INTRODUCTION TO THE FORMAL SEMANTICS OF
PROGRAMS
SLIDES BLOCK 1

ADA 2024/25
Departamento de Matematica Universidade de Aveiro
Alexandre Madeira
(madeira@ua.pt)

September 30, 2024

A. MADEIRA ADA SEPTEMBER 30, 2024

1/17

THIS UC RIGOROUSLY APPROACH ADA

IN ORDER TO DEAL WITH “ALGORITHMS DEVELOPMENT” WE NEED TO HAVE
RIGOROUS NOTIONS OF:

o what is a programming language
o what is a program

@ how interpret programs

A. MADEIRA ADA SEPTEMBER 30, 2024 2/17

THIS UC RIGOROUSLY APPROACH ADA

IN ORDER TO DEAL WITH “ALGORITHMS DEVELOPMENT” WE NEED TO HAVE
RIGOROUS NOTIONS OF:

o what is a programming language
o what is a program

@ how interpret programs

Formal Semantics of programs

A. MADEIRA ADA SEPTEMBER 30, 2024 2/17

THIS UC RIGOROUSLY APPROACH ADA

IN ORDER TO DEAL WITH “ALGORITHMS DEVELOPMENT” WE NEED TO HAVE
RIGOROUS NOTIONS OF:

o what is a programming language
o what is a program

@ how interpret programs

Formal Semantics of programs

TO MAKE THIS “ANALYSIS”, WE MATHEMATICALLY FORMALISE:
o the notions of property and behaviour

o the notions of specification and algorithm correctness

o the notion of correctness proof

V.
A. MADEIRA ADA SEPTEMBER 30, 2024 2/17

THIS UC RIGOROUSLY APPROACH ADA

IN ORDER TO DEAL WITH “ALGORITHMS DEVELOPMENT” WE NEED TO HAVE
RIGOROUS NOTIONS OF:

o what is a programming language
o what is a program

@ how interpret programs

Formal Semantics of programs

TO MAKE THIS “ANALYSIS”, WE MATHEMATICALLY FORMALISE:
o the notions of property and behaviour

o the notions of specification and algorithm correctness

o the notion of correctness proof

Formal Verification of programs

V.
A. MADEIRA ADA SEPTEMBER 30, 2024 2/17

A FORMAL SEMANTICS OF PROGRAMMING LANGUAGES, WHY?

OUTLINE

@ A FORMAL SEMANTICS OF PROGRAMMING LANGUAGES,
WHY?

A. MADEIRA ADA SEPTEMBER 30, 2024 3/17

A FORMAL SEMANTICS OF PROGRAMMING LANGUAGES, WHY?

FORMALLY TREATMENT OF PROGRAMS, WHY?

IN ORDER TO HAVE A SCIENTIFIC DISCIPLINE OF PROGRAMMING:

@ Programs shall be treated as mathematical objects

o The interpretation of each command shall be mathematically defined, free
of ambiguities

o The behaviour of a program shall be predictable and calculable in a de
unambiguous and systematic way

A. MADEIRA ADA SEPTEMBER 30, 2024 4/17

A FORMAL SEMANTICS OF PROGRAMMING LANGUAGES, WHY?

FORMALLY TREATMENT OF PROGRAMS, WHY?

IN ORDER TO HAVE A SCIENTIFIC DISCIPLINE OF PROGRAMMING:

@ Programs shall be treated as mathematical objects
o The interpretation of each command shall be mathematically defined, free
of ambiguities

o The behaviour of a program shall be predictable and calculable in a de
unambiguous and systematic way

HOWEVER:
0 Usually the behaviour of the PL commands is just informally
documented

o The interpretation of a programm is just provided by the machine code
built by the compiler

v

A. MADEIRA ADA SEPTEMBER 30, 2024 4/17

A FORMAL SEMANTICS OF PROGRAMMING LANGUAGES, WHY?

FORMALLY TREATMENT OF PROGRAMS, WHY?

IN ORDER TO HAVE A SCIENTIFIC DISCIPLINE OF PROGRAMMING:

@ Programs shall be treated as mathematical objects

o The interpretation of each command shall be mathematically defined, free
of ambiguities

o The behaviour of a program shall be predictable and calculable in a de
unambiguous and systematic way

HOWEVER:
0 Usually the behaviour of the PL commands is just informally
documented
o The interpretation of a programm is just provided by the machine code
built by the compiler

o There are usually several compilers for the same language; they are not
necessarily consistent with each other

o Most of these compilers have bugs...
v

A. MADEIRA ADA SEPTEMBER 30, 2024 4/17

A FORMAL SEMANTICS OF PROGRAMMING LANGUAGES, WHY?

WHY FORMALLY TREAT PROGRAMS

THE FORMAL SEMANTICS (F'S) OF A PROGRAM IN A GIVEN PL
is the concrete meaning (mathematical structure) of a program. E.g.
o an input/output map of variables,

o a state transition system,
o ...

A FS IS IMPORTANT FOR THE DEVELOPMENT OF ALGORITHMS, SINCE:
o it allows the exact understanding of a program;
o it supports the definition of formalisms capable of:
o verify properties about programs

o prove the equivalence of programs (re-use/optimizations/...)
o ...

A. MADEIRA ADA SEPTEMBER 30, 2024 5/17

A FORMAL SEMANTICS OF PROGRAMMING LANGUAGES, WHY?

PROGRAMMING SEMANTICS STYLES

OPERATIONAL - Expresses the computation as an abstract transition
system

(c1,0) = 0’ (cp,0") = "

<C1; C2,0'> — o

(seq)

A. MADEIRA ADA SEPTEMBER 30, 2024 6/17

A FORMAL SEMANTICS OF PROGRAMMING LANGUAGES, WHY?

PROGRAMMING SEMANTICS STYLES

OPERATIONAL - Expresses the computation as an abstract transition
system

(c1,0) = 0’ (cp,0") = "

<C1; C2,0’> — o

(seq)

DENOTATIONAL - Mathematical definition of the input/output relation of
a program, by induction on the syntactic structure of a
program

¢[.] : Cmd — (X --» ¥)
Clec1; 2] := €[] o €[]

A. MADEIRA ADA SEPTEMBER 30, 2024 6/17

A FORMAL SEMANTICS OF PROGRAMMING LANGUAGES, WHY?

PROGRAMMING SEMANTICS STYLES

OPERATIONAL - Expresses the computation as an abstract transition
system

(c1,0) = o’ (cp,0") = "

<C1; C2,0’> — o

(seq)

DENOTATIONAL - Mathematical definition of the input/output relation of
a program, by induction on the syntactic structure of a
program

¢[.] : Cmd — (X --» ¥)
Clec1; 2] := €[] o €[]

AXIOMATIC - Formalisation of the programs properties by logic formulas

{Ata{C} {C}e2{B}
{A}cr; 2{ B}

A. MADEIRA ADA SEPTEMBER 30, 2024 6/17

(seq)

A FORMAL SEMANTICS OF PROGRAMMING LANGUAGES, WHY?

ON THIS COURSE WE FOCUS ON:

OPERATIONAL - Expresses the computation as an abstract transition
system

(c1,0) = o’ (cp,0’) = "

<C1; C2,J> — o’

(seq)

DENOTATIONAL - Mathematical definition of the input/output relation of
a program, by induction on the syntactic structure of a
program

¢[.]:Cmd — (X --» X)

Clec1; 2] == €[] o €[ct]

AXIOMATIC - Formalisation of the programs properties by logic formulas

(seq){A}Cl{C} {C}e{B}
{Ata B}

A. MADEIRA ADA SEPTEMBER 30, 2024 7/17

REVISIONS: THE STRUCTURAL INDUCTION PRINCIPLE

OUTLINE

@ REVISIONS: THE STRUCTURAL INDUCTION PRINCIPLE

A. MADEIRA ADA SEPTEMBER 30, 2024 8/17

REVISIONS: THE STRUCTURAL INDUCTION PRINCIPLE

(REVISION) INDUCTION PRINCIPLE

INDUCTIVE SET
is a set which elements are either:
o atomic

o obtained from atomic elements trough a finite number of applications
of a given set of operations

A. MADEIRA ADA SEPTEMBER 30, 2024 9/17

REVISIONS: THE STRUCTURAL INDUCTION PRINCIPLE
(REVISION) INDUCTION PRINCIPLE

INDUCTIVE SET
is a set which elements are either:

o atomic

o obtained from atomic elements trough a finite number of applications
of a given set of operations

EXAMPLE

The set N is inductive to the atom 0 and for the operation suc, since it is
the smallest set that

o contains 0

o contains suc(n) if n € N

>
A. MADEIRA ADA SEPTEMBER 30, 2024 9/17

REVISIONS: THE STRUCTURAL INDUCTION PRINCIPLE
(REVISION) INDUCTION PRINCIPLE

INDUCTIVE SET
is a set which elements are either:

o atomic

o obtained from atomic elements trough a finite number of applications
of a given set of operations

EXAMPLE

The set N is inductive to the atom 0 and for the operation suc, since it is
the smallest set that

o contains 0

o contains suc(n) if n € N
USING THE BNF NOTATION

N> n:=0| suc(n)

A
W,
A. MADEIRA ADA SEPTEMBER 30, 2024 9/17

REVISIONS: THE STRUCTURAL INDUCTION PRINCIPLE

(REVISION) INDUCTION PRINCIPLE

INDUCTIVE SET
is a set which elements are either,
o atomics

o obtained from the atomic elements with a finite number of
applications of a given set of operations (constructors)

ExXAMPLE

The set of binary trees over a set L, Btree(L) is inductive to the atoms L,
and for the operation fork

A. MADEIRA ADA SEPTEMBER 30, 2024 10/17

REVISIONS: THE STRUCTURAL INDUCTION PRINCIPLE

(REVISION) INDUCTION PRINCIPLE

INDUCTIVE SET
is a set which elements are either,
o atomics

o obtained from the atomic elements with a finite number of
applications of a given set of operations (constructors)

ExXAMPLE

The set of binary trees over a set L, Btree(L) is inductive to the atoms L,
and for the operation fork, since

o the leafs [€ L are trees

o given two trees t,t’ € Btree(L), fork(t,t') € Btree(L)

A. MADEIRA ADA SEPTEMBER 30, 2024 10/17

REVISIONS: THE STRUCTURAL INDUCTION PRINCIPLE

(REVISION) INDUCTION PRINCIPLE

INDUCTIVE SET
is a set which elements are either,
o atomics

o obtained from the atomic elements with a finite number of
applications of a given set of operations (constructors)

ExXAMPLE

The set of binary trees over a set L, Btree(L) is inductive to the atoms L,
and for the operation fork, since

o the leafs [€ L are trees
o given two trees t,t’ € Btree(L), fork(t,t') € Btree(L)

USING THE BNF NOTATION

Btree(L) > t := I | fork(t,t), for | € L

A. MADEIRA ADA SEPTEMBER 30, 2024 10/17

REVISIONS: THE STRUCTURAL INDUCTION PRINCIPLE

RECALLING THE INDUCTION PRINCIPLE

EXERCISE 1
@ Inductively define the set of the lists over a set A

@ Inductively define the set of arithmetic expressions over 7, generated
by the operations +, —, X.

A. MADEIRA ADA SEPTEMBER 30, 2024 11/17

REVISIONS: THE STRUCTURAL INDUCTION PRINCIPLE

(REVISION) INDUCTION PRINCIPLE

MATHEMATICAL INDUCTION PRINCIPLE (OVER N)
Let P be a property on the naturals. If
o P(0) is true, and

o the truth of P(n) implies the truth of P(n+1)
P(n) is true for any n € N

A. MADEIRA ADA SEPTEMBER 30, 2024

12/17

REVISIONS: THE STRUCTURAL INDUCTION PRINCIPLE

(REVISION) INDUCTION PRINCIPLE

MATHEMATICAL INDUCTION PRINCIPLE (OVER N)
Let P be a property on the naturals. If

o P(0) is true, and

o the truth of P(n) implies the truth of P(n+1)
P(n) is true for any n € N

EXERCISE 2

Prove by mathematical induction that, for any n € N,

A. MADEIRA ADA SEPTEMBER 30, 2024 12 /17

REVISIONS: THE STRUCTURAL INDUCTION PRINCIPLE

STRUCTURAL INDUCTION PRINCIPLE

STRUCTURAL INDUCTION PRINCIPLE
Let P be a property about an inductive set /. If

o P(a) is true for any atom a of /

o For any constructor f of arity k, when P(a1) ... P(ax) are true,
P(f(a1,...,ak)) is true.

Then, P(i) is true for any i € /.

A. MADEIRA ADA SEPTEMBER 30, 2024 13/17

REVISIONS: THE STRUCTURAL INDUCTION PRINCIPLE

EXERCISE

EXERCISE 3

Inductively define the set NTerm of arithmetic expressions over Z with the
connectives + and x.

@ Define a recursive function nmr : NTerm — N to calculate the number of
occurrences of numbers in an expression (e.g. nmr(3 +5 x 2) =3)

@ Define a recursive function cnt : NTerm — N to calculate the number of
occurrences of connectives in an expression (e.g. cnt(3+5x2)=2)

@ Define a recursive function ent : NTerm — N to calculate the number of
occurrences of entities in an expression (e.g. ent(3+5 x 2)=05)

@ Prove that, for any e € NTerm,

ent(e) = nmr(e) + cnt(e)

A. MADEIRA ADA SEPTEMBER 30, 2024

14/17

REVISIONS: THE STRUCTURAL INDUCTION PRINCIPLE

EXERCISE

EXERCISE 4

Inductively define the set AEzp of arithmetic expressions over Var and Z with the connectives +,
— and *.

@
Q

Define a recursive function fv : AEzp — P(Var) to collect the set of variables of an
expression (e.g. fv(3*x+5x*y)={x,y})
Define a recursive function occ : AEzp X Var — N to calculate the number of occurrences
of a given variable in an expression (e.g. occ(3*xx+5%y — x,x) =2)
Define a recursive function for the “substitution” operator a[x := a'], that replaces the
occurrences of x in a by the expression a' (e.g.
(Bxx+5*xy—x)[y:=x+1=3*xx+5%(x+1)—x)
Prove that

fv(alx := a']) C (fv(a) \ {x}) U fv(a’)
Define a recursive function ent : AEzp — N to calculate the number of entities in an
expression (e.g. ent(3+y*z)=5)
Determine an expression to ent(a[x := a’|) using occ(a, x) and ent(a) and ent(a’). Prove
its correctness.

A. MADEIRA ADA SEPTEMBER 30, 2024 15 /17

REVISIONS: THE STRUCTURAL INDUCTION PRINCIPLE

EXERCISE

EXERCISE 5
For the binary trees over L,

Btree(L) > t := I | fork(t,t), with/ € L

@ Define a function nodes : Btree(L) — N to calculate the number of
nodes in a tree.

@ Define a function leafs : Btree(L) — N to calculate the number of
leafs in a tree

@ Prove that, for any t € Btree(L),

leafs(t) = nodes(t) + 1

A. MADEIRA ADA SEPTEMBER 30, 2024 16 /17

REVISIONS: THE STRUCTURAL INDUCTION PRINCIPLE

EXERCISE

EXERCISE 6
Consider the set of lists List(A) > | :=c|al.ac A
@ Define functions odd : List(A) — List(A) and even : List(A) — List(A) that

filter a list with the elements of odd and even positions, respectively.
Eg. odd(ay.ar.a3.a4) = ay.a3 and even(ay.ap.a3.a4) = a.a4.

@ Define a function Ig : List(A) — N that returns the length of a list (i.e. the
number of its elements)

@ Define a function zip : List(A) x List(A) — List(A) that zips the elements of
two non empty lists.
E.g. zip(al.ag, bl.bg.b3) = al.bl.ag.bz.b3

@ Prove that:

o for any h, b € List(A), Ig(zip(h, k)) = lg(h) + lg(k)
o for any | € List(A), | = zip(odd(l), even(l))

A. MADEIRA ADA SEPTEMBER 30, 2024 17/17

	A formal semantics of programming languages, why?
	Revisions: the structural induction principle

