
Formal verification of programs
Slides block 3

ADA 2024/25
Dep. de Matemática Universidade de Aveiro

Alexandre Madeira
(madeira@ua.pt)

November 25, 2024

A. Madeira ADA November 25, 2024 1 / 57

References

The main reference for this part of the course is the text:

Mike Gordon: Specification and Verification I, lecture notes

A. Madeira ADA November 25, 2024 2 / 57

Back to our initial plan

For the “algorithms development” we mathematically formulate:

what is a programming language

what is a program

how to interpret programs

Formal Semantics of programs

To make its “analysis”, we mathematically formalise:

the notions of property and behaviour

the notions of specification and algorithm correctness

the notion of correctness proof

Formal Verification of programs

A. Madeira ADA November 25, 2024 3 / 57

Back to our initial plan

For the “algorithms development” we mathematically formulate:

what is a programming language

what is a program

how to interpret programs

Formal Semantics of programs

To make its “analysis”, we mathematically formalise:

the notions of property and behaviour

the notions of specification and algorithm correctness

the notion of correctness proof

Formal Verification of programs

A. Madeira ADA November 25, 2024 3 / 57

On program verification

Formal development of programs/algorithms

Formal Specification: precise (mathematical) description of what a
program should do

Formal Verification: (mathematical) proof that a program satisfies a
given specification

Formal Development: development of programs/algorithms
following a systematic procedure that (mathematically) assures the
satisfaction of specification

Correctness − by − construction

A. Madeira ADA November 25, 2024 4 / 57

On program verification

Formal development of programs/algorithms

Formal Specification: precise (mathematical) description of what a
program should do

Formal Verification: (mathematical) proof that a program satisfies a
given specification

Formal Development: development of programs/algorithms
following a systematic procedure that (mathematically) assures the
satisfaction of specification

Correctness − by − construction

A. Madeira ADA November 25, 2024 4 / 57

Hoare Triples

Outline

1 On program verification

2 Hoare Triples

3 Floyd-Hoare Calculus

4 Verification Conditions generation

A. Madeira ADA November 25, 2024 5 / 57

Hoare Triples

Program Specification

Pre-condition
Program Execution
===========⇒ Post-condition

“ x greater that y”
Program Execution
===========⇒ “ z is the diference between x and y”

“ x greater 0”
Program Execution
===========⇒ “ z is the square root of x”

A. Madeira ADA November 25, 2024 6 / 57

Hoare Triples

Program Specification

Pre-condition
Program Execution
===========⇒ Post-condition

“ x greater that y”
Program Execution
===========⇒ “ z is the diference between x and y”

“ x greater 0”
Program Execution
===========⇒ “ z is the square root of x”

A. Madeira ADA November 25, 2024 6 / 57

Hoare Triples

Partial correctness Specification

Hoare Triples

are expressions
{P} C {Q}

where

C is a program

P and Q are conditions on program variables used in C

A. Madeira ADA November 25, 2024 7 / 57

Hoare Triples

Partial Correctness

{P} C {Q} is true if

whenever C is executed in a state satisfying P

and if C terminates

then the state in which C terminates satisfies Q

Examples

{x = 1} x := x + 1 {x = 2}

from any state where x = 1,

whenever the program x := x + 1 terminates

it achieves at a state satisfying x = 2

{x = 1} x := x + 1 {x = 2} holds

{x = 1} x := x + 1 {x = 1} does not holds

A. Madeira ADA November 25, 2024 8 / 57

Hoare Triples

Partial Correctness

{P} C {Q} is true if

whenever C is executed in a state satisfying P

and if C terminates

then the state in which C terminates satisfies Q

Examples

{x = 1} x := x + 1 {x = 2}

from any state where x = 1,

whenever the program x := x + 1 terminates

it achieves at a state satisfying x = 2

{x = 1} x := x + 1 {x = 2} holds

{x = 1} x := x + 1 {x = 1} does not holds

A. Madeira ADA November 25, 2024 8 / 57

Hoare Triples

Partial Correctness

{P} C {Q} is true if

whenever C is executed in a state satisfying P

and if C terminates

then the state in which C terminates satisfies Q

Examples

{x = 1} x := x + 1 {x = 2}

from any state where x = 1,

whenever the program x := x + 1 terminates

it achieves at a state satisfying x = 2

{x = 1} x := x + 1 {x = 2} holds

{x = 1} x := x + 1 {x = 1} does not holds

A. Madeira ADA November 25, 2024 8 / 57

Hoare Triples

Hoare Triples

Exercise 1

Discuss the validity of the following Hoare triples:

1 {x = a ∧ y = b} x := y ; y := x {x = b ∧ y = a}

2 {x = a ∧ y = b} r := x ; x := y ; y := r {x = b ∧ y = a}
3 {true} C {Q}
4 {P} C {true}
5 {true} C {true}
6 {true} C {false}
7 {x = 1} while true do skip {x = 1}
8 {x = 1} while true do skip {false}

A. Madeira ADA November 25, 2024 9 / 57

Hoare Triples

Hoare Triples

Exercise 1

Discuss the validity of the following Hoare triples:

1 {x = a ∧ y = b} x := y ; y := x {x = b ∧ y = a}
2 {x = a ∧ y = b} r := x ; x := y ; y := r {x = b ∧ y = a}

3 {true} C {Q}
4 {P} C {true}
5 {true} C {true}
6 {true} C {false}
7 {x = 1} while true do skip {x = 1}
8 {x = 1} while true do skip {false}

A. Madeira ADA November 25, 2024 9 / 57

Hoare Triples

Hoare Triples

Exercise 1

Discuss the validity of the following Hoare triples:

1 {x = a ∧ y = b} x := y ; y := x {x = b ∧ y = a}
2 {x = a ∧ y = b} r := x ; x := y ; y := r {x = b ∧ y = a}
3 {true} C {Q}

4 {P} C {true}
5 {true} C {true}
6 {true} C {false}
7 {x = 1} while true do skip {x = 1}
8 {x = 1} while true do skip {false}

A. Madeira ADA November 25, 2024 9 / 57

Hoare Triples

Hoare Triples

Exercise 1

Discuss the validity of the following Hoare triples:

1 {x = a ∧ y = b} x := y ; y := x {x = b ∧ y = a}
2 {x = a ∧ y = b} r := x ; x := y ; y := r {x = b ∧ y = a}
3 {true} C {Q}
4 {P} C {true}

5 {true} C {true}
6 {true} C {false}
7 {x = 1} while true do skip {x = 1}
8 {x = 1} while true do skip {false}

A. Madeira ADA November 25, 2024 9 / 57

Hoare Triples

Hoare Triples

Exercise 1

Discuss the validity of the following Hoare triples:

1 {x = a ∧ y = b} x := y ; y := x {x = b ∧ y = a}
2 {x = a ∧ y = b} r := x ; x := y ; y := r {x = b ∧ y = a}
3 {true} C {Q}
4 {P} C {true}
5 {true} C {true}

6 {true} C {false}
7 {x = 1} while true do skip {x = 1}
8 {x = 1} while true do skip {false}

A. Madeira ADA November 25, 2024 9 / 57

Hoare Triples

Hoare Triples

Exercise 1

Discuss the validity of the following Hoare triples:

1 {x = a ∧ y = b} x := y ; y := x {x = b ∧ y = a}
2 {x = a ∧ y = b} r := x ; x := y ; y := r {x = b ∧ y = a}
3 {true} C {Q}
4 {P} C {true}
5 {true} C {true}
6 {true} C {false}

7 {x = 1} while true do skip {x = 1}
8 {x = 1} while true do skip {false}

A. Madeira ADA November 25, 2024 9 / 57

Hoare Triples

Hoare Triples

Exercise 1

Discuss the validity of the following Hoare triples:

1 {x = a ∧ y = b} x := y ; y := x {x = b ∧ y = a}
2 {x = a ∧ y = b} r := x ; x := y ; y := r {x = b ∧ y = a}
3 {true} C {Q}
4 {P} C {true}
5 {true} C {true}
6 {true} C {false}
7 {x = 1} while true do skip {x = 1}

8 {x = 1} while true do skip {false}

A. Madeira ADA November 25, 2024 9 / 57

Hoare Triples

Hoare Triples

Exercise 1

Discuss the validity of the following Hoare triples:

1 {x = a ∧ y = b} x := y ; y := x {x = b ∧ y = a}
2 {x = a ∧ y = b} r := x ; x := y ; y := r {x = b ∧ y = a}
3 {true} C {Q}
4 {P} C {true}
5 {true} C {true}
6 {true} C {false}
7 {x = 1} while true do skip {x = 1}
8 {x = 1} while true do skip {false}

A. Madeira ADA November 25, 2024 9 / 57

Hoare Triples

Foundations for a design-by-contract
methodology?

A program to swap the values of variables x and y

{x = a ∧ y = b} C {x = b ∧ y = a}

Development process: to determine a program C that satisfies the triple.

The program
C ≡ (r := x ; x := y ; y := r)

is a possible implementation, since

{x = a ∧ y = b} r := x ; x := y ; y := r {x = b ∧ y = a}

holds!

A. Madeira ADA November 25, 2024 10 / 57

Hoare Triples

Foundations for a design-by-contract
methodology?

A program to swap the values of variables x and y

{x = a ∧ y = b} C {x = b ∧ y = a}

Development process: to determine a program C that satisfies the triple.
The program

C ≡ (r := x ; x := y ; y := r)

is a possible implementation, since

{x = a ∧ y = b} r := x ; x := y ; y := r {x = b ∧ y = a}

holds!

A. Madeira ADA November 25, 2024 10 / 57

Hoare Triples

Total correctness

[P] C [Q] is true if

whenever C is executed in a state satisfying P

then, the execution C terminates and

state in which C terminates, satisfies Q

Total correctness

Total correctness = termination + partial correctness

To prove that [P] C [Q] is true:

prove that C terminates

prove {P} C {Q}

A. Madeira ADA November 25, 2024 11 / 57

Hoare Triples

Total correctness

[P] C [Q] is true if

whenever C is executed in a state satisfying P

then, the execution C terminates and

state in which C terminates, satisfies Q

Total correctness

Total correctness = termination + partial correctness

To prove that [P] C [Q] is true:

prove that C terminates

prove {P} C {Q}

A. Madeira ADA November 25, 2024 11 / 57

Hoare Triples

Total correctness

[P] C [Q] is true if

whenever C is executed in a state satisfying P

then, the execution C terminates and

state in which C terminates, satisfies Q

Total correctness

Total correctness = termination + partial correctness

To prove that [P] C [Q] is true:

prove that C terminates

prove {P} C {Q}

A. Madeira ADA November 25, 2024 11 / 57

Hoare Triples

Total correctness

Exercise 2

Discuss the validity of the following Hoare triples:

1 [x = a ∧ y = b] x := y ; y := x [x = b ∧ y = a]

2 [x = a ∧ y = b] r := x ; x := y ; y := r [x = b ∧ y = a]

3 [true] C [Q]

4 [P] C [true]

5 [P] C [false]

6 [true] C [true]

7 [false] C [false]

8 [x = 1] while true do skip [x = 1]

9 [x = 1] while true do skip [false]

A. Madeira ADA November 25, 2024 12 / 57

Hoare Triples

Total correctness

Exercise 2

Discuss the validity of the following Hoare triples:

1 [x = a ∧ y = b] x := y ; y := x [x = b ∧ y = a]

2 [x = a ∧ y = b] r := x ; x := y ; y := r [x = b ∧ y = a]

3 [true] C [Q]

4 [P] C [true]

5 [P] C [false]

6 [true] C [true]

7 [false] C [false]

8 [x = 1] while true do skip [x = 1]

9 [x = 1] while true do skip [false]

A. Madeira ADA November 25, 2024 12 / 57

Hoare Triples

Total correctness

Exercise 2

Discuss the validity of the following Hoare triples:

1 [x = a ∧ y = b] x := y ; y := x [x = b ∧ y = a]

2 [x = a ∧ y = b] r := x ; x := y ; y := r [x = b ∧ y = a]

3 [true] C [Q]

4 [P] C [true]

5 [P] C [false]

6 [true] C [true]

7 [false] C [false]

8 [x = 1] while true do skip [x = 1]

9 [x = 1] while true do skip [false]

A. Madeira ADA November 25, 2024 12 / 57

Hoare Triples

Total correctness

Exercise 2

Discuss the validity of the following Hoare triples:

1 [x = a ∧ y = b] x := y ; y := x [x = b ∧ y = a]

2 [x = a ∧ y = b] r := x ; x := y ; y := r [x = b ∧ y = a]

3 [true] C [Q]

4 [P] C [true]

5 [P] C [false]

6 [true] C [true]

7 [false] C [false]

8 [x = 1] while true do skip [x = 1]

9 [x = 1] while true do skip [false]

A. Madeira ADA November 25, 2024 12 / 57

Hoare Triples

Total correctness

Exercise 2

Discuss the validity of the following Hoare triples:

1 [x = a ∧ y = b] x := y ; y := x [x = b ∧ y = a]

2 [x = a ∧ y = b] r := x ; x := y ; y := r [x = b ∧ y = a]

3 [true] C [Q]

4 [P] C [true]

5 [P] C [false]

6 [true] C [true]

7 [false] C [false]

8 [x = 1] while true do skip [x = 1]

9 [x = 1] while true do skip [false]

A. Madeira ADA November 25, 2024 12 / 57

Hoare Triples

Total correctness

Exercise 2

Discuss the validity of the following Hoare triples:

1 [x = a ∧ y = b] x := y ; y := x [x = b ∧ y = a]

2 [x = a ∧ y = b] r := x ; x := y ; y := r [x = b ∧ y = a]

3 [true] C [Q]

4 [P] C [true]

5 [P] C [false]

6 [true] C [true]

7 [false] C [false]

8 [x = 1] while true do skip [x = 1]

9 [x = 1] while true do skip [false]

A. Madeira ADA November 25, 2024 12 / 57

Hoare Triples

Total correctness

Exercise 2

Discuss the validity of the following Hoare triples:

1 [x = a ∧ y = b] x := y ; y := x [x = b ∧ y = a]

2 [x = a ∧ y = b] r := x ; x := y ; y := r [x = b ∧ y = a]

3 [true] C [Q]

4 [P] C [true]

5 [P] C [false]

6 [true] C [true]

7 [false] C [false]

8 [x = 1] while true do skip [x = 1]

9 [x = 1] while true do skip [false]

A. Madeira ADA November 25, 2024 12 / 57

Hoare Triples

Total correctness

Exercise 2

Discuss the validity of the following Hoare triples:

1 [x = a ∧ y = b] x := y ; y := x [x = b ∧ y = a]

2 [x = a ∧ y = b] r := x ; x := y ; y := r [x = b ∧ y = a]

3 [true] C [Q]

4 [P] C [true]

5 [P] C [false]

6 [true] C [true]

7 [false] C [false]

8 [x = 1] while true do skip [x = 1]

9 [x = 1] while true do skip [false]

A. Madeira ADA November 25, 2024 12 / 57

Hoare Triples

Total correctness

Exercise 2

Discuss the validity of the following Hoare triples:

1 [x = a ∧ y = b] x := y ; y := x [x = b ∧ y = a]

2 [x = a ∧ y = b] r := x ; x := y ; y := r [x = b ∧ y = a]

3 [true] C [Q]

4 [P] C [true]

5 [P] C [false]

6 [true] C [true]

7 [false] C [false]

8 [x = 1] while true do skip [x = 1]

9 [x = 1] while true do skip [false]

A. Madeira ADA November 25, 2024 12 / 57

Hoare Triples

Example

A concrete example

{true}
r := x ;

q := 0;

while y ≤ r do r := r − y ; q := q + 1

{r < y ∧ x = r + (y × q)}

This triple is true if whenever the execution of the program halts, then q is
the quotient and r is the reminder of the division of y by x

A. Madeira ADA November 25, 2024 13 / 57

Hoare Triples

Exercises

Exercise 3

1 Write a partial correctness specification which is true if and only if the
program C has the effect of multiplying the values of x and y and
storing the result in x.

2 Write a specification which is true if the execution of C always halts
when execution is started in a state satisfying P.

A. Madeira ADA November 25, 2024 14 / 57

Hoare Triples

The relevance to properly specify

“The program C must set y to the maximum of x and y”

First attempt:
[true] C [y = max(x , y)]

Possible implementation(s) for C :

if x ≥ y then y := x else skip

if x ≥ y then x := y else skip

y := x

. . .

Therefore the specification is wrong for our purposes!
A proper specification:

[x = a ∧ y = b] C [y = max(a, b)]

A. Madeira ADA November 25, 2024 15 / 57

Hoare Triples

The relevance to properly specify

“The program C must set y to the maximum of x and y”

First attempt:
[true] C [y = max(x , y)]

Possible implementation(s) for C :

if x ≥ y then y := x else skip

if x ≥ y then x := y else skip

y := x

. . .

Therefore the specification is wrong for our purposes!
A proper specification:

[x = a ∧ y = b] C [y = max(a, b)]

A. Madeira ADA November 25, 2024 15 / 57

Hoare Triples

The relevance to properly specify

“The program C must set y to the maximum of x and y”

First attempt:
[true] C [y = max(x , y)]

Possible implementation(s) for C :

if x ≥ y then y := x else skip

if x ≥ y then x := y else skip

y := x

. . .

Therefore the specification is wrong for our purposes!
A proper specification:

[x = a ∧ y = b] C [y = max(a, b)]

A. Madeira ADA November 25, 2024 15 / 57

Hoare Triples

The relevance to properly specify

“The program C must set y to the maximum of x and y”

First attempt:
[true] C [y = max(x , y)]

Possible implementation(s) for C :

if x ≥ y then y := x else skip

if x ≥ y then x := y else skip

y := x

. . .

Therefore the specification is wrong for our purposes!
A proper specification:

[x = a ∧ y = b] C [y = max(a, b)]

A. Madeira ADA November 25, 2024 15 / 57

Hoare Triples

The relevance to properly specify

“The program C must set y to the maximum of x and y”

First attempt:
[true] C [y = max(x , y)]

Possible implementation(s) for C :

if x ≥ y then y := x else skip

if x ≥ y then x := y else skip

y := x

. . .

Therefore the specification is wrong for our purposes!

A proper specification:

[x = a ∧ y = b] C [y = max(a, b)]

A. Madeira ADA November 25, 2024 15 / 57

Hoare Triples

The relevance to properly specify

“The program C must set y to the maximum of x and y”

First attempt:
[true] C [y = max(x , y)]

Possible implementation(s) for C :

if x ≥ y then y := x else skip

if x ≥ y then x := y else skip

y := x

. . .

Therefore the specification is wrong for our purposes!
A proper specification:

[x = a ∧ y = b] C [y = max(a, b)]

A. Madeira ADA November 25, 2024 15 / 57

Hoare Triples

Language to express specification

The predicate statements

Pred ∋ P ::= t | a = a | a > a | ¬P | P ∧ P | P ∨ P | P → P | ∀x .P | ∃x .P

for t ∈ B, a ∈ AExp, x ∈ Var

Usually, we use the usual notations (e.g. Odd(x), Even(x), Prime(x)) for
the well known predicates

A. Madeira ADA November 25, 2024 16 / 57

Floyd-Hoare Calculus

Outline

1 On program verification

2 Hoare Triples

3 Floyd-Hoare Calculus

4 Verification Conditions generation

A. Madeira ADA November 25, 2024 17 / 57

Floyd-Hoare Calculus

Floyd-Hoare Rules: Assignment

Substitution

P[a/x]

denotes the result of substituting the expression a by all the occurrences
of the variable x

(x = y)[z/x] ⇔ z = y

(x = y)[1/y] ⇔ x = 1

(x = y)[x + 1/x] ⇔ x + 1 = y

A. Madeira ADA November 25, 2024 18 / 57

Floyd-Hoare Calculus

Floyd-Hoare Rules: Assignment

Substitution

P[a/x]

denotes the result of substituting the expression a by all the occurrences
of the variable x

(x = y)[z/x] ⇔ z = y

(x = y)[1/y] ⇔ x = 1

(x = y)[x + 1/x] ⇔ x + 1 = y

A. Madeira ADA November 25, 2024 18 / 57

Floyd-Hoare Calculus

Floyd-Hoare Rules: Assignment

Substitution

P[a/x]

denotes the result of substituting the expression a by all the occurrences
of the variable x

(x = y)[z/x] ⇔ z = y

(x = y)[1/y] ⇔ x = 1

(x = y)[x + 1/x] ⇔ x + 1 = y

A. Madeira ADA November 25, 2024 18 / 57

Floyd-Hoare Calculus

Floyd-Hoare Rules: Assignment

Substitution

P[a/x]

denotes the result of substituting the expression a by all the occurrences
of the variable x

(x = y)[z/x] ⇔ z = y

(x = y)[1/y] ⇔ x = 1

(x = y)[x + 1/x] ⇔ x + 1 = y

A. Madeira ADA November 25, 2024 18 / 57

Floyd-Hoare Calculus

Floyd-Hoare Rules: Assignment

Skip rule

{P} skip {P}
(sk)

A. Madeira ADA November 25, 2024 19 / 57

Floyd-Hoare Calculus

Floyd-Hoare Rules: Assignment

Assignment rule

{P[a/x]} x := a {P}
(Assign)

Example 1

{y = 2} x := 2 {y = x} holds, since (y = 2)[x/y] ⇔ (y = 2)

Exercise 4

Verify:

{x + 1 = n + 1} x := x + 1 {x = n + 1}
{a = a} x := a {x = a}

A. Madeira ADA November 25, 2024 20 / 57

Floyd-Hoare Calculus

Floyd-Hoare Rules: Assignment

Assignment rule

{P[a/x]} x := a {P}
(Assign)

Example 1

{y = 2} x := 2 {y = x} holds, since (y = 2)[x/y] ⇔ (y = 2)

Exercise 4

Verify:

{x + 1 = n + 1} x := x + 1 {x = n + 1}
{a = a} x := a {x = a}

A. Madeira ADA November 25, 2024 20 / 57

Floyd-Hoare Calculus

Floyd-Hoare Rules: Assignment

Exercise 5

Other WRONG attempts on defining a rule for assignments are:

{P} x :=a {P[a/x]} and

{P} x :=a {P[x/a]}
Show that these rules are not sound.

A. Madeira ADA November 25, 2024 21 / 57

Floyd-Hoare Calculus

Floyd-Hoare Rules: Assignment

Alternative assignment rule (by Floyd)

{P} x := a {∃v .
(
x = (a[v/x]) ∧ P[v/x]

)
}
(Ass ′)

Actually we can prove that (Ass) and (Ass ′).

Exercise 6

Use it to show that {x = 1} x := x + 1 {x = 2}

A. Madeira ADA November 25, 2024 22 / 57

Floyd-Hoare Calculus

Floyd-Hoare Rules: Strengthening and
weakening

Precondition Strengthening

P ⇒ P ′ {P ′} C {Q}
{P} C {Q}

Post-condition Weakening

{P} C {Q ′} Q ′ ⇒ Q

{P} C {Q}

A. Madeira ADA November 25, 2024 23 / 57

Floyd-Hoare Calculus

Floyd-Hoare Rules: Strengthening and
weakening

Exercise 7

Show that:

{x = n} x := x + 1 {x = n + 1}

{true} x := a {x = a}
{r = a} q := 0 {r = a+ (y × q)}

A. Madeira ADA November 25, 2024 24 / 57

Floyd-Hoare Calculus

Floyd-Hoare Rules: Strengthening and
weakening

Exercise 7

Show that:

{x = n} x := x + 1 {x = n + 1}
{true} x := a {x = a}
{r = a} q := 0 {r = a+ (y × q)}

A. Madeira ADA November 25, 2024 24 / 57

Floyd-Hoare Calculus

Floyd-Hoare Rules: Sequential composition

Sequential composition

{P} C1 {Q ′} {Q ′} C2 {Q}
{P} C1;C2 {Q}

Exercise 8

1 Write a program to swap the values of the variables x and y and
verify its correctness.

2 Prove that the program

x := x + y ; y := x − y ; x := x − y

does the same.

3 Prove that
{x = r + (y × q)} r := r − y ; q := q + 1 {x = r + (y × q)}

A. Madeira ADA November 25, 2024 25 / 57

Floyd-Hoare Calculus

Floyd-Hoare Rules: Sequential composition

Sequential composition

{P} C1 {Q ′} {Q ′} C2 {Q}
{P} C1;C2 {Q}

Exercise 8

1 Write a program to swap the values of the variables x and y and
verify its correctness.

2 Prove that the program

x := x + y ; y := x − y ; x := x − y

does the same.

3 Prove that
{x = r + (y × q)} r := r − y ; q := q + 1 {x = r + (y × q)}

A. Madeira ADA November 25, 2024 25 / 57

Floyd-Hoare Calculus

Floyd-Hoare Rules: Sequential composition

Sequential composition

{P} C1 {Q ′} {Q ′} C2 {Q}
{P} C1;C2 {Q}

Exercise 8

1 Write a program to swap the values of the variables x and y and
verify its correctness.

2 Prove that the program

x := x + y ; y := x − y ; x := x − y

does the same.

3 Prove that
{x = r + (y × q)} r := r − y ; q := q + 1 {x = r + (y × q)}

A. Madeira ADA November 25, 2024 25 / 57

Floyd-Hoare Calculus

Floyd-Hoare Rules: conditionals

Conditional

{P ∧ b} C1 {Q} {P ∧ ¬b} C2 {Q}
{P} if b then C1 else C2 {Q}

Exercise 9

Prove that
{true}
if x ≥ y then MAX := x else MAX := y

{MAX = max(x , y)}

A. Madeira ADA November 25, 2024 26 / 57

Floyd-Hoare Calculus

Floyd-Hoare Rules: conditionals

Exercise 10

Suppose that While language is now enriched with the command

if b then c

Introduce a suitable rule for the Floyd-Hoare Calculus and comment the
sentence: “this command is just an abbreviation of a While command.

Exercise 11

Prove that if {P ∧ b} c1 {Q} and {P ∧ ¬b} c2 {Q} then

{P} if b then c1 else (if ¬b then c2) {Q}

A. Madeira ADA November 25, 2024 27 / 57

Floyd-Hoare Calculus

Floyd-Hoare Rules: Conjunction and
disjunction

Specification conjunction

{P1} C {Q1} {P2} C {Q2}
{P1 ∧ P2} C {Q1 ∧ Q2}

Specification disjunction

{P1} C {Q1} {P2} C {Q2}
{P1 ∨ P2} C {Q1 ∨ Q2}

A. Madeira ADA November 25, 2024 28 / 57

Floyd-Hoare Calculus

Floyd-Hoare Rules: while rule

Invariants

P is said to be invariant of C whenever b holds

{P ∧ b} C {P}

Observe:

if executing C once preserves the truth of P

then, executing C any number of times also preserves the truth of P

While rule

{P ∧ b} C {P}
{P} while b do C {P ∧ ¬b}

A. Madeira ADA November 25, 2024 29 / 57

Floyd-Hoare Calculus

Floyd-Hoare Rules: while rule

Invariants

P is said to be invariant of C whenever b holds

{P ∧ b} C {P}

Observe:

if executing C once preserves the truth of P

then, executing C any number of times also preserves the truth of P

While rule

{P ∧ b} C {P}
{P} while b do C {P ∧ ¬b}

A. Madeira ADA November 25, 2024 29 / 57

Floyd-Hoare Calculus

Floyd-Hoare Rules: while rule

Exercise 12

{x ≤ n} while x < n do x := x + 1 {x ≥ n}

Exercise 13

For x , y ∈ N, show that
{true}

r := x ;
q := 0;
while y ≤ r do (r := r − y ; q := q + 1)

{x = r + (y × q) ∧ ¬(y ≤ r)}

Hint: invariant suggestion x = r + (y × q)

A. Madeira ADA November 25, 2024 30 / 57

Floyd-Hoare Calculus

Floyd-Hoare Rules: while rule

Exercise 12

{x ≤ n} while x < n do x := x + 1 {x ≥ n}

Exercise 13

For x , y ∈ N, show that
{true}

r := x ;
q := 0;
while y ≤ r do (r := r − y ; q := q + 1)

{x = r + (y × q) ∧ ¬(y ≤ r)}

Hint: invariant suggestion x = r + (y × q)

A. Madeira ADA November 25, 2024 30 / 57

Floyd-Hoare Calculus

Non termination programs

As observed before, while b do c is the unique command of While that
potentially causes non-termination

Exercise 14

Comment the statement:

{true} while true do x := 0 {false}

A. Madeira ADA November 25, 2024 31 / 57

Floyd-Hoare Calculus

Finding invariants

invariants shall reflect

what has been done and what remains to be done

hold at each iteration of the cycle

shall give the intended result when the cycle terminates

Example

{x = n ∧ y = 1}
while x ̸= 0 do y := y × x ; x := x − 1

{x = 0 ∧ y = n!}
“what was already calculated”: y

“what remains to be done”: x!

“final result”: n!

x!× y = n!

A. Madeira ADA November 25, 2024 32 / 57

Floyd-Hoare Calculus

Finding invariants

invariants shall reflect

what has been done and what remains to be done

hold at each iteration of the cycle

shall give the intended result when the cycle terminates

Example

{x = n ∧ y = 1}
while x ̸= 0 do y := y × x ; x := x − 1

{x = 0 ∧ y = n!}
“what was already calculated”: y

“what remains to be done”: x!

“final result”: n!

x!× y = n!

A. Madeira ADA November 25, 2024 32 / 57

Floyd-Hoare Calculus

Finding invariants

invariants shall reflect

what has been done and what remains to be done

hold at each iteration of the cycle

shall give the intended result when the cycle terminates

Example

{x = n ∧ y = 1}
while x ̸= 0 do y := y × x ; x := x − 1

{x = 0 ∧ y = n!}
“what was already calculated”: y

“what remains to be done”: x!

“final result”: n!

x!× y = n!

A. Madeira ADA November 25, 2024 32 / 57

Floyd-Hoare Calculus

Exercises

Exercise 15

Prove
{x = n ∧ y = 1}

while x ̸= 0 do y := y × x ; x := x − 1
{x = 0 ∧ y = n!}

Exercise 16

Prove
{x = 0 ∧ y = 1}

while x < N do x := x + 1; y := y × x
{y = n!}

A. Madeira ADA November 25, 2024 33 / 57

Floyd-Hoare Calculus

Exercises

Exercise 15

Prove
{x = n ∧ y = 1}

while x ̸= 0 do y := y × x ; x := x − 1
{x = 0 ∧ y = n!}

Exercise 16

Prove
{x = 0 ∧ y = 1}

while x < N do x := x + 1; y := y × x
{y = n!}

A. Madeira ADA November 25, 2024 33 / 57

Floyd-Hoare Calculus

Exercises

Exercise 17

Determine a program c such that, for any a, b ∈ N,

{x = a ∧ y = b} c {z = ab}

A. Madeira ADA November 25, 2024 34 / 57

Verification Conditions generation

Outline

1 On program verification

2 Hoare Triples

3 Floyd-Hoare Calculus

4 Verification Conditions generation

A. Madeira ADA November 25, 2024 35 / 57

Verification Conditions generation

The verification of programs

Three ways to verify the vailidy of {P} c {Q}
Using the Floyd-Hoare calculus (as did in the previous section)

By calculating and prooving the generated verification conditions

By using weakest pre-conditions/strongest post-conditions

A. Madeira ADA November 25, 2024 36 / 57

Verification Conditions generation

The verification of programs

Verification Conditions generation

Use an algorithm to extract the “proof obligations” of {P} c {Q}, i.e. a
set of logic statements V = VC ({P} c {Q}) such that,

if V is true, then {P} c {Q} holds

Weakest pre-conditions (Dijsktra predicate transformers)

Use an algorithm to extract the “weakest precondition of c wrt Q”, i.e.
the weakest condition wpc(c ,Q) that makes the triple {wpc(c ,Q)} c {Q}
valid. Hence,

P → wpc(c,Q) is true iff {P} c {Q} holds

A. Madeira ADA November 25, 2024 37 / 57

Verification Conditions generation

The verification of programs

Verification Conditions generation

Use an algorithm to extract the “proof obligations” of {P} c {Q}, i.e. a
set of logic statements V = VC ({P} c {Q}) such that,

if V is true, then {P} c {Q} holds

Weakest pre-conditions (Dijsktra predicate transformers)

Use an algorithm to extract the “weakest precondition of c wrt Q”, i.e.
the weakest condition wpc(c ,Q) that makes the triple {wpc(c ,Q)} c {Q}
valid. Hence,

P → wpc(c,Q) is true iff {P} c {Q} holds

A. Madeira ADA November 25, 2024 37 / 57

Verification Conditions generation

Verification Conditions Generation

To verify the triple {P} c {Q}
1 annotate programs

2 calculate VC ({P} c {Q}) (recursive process)

3 if the (first-order) formulas of VC ({P} c {Q}) are proved, the triple
{P} c {Q} is valid

More operationally:

1 Input: a Hoare triple annotated with mathematical statements

2 An algorithm generates the set of verification conditions

3 The verification conditions are passed to a theorem prover which
attempts to prove them automatically. Often it requires human aid.

4 if the verification conditions are proved the triple {P} c {Q} is valid

A. Madeira ADA November 25, 2024 38 / 57

Verification Conditions generation

Program Annotations

A. Madeira ADA November 25, 2024 39 / 57

Verification Conditions generation

Program Annotations

A program is properly annotated (to the verification
conditions generation) if:

statements have been inserted at the following places:

before c2 in c1; c2 and c2 is not an assignment

after the “do” in whiles cycle while b do {I}c1

A. Madeira ADA November 25, 2024 40 / 57

Verification Conditions generation

Verification Conditions Generation

Assignments

VC ({P} x := a {Q}) = {P → Q[a/x]}

Example

VC ({x = 0} x := x + 1 {x = 1}) = {x = 0 → (x = 1)[x + 1/x]}
= {x = 0 → x = 0}

A. Madeira ADA November 25, 2024 41 / 57

Verification Conditions generation

Verification Conditions Generation

Skip

VC ({P} skip {Q}) = {P → Q}

Example

+++

A. Madeira ADA November 25, 2024 42 / 57

Verification Conditions generation

Verification Conditions Generation

Conditionals

VC ({P} if b then c1 else c2 {Q}) = VC ({P ∧ b} c1 {Q})
∪
VC ({P ∧ ¬b} c2 {Q})

Exercise 18

1 Suggest a rule for the command if b then c with the expected
semantics (if b then c ≡ if b then c else skip). Calculate
VC ({true} if x < 0 then x := −x {x ≥ 0})

2 Calculate

VC ({true} if x ≥ y then M := x else M := y {M = max(x , y)})

A. Madeira ADA November 25, 2024 43 / 57

Verification Conditions generation

Verification Conditions Generation

Sequential Compositions

1 If cn is not an assignment,
VC ({P} c1; . . . ; cn−1{R}cn {Q}) = VC ({P} c1; . . . ; cn−1 {R})

∪
VC ({R} cn {Q})

2 and
VC ({P} c1; . . . ; cn−1; x := a {Q}) =
VC ({P} c1; . . . ; cn−1 {Q[a/x]})

Exercise 19

Calculate:

VC ({x = a ∧ y = b} r := x ; x := y ; y := r {x = b ∧ y = a})

A. Madeira ADA November 25, 2024 44 / 57

Verification Conditions generation

Verification Conditions Generation

While

VC ({P} while b do {I}c {Q}) = {P → I}
∪
{(I ∧ ¬b) → Q}
∪
VC ({I ∧ b} c {I})

Exercise 20

1 Calculate VC ({s = 2i} while i < n do i := i + 1; s := s × 2 {s = 2i})
2 Verify

{true}
r := x ;
q := 0;
while y ≤ r do r := r − y ; q := q + 1

{x = r + (y × q) ∧ ¬(y ≤ r)} using verification conditions. Hint: invariant
suggestion x = r + (y × q)

A. Madeira ADA November 25, 2024 45 / 57

Verification Conditions generation

Verification Conditions Generation

While

VC ({P} while b do {I}c {Q}) = {P → I}
∪
{(I ∧ ¬b) → Q}
∪
VC ({I ∧ b} c {I})

Exercise 20

1 Calculate VC ({s = 2i} while i < n do i := i + 1; s := s × 2 {s = 2i})

2 Verify
{true}

r := x ;
q := 0;
while y ≤ r do r := r − y ; q := q + 1

{x = r + (y × q) ∧ ¬(y ≤ r)} using verification conditions. Hint: invariant
suggestion x = r + (y × q)

A. Madeira ADA November 25, 2024 45 / 57

Verification Conditions generation

Verification Conditions Generation

While

VC ({P} while b do {I}c {Q}) = {P → I}
∪
{(I ∧ ¬b) → Q}
∪
VC ({I ∧ b} c {I})

Exercise 20

1 Calculate VC ({s = 2i} while i < n do i := i + 1; s := s × 2 {s = 2i})
2 Verify

{true}
r := x ;
q := 0;
while y ≤ r do r := r − y ; q := q + 1

{x = r + (y × q) ∧ ¬(y ≤ r)} using verification conditions. Hint: invariant
suggestion x = r + (y × q)

A. Madeira ADA November 25, 2024 45 / 57

Verification Conditions generation

Verification Conditions Generation

Exercise 21

Using verification conditions generator, prove that, for x , y naturals
{x = a ∧ y = b}

z := 1;
while y ≥ 1 do (z := x × z ; y := y − 1)

{z = ab}

A. Madeira ADA November 25, 2024 46 / 57

Verification Conditions generation

Verification Conditions Generation

Theorem 1

If the statements VC ({P} c {Q}) are true, then {P} c {Q} holds

And the converse implication?

Consider the annotated triple

{true} while false do {false} x := 0 {true}

Try to to prove it

using Floyd-Hoare Logic (forget the annotations)

using the verification conditions generations

what do you conclude?

the converse implication does not hold!

A. Madeira ADA November 25, 2024 47 / 57

Verification Conditions generation

Verification Conditions Generation

Theorem 1

If the statements VC ({P} c {Q}) are true, then {P} c {Q} holds

And the converse implication?

Consider the annotated triple

{true} while false do {false} x := 0 {true}

Try to to prove it

using Floyd-Hoare Logic (forget the annotations)

using the verification conditions generations

what do you conclude?

the converse implication does not hold!

A. Madeira ADA November 25, 2024 47 / 57

Verification Conditions generation

Verification Conditions Generation

Theorem 1

If the statements VC ({P} c {Q}) are true, then {P} c {Q} holds

And the converse implication?

Consider the annotated triple

{true} while false do {false} x := 0 {true}

Try to to prove it

using Floyd-Hoare Logic (forget the annotations)

using the verification conditions generations

what do you conclude?

the converse implication does not hold!

A. Madeira ADA November 25, 2024 47 / 57

Verification Conditions generation

Verification Conditions Generation

Theorem 1

If the statements VC ({P} c {Q}) are true, then {P} c {Q} holds

And the converse implication?

Consider the annotated triple

{true} while false do {false} x := 0 {true}

Try to to prove it

using Floyd-Hoare Logic (forget the annotations)

using the verification conditions generations

what do you conclude?

the converse implication does not hold!

A. Madeira ADA November 25, 2024 47 / 57

Verification Conditions generation

Predicate transformer

Goal: find the weakest pre-condition wpc(c ,Q,) for which the triple

{wpc(c ,Q)} c {Q}

Then
{P} c {Q} iff P → wpc(c ,Q)

A program is understood as a “predicates transformer”, that
transforms post-conditions and programs into “weakest
pre-conditions”

A. Madeira ADA November 25, 2024 48 / 57

Verification Conditions generation

Predicate transformer

Goal: find the weakest pre-condition wpc(c ,Q,) for which the triple

{wpc(c ,Q)} c {Q}

Then
{P} c {Q} iff P → wpc(c ,Q)

A program is understood as a “predicates transformer”, that
transforms post-conditions and programs into “weakest
pre-conditions”

A. Madeira ADA November 25, 2024 48 / 57

Verification Conditions generation

Predicate transformers

Assignment

wpc(x := a,Q) = Q[a/x]

Exercise 22

Calculate

wpc(x := x + y , y > x)

wpc(y := 2× y , y < 5)

wpc(y := 2× y , even(y))

A. Madeira ADA November 25, 2024 49 / 57

Verification Conditions generation

Predicate transformers

Sequential Composition

wpc(c1; c2,Q) = wpc(c1,wpc(c2,Q))

Exercise 23

Calculate

wpc(x := z + 1; y := x + y , y > 5)

wpc(r := x ; x := y ; y := r , x = b ∧ y = a)

A. Madeira ADA November 25, 2024 50 / 57

Verification Conditions generation

Predicate transformers

Conditionals

wpc(if b then c1 else c2,Q) = (b → wpc(c1,Q)) ∧ (¬b → wpc(c2,Q))

Exercise 24

Calculate

wpc(if x ≤ y then m := x else m := y ,m = min(x , y))

A. Madeira ADA November 25, 2024 51 / 57

Verification Conditions generation

Exercise

Exercise 25

Prove

{x ≤ 7} x := 5; if x ≤ 7 then x := x + 2 else skip {x = 7}

using:

1 Weakest pre-conditions

2 Verification conditions

3 Hoare Logic

A. Madeira ADA November 25, 2024 52 / 57

Verification Conditions generation

Predicate transformers

While

can not in general compute a finite formula, other techniques shall be
considered (not in this course). A sound rule:

wpc(while b do c ,Q) = if b then wpc(c ,wpc(while b do c ,Q)) else Q

A. Madeira ADA November 25, 2024 53 / 57

Verification Conditions generation

Dijkstra’s Guarded Command Language
(GCL)

Guarded Command Language (GCL)

c := skip | x := a | c1; c2 | assert α | assume α | havoc x | c ||c

Hoare Logic Rules for GCL

semantics of skip and x := a define as for While language

(assert) P→α
{P} assert α {P∧α}

(assume) {P} assume α {P∧α}

(choice){P} c1 {Q} {P} c2 {Q}
{P} c1||c2 {Q}

A. Madeira ADA November 25, 2024 54 / 57

Verification Conditions generation

Dijkstra’s Guarded Command Language
(GCL)

Exercise 26

1 What is

wpc(assert P ,C)
wpc(assume P ,C)

2 Given conditions P and Q and a program C, determine a program C ′

in the Dijstra’s guarded language such that {P} C {Q} iff
{true} C ′ {true}. Prove it!

A. Madeira ADA November 25, 2024 55 / 57

Verification Conditions generation

Dijkstra’s Guarded Command Language
(GCL)

GCL captures Conditionals:

For instance,

{P} if b then c1 else c2 {Q} iff {P} assert b ; c1||assert ¬b ; c2 {Q}

We can integrate specification in the code:

{P} c {Q}

iff

{true} assume P ; c ; assert Q {true}

Exercise 27

Prove the previous observations!

A. Madeira ADA November 25, 2024 56 / 57

Verification Conditions generation

This was just an appetizer...

A. Madeira ADA November 25, 2024 57 / 57

	On program verification
	Hoare Triples
	Floyd-Hoare Calculus
	Verification Conditions generation

