} c_1 \{Q\}$ and $\{P \wedge \neg b\} c_2 \{Q\}$ then

$\{P\} \text{ if } b \text{ then } c_1 \text{ else } (\text{if } \neg b \text{ then } c_2) \{Q\}$

FLOYD-HOARE RULES: CONJUNCTION AND DISJUNCTION

SPECIFICATION CONJUNCTION

$$\frac{\{P_1\} \ C \ \{Q_1\} \quad \{P_2\} \ C \ \{Q_2\}}{\{P_1 \wedge P_2\} \ C \ \{Q_1 \wedge Q_2\}}$$

SPECIFICATION DISJUNCTION

$$\frac{\{P_1\} \ C \ \{Q_1\} \quad \{P_2\} \ C \ \{Q_2\}}{\{P_1 \vee P_2\} \ C \ \{Q_1 \vee Q_2\}}$$

FLOYD-HOARE RULES: WHILE RULE

INVARIANTS

P is said to be invariant of C whenever b holds

$$\{P \wedge b\} \ C \ \{P\}$$

OBSERVE:

- if executing C once preserves the truth of P
- then, executing C any number of times also preserves the truth of P

FLOYD-HOARE RULES: WHILE RULE

INVARIANTS

P is said to be invariant of C whenever b holds

$$\{P \wedge b\} \ C \ \{P\}$$

OBSERVE:

- if executing C once preserves the truth of P
- then, executing C any number of times also preserves the truth of P

WHILE RULE

$$\frac{\{P \wedge b\} \ C \ \{P\}}{\{P\} \text{ while } b \text{ do } C \ \{P \wedge \neg b\}}$$

FLOYD-HOARE RULES: WHILE RULE

EXERCISE 12

$$\{x \leq n\} \text{ while } x < n \text{ do } x := x + 1 \quad \{x \geq n\}$$

FLOYD-HOARE RULES: WHILE RULE

EXERCISE 12

$$\{x \leq n\} \text{ while } x < n \text{ do } x := x + 1 \quad \{x \geq n\}$$

EXERCISE 13

For $x, y \in \mathbb{N}$, show that

$$\{\text{true}\}$$

$$r := x;$$

$$q := 0;$$

$$\text{while } y \leq r \text{ do } (r := r - y; q := q + 1)$$

$$\{x = r + (y \times q) \wedge \neg(y \leq r)\}$$

Hint: invariant suggestion $x = r + (y \times q)$

NON TERMINATION PROGRAMS

As observed before, `while b do c` is the unique command of While that potentially causes non-termination

EXERCISE 14

Comment the statement:

$\{ \text{true} \} \text{ while true do } x := 0 \text{ } \{ \text{false} \}$

FINDING INVARIANTS

INVARIANTS SHALL REFLECT

- what has been done and what remains to be done
- hold at each iteration of the cycle
- shall give the intended result when the cycle terminates

FINDING INVARIANTS

INVARIANTS SHALL REFLECT

- what has been done and what remains to be done
- hold at each iteration of the cycle
- shall give the intended result when the cycle terminates

EXAMPLE

$\{x = n \wedge y = 1\}$

while $x \neq 0$ do $y := y \times x$; $x := x - 1$

$\{x = 0 \wedge y = n!\}$

- “what was already calculated”: y
- “what remains to be done”: $x!$
- “final result”: $n!$

FINDING INVARIANTS

INVARIANTS SHALL REFLECT

- what has been done and what remains to be done
- hold at each iteration of the cycle
- shall give the intended result when the cycle terminates

EXAMPLE

$\{x = n \wedge y = 1\}$

while $x \neq 0$ do $y := y \times x$; $x := x - 1$

$\{x = 0 \wedge y = n!\}$

- “what was already calculated”: y
- “what remains to be done”: $x!$
- “final result”: $n!$

$$x! \times y = n!$$

EXERCISES

EXERCISE 15

Prove

$$\{x = n \wedge y = 1\}$$

while $x \neq 0$ *do* $y := y \times x$; $x := x - 1$

$$\{x = 0 \wedge y = n!\}$$

EXERCISES

EXERCISE 15

Prove

$$\{x = n \wedge y = 1\}$$

while $x \neq 0$ *do* $y := y \times x$; $x := x - 1$

$$\{x = 0 \wedge y = n!\}$$

EXERCISE 16

Prove

$$\{x = 0 \wedge y = 1\}$$

while $x < N$ *do* $x := x + 1$; $y := y \times x$

$$\{y = n!\}$$

EXERCISES

EXERCISE 17

Determine a program c such that, for any $a, b \in \mathbb{N}$,

$$\{x = a \wedge y = b\} \ c \ \{z = a^b\}$$

OUTLINE

- ① ON PROGRAM VERIFICATION
- ② HOARE TRIPLES
- ③ FLOYD-HOARE CALCULUS
- ④ VERIFICATION CONDITIONS GENERATION

THE VERIFICATION OF PROGRAMS

THREE WAYS TO VERIFY THE VAILIDY OF $\{P\} c \{Q\}$

- Using the **Floyd-Hoare calculus** (as did in the previous section)
- By calculating and proving the **generated verification conditions**
- By using **weakest pre-conditions/strongest post-conditions**

THE VERIFICATION OF PROGRAMS

VERIFICATION CONDITIONS GENERATION

Use an algorithm to extract the “**proof obligations**” of $\{P\} \leftarrow \{Q\}$, i.e. a set of logic statements $V = VC(\{P\} \leftarrow \{Q\})$ such that,

if V is true, then $\{P\} \leftarrow \{Q\}$ holds

THE VERIFICATION OF PROGRAMS

VERIFICATION CONDITIONS GENERATION

Use an algorithm to extract the “**proof obligations**” of $\{P\} c \{Q\}$, i.e. a set of logic statements $V = VC(\{P\} c \{Q\})$ such that,

if V is true, then $\{P\} c \{Q\}$ holds

WEAKEST PRE-CONDITIONS (DIJKSTRA PREDICATE TRANSFORMERS)

Use an algorithm to extract the “**weakest precondition of c wrt Q** ”, i.e. the weakest condition $wpc(c, Q)$ that makes the triple $\{wpc(c, Q)\} c \{Q\}$ valid. Hence,

$P \rightarrow wpc(c, Q)$ is true iff $\{P\} c \{Q\}$ holds

VERIFICATION CONDITIONS GENERATION

TO VERIFY THE TRIPLE $\{P\} c \{Q\}$

- ① annotate programs
- ② calculate $VC(\{P\} c \{Q\})$ (recursive process)
- ③ if the (first-order) formulas of $VC(\{P\} c \{Q\})$ are proved, the triple $\{P\} c \{Q\}$ is valid

MORE OPERATIONALLY:

- ① Input: a Hoare triple annotated with mathematical statements
- ② An algorithm generates the set of verification conditions
- ③ The verification conditions are passed to a theorem prover which attempts to prove them automatically. Often it requires human aid.
- ④ if the verification conditions are proved the triple $\{P\} c \{Q\}$ is valid

PROGRAM ANNOTATIONS

a) Program C_{Fib}	b) Annotated program C_{Fib}^A
$x := 1;$ $y := 0;$ $i := 1;$ while $i < n$ do $\{$ $aux := y;$ $y := x;$ $x := x + aux;$ $i := i + 1$ $\}$	$x := 1;$ $\{x == 1\}$ $y := 0;$ $\{x == 1 \& y == 0\}$ $i := 1;$ $\{x == 1 \& y == 0 \& i == 1\}$ while $i < n$ do $\{i \leq n \& x == \text{Fib}(i) \& y == \text{Fib}(i - 1)\}$ $\{$ $aux := y;$ $\{i \leq n \& x == \text{Fib}(i) \& aux == \text{Fib}(i - 1)\}$ $y := x;$ $\{i < n \& x == \text{Fib}(i) \& y == \text{Fib}(i) \& aux == \text{Fib}(i - 1)\}$ $x := x + aux;$ $\{i \leq n \& x == \text{Fib}(i) + \text{Fib}(i - 1) \& y == \text{Fib}(i)\}$ $i := i + 1;$ $\}$

PROGRAM ANNOTATIONS

A PROGRAM IS PROPERLY ANNOTATED (TO THE VERIFICATION CONDITIONS GENERATION) IF:

statements have been inserted at the following places:

- before c_2 in c_1 ; c_2 and c_2 is not an assignment
- after the “do” in whiles cycle `while b do {I}c1`

VERIFICATION CONDITIONS GENERATION

ASSIGNMENTS

$$VC(\{P\} \ x := a \ \{Q\}) = \{P \rightarrow Q[a/x]\}$$

EXAMPLE

$$\begin{aligned} VC(\{x = 0\} \ x := x + 1 \ \{x = 1\}) &= \{x = 0 \rightarrow (x = 1)[x + 1/x]\} \\ &= \{x = 0 \rightarrow x = 0\} \end{aligned}$$

VERIFICATION CONDITIONS GENERATION

SKIP

$$VC(\{P\} \text{ skip } \{Q\}) = \{P \rightarrow Q\}$$

EXAMPLE

+++

VERIFICATION CONDITIONS GENERATION

CONDITIONALS

$$VC(\{P\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \{Q\}) = VC(\{P \wedge b\} c_1 \{Q\}) \cup VC(\{P \wedge \neg b\} c_2 \{Q\})$$

EXERCISE 18

- ① Suggest a rule for the command *if b then c* with the expected semantics (*if b then c* \equiv *if b then c else skip*). Calculate $VC(\{\text{true}\} \text{ if } x < 0 \text{ then } x := -x \{x \geq 0\})$
- ② Calculate

$$VC(\{\text{true}\} \text{ if } x \geq y \text{ then } M := x \text{ else } M := y \{M = \max(x, y)\})$$

VERIFICATION CONDITIONS GENERATION

SEQUENTIAL COMPOSITIONS

① If c_n is not an assignment,

$$VC(\{P\} c_1; \dots; c_{n-1}\{R\} c_n \{Q\}) = VC(\{P\} c_1; \dots; c_{n-1}\{R\}) \cup VC(\{R\} c_n \{Q\})$$

② and

$$VC(\{P\} c_1; \dots; c_{n-1}; x := a \{Q\}) = VC(\{P\} c_1; \dots; c_{n-1} \{Q[a/x]\})$$

EXERCISE 19

Calculate:

$$VC(\{x = a \wedge y = b\} \ r := x; x := y; y := r \{x = b \wedge y = a\})$$

VERIFICATION CONDITIONS GENERATION

WHILE

$$\begin{aligned}VC(\{P\} \text{ while } b \text{ do } \{I\} c \{Q\}) &= \{P \rightarrow I\} \\&\cup \\&\{(I \wedge \neg b) \rightarrow Q\} \\&\cup \\&VC(\{I \wedge b\} c \{I\})\end{aligned}$$

VERIFICATION CONDITIONS GENERATION

WHILE

$$\begin{aligned}VC(\{P\} \text{ while } b \text{ do } \{I\} c \{Q\}) &= \{P \rightarrow I\} \\&\cup \\&\{(I \wedge \neg b) \rightarrow Q\} \\&\cup \\&VC(\{I \wedge b\} c \{I\})\end{aligned}$$

EXERCISE 20

① Calculate $VC(\{s = 2^i\} \text{ while } i < n \text{ do } i := i + 1; s := s \times 2 \{s = 2^i\})$

VERIFICATION CONDITIONS GENERATION

WHILE

$$\begin{aligned}
 VC(\{P\} \text{ while } b \text{ do } \{I\} c \{Q\}) &= \{P \rightarrow I\} \\
 &\cup \\
 &\{(I \wedge \neg b) \rightarrow Q\} \\
 &\cup \\
 &VC(\{I \wedge b\} c \{I\})
 \end{aligned}$$

EXERCISE 20

① Calculate $VC(\{s = 2^i\} \text{ while } i < n \text{ do } i := i + 1; s := s \times 2 \{s = 2^i\})$

② Verify

$\{true\}$

$r := x;$

$q := 0;$

$\text{while } y \leq r \text{ do } r := r - y; q := q + 1$

$\{x = r + (y \times q) \wedge \neg(y \leq r)\}$ using verification conditions. Hint: invariant suggestion $x = r + (y \times q)$

VERIFICATION CONDITIONS GENERATION

EXERCISE 21

Using verification conditions generator, prove that, for x, y naturals

$$\{x = a \wedge y = b\}$$

$z := 1;$

while $y \geq 1$ *do* ($z := x \times z$; $y := y - 1$)

$$\{z = a^b\}$$

VERIFICATION CONDITIONS GENERATION

THEOREM 1

If the statements $VC(\{P\} \subset \{Q\})$ are true, then $\{P\} \subset \{Q\}$ holds

VERIFICATION CONDITIONS GENERATION

THEOREM 1

If the statements $VC(\{P\} \subset \{Q\})$ are true, then $\{P\} \subset \{Q\}$ holds

AND THE CONVERSE IMPLICATION?

VERIFICATION CONDITIONS GENERATION

THEOREM 1

If the statements $VC(\{P\} c \{Q\})$ are true, then $\{P\} c \{Q\}$ holds

AND THE CONVERSE IMPLICATION?

Consider the annotated triple

$$\{\text{true}\} \text{ while false do } \{\text{false}\} \ x := 0 \ \{\text{true}\}$$

Try to prove it

- using Floyd-Hoare Logic (forget the annotations)
- using the verification conditions generations

what do you conclude?

VERIFICATION CONDITIONS GENERATION

THEOREM 1

If the statements $VC(\{P\} c \{Q\})$ are true, then $\{P\} c \{Q\}$ holds

AND THE CONVERSE IMPLICATION?

Consider the annotated triple

$$\{\text{true}\} \text{ while false do } \{\text{false}\} \ x := 0 \ \{\text{true}\}$$

Try to prove it

- using Floyd-Hoare Logic (forget the annotations)
- using the verification conditions generations

what do you conclude?

the converse implication does not hold!

PREDICATE TRANSFORMER

Goal: find the weakest pre-condition $wpc(c, Q)$ for which the triple

$$\{wpc(c, Q)\} \subset \{Q\}$$

Then

$$\{P\} \subset \{Q\} \text{ iff } P \rightarrow wpc(c, Q)$$

PREDICATE TRANSFORMER

Goal: find the weakest pre-condition $wpc(c, Q)$ for which the triple

$$\{wpc(c, Q)\} \subset \{Q\}$$

Then

$$\{P\} \subset \{Q\} \text{ iff } P \rightarrow wpc(c, Q)$$

A program is understood as a “predicates transformer”, that transforms post-conditions and programs into “weakest pre-conditions”

PREDICATE TRANSFORMERS

ASSIGNMENT

$$wpc(x := a, Q) = Q[a/x]$$

EXERCISE 22

Calculate

- $wpc(x := x + y, y > x)$
- $wpc(y := 2 \times y, y < 5)$
- $wpc(y := 2 \times y, even(y))$

PREDICATE TRANSFORMERS

SEQUENTIAL COMPOSITION

$$wpc(c_1; c_2, Q) = wpc(c_1, wpc(c_2, Q))$$

EXERCISE 23

Calculate

- $wpc(x := z + 1; y := x + y, y > 5)$
- $wpc(r := x; x := y; y := r, x = b \wedge y = a)$

PREDICATE TRANSFORMERS

CONDITIONALS

$$wpc(\text{if } b \text{ then } c_1 \text{ else } c_2, Q) = (b \rightarrow wpc(c_1, Q)) \wedge (\neg b \rightarrow wpc(c_2, Q))$$

EXERCISE 24

Calculate

- $wpc(\text{if } x \leq y \text{ then } m := x \text{ else } m := y, m = \min(x, y))$

EXERCISE

EXERCISE 25

Prove

$$\{x \leq 7\} \ x := 5; \text{if } x \leq 7 \text{ then } x := x + 2 \text{ else skip } \{x = 7\}$$

using:

- ① *Weakest pre-conditions*
- ② *Verification conditions*
- ③ *Hoare Logic*

PREDICATE TRANSFORMERS

WHILE

can not in general compute a finite formula, other techniques shall be considered (not in this course). A sound rule:

$$wpc(\text{while } b \text{ do } c, Q) = \text{if } b \text{ then } wpc(c, wpc(\text{while } b \text{ do } c, Q)) \text{ else } Q$$

DIJKSTRA'S GUARDED COMMAND LANGUAGE (GCL)

GUARDED COMMAND LANGUAGE (GCL)

$c := \text{skip} \mid x := a \mid c_1; c_2 \mid \text{assert } \alpha \mid \text{assume } \alpha \mid \text{havoc } x \mid c \parallel c$

HOARE LOGIC RULES FOR GCL

semantics of `skip` and `x := a` define as for While language

(assert) $\frac{P \rightarrow \alpha}{\{P\} \text{ assert } \alpha \ \{P \wedge \alpha\}}$

(assume) $\frac{}{\{P\} \text{ assume } \alpha \ \{P \wedge \alpha\}}$

(choice) $\frac{\{P\} \ c_1 \ \{Q\} \quad \{P\} \ c_2 \ \{Q\}}{\{P\} \ c_1 \parallel c_2 \ \{Q\}}$

DIJKSTRA'S GUARDED COMMAND LANGUAGE (GCL)

EXERCISE 26

- ① *What is*
 - $wpc(\text{assert } P, C)$
 - $wpc(\text{assume } P, C)$
- ② *Given conditions P and Q and a program C , determine a program C' in the Dijkstra's guarded language such that $\{P\} C \{Q\}$ iff $\{\text{true}\} C' \{\text{true}\}$. Prove it!*

DIJKSTRA'S GUARDED COMMAND LANGUAGE (GCL)

GCL CAPTURES CONDITIONALS:

For instance,

$\{P\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \{Q\}$ iff $\{P\} \text{ assert } b ; c_1 || \text{assert } \neg b ; c_2 \{Q\}$

WE CAN INTEGRATE SPECIFICATION IN THE CODE:

$\{P\} \ c \ \{Q\}$

iff

$\{\text{true}\} \text{ assume } P ; c ; \text{assert } Q \ \{\text{true}\}$

EXERCISE 27

Prove the previous observations!

THIS WAS JUST AN APPETIZER...

