
Introduction to the formal semantics of
programs

Slides Block 1

ADA 2024/25
Departamento de Matemática Universidade de Aveiro

Alexandre Madeira
(madeira@ua.pt)

September 30, 2024

A. Madeira ADA September 30, 2024 1 / 17



This UC rigorously approach ADA

In order to deal with “algorithms development” we need to have
rigorous notions of:

what is a programming language

what is a program

how interpret programs

Formal Semantics of programs

To make this “analysis”, we mathematically formalise:

the notions of property and behaviour

the notions of specification and algorithm correctness

the notion of correctness proof

Formal Verification of programs

A. Madeira ADA September 30, 2024 2 / 17



This UC rigorously approach ADA

In order to deal with “algorithms development” we need to have
rigorous notions of:

what is a programming language

what is a program

how interpret programs

Formal Semantics of programs

To make this “analysis”, we mathematically formalise:

the notions of property and behaviour

the notions of specification and algorithm correctness

the notion of correctness proof

Formal Verification of programs

A. Madeira ADA September 30, 2024 2 / 17



This UC rigorously approach ADA

In order to deal with “algorithms development” we need to have
rigorous notions of:

what is a programming language

what is a program

how interpret programs

Formal Semantics of programs

To make this “analysis”, we mathematically formalise:

the notions of property and behaviour

the notions of specification and algorithm correctness

the notion of correctness proof

Formal Verification of programs

A. Madeira ADA September 30, 2024 2 / 17



This UC rigorously approach ADA

In order to deal with “algorithms development” we need to have
rigorous notions of:

what is a programming language

what is a program

how interpret programs

Formal Semantics of programs

To make this “analysis”, we mathematically formalise:

the notions of property and behaviour

the notions of specification and algorithm correctness

the notion of correctness proof

Formal Verification of programs

A. Madeira ADA September 30, 2024 2 / 17



A formal semantics of programming languages, why?

Outline

1 A formal semantics of programming languages,
why?

2 Revisions: the structural induction principle

A. Madeira ADA September 30, 2024 3 / 17



A formal semantics of programming languages, why?

Formally treatment of programs, why?

In order to have a scientific discipline of programming:

Programs shall be treated as mathematical objects

The interpretation of each command shall be mathematically defined, free
of ambiguities

The behaviour of a program shall be predictable and calculable in a de
unambiguous and systematic way

However:

Usually the behaviour of the PL commands is just informally
documented

The interpretation of a programm is just provided by the machine code
built by the compiler

There are usually several compilers for the same language; they are not
necessarily consistent with each other

Most of these compilers have bugs...

A. Madeira ADA September 30, 2024 4 / 17



A formal semantics of programming languages, why?

Formally treatment of programs, why?

In order to have a scientific discipline of programming:

Programs shall be treated as mathematical objects

The interpretation of each command shall be mathematically defined, free
of ambiguities

The behaviour of a program shall be predictable and calculable in a de
unambiguous and systematic way

However:

Usually the behaviour of the PL commands is just informally
documented

The interpretation of a programm is just provided by the machine code
built by the compiler

There are usually several compilers for the same language; they are not
necessarily consistent with each other

Most of these compilers have bugs...

A. Madeira ADA September 30, 2024 4 / 17



A formal semantics of programming languages, why?

Formally treatment of programs, why?

In order to have a scientific discipline of programming:

Programs shall be treated as mathematical objects

The interpretation of each command shall be mathematically defined, free
of ambiguities

The behaviour of a program shall be predictable and calculable in a de
unambiguous and systematic way

However:

Usually the behaviour of the PL commands is just informally
documented

The interpretation of a programm is just provided by the machine code
built by the compiler

There are usually several compilers for the same language; they are not
necessarily consistent with each other

Most of these compilers have bugs...

A. Madeira ADA September 30, 2024 4 / 17



A formal semantics of programming languages, why?

Why formally treat programs

The formal semantics (FS) of a program in a given PL

is the concrete meaning (mathematical structure) of a program. E.g.

an input/output map of variables,

a state transition system,

. . .

A FS is important for the development of algorithms, since:

it allows the exact understanding of a program;

it supports the definition of formalisms capable of:

verify properties about programs
prove the equivalence of programs (re-use/optimizations/...)
. . .

A. Madeira ADA September 30, 2024 5 / 17



A formal semantics of programming languages, why?

Programming Semantics styles

Operational - Expresses the computation as an abstract transition
system

(seq)
⟨c1, σ⟩ → σ′ ⟨c2, σ′⟩ → σ′′

⟨c1; c2, σ⟩ → σ′′

Denotational - Mathematical definition of the input/output relation of
a program, by induction on the syntactic structure of a
program

CJ.K : Cmd → (Σ 99K Σ)

CJc1; c2K := CJc2K ◦ CJc1K

Axiomatic - Formalisation of the programs properties by logic formulas

(seq)
{A}c1{C} {C}c2{B}

{A}c1; c2{B}

A. Madeira ADA September 30, 2024 6 / 17



A formal semantics of programming languages, why?

Programming Semantics styles

Operational - Expresses the computation as an abstract transition
system

(seq)
⟨c1, σ⟩ → σ′ ⟨c2, σ′⟩ → σ′′

⟨c1; c2, σ⟩ → σ′′

Denotational - Mathematical definition of the input/output relation of
a program, by induction on the syntactic structure of a
program

CJ.K : Cmd → (Σ 99K Σ)

CJc1; c2K := CJc2K ◦ CJc1K

Axiomatic - Formalisation of the programs properties by logic formulas

(seq)
{A}c1{C} {C}c2{B}

{A}c1; c2{B}

A. Madeira ADA September 30, 2024 6 / 17



A formal semantics of programming languages, why?

Programming Semantics styles

Operational - Expresses the computation as an abstract transition
system

(seq)
⟨c1, σ⟩ → σ′ ⟨c2, σ′⟩ → σ′′

⟨c1; c2, σ⟩ → σ′′

Denotational - Mathematical definition of the input/output relation of
a program, by induction on the syntactic structure of a
program

CJ.K : Cmd → (Σ 99K Σ)

CJc1; c2K := CJc2K ◦ CJc1K

Axiomatic - Formalisation of the programs properties by logic formulas

(seq)
{A}c1{C} {C}c2{B}

{A}c1; c2{B}
A. Madeira ADA September 30, 2024 6 / 17



A formal semantics of programming languages, why?

On this course we focus on:

Operational - Expresses the computation as an abstract transition
system

(seq)
⟨c1, σ⟩ → σ′ ⟨c2, σ′⟩ → σ′′

⟨c1; c2, σ⟩ → σ′′

Denotational - Mathematical definition of the input/output relation of
a program, by induction on the syntactic structure of a
program

CJ.K : Cmd → (Σ 99K Σ)

CJc1; c2K := CJc2K ◦ CJc1K

Axiomatic - Formalisation of the programs properties by logic formulas

(seq)
{A}c1{C} {C}c2{B}

{A}c1; c2{B}
A. Madeira ADA September 30, 2024 7 / 17



Revisions: the structural induction principle

Outline

1 A formal semantics of programming languages,
why?

2 Revisions: the structural induction principle

A. Madeira ADA September 30, 2024 8 / 17



Revisions: the structural induction principle

(Revision) Induction principle

Inductive set

is a set which elements are either:

atomic

obtained from atomic elements trough a finite number of applications
of a given set of operations

Example

The set N is inductive to the atom 0 and for the operation suc , since it is
the smallest set that

contains 0

contains suc(n) if n ∈ N

Using the BNF notation

N ∋ n ::= 0 | suc(n)

A. Madeira ADA September 30, 2024 9 / 17



Revisions: the structural induction principle

(Revision) Induction principle

Inductive set

is a set which elements are either:

atomic

obtained from atomic elements trough a finite number of applications
of a given set of operations

Example

The set N is inductive to the atom 0 and for the operation suc , since it is
the smallest set that

contains 0

contains suc(n) if n ∈ N

Using the BNF notation

N ∋ n ::= 0 | suc(n)

A. Madeira ADA September 30, 2024 9 / 17



Revisions: the structural induction principle

(Revision) Induction principle

Inductive set

is a set which elements are either:

atomic

obtained from atomic elements trough a finite number of applications
of a given set of operations

Example

The set N is inductive to the atom 0 and for the operation suc , since it is
the smallest set that

contains 0

contains suc(n) if n ∈ N

Using the BNF notation

N ∋ n ::= 0 | suc(n)
A. Madeira ADA September 30, 2024 9 / 17



Revisions: the structural induction principle

(Revision) Induction principle

Inductive set

is a set which elements are either,

atomics

obtained from the atomic elements with a finite number of
applications of a given set of operations (constructors)

Example

The set of binary trees over a set L, Btree(L) is inductive to the atoms L,
and for the operation fork

, since

the leafs l ∈ L are trees

given two trees t, t ′ ∈ Btree(L), fork(t, t ′) ∈ Btree(L)

using the BNF notation

Btree(L) ∋ t := l | fork(t, t), for l ∈ L

A. Madeira ADA September 30, 2024 10 / 17



Revisions: the structural induction principle

(Revision) Induction principle

Inductive set

is a set which elements are either,

atomics

obtained from the atomic elements with a finite number of
applications of a given set of operations (constructors)

Example

The set of binary trees over a set L, Btree(L) is inductive to the atoms L,
and for the operation fork , since

the leafs l ∈ L are trees

given two trees t, t ′ ∈ Btree(L), fork(t, t ′) ∈ Btree(L)

using the BNF notation

Btree(L) ∋ t := l | fork(t, t), for l ∈ L

A. Madeira ADA September 30, 2024 10 / 17



Revisions: the structural induction principle

(Revision) Induction principle

Inductive set

is a set which elements are either,

atomics

obtained from the atomic elements with a finite number of
applications of a given set of operations (constructors)

Example

The set of binary trees over a set L, Btree(L) is inductive to the atoms L,
and for the operation fork , since

the leafs l ∈ L are trees

given two trees t, t ′ ∈ Btree(L), fork(t, t ′) ∈ Btree(L)

using the BNF notation

Btree(L) ∋ t := l | fork(t, t), for l ∈ L

A. Madeira ADA September 30, 2024 10 / 17



Revisions: the structural induction principle

Recalling the Induction Principle

Exercise 1

1 Inductively define the set of the lists over a set A

2 Inductively define the set of arithmetic expressions over Z generated
by the operations +,−,×.

A. Madeira ADA September 30, 2024 11 / 17



Revisions: the structural induction principle

(Revision) Induction principle

Mathematical induction principle (over N)
Let P be a property on the naturals. If

P(0) is true, and

the truth of P(n) implies the truth of P(n + 1)

P(n) is true for any n ∈ N

Exercise 2

Prove by mathematical induction that, for any n ∈ N,

n∑
i=0

i =
n(n + 1)

2

A. Madeira ADA September 30, 2024 12 / 17



Revisions: the structural induction principle

(Revision) Induction principle

Mathematical induction principle (over N)
Let P be a property on the naturals. If

P(0) is true, and

the truth of P(n) implies the truth of P(n + 1)

P(n) is true for any n ∈ N

Exercise 2

Prove by mathematical induction that, for any n ∈ N,

n∑
i=0

i =
n(n + 1)

2

A. Madeira ADA September 30, 2024 12 / 17



Revisions: the structural induction principle

Structural induction principle

Structural induction principle

Let P be a property about an inductive set I . If

P(a) is true for any atom a of I

For any constructor f of arity k , when P(a1) . . .P(ak) are true,
P(f (a1, . . . , ak)) is true.

Then, P(i) is true for any i ∈ I .

A. Madeira ADA September 30, 2024 13 / 17



Revisions: the structural induction principle

Exercise

Exercise 3

Inductively define the set NTerm of arithmetic expressions over Z with the
connectives + and ×.

1 Define a recursive function nmr : NTerm → N to calculate the number of
occurrences of numbers in an expression (e.g. nmr(3 + 5× 2) = 3)

2 Define a recursive function cnt : NTerm → N to calculate the number of
occurrences of connectives in an expression (e.g. cnt(3 + 5× 2) = 2)

3 Define a recursive function ent : NTerm → N to calculate the number of
occurrences of entities in an expression (e.g. ent(3 + 5× 2) = 5)

4 Prove that, for any e ∈ NTerm,

ent(e) = nmr(e) + cnt(e)

A. Madeira ADA September 30, 2024 14 / 17



Revisions: the structural induction principle

Exercise

Exercise 4

Inductively define the set AExp of arithmetic expressions over Var and Z with the connectives +,
− and ∗.

1 Define a recursive function fv : AExp → P(Var) to collect the set of variables of an
expression (e.g. fv(3 ∗ x + 5 ∗ y) = {x , y})

2 Define a recursive function occ : AExp× Var → N to calculate the number of occurrences
of a given variable in an expression (e.g. occ(3 ∗ x + 5 ∗ y − x , x) = 2)

3 Define a recursive function for the “substitution” operator a[x := a′], that replaces the
occurrences of x in a by the expression a′ (e.g.
(3 ∗ x + 5 ∗ y − x)[y := x + 1] = 3 ∗ x + 5 ∗ (x + 1)− x)

4 Prove that
fv(a[x := a′]) ⊆ (fv(a) \ {x}) ∪ fv(a′)

5 Define a recursive function ent : AExp → N to calculate the number of entities in an
expression (e.g. ent(3 + y ∗ z) = 5)

6 Determine an expression to ent(a[x := a′]) using occ(a, x) and ent(a) and ent(a′). Prove
its correctness.

A. Madeira ADA September 30, 2024 15 / 17



Revisions: the structural induction principle

Exercise

Exercise 5

For the binary trees over L,

Btree(L) ∋ t := l | fork(t, t), withl ∈ L

1 Define a function nodes : Btree(L) → N to calculate the number of
nodes in a tree.

2 Define a function leafs : Btree(L) → N to calculate the number of
leafs in a tree

3 Prove that, for any t ∈ Btree(L),

leafs(t) = nodes(t) + 1

A. Madeira ADA September 30, 2024 16 / 17



Revisions: the structural induction principle

Exercise

Exercise 6

Consider the set of lists List(A) ∋ l := ϵ | a.l , a ∈ A

1 Define functions odd : List(A) → List(A) and even : List(A) → List(A) that
filter a list with the elements of odd and even positions, respectively.
Eg. odd(a1.a2.a3.a4) = a1.a3 and even(a1.a2.a3.a4) = a2.a4.

2 Define a function lg : List(A) → N that returns the length of a list (i.e. the
number of its elements)

3 Define a function zip : List(A)× List(A) → List(A) that zips the elements of
two non empty lists.
E.g. zip(a1.a2, b1.b2.b3) = a1.b1.a2.b2.b3

4 Prove that:

for any l1, l2 ∈ List(A), lg(zip(l1, l2)) = lg(l1) + lg(l2)
for any l ∈ List(A), l = zip(odd(l), even(l))

A. Madeira ADA September 30, 2024 17 / 17


	A formal semantics of programming languages, why?
	Revisions: the structural induction principle

