

INTRODUCTION TO THE FORMAL SEMANTICS OF PROGRAMS SLIDES BLOCK 1

ADA 2024/25

Departamento de Matemática Universidade de Aveiro
Alexandre Madeira
(madeira@ua.pt)

September 30, 2024

THIS UC RIGOROUSLY APPROACH ADA

IN ORDER TO DEAL WITH “ALGORITHMS DEVELOPMENT” WE NEED TO HAVE RIGOROUS NOTIONS OF:

- what is a **programming language**
- what is a **program**
- how **interpret programs**

THIS UC RIGOROUSLY APPROACH ADA

IN ORDER TO DEAL WITH “ALGORITHMS DEVELOPMENT” WE NEED TO HAVE RIGOROUS NOTIONS OF:

- what is a **programming language**
- what is a **program**
- how **interpret programs**

Formal Semantics of programs

THIS UC RIGOROUSLY APPROACH ADA

IN ORDER TO DEAL WITH “ALGORITHMS DEVELOPMENT” WE NEED TO HAVE RIGOROUS NOTIONS OF:

- what is a **programming language**
- what is a **program**
- how **interpret programs**

Formal Semantics of programs

TO MAKE THIS “ANALYSIS”, WE MATHEMATICALLY FORMALISE:

- the notions of **property** and **behaviour**
- the notions of **specification** and **algorithm correctness**
- the notion of **correctness proof**

THIS UC RIGOROUSLY APPROACH ADA

IN ORDER TO DEAL WITH “ALGORITHMS DEVELOPMENT” WE NEED TO HAVE RIGOROUS NOTIONS OF:

- what is a **programming language**
- what is a **program**
- how **interpret programs**

Formal Semantics of programs

TO MAKE THIS “ANALYSIS”, WE MATHEMATICALLY FORMALISE:

- the notions of **property** and **behaviour**
- the notions of **specification** and **algorithm correctness**
- the notion of **correctness proof**

Formal Verification of programs

OUTLINE

- ① A FORMAL SEMANTICS OF PROGRAMMING LANGUAGES, WHY?
- ② REVISIONS: THE STRUCTURAL INDUCTION PRINCIPLE

FORMALLY TREATMENT OF PROGRAMS, WHY?

IN ORDER TO HAVE A SCIENTIFIC DISCIPLINE OF PROGRAMMING:

- Programs shall be treated as **mathematical objects**
- The interpretation of each command shall be mathematically defined, **free of ambiguities**
- The behaviour of a program shall be **predictable and calculable** in a de **unambiguous and systematic** way

FORMALLY TREATMENT OF PROGRAMS, WHY?

IN ORDER TO HAVE A SCIENTIFIC DISCIPLINE OF PROGRAMMING:

- Programs shall be treated as **mathematical objects**
- The interpretation of each command shall be mathematically defined, **free of ambiguities**
- The behaviour of a program shall be **predictable and calculable** in a de **unambiguous and systematic** way

HOWEVER:

- Usually the **behaviour of the PL commands is just informally documented**
- The interpretation of a programm is just provided by the **machine code built by the compiler**

FORMALLY TREATMENT OF PROGRAMS, WHY?

IN ORDER TO HAVE A SCIENTIFIC DISCIPLINE OF PROGRAMMING:

- Programs shall be treated as **mathematical objects**
- The interpretation of each command shall be mathematically defined, **free of ambiguities**
- The behaviour of a program shall be **predictable and calculable** in a **de unambiguous and systematic** way

HOWEVER:

- Usually the **behaviour of the PL commands is just informally documented**
- The interpretation of a programm is just provided by the **machine code built by the compiler**
- There are usually several compilers for the same language; **they are not necessarily consistent with each other**
- Most of these compilers **have bugs...**

WHY FORMALLY TREAT PROGRAMS

THE FORMAL SEMANTICS (FS) OF A PROGRAM IN A GIVEN PL is the concrete meaning (mathematical structure) of a program. E.g.

- an input/output map of variables,
- a state transition system,
- ...

A FS IS IMPORTANT FOR THE DEVELOPMENT OF ALGORITHMS, SINCE:

- it allows the exact understanding of a program;
- it supports the definition of formalisms capable of:
 - verify properties about programs
 - prove the equivalence of programs (re-use/optimizations/...)
 - ...

PROGRAMMING SEMANTICS STYLES

OPERATIONAL - Expresses the computation as an abstract transition system

$$(seq) \frac{\langle c_1, \sigma \rangle \rightarrow \sigma' \quad \langle c_2, \sigma' \rangle \rightarrow \sigma''}{\langle c_1; c_2, \sigma \rangle \rightarrow \sigma''}$$

PROGRAMMING SEMANTICS STYLES

OPERATIONAL - Expresses the computation as an abstract transition system

$$(seq) \frac{\langle c_1, \sigma \rangle \rightarrow \sigma' \quad \langle c_2, \sigma' \rangle \rightarrow \sigma''}{\langle c_1; c_2, \sigma \rangle \rightarrow \sigma''}$$

DENOTATIONAL - Mathematical definition of the input/output relation of a program, by induction on the syntactic structure of a program

$$\mathfrak{C}[\cdot] : \text{Cmd} \rightarrow (\Sigma \dashrightarrow \Sigma)$$

$$\mathfrak{C}[c_1; c_2] := \mathfrak{C}[c_2] \circ \mathfrak{C}[c_1]$$

PROGRAMMING SEMANTICS STYLES

OPERATIONAL - Expresses the computation as an abstract transition system

$$(seq) \frac{\langle c_1, \sigma \rangle \rightarrow \sigma' \quad \langle c_2, \sigma' \rangle \rightarrow \sigma''}{\langle c_1; c_2, \sigma \rangle \rightarrow \sigma''}$$

DENOTATIONAL - Mathematical definition of the input/output relation of a program, by induction on the syntactic structure of a program

$$\begin{aligned} \mathfrak{C}[\cdot] &: \text{Cmd} \rightarrow (\Sigma \dashrightarrow \Sigma) \\ \mathfrak{C}[c_1; c_2] &:= \mathfrak{C}[c_2] \circ \mathfrak{C}[c_1] \end{aligned}$$

AXIOMATIC - Formalisation of the programs properties by logic formulas

$$(seq) \frac{\{A\}c_1\{C\} \quad \{C\}c_2\{B\}}{\{A\}c_1; c_2\{B\}}$$

ON THIS COURSE WE FOCUS ON:

OPERATIONAL - Expresses the computation as an abstract transition system

$$(seq) \frac{\langle c_1, \sigma \rangle \rightarrow \sigma' \quad \langle c_2, \sigma' \rangle \rightarrow \sigma''}{\langle c_1; c_2, \sigma \rangle \rightarrow \sigma''}$$

DENOTIONAL - Mathematical definition of the input/output relation of a program, by induction on the syntactic structure of a program

$$\mathfrak{C}[\cdot] : \text{Cmd} \rightarrow (\Sigma \dashrightarrow \Sigma)$$

$$\mathfrak{C}[c_1; c_2] := \mathfrak{C}[c_2] \circ \mathfrak{C}[c_1]$$

AXIOMATIC - Formalisation of the programs properties by logic formulas

$$(seq) \frac{\{A\}c_1\{C\} \quad \{C\}c_2\{B\}}{\{A\}c_1; c_2\{B\}}$$

OUTLINE

- ① A FORMAL SEMANTICS OF PROGRAMMING LANGUAGES,
WHY?
- ② REVISIONS: THE STRUCTURAL INDUCTION PRINCIPLE

(REVISION) INDUCTION PRINCIPLE

INDUCTIVE SET

is a set which elements are either:

- atomic
- obtained from atomic elements through a finite number of applications of a given set of operations

(REVISION) INDUCTION PRINCIPLE

INDUCTIVE SET

is a set which elements are either:

- atomic
- obtained from atomic elements through a finite number of applications of a given set of operations

EXAMPLE

The set \mathbb{N} is inductive to the atom 0 and for the operation suc , since it is the smallest set that

- contains 0
- contains $suc(n)$ if $n \in \mathbb{N}$

(REVISION) INDUCTION PRINCIPLE

INDUCTIVE SET

is a set which elements are either:

- atomic
- obtained from atomic elements through a finite number of applications of a given set of operations

EXAMPLE

The set \mathbb{N} is inductive to the atom 0 and for the operation suc , since it is the smallest set that

- contains 0
- contains $suc(n)$ if $n \in \mathbb{N}$

USING THE BNF NOTATION

$$\mathbb{N} \ni n ::= 0 \mid suc(n)$$

(REVISION) INDUCTION PRINCIPLE

INDUCTIVE SET

is a set which elements are either,

- atomics
- obtained from the atomic elements with a finite number of applications of a given set of operations (constructors)

EXAMPLE

The set of binary trees over a set L , $Btree(L)$ is inductive to the atoms L , and for the operation *fork*

(REVISION) INDUCTION PRINCIPLE

INDUCTIVE SET

is a set which elements are either,

- atomics
- obtained from the atomic elements with a finite number of applications of a given set of operations (constructors)

EXAMPLE

The set of binary trees over a set L , $Btree(L)$ is inductive to the atoms L , and for the operation *fork*, since

- the leafs $l \in L$ are trees
- given two trees $t, t' \in Btree(L)$, $fork(t, t') \in Btree(L)$

(REVISION) INDUCTION PRINCIPLE

INDUCTIVE SET

is a set which elements are either,

- atomics
- obtained from the atomic elements with a finite number of applications of a given set of operations (constructors)

EXAMPLE

The set of binary trees over a set L , $Btree(L)$ is inductive to the atoms L , and for the operation *fork*, since

- the leafs $l \in L$ are trees
- given two trees $t, t' \in Btree(L)$, $fork(t, t') \in Btree(L)$

USING THE BNF NOTATION

$$Btree(L) \ni t := l \mid fork(t, t), \text{ for } l \in L$$

RECALLING THE INDUCTION PRINCIPLE

EXERCISE 1

- ① *Inductively define the set of the lists over a set A*
- ② *Inductively define the set of arithmetic expressions over \mathbb{Z} generated by the operations $+, -, \times$.*

(REVISION) INDUCTION PRINCIPLE

MATHEMATICAL INDUCTION PRINCIPLE (OVER \mathbb{N})

Let P be a property on the naturals. If

- $P(0)$ is true, and
- the truth of $P(n)$ implies the truth of $P(n + 1)$

$P(n)$ is true for any $n \in \mathbb{N}$

(REVISION) INDUCTION PRINCIPLE

MATHEMATICAL INDUCTION PRINCIPLE (OVER \mathbb{N})

Let P be a property on the naturals. If

- $P(0)$ is true, and
- the truth of $P(n)$ implies the truth of $P(n + 1)$

$P(n)$ is true for any $n \in \mathbb{N}$

EXERCISE 2

Prove by mathematical induction that, for any $n \in \mathbb{N}$,

$$\sum_{i=0}^n i = \frac{n(n + 1)}{2}$$

STRUCTURAL INDUCTION PRINCIPLE

STRUCTURAL INDUCTION PRINCIPLE

Let P be a property about an inductive set I . If

- $P(a)$ is true for any atom a of I
- For any constructor f of arity k , when $P(a_1) \dots P(a_k)$ are true, $P(f(a_1, \dots, a_k))$ is true.

Then, $P(i)$ is true for any $i \in I$.

EXERCISE

EXERCISE 3

Inductively define the set $NTerm$ of arithmetic expressions over \mathbb{Z} with the connectives $+$ and \times .

- ① *Define a recursive function $nmr : NTerm \rightarrow \mathbb{N}$ to calculate the number of occurrences of numbers in an expression (e.g. $nmr(3 + 5 \times 2) = 3$)*
- ② *Define a recursive function $cnt : NTerm \rightarrow \mathbb{N}$ to calculate the number of occurrences of connectives in an expression (e.g. $cnt(3 + 5 \times 2) = 2$)*
- ③ *Define a recursive function $ent : NTerm \rightarrow \mathbb{N}$ to calculate the number of occurrences of entities in an expression (e.g. $ent(3 + 5 \times 2) = 5$)*
- ④ *Prove that, for any $e \in NTerm$,*

$$ent(e) = nmr(e) + cnt(e)$$

EXERCISE

EXERCISE 4

Inductively define the set $AExp$ of arithmetic expressions over Var and \mathbb{Z} with the connectives $+$, $-$ and $$.*

- ① Define a recursive function $fv : AExp \rightarrow \mathcal{P}(Var)$ to collect the set of variables of an expression (e.g. $fv(3 * x + 5 * y) = \{x, y\}$)
- ② Define a recursive function $occ : AExp \times Var \rightarrow \mathbb{N}$ to calculate the number of occurrences of a given variable in an expression (e.g. $occ(3 * x + 5 * y - x, x) = 2$)
- ③ Define a recursive function for the “substitution” operator $a[x := a']$, that replaces the occurrences of x in a by the expression a' (e.g. $(3 * x + 5 * y - x)[y := x + 1] = 3 * x + 5 * (x + 1) - x$)
- ④ Prove that

$$fv(a[x := a']) \subseteq (fv(a) \setminus \{x\}) \cup fv(a')$$

- ⑤ Define a recursive function $ent : AExp \rightarrow \mathbb{N}$ to calculate the number of entities in an expression (e.g. $ent(3 + y * z) = 5$)
- ⑥ Determine an expression to $ent(a[x := a'])$ using $occ(a, x)$ and $ent(a)$ and $ent(a')$. Prove its correctness.

EXERCISE

EXERCISE 5

For the binary trees over L ,

$$Btree(L) \ni t := l \mid fork(t, t), \text{ with } l \in L$$

- ① Define a function $nodes : Btree(L) \rightarrow \mathbb{N}$ to calculate the number of nodes in a tree.
- ② Define a function $leafs : Btree(L) \rightarrow \mathbb{N}$ to calculate the number of leafs in a tree
- ③ Prove that, for any $t \in Btree(L)$,

$$leafs(t) = nodes(t) + 1$$

EXERCISE

EXERCISE 6

Consider the set of lists $List(A) \ni l := \epsilon \mid a.l, a \in A$

- ① Define functions $odd : List(A) \rightarrow List(A)$ and $even : List(A) \rightarrow List(A)$ that filter a list with the elements of odd and even positions, respectively.
E.g. $odd(a_1.a_2.a_3.a_4) = a_1.a_3$ and $even(a_1.a_2.a_3.a_4) = a_2.a_4$.
- ② Define a function $lg : List(A) \rightarrow \mathbb{N}$ that returns the length of a list (i.e. the number of its elements)
- ③ Define a function $zip : List(A) \times List(A) \rightarrow List(A)$ that zips the elements of two non empty lists.
E.g. $zip(a_1.a_2, b_1.b_2.b_3) = a_1.b_1.a_2.b_2.b_3$
- ④ Prove that:
 - for any $l_1, l_2 \in List(A)$, $lg(zip(l_1, l_2)) = lg(l_1) + lg(l_2)$
 - for any $l \in List(A)$, $l = zip(odd(l), even(l))$