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While: a simple programming language

The imperative language While

The language While

For the purposes of this UC, we will introduce a prototype imperative
programming language that contains the basic ingredients of any
“standard” imperative programming language, without procedures or
advanced data structures.
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While: a simple programming language

The imperative language While

Syntactical categories of While

Categogy Domain Meta-variables

Integers Z = {· · · − 1, 0, 1, . . . } z
Truth values B = {true, false} t
Variables Var = {x , y , . . . } x
Arithmetic expressions AExp a
Boolean expressions BExp b
commands Cmd c
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While: a simple programming language

The imperative language While

Arithmetic expressions AExp

a ::= z | x | a+ a | a− a | a ∗ a

Examples

3 + x ∗ y
x ∗ ((y − 4) ∗ 0)
. . .

A. Madeira ADA September 29, 2024 5 / 48



While: a simple programming language

The imperative language While

Boolean expressions BExp

b ::= t | a = a | a > a | ¬b | b ∧ b | b ∨ b, t ∈ B

where a ∈ AExp

Examples

¬(x = 3) ∨ (x = y)

true ∧ (x = 3 ∨ x = y)

. . .
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While: a simple programming language

The imperative language While

Commands Cmd

c ::= skip | x := a | c ; c | if b then c else c | while b do c

where a ∈ AExp and b ∈ BExp

Examples

if x > 0 then x := 1 else x := −x
x := 3; (if x > 0 then x := 1 else x := −x)
(if x > 0 then x := 1 else x := −x); x := 3
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While: a simple programming language

The imperative language While

Exercise 1

Try to represent some other common commands (e.g.
repeat c until b ) on means of the base programs of While.
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While: a simple programming language

The imperative language While

Recommended readings

book of Winskel, Chap 1 and Sec 2.1
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Big-Step Operational Semantics of While
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Big-Step Operational Semantics of While

To provide a formal interpretation to While

Objective: given a While program, interpret it in a mathematical
structure

This is done in a structural way, using inference rules in a natural
deduction style

premisses

conclusions
*conditions* (rule name)

Let us introduce:

a notion of state
rules to interpret arithmetic and Boolean expressions
rules to interpret commands
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Big-Step Operational Semantics of While

(Recalling) natural deduction

Natural Deduction system for Propositional Logic
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Big-Step Operational Semantics of While

States

Definition 1

A program state (in the variables Var) is a function

σ : Var→ Z

The state space of a program is the set

Σ = {σ | σ : Var→ Z}

σ(x) denotes the value of the variable x in the state σ
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Big-Step Operational Semantics of While

Interpretation of Arithmetic expressions AExp

Interpretation of an expression a ∈ AExp in a state σ ∈ Σ

⟨a, σ⟩ → z

means:
the expression a is evaluated in the state σ as z
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Big-Step Operational Semantics of While

Interpretation of Arithmetic expressions AExp

Axioms

⟨z, σ⟩ → z ⟨x , σ⟩ → σ(x)

Inference Rules
⟨a1, σ⟩ → z1 ⟨a2, σ⟩ → z2

⟨a1 + a2, σ⟩ → z
where z = z1 + z2

⟨a1, σ⟩ → z1 ⟨a2, σ⟩ → z2

⟨a1 − a2, σ⟩ → z
where z = z1 − z2

⟨a1, σ⟩ → z1 ⟨a2, σ⟩ → z2

⟨a1 ∗ a2, σ⟩ → z
where z = z1 ∗ z2

Example

Interpretation of expression (x + y)− 1 in a state σ such that σ(x) = 1 and σ(y) = 0:

⟨x,σ⟩→1
σ(x)=1 ⟨y,σ⟩→0

σ(y)=0

⟨x+y,σ⟩→1
1 = 1 + 0 ⟨1,σ⟩→1

⟨(x + y)− 1, σ⟩ → 0
0 = 1− 1
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Big-Step Operational Semantics of While

Interpretation of Arithmetic expressions AExp

Exercise 2

1 For σ(x) = 3 and σ(y) = 9, evaluate the expression (x + 3) ∗ (y − 2)
in σ

2 For σ′(x) = 0, evaluate the expression (x + 5) + (7 + 9) in σ′
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Big-Step Operational Semantics of While

Interpretation of Arithmetic expressions AExp

Theorem 1

Let a ∈ AExp and σ, σ′ ∈ Σ such that, for any x ∈ fv(a)a, σ(x) = σ′(x).
Then, for each z ∈ Z,

⟨a, σ⟩ → z iff ⟨a, σ′⟩ → z

aThe function fv : AExp → P(Var) that collects all the variable that occours in a
expression, was defined in a previous class

Exercise 3

Prove the result using structural induction over AExp.

A. Madeira ADA September 29, 2024 17 / 48



Big-Step Operational Semantics of While

Interpretation of Arithmetic expressions AExp

Theorem 1

Let a ∈ AExp and σ, σ′ ∈ Σ such that, for any x ∈ fv(a)a, σ(x) = σ′(x).
Then, for each z ∈ Z,

⟨a, σ⟩ → z iff ⟨a, σ′⟩ → z

aThe function fv : AExp → P(Var) that collects all the variable that occours in a
expression, was defined in a previous class

Exercise 3

Prove the result using structural induction over AExp.

A. Madeira ADA September 29, 2024 17 / 48



Big-Step Operational Semantics of While

Interpretation of Boolean Expressions BExp

BExp ∋ b ::= t | a = a | a > a | ¬b | b ∧ b | b ∨ b, t ∈ B; a ∈ AExp

Axioms

⟨t,σ⟩→t

Inference Rules

⟨a1,σ⟩→z1 ⟨a2,σ⟩→z2
⟨a1=a2,σ⟩→true

if z1 = z2
⟨a1,σ⟩→z1 ⟨a2,σ⟩→z2
⟨a1=a2,σ⟩→false

if z1 ̸= z2

⟨a1,σ⟩→z1 ⟨a2,σ⟩→z2
⟨a1>a2,σ⟩→true

if z1 > z2
⟨a1,σ⟩→z1 ⟨a2,σ⟩→z2
⟨a1>a2,σ⟩→false

se z1 ≤ z2

⟨b,σ⟩→false

⟨¬b,σ⟩→true

⟨b,σ⟩→true

⟨¬b,σ⟩→false

⟨b1,σ⟩→true ⟨b2,σ⟩→true

⟨b1∧b2,σ⟩→true

⟨b1,σ⟩→true ⟨b2,σ⟩→false

⟨b1∧b2,σ⟩→false

⟨b1,σ⟩→false ⟨b2,σ⟩→true

⟨b1∧b2,σ⟩→false

⟨b1,σ⟩→false ⟨b2,σ⟩→false

⟨b1∧b2,σ⟩→false

⟨b1,σ⟩→true ⟨b2,σ⟩→true

⟨b1∨b2,σ⟩→true

⟨b1,σ⟩→true ⟨b2,σ⟩→false

⟨b1∨b2,σ⟩→true

⟨b1,σ⟩→false ⟨b2,σ⟩→true

⟨b1∨b2,σ⟩→true

⟨b1,σ⟩→false ⟨b2,σ⟩→false

⟨b1∨b2,σ⟩→false
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Big-Step Operational Semantics of While

Interpretation of Boolean Expressions BExp

Exercise 4

For σ such that σ(x) = 2 and σ(y) = 5, interpret the Boolean expressions

1 (y = 3) ∨ (x = 2)

2 ¬(x = y)
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Big-Step Operational Semantics of While

Interpretation of Boolean Expressions BExp

More efficient strategies to evaluate expressions?

To apply the rule
⟨b1, σ⟩ → false ⟨b2, σ⟩ → true

⟨b1 ∧ b2, σ⟩ → false

it would be enough to evaluate b1, i.e.

⟨b1, σ⟩ → false

⟨b1 ∧ b2, σ⟩ → false

Exercise 5

Introduce a more efficient set of inference rules to evaluate BExp expressions
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Big-Step Operational Semantics of While

Interpretation of commands Cmd

Updates on states

Against of what happens with the interpretation of arithmetic and Boolean
expressions, the commands execution change the states of a program. E.g.

σ(x) = 25
x :=3 // σ′(x) = 3

The execution step
⟨x:=3, σ⟩ → σ′

transforms the state σ in a state σ′ where, for any y ∈ Var,

σ′(y) =

{
3 y = x

σ(y) y ̸= x
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Big-Step Operational Semantics of While

Interpretation of commands Cmd

Notation

The expression
⟨c , σ⟩ → σ′

denotes that the (full) execution of command c in state σ terminates in
final state σ′.

Update function

Let σ ∈ Σ, x , y ∈ Var and z ∈ Z.

σ[x ← z ](y) =

{
z y = x

σ(y) y ̸= x
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Big-Step Operational Semantics of While

Interpretation of commands Cmd

Theorem 2

Let z1, z2 ∈ Z and x , y ∈ Var. Then,

(σ[x ← z1])[x ← z2] = σ[x ← z2]

Proof.

Exercise!

Corollary 2

Let z1, . . . , zn ∈ Z and x , y ∈ Var. Then,

(. . . ((σ[x ← z1])[x ← z2]) . . . )[x ← zn])(y) = σ[x ← zn](y)
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Big-Step Operational Semantics of While

Interpretation of commands Cmd

Cmd ∋ c ::= skip | x := a | c ; c | if b then c else c | while b do c

Commands interpretation

Axioms

(skip) ⟨skip,σ⟩→σ

Inference rules

(assign) ⟨a,σ⟩→z
⟨ x :=a,σ⟩→σ[x←z]

(seq) ⟨c1,σ⟩→σ′ ⟨c2,σ′⟩→σ′′

⟨c1;c2,σ⟩→σ′′

(if-t) ⟨b,σ⟩→true ⟨c1,σ⟩→σ′

⟨if b then c1 else c2,σ⟩→σ′ (if-f) ⟨b,σ⟩→false ⟨c2,σ⟩→σ′

⟨if b then c1 else c2,σ⟩→σ′

(wh-t) ⟨b,σ⟩→true ⟨c,σ⟩→σ′ ⟨while b do c ,σ′⟩→σ′′

⟨while b do c ,σ⟩→σ′′

(wh-f) ⟨b,σ⟩→false

⟨while b do c ,σ⟩→σ
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Big-Step Operational Semantics of While

Interpretation of commands Cmd

Example

Interpretation of program x := 1; y := 3 in a state σ

⟨1,σ⟩→1

⟨ x :=1,σ⟩→σ[x←1](assign)
⟨3,σ[x←1]⟩→3

⟨ y :=3,σ[x←3]⟩→σ[x←1][y←3](assign)

⟨ x := 1; y := 3, σ⟩ → σ[x ← 1][y ← 3]
(seq)

Exercise 6

Interpret the programs

if (2 = 3) then ( x := 1; y := 3) else skip

and
if (2 = 3) then skip else ( x := 1; y := 3)
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Big-Step Operational Semantics of While

Exercises

Exercise 7

Extend the base language While with an operator

repeat c until b

It shall behave as expected (see the executions of
ω ≡ repeat (x := x + 1) until (x > 2)

σ0(x) = 1
ω // σ1(x) = 2

ω // σ2(x) = 3

σ0(x) = 5
ω // σ1(x) = 6

1 Extend the set of inference rules for this new command.

2 Derive the executions of ω ≡ repeat (x := x + 1) until (x > 2) from a
state σ such that σ(x) = 1 and from a state σ′ such that σ′(x) = 5.
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Big-Step Operational Semantics of While

Proving generic properties about programs

Definition 3 (Operational Equivalence)

Let c , c ′ ∈ Cmd. The programs c and c ′ are operationally equivalent, in
symbols c ∼ c ′, iff for any σ ∈ Σ,

⟨c , σ⟩ → σ′ iff ⟨c ′, σ⟩ → σ′

Exercise 8

Show that

c1; (c2; c3) ∼ (c1; c2); c3

c1; c2 ̸∼ c2; c1

( x := y ; x := 1) ∼ ( x := 1)

(repeat c until b ) ̸∼ (while ¬b do c ), by assuming the
semantic rules for repeat b until c introduced in the previous
Exercise 7
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Big-Step Operational Semantics of While

Proving generic properties about programs

Theorem 3

Let ω ≡ while b do c . Then

ω ∼ if b then (c ;ω) else skip

Proof.

Exercise!
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Big-Step Operational Semantics of While

Proving generic properties about programs

Exercise 9

Let us revisit the inference rules for the command

repeat c until b

suggested in Exercise 7.

Define now this operator using the operators of While

Prove that (repeat c until b ) ∼ (c ; while ¬b do c ) using the
rules introduced in the Exercise 7
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Big-Step Operational Semantics of While

Proving generic properties about programs

Theorem 4

The execution of programs While is deterministic, i.e. for any c ∈ Cmd

and for any states σ, σ′, σ′′ ∈ Σ,

if ⟨c , σ⟩ → σ′ and ⟨c , σ⟩ → σ′′ then σ′ = σ′′
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Big-Step Operational Semantics of While

About termination of programs

Exercise 10

Try to derive the program

while true do skip

There exist σ and σ′ such that

⟨while true do skip , σ⟩ → σ′?
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Big-Step Operational Semantics of While

Big Steps Semantics Operational functional

Definition 4

The functional of the operational semantics

BJ K : Cmd→ (Σ 99K Σ)

assigns to every statement c ∈ Cmd, a partial function on states which is
defined as follows:

BJcK : Σ 99K Σ

BJcK(σ) =

{
σ′ ⟨c, σ⟩ → σ′

undefined otherwise
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Big-Step Operational Semantics of While

Exercises

Exercise 11

Determine
BJwhile true do skip K

Exercise 12

For σ ∈ Σ, determine

BJ z := x ; x := y ; y := zK(σ)

Let σ1 such that σ1(x) = 3 and σ1(y) = 4. Then, determine:

BJ z := x ; x := y ; y := zK(σ1)(x) and

BJ z := x ; x := y ; y := zK(σ1)(y)

Exercise 13

Let σ ∈ Σ such that σ(x) = 3. Calculate:
BJ y := 1; while ¬(x = 1) do ( y := y × x ; x := x − 1 )K(σ)(x)
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Small-Steps Operational Semantics of While

Outline

1 While: a simple programming language

2 Big-Step Operational Semantics of While

3 Small-Steps Operational Semantics of While
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Small-Steps Operational Semantics of While

Small-steps Operational Semantics

Big-steps Vs Small-steps Operational Semantics

Big steps semantics describes the effect of the execution of a
complete programa c

Small steps semantics emphasizes the individual steps of such
executions

Big Steps Semantics

⟨c , σ⟩ → σ′

Small Steps Semantics

⟨c , σ⟩ ⇒ ⟨c ′, σ′⟩
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Small-Steps Operational Semantics of While

Small-steps Operational Semantics

Cmd ∋ c ::= skip | x := a | c ; c | if b then c else c | while b do c

Inference Rules

(assign) ⟨a,σ⟩→z
⟨ x :=a,σ⟩ ⇒ σ[x←z] (skip) ⟨skip,σ⟩ ⇒ σ

(seq 1) ⟨c1,σ1⟩ ⇒ σ2

⟨c1;c2,σ1⟩ ⇒ ⟨c2,σ2⟩ (seq 2)
⟨c1,σ1⟩ ⇒ ⟨c ′1,σ2⟩

⟨c1;c2,σ1⟩ ⇒ ⟨c ′1;c2,σ2⟩

(if-t) ⟨b,σ⟩→true

⟨if b then c1 else c2,σ⟩ ⇒ ⟨c1,σ⟩ (if-f) ⟨b,σ⟩→false

⟨if b then c1 else c2,σ⟩ ⇒ ⟨c2,σ⟩

(while) ⟨while b do c ,σ⟩ ⇒ ⟨if b then (c;while b do c ) else skip,σ⟩
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Small-Steps Operational Semantics of While

Example 5

The derivation of the program x := 1; y := 2; z := 3 from a given σ:

(1)

⟨1,σ⟩→1
⟨ x :=1,σ⟩ ⇒ σ[x←1]

⟨ x :=1; y :=2,σ⟩ ⇒ ⟨ y :=2,σ[x←1]⟩

⟨ x := 1; y := 2; z := 3, σ⟩ ⇒ ⟨ y := 2; z := 3, σ[x ← 1]⟩

(2)

⟨2,σ[x←1]⟩→2
⟨ y :=2,σ[x←1]⟩ ⇒ ⟨σ[x←1][y←2]⟩

⟨ y := 2; z := 3, σ[x ← 1]⟩ ⇒ ⟨ z := 3, σ[x ← 1][y ← 2]⟩

(3)

⟨3,σ[x←1][y←2]⟩→3
⟨ z :=3,σ[x←1][y←2]⇒ σ[x←1][y←2][z←3]

⟨ z := 3, σ[x ← 1][y ← 2]⟩ ⇒ σ[x ← 1][y ← 2][z ← 3]

Therefore

⟨ x := 1; y := 2; z := 3, σ⟩ ⇒ ⟨ y := 2; z := 3, σ[x ← 1]⟩ (1)

⇒ ⟨ z := 3, σ[x ← 1][y ← 2]⟩ (2)

⇒ σ[x ← 1][y ← 2][z ← 3] (3)
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Small-Steps Operational Semantics of While

Small-steps operational semantics

Exercise 14

From a state σ such that σ(x) = 3 derive the following programs:

while x < 5 do x := x + 1

y := 1; while ¬(x = 1) do ( y := y × x ; x := x − 1 )

while true do skip

A. Madeira ADA September 29, 2024 38 / 48



Small-Steps Operational Semantics of While

Small-step Operational Semantics

Sequences and Derivation Sequences

A (possible infinite) set of configurations γ0, γ1, . . . , such that
γ0 = ⟨c0, σ0⟩, γi = ⟨c , σ⟩ for any 0 ≤ i is called a sequence of c in σ.
A derivation sequence of c in σ is a sequence of c in σ that either

the sequence is finite (of length n ≥ 0), and γn is terminal, or

the sequence is infinite.

We write:

γ ⇒i γ′ is there is a sequence of length i from γ to γ′

γ ⇒∗ γ′ is there is a finite sequence from γ to γ′
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Small-Steps Operational Semantics of While

Properties of sequences

Note that

γ ⇒ γ′ do not necessarily represents a derivations sequence

for each step of the sequence, there is a derivation tree

for each c and σ it is always possible to find (exactly) one derivation
tree

The execution of a c in σ:

loops iff there is an infinite derivation sequence of c in σ

terminates iff there is a finite derivation sequence of c in σ1

terminates successfully iff there is a σ′ such that ⟨c, σ⟩ ⇒ σ′

1In While language, if terminates, terminates successfully. This is not always the
case, if we consider some extensions in the language
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Small-Steps Operational Semantics of While

A new proof strategy

Induction on the length of the derivation sequences

1 Prove that the property holds for all derivation sequences of length 0.

2 Prove that the property holds for all other derivation sequences:
Assume that the property holds for all derivation sequences of length
at most k (this is called the induction hypothesis) and show that it
holds for derivation sequences of length k + 1.
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Small-Steps Operational Semantics of While

The small-steps semantics functional

Lemma 6

If ⟨c1; c2, σ⟩ ⇒k σ′, then, there exists a state σ1 and numbers k1, k2 ∈ N
such that ⟨c1, σ⟩ ⇒k1 σ1, ⟨c2, σ1⟩ ⇒k2 σ′ and k = k2 + k2.

Proof.

Exercise! (Proof by induction on the length of the derivation
sequences)

Lemma 7

If ⟨c1, σ1⟩ ⇒k σ2 then ⟨c1; c2, σ1⟩ ⇒k ⟨c2, σ2⟩
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Small-Steps Operational Semantics of While

Small steps programs equivalence

Definition 8

The programs c1 and c2 are semantically equivalent, in symbols c1 ≈ c2,
if for any state σ ∈ Σ,

⟨c1, σ⟩ ⇒∗ γ iff ⟨c2, σ⟩ ⇒∗ γ if γ is terminal, or

there is an infinite derivation sequence starting in ⟨c1, σ⟩ iff there is
one starting in ⟨c2, σ⟩
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Small-Steps Operational Semantics of While

Small steps programs equivalence

Exercise 15

Show that

c ; skip ≈ c

c1; (c2; c3) ≈ (c1; c2); c3

Exercise 16

Introduce small steps semantic rules for the operator

repeat c until b

and show that

repeat c until b ≈ c; while (¬b) do c
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The small-steps semantics functional

Lemma 9

For every c ∈ Cmd and for any states σ, σ′ ∈ Σ, k ∈ N,

⟨c , σ1⟩ → σ2 implies ⟨c , σ1⟩ ⇒∗ σ2

Proof.

Exercise! (Proof by structural induction over the derivation trees.)

Lemma 10

for any c ∈ Cmd, σ, σ′ ∈ Σ and k ∈ N,

if ⟨c , σ⟩ ⇒k σ′ then ⟨c , σ⟩ → σ′

Proof.

Exercise!
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Small Steps Semantics Operational
functional

Definition 11

The functional of the small steps operational semantics

SJ K : Cmd→ (Σ 99K Σ)

assigns to every statement c ∈ Cmd, a partial states function which is
defined as follows:

SJcK : Σ 99K Σ

SJcK(σ) =

{
σ′ ⟨c , σ⟩ ⇒∗ σ′

undefined otherwise
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Equivalence of Big steps and Small steps
semantics

Theorem 5

For any c ∈ Cmd,
BJcK = SJcK

i.e. for any c ∈ Cmd, σ ∈ Σ.

BJcK(σ) = SJcK(σ)

Proof.

Exercise!
The proof of this The proof follows from Lemmas 6,7 and 9.
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