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Abstract

In this thesis we start by considering conditions under which some standard
semigroup constructions preserve automaticity. We first consider Rees matrix
semigroups over a semigroup, which we call the base, and work on the following

questions:

(i) If the base is automatic is the Rees matrix semigroup automatic?

(ii) If the Rees matrix semigroup is automatic must the base be automatic

as well?

We also consider similar questions for Bruck-Reilly extensions of monoids and
wreath products of semigroups.

Then we consider subsemigroups of free products of semigroups and we study
conditions that guarantee them to be automatic.

Finally we obtain a description of the subsemigroups of the bicyclic monoid
that allow us to study some of their properties, which include finite generation,

automaticity and finite presentability.
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Chapter 1

Introduction

The notion of an automatic group appears in the 1980’s, beginning with the
paper [4] by G. Baumslag, S. M. Gersten, M. Shapiro and H. Short and the
book [12] by J. W. Cannon, D. B. A. Epstein, D. F. Holt, S. V. F. Levy, M.
S. Paterson and W. P. Thurston, and from then many results about automatic
groups have been published; see for example [17, 18, 19, 36, 44, 47]. In the end
of the 1990’s, the notion was generalized for semigroups and, in the paper [11]
by C. M. Campbell, E. F. Robertson, N. Ruskuc and R. M. Thomas, the authors
established the basic properties and obtained the first results about automatic
semigroups. More work about automatic semigroups was done since then; see for
example [9, 10, 13, 16, 23, 33, 34, 35, 48, 49].

Automatic groups are characterized by a geometric property of their Cayley
graph, which is intuitively the following: ”there is a constant K such that, if
two fellows travel at the same speed by two paths ending at most one edge
apart, then the distance between them is always less then K”. This property,
called the fellow traveller property, does not characterize automatic semigroups
and therefore, the geometric theory that holds for automatic groups does not
hold for automatic semigroups. Hence we have to work directly with regular
languages instead of Cayley graphs when dealing with automatic semigroups.

Nevertheless, the definition of "automatic” for semigroups leads to an interesting
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class of semigroups, that contains many known semigroups, and where some
properties of automatic groups naturally hold while others either require different
proofs or do not hold. The idea of defining a class of semigroups using the concept
of a regular language is quite natural and establishes an interesting connection
between semigroups and formal languages that allows us in particular to use tools
from formal languages to obtain results about semigroups; for example, in this
thesis, we often use the concept of a generalized sequential machine to deal with
semigroup constructions.

It is worth mentioning the work in [23] where four alternative definitions of
"automatic semigroup” have been considered, that are equivalent when applied
to groups, but that determine four different classes of semigroups. In this context
we can say that our work is about one of those four classes, the one considered
in [11].

In this thesis we start by studying conditions under which some standard
semigroup constructions preserve automaticity. Then we consider automaticity
of subsemigroups of free products and finally we obtain a description of the sub-
semigroups of the bicyclic monoid and study their properties, in particular their
automaticity.

We first have a short introduction, containing the essentials about regular
languages, semigroups and automatic semigroups that we will need in the thesis.
We start, in Chapter 2, by considering an example of an automatic semigroup,
the free group in n generators, and by studying in detail its automatic structure.
In Chapter 3 we establish some results regarding regular languages, that will be
useful when constructing automatic structures from known automatic structures.
In Chapter 4 we consider Rees matrix semigroups over a semigroup, which we

call the base, and work on the following questions:

(i) If the base is automatic is the Rees matrix semigroup automatic?

(ii) If the Rees matrix semigroup is automatic must the base be automatic

as well?
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In Chapter 5 we consider similar questions for Bruck-Reilly extensions of monoids
and wreath products of semigroups. Subsemigroups of free products of semi-
groups are studied in Chapter 6, where we start by considering subsemigroups of
free semigroups. Finally in Chapters 7 and 8 we obtain a description of the sub-
semigroups of the bicyclic monoid and we study some of their properties which

include finite generation, automaticity and finite presentability.

1 Regular languages and automata

In this section we present the more relevant definitions and known results about
regular languages and automata we will require in this thesis and we establish our
notation. Further results, that are only used in a single chapter, will be stated in
that chapter.

Let A be a finite set. We define

At ={ay...a,:ay,...,a, € A;n € N},

where N is the set of the positive integers, to be the set of all finite sequences
of elements of A (with at least one element). We say that A is an alphabet and
the elements of A" are called words. Given w € A™ we denote by |w| the length
of w, which is the number of elements of A that form the word w. We define
A* = AT U{e}, where € is not an element of AT, and we call language any subset
of A*. We define the operation concatenation on A* by
AT X AT — AN

ap...0n-by... by =ay...ayby ... by (n,m €N),

Ap...Qp - €E=€-Q1...0, =01 ...0, (n € N),

€-€=r¢,
and we often write w;w, instead of wy - wy for wq, wy € A*. It is convenient to see
€ as a sequence with no elements and so we call € the empty word and we have

le| = 0, by convention. Hence we can write

A ={ay...a, 1 ay,...,a, € A;n € No}.
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For w € A* we define w® = ¢ and w"™' = w - w" (n € Ny). We observe that the
operation - is an associative operation, i.e. we have (wy - wg) - wg = wy - (wq - w3)
for any wq, we, w3 € A*.

Given two languages L, K C A* we define their concatenation L - K by
L-K:{wl-wg:wl GL,'LUQEK}

and we often write LK instead of L - K. Given a language L we define

L0:{€}’
L =L 1" (neNy),
L=, L"={wy-wy ... - w,:wy,w,...,w, € Ln €Ny}

n=0
and we call * the Kleene star operation.

We say that a language is regular if it can be obtained from finite subsets of
A* by finitely many applications of U (union), - (concatenation) and * (Kleene’s
star operation). For example, if we define A = {b,c}, then the language M =
{c"b™ :n,m € Ny} is regular because we have M = {c}* - {b}*.

A finite state automaton (or simply an automaton) is a quintuple

A = (Q7 A7 K5 qo, T)

where () is a finite set called the set of states, A is an alphabet called the input
alphabet, p is a function p: Q x A — P(Q) called the transition (we denote by
P(Q) the set of all subsets of @), qo € Q is called the initial state and T C @ is
the set of terminal states. The situation ¢’ € (q,a)u, for ¢,¢' € Q, a € A, can
be intuitively understood the following way: if A is in state ¢ and reads input a
then it can move to state ¢'.

An automaton can also be seen as a directed graph with vertices () and an
edge (q,a,q’) for each ¢,¢' € @, a € A such that ¢’ € (¢,a)u. We represent an
edge (¢,a,¢) by ¢ = ¢'. We define a path 7 in the automaton to be a sequence
of edges

(Q17 ay, QQ)7 (Q% a2, Q3)7 cey (qn7 Qp, QTL+1>7
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Figure 1.1: An automaton recognizing {c¢"b™ : n,m € Ny}

where q1,...,q,41 € Q, ay,...,a, € A, and we represent it by
T g g, (1.1)
or a single triple (g, €,q), with ¢ € @, that we represent by
Tiq—q.

We say that a path is a successful path if it starts in the initial state and ends in
a terminal state. We say that the path m above is labeled by a; ...a, (or by €).
We write simply
Tig =,

with w € A*, to mean that 7 is a path in A from state ¢ to state ¢’ labeled by w.

We say that a word w € A* is recognized by the automaton A if there exists a
successful path 7 in A labeled by w; we observe that the empty word € is recog-
nized if and only if the initial state is a terminal state. The language recognized
by the automaton A is the set of all words that are recognized by A; we denote it
by L(A). A language is recognizable if there exists an automaton that recognizes
it. For example, the language M defined above, is recognized by the automaton
given by Figure 1.1; the figure also illustrates how an automaton can be defined
by a picture: the incoming arrow marks the initial state ¢y and the two outgoing
arrows mark the two terminal states ¢ and ¢;. It is well known that the classes
of regular and recognizable languages coincide (see for example [28]) and we will
use both terms as synonyms.

We say that an automaton is deterministic if the set (¢,a)u has at most

one element for any ¢ € QQ,a € A, and non deterministic otherwise. For a
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deterministic automaton we can write ¢’ = quw, if there is a path from state ¢
to state ¢’ labeled by the word w. We say that an automaton is complete if for
any ¢ € @, a € A the set (¢,a)u has at least one element. We note that if an
automaton is deterministic and complete then the transition u can be seen as a
function from @ x A to ). It is known that if a language is regular then there
exists a deterministic and complete automaton recognizing it; see [28]. Figure 1.1
is an example of a deterministic and complete automaton; we can remove state
g2 and the arrows arriving to it, to obtain an example of a non deterministic
automaton recognizing the same language.

We say that a state ¢ is accessible if there exists a path from the initial state
to ¢ and co-accessible if there exists a path from ¢ to a terminal state. If g is
a non co-accessible state and (¢,a)u C {q} for all a € A we say that ¢ is a fail
state. In Figure 1.1, the state ¢, is a fail state.

For a word w = @y ...a, with ay,...,a, € A, given t € Ny, we define w(t) =
aj...a; for t <n and w(t) = w otherwise. For a language L C A* we define

Pref(L) = {w(t) :w e L,t € No} = {w € A* : ww' € L for some w' € A*},

Suff(L) = {w € A* : w'w € L for some w' € A*},

Subw(L) = {w € A* : w'ww” € L for some words w’,w” € A*}.

We now present some known results about regular languages that we will need

in the thesis. The proofs of these results can be found in [27], for example.
Proposition 1.1 Let A be an alphabet. Then we have:

(i) 0, A" and A* are regular;

(ii) Any finite subset of A* is regular;

(iii) If L, K C A* are regular, then LUK, LNK, L — K, LK, L*,
Pref(L), Suff(L) and Subw(L) are regular.
We will use this proposition without explicitly referring to it, and we will say

that a language is regular as soon as we can write it, for example, as a finite

union of languages that we know are regular.
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Lemma 1.2 (The Pumping Lemma) Let L be an infinite recognizable lan-
guage 1 A*. Then there exists a positive integer N such that every word z in L

of length exceeding N can be factorized as z = uvw in such a way that:
(i) u,w € A*,v € A*;
(ii) Juv| < N;
(iii) wv™w € L for every m > 0.

This lemma is normally useful to prove that a language is not regular. For
example, the language L = {¢"0" : n € N} C {b,c}" is not regular. Suppose it
is regular and let N by the constant given by the Pumping Lemma. If we take
a word ¢"b" € L with n > N then, by the lemma, there exist numbers 7, j € Ny
and k € N such that i + j + k = n and the words of the form c¢’c™*¢/b" belong to
L for every m > 0. In particular we would have ¢™/b" € L with i + j < n which

1s not true.

2 Semigroups

For an introduction about semigroup theory we refer the reader to [29]. In this
section we introduce the more relevant definitions and results about semigroups
for this thesis. In Appendix A we include the remaining semigroup theory we
require.

Let S be a set and let - : S xS — S be an operation on S. We say that (S, )
is a semigroup if the operation is associative. If S has an identity, i.e. there exists
e € S such that s-e =e-s = s for all s € 5, then we say that (S, -, e) is a monoid.
We say simply that S is a semigroup (monoid) when it is clear which operation
on S (and which identity) we are considering. We write simply s;sy instead of
s1 - 89 for 51,8, € S. For example, A" is a semigroup under concatenation and

A* is a monoid with identity e.
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Let S,T be two semigroups. A function ¢ : S — T is a (semigroup) ho-
momorphism if it satisfies (s152)1 = (s19)(s2¢0) for all s1,s9 € S. If S,T are
monoids we say that ¢ : S — T is a monoid homomorphism if it is a semigroup
homomorphism and preserves the identity, i.e., the image of the identity of S by
1 is the identity of 7.

We say that a semigroup F'is free on a finite set A if: (i) there is a function
a: A — F; (ii) for every semigroup S and every function ¢ : A — S there
exists a unique homomorphism 1 : ' — S such that ay) = ¢ (we observe that
most of the times we write function symbols on the right and by ai) we mean
the function ap : A — S;a — (ac)¢). The semigroup A" satisfies this definition
(taking « to be the identity function A — A™; a +— a) and we often refer to A™
as the free semigroup on A. A free monoid can be defined similarly, just replacing
"semigroup” by "monoid” and "homomorphism” by "monoid homomorphism” in
the definition of free semigroup, and we refer to A* as the free monoid on A.

Let S be a semigroup, let A be a finite set and let § : A — S be a function.
If the unique extension of € to a homomorphism 1 : AT — S is surjective, we
say that A is a (semigroup) generating set for S (with respect to ¢). If S is a
monoid and the unique extension of 6 to a monoid homomorphism ) : A* — S is
surjective then we say that A is a (monoid) generating set for S (with respect to
¥). When it is clear which homomorphism is associated with the generating set
A we say simply that A is a generating set for S and we write S = (A).

We observe that, since we consider languages on A*, it is not convenient to
see the generating set A as a subset of the semigroup S, and in fact we do not
even require the function 6 : A — S to be injective. Nevertheless, whenever
possible, we will not make explicit use of the homomorphisms associated with
the generating sets, in order to simplify notation. For two words wy,wy € A* we
write w; = wy to mean that w1y = w1 and we write wy = wy to mean that w,
and wq are equal as words in A*. We also write w = s and s = w with w € A*

and s € S to mean that wiy = s. Finally, a product of the form z; ...z, where
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x; € AUS (i =1,...,n) is considered as a product in A* if all factors belong to
A and as a product in S otherwise.

Given a semigroup S and a generating set A for S with respect to the homo-
morphism ¢ : AT — S we say that L C A" is a set of normal forms for S if
Ly = S. If the restriction v [, is injective we say that L is a set of unique normal
forms for S. We observe that the multiplication in the semigroup is defined when
we know how the normal forms multiply. A similar definition applies for monoids

and monoid homomorphisms.

3 Automatic semigroups

In this section we give the definition of automatic semigroup and some examples,
we give further results about regular languages and we list known results about
automatic semigroups we will need in the thesis.

To be able to deal with automata that accept pairs of words and to define

automatic semigroups, given an alphabet A, we need to define the set

A(2,8) = (AU{8}) x (AU{SH\{(5,9)}

where § is a symbol not in A (called the padding symbol) and the function d4 :
A* x A* — A(2,9)* defined by

f0=m=n

(a/l'-'a/m,bl...bn>(5A =
a1, b1) . (s b)) (8, 0ia1) -+ (8, 0,) HO<m<n

€
((Il,b1>...(am,bm) fo<m=n
(
(a1,01) ... (an,bp)(ans1,9) ... (am, $) if m >n>0.

\

We often omit the subscript A and write § instead of d4.

Definition 1.3 Let S be a semigroup and A a finite generating set for S with
respect to the homomorphism ¢ : AT — S. The pair (A4, L) is an automatic

structure for S (with respect to 1) if:
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(i) L is a regular language on A™ and Ly = S,

(i) L= = {(a,)04 : a,0 € L,a = [} is a regular language in
A(2,8)";

(iii) For each a € A, the language L, = {(«,5)4 : o, € L,aa = 3}
is regular in A(2,9$)".

If a semigroup S has an automatic structure (A, L) for some A and L then we

say that S is automatic.

We observe that the definition of "automatic” in [4] uses a set of monoid
generators instead of a set of semigroup generators. This distinction does not
make any difference as to whether a group (or monoid) is automatic (see [11]) and
we will use the definition with monoid generators whenever it is more convenient,
which is normally the case when we are working with monoids.

We should say however that, as shown in [16], if we consider the definition
with semigroup generators, then an automatic monoid has an automatic structure
(A, L) for any generating set A, and this is not true if we consider the definition
with monoid generators. Hence, working with semigroup generators, the existence
of an automatic structure for a monoid does not depend on the generating set,

as it is well known to happen for automatic groups; see [4].

Example 1.4 Let A be an alphabet. Then AT, the free semigroup on A, is
automatic. We can consider the regular language L = A" and the pair (A, L) is

an automatic structure for the semigroup A*. In fact we have
Lo ={(a1,a1)...(ag,ax) : k € Njay, ..., a, € A}
which is a regular language and, for each generator a € A, we have
L, ={(a1,a1)... (ax,a;)($,a) : k € Nyay ..., a, € A}

which is a regular language as well.
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Our next example is the bicyclic monoid B, which is defined by the monoid
presentation (b,c | bc = 1) (see Appendix A). A natural set of unique normal
forms for B is {c'%’ : 4,7 > 0} and we shall identify B with this set. The normal

forms multiply according to the following rule:

IR i § < e
AR § > k.

Ay =

Example 1.5 Let A = {b,c} and L = {c'¥ : 4,57 > 0}. Since the regular

language L = {c}*{b}* is a set of unique normal forms for B, we have
L_ = {(w,w)da : w € L},
which is a regular language, by Proposition 1.6. Since we have

Ly = {(c; ) }"{(b,0)}"{(3, )}

and
Le = {(c,0)} {(b,0)}"{(b,8)} U{(c,0)}*{(5, )},

the languages Lj, and L. are regular and therefore (A, L) is an automatic structure
for B.

We have the following further results about regular languages.

Proposition 1.6 Let A and B be two alphabets. We have the following:

(i) If L € A* and K C B* are a regular languages and ¢ : A* — B* is

a monoid homomorphism, then L1 and Ky~ are reqular languages;

(i) If L, K C A* are regular languages, then (L x K)d4 is a reqular

language;

(i) If L is a regular language in A*, then {(w,w)ds : w € L} is a

reqular language.
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PROOF. See for example [27] and [4]. [

We need the following result about finite semigroups:

Theorem 1.7 Let S be a finite semigroup, X be a finite set and ¢ : X+ — S be

a surjective homomorphism. For any s € S the set si~! is a reqular language.

PROOF. For an arbitrary s € S we can define the automaton

-As = (Qa X7 K, qo, {S})7
where @@ = S U {qo} is the set of states and the transition p is defined by

(QO7x)M281 if .ZU@Z):SI (81€S7x€X)
(s1,x)p = s if () = 89 (81,80 € S,z € X).

As we will see, this automaton is in fact the Cayley graph of the semigroup S with
respect to X, with the added initial state gy and with terminal state s. Given
w € X7 there exists a successful path ¢y — s if and only if wi) = s. So we have

L(A,) = sy~ ! and therefore sip~! is a regular language. [ |

We say that (A, L) is an automatic structure with uniqueness for a semigroup
S if (A, L) is an automatic structure for S and L is a set of unique normal forms.

The results from [11] we will need follow.

Proposition 1.8 If (A, L) is an automatic structure for a semigroup S then

there is an automatic structure (A, K) with uniqueness for S.

PROOF. Let us choose an ordering on the finite set A. Then we can define the

shortlex ordering on A* by:

a < fif and only if either (i) |a| < |B] or else (ii) |a| = || and
« precedes (3 lexicographically (with respect to the ordering on A)
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and define
K={aeL:(VoeL)(a,pB)s€ L. = a<f}

The language K is regular by [12, Theorem 2.5.1], and the result follows from
[11, Propostion 5.3]. |

Proposition 1.9 Let S be a semigroup and let A be a generating set for S with
respect to the homomorphism v : AT — S. If there exists an automatic structure

(A, L) for S then for any v € AT the language

L’Y = L’W’ = {(Oé,ﬁ)éA : Oé,ﬂ € L,Og’y :6}

18 reqular.
PRrROOF. Let v = ay...a,. The languages L,,,...,L,, are all regular. So the
languages

Laa, ={(a,ay) € L x L: there exists a; € L such that

(@, az)

(Oéa Oél)éA S La17 <a17 062)514 € LCLQ}(SA7

Lojayas = {(a,a3) € L x L: there exists ay € L such that
(@, )

a, )4 € Lam, (0427043)5A € Lag}éA»

Layay..a, = {(a,3) € L x L : there exists «,,_1 € L such that
(Oé, O‘n—l)(sA S La1...an717 (Oén—hﬁ)éA S Lan}(SA

are regular by Proposition 1.13; in particular, L., is regular as required. |

Proposition 1.10 Let S be a semigroup with an automatic structure (A, L) and

let € AT, If K = LU{a}, then (A, K) is an automatic structure for S.

Proposition 1.11 If S is a semigroup with an automatic structure (A, L), if
B C A, and if LN BT maps onto S, then (B, LN B") is an automatic structure
for S.
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Proposition 1.12 Suppose that S is a semigroup with an automatic structure
(A, L) and let B = AU {b} where b ¢ A. For any word a € A", we have an
automatic structure (B, K) for S, where K = L and b is mapped to the element
of S represented by «.

We have stated these results for semigroups and semigroup homomorphisms

but we note that the same results apply for monoids and monoid homomorphisms.

Proposition 1.13 Let A be an alphabet and let U and V' be subsets of A* x A*
such that the languages Uds and V4 are regular. Let

W ={(a,y) € A* x A* . there exists f € A* such that
(o, B) € U and (B,v) € V}.

Then W4 is reqular.

Proposition 1.14 Let S be a semigroup. Then S' is automatic if and only if S

s automatic.
We also need the following more general result, from [24]:

Proposition 1.15 Let S be a semigroup and T be a subsemigroup of S such that
the set S\T is finite. Then S is automatic if and only if T is automatic.

We will now prove another useful result:

Theorem 1.16 Let S be an automatic semigroup such that S*> = S. Then S has

an automatic structure with uniqueness (A, K) such that K N A= 0.

PROOF. Let (A4,L) be an automatic structure with uniqueness for S, where
L C A*. Suppose that there exists a word w € L N A. Let s be the element of
S represented by w. Since S? = S there exist s, sy € S such that s = s155. Let
wy,ws € L be words representing the elements s; and s, respectively. Defining
w' = wyjwy we have w’ = s and w ¢ A. Letting L' = LU {w'} we know by Propo-

sition 1.10 that (A, L’) is an automatic structure for S. We can now consider the
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regular language L"” = L'\{w}. Since L” = L" N (L" x L") and, for any a € A,
L7 =L/ N(L" x L"), the pair (A, L") is also an automatic structure for S (with
uniqueness). We can repeat this process until there are no more elements of the

finite set A in our language. [ |

The direct product of semigroups was considered in [10] where the authors

have proved the following:
Proposition 1.17 Let S and T be automatic semigroups.

(i) If S and T are infinite, then S x T is automatic if and only if
S?2=S andT?*=T.

(i) If S is finite and T is infinite, then S X T is automatic if and only
if S?=S.

In [41], the authors have established necessary and sufficient conditions for

the direct product of semigroups to be finitely generated:

Proposition 1.18 Let S and T be two semigroups. If both S and T are infinite
then S x T is finitely generated if and only if both S and T are finitely generated,
S? =S andT? =T. If S is finite and T is infinite then S x T is finitely generated
if and only if S* =S and T is finitely generated.

Using this proposition, Proposition 1.17 has the following equivalent formula-

tion:

Proposition 1.19 The direct product of automatic semigroups is automatic if

and only if it is finitely generated.

The answer to the following converse question is not known even for groups:
If the direct product GG; x G5 is automatic are both factors GG; and G5 necessarily

automatic?
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We now present the generalization for semigroups, considered in [11], of the
group concepts of the Cayley graph and the fellow traveller property. Let S be
a semigroup generated by a finite set A. The (right) Cayley graph T of S with
respect to A is the directed graph with vertex set S and an edge with label a from
s to sa for every vertex s € S and every a € A. If s and t are vertices of I', then
an (undirected) path from s to t is just a sequence of edges from s to ¢ (regardless
of direction), and the length of the path is the number of edges it contains. We
define the distance d(s,t) from s to t to be the smallest length of a path from s
to t if such path exists, and to be infinite otherwise. Let L C A" be a regular
set of normal forms for S, then I' is said to have the fellow traveller property
with respect to L if there exists a constant K such that, whenever o, 3 € L
with d(a, 5) < 1, we have d(a(t),5(t)) < K for all t > 1. The fellow traveller
property characterizes automatic groups (see [4]) and for semigroups we still have

the following;:

Proposition 1.20 If S is a semigroup with an automatic structure (A, L) and
if ' is the Cayley graph of S with respect to A, then I' has the fellow traveller
property with respect to L.

PROOF. See [11]. [

As observed in [11], any non automatic semigroup with a zero, for example,
has the fellow traveller property, and so the converse of this proposition is not
true.

Finally, we say that a semigroup is prefiz-automatic or p-automatic if it has

an automatic structure (A, L) such that the set
L. = {(wy,w3)04 : w1 € L,wy € Pref(L), w; = wy}

is also regular. It is known that the notions of ”automatic” and ”p-automatic”
coincide for groups and more generally for right cancellative monoids (see [49])

but it is an open question if they coincide for semigroups.
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For more details on automatic semigroups the reader is referred to [11] (intro-
duction), [49] (geometric aspects and p-automaticity), [33, 34, 35] (computational
and decidability aspects), [9, 10] (semigroup constructions) and [16] (invariance

under change of generators).



Chapter 2

Syntactic monoids of an

automatic structure for the free

group

We will consider the free group in n generators, as an example of an automatic
semigroup. We start by defining a natural automatic structure for the free group.
Then we study the syntactic monoids associated with the regular languages that

constitute this automatic structure.

1 Automatic structure

Let G be the free group in the n group generators aq, ...,a,. In order to define
an automatic structure for G we consider the set of monoid generators A =

ai, ..., A2y and the monoid presentation
{ }
<a1, ey Qo | A;Aon+1—i = A2p+1—iQ; = 1 (Z = 1, e ,n))

The language we consider to represent the elements of G is then formed by the

sequences of generators from A such that a generator does not precede its inverse

18
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which, according to our monoid presentation, can be simply written as
L=A—( |J AaammiA).
i=1,...,2n
We will prove that the pair (A, L) is an automatic structure for the free group
G. This is a well known result (see [12]), but we include it for completeness. The
language L is clearly regular and, since L is a set of unique normal forms for the
free group, the language L_ is regular as well. Let us fix a generator aj in A and

prove that the language
Lah - {(w17w2)5,4 W1, Wo € L,wlah = wg}

is regular. We take an arbitrary word w; € L and find out which words wy € L
we can obtain multiplying w; by the generator a;, on the right. If the last letter
in the word w; is not the inverse, as,1_p, of a then we have wy = wyay. But if
the last letter in wy is ag,41-p then we have wy = w)asg,1-p, where the prefix w)
of wy is a word in L that does not end with letter ay, and so wy = w}. Therefore

we can write

Li, = |J {(w,w)da-(S,an): we{e}U(LN AU
iAnTh

U {(w,w)d4 - (a2ns1-1,8) s w € {e} U(L N A%ay)}.

To prove that L,, is regular it now suffices to prove that each set in this finite
union is regular. The sets appearing in the union are obtained concatenating a
set of the form {(w,w)ds : w € {e} U(LNA*a;)}, which is regular by Proposition
1.6, with a singleton set and therefore they are regular.

Instead of proving that the languages L and L,, are regular by building them
using simpler languages that we know are regular we can define automata that
recognize the languages. We will do that, to illustrate this alternative way of

proving regularity but also because we will use the automata in the following

section to obtain the syntactic monoids of our languages. Let

A= (Q?Auluuq()’T) (21)
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be an automaton, where Q@ = {qo, ..., qons1} is the set of states, qo is the initial
state, the alphabet A is our generating set, the transition pu : Q x A — @ is
defined by

(Gisa;)p =qony1 ifi€ {2n+1,2n+ 1~ j}

(¢i,aj)p =q; otherwise
where ¢ = 0,...,2n+1; 5 = 1,...,2n, and the set of terminal states is T" =
Q\{q2n+1}. We observe that the automaton has only one non terminal state,
which is the fail state go,41. This automaton, for n = 2, is illustrated in Figure
2.1 (note that, for clarity, we did not represent the arrows ending in the fail state).
The only way to enter the fail state is by an arrow labeled by a; starting from a
state gant1—j, for some j, and the only way to enter state ga,41—; is by an arrow
labeled by ag;,+1—;. Therefore, a word in w € A* will take us from the initial state
qo to the fail state go,4+1 if and only if w has the form w'ag,1_ja;w” for some
words w’, w” € A*, which means that w ¢ L. We conclude that £(.A) = L.

We now define automata to recognize the languages L,, (aj € A),

Ah = (Qla A(Q) $)7 M5 40, T/))

where Q" = {qo, ..., Goni2} is the set of states, qo is the initial state, A is again

the monoid generating set for GG, the transition py, is defined by

fy = qj ifig {2n+1—j,2n+1,2n+ 2}
prn =qonse ifi ¢ {2n+1—h,2n+1,2n + 2}
ph =Gonso if i & {h,2n+1,2n+ 2}

(Gi, P)1bh = qon+1 in all other cases

fori=0,...,2n+2;j=1,...,2n and p € A(2,$), and the set of terminal states
is T = {qan+2}-

Observing Figure 2.2, where the automaton .4, is represented for n = 2 (again
the arrows ending in the fail state g9,.; are not represented), we see that this
automaton is very similar to A. If w € L, then the word (w,w)ds will move us

from the initial state to some state ¢; € {qo, . .., q2n }, from where we can move to
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Figure 2.1: The minimal automaton recognizing L

21
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272

($’a1)’(a4’$)

(a,a)

Figure 2.2: The minimal automaton recognizing L,,
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the terminal state following an arrow labeled by (as,+1-1,3%) if j # h or following
an arrow labeled by ($,a,) if j # 2n + 1 — h. It is clear, from the definition
of uy, that there is no other way to construct a successful path and so we have
L(Ap) = L,

2 Syntactic monoids

The characterization of regular languages in terms of their syntactic monoids,
is described in Chapter 3 of [28], and this reference constitutes our motivation
to study syntactic monoids. We start by reproducing the definitions and results
from [28] we will need. Let A be a finite alphabet and let L C A*. The syntactic

congruence oy, on A* is defined by
o ={(w,z) € A" x A" : (Yu,v € A*) uwv € L if and only if uzv € L},

and the syntactic monoid of L, denoted by Syn(L), is A*/o;. We say that a
language L is recognized by a monoid M if there exists a morphism ¢ : A* — M
and a subset P of M such that ¢)~}(P) = L. A language is always recognized by

its syntactic monoid and we have

Proposition 2.1 Let A be a finite alphabet and let L C A*. The following
statements are equivalent:

(1) L is a rational subset of A*;

(1) Syn(L) is finite;

(111) L is recognized by a finite monoid M.

Given a deterministic automaton A = (Q, A, i, qo, T') we define the congruence o
on A* by

woz if and only if (Vg € Q) quw = qz.
The monoid A*/o is finite and denoting by w the o-class of w we can define an

action of A*/o on ) by the rule that

quw = qu (q € Q,w € A").
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Since we have the implication
Vg € Q, qv=q2) = w =72,

each element w € A*/o can be seen as a different transformation in 7; and
we call the submonoid A* /o of T the transformation monoid of the automaton
A and denote it by TM(A). For each ¢ € @ let us denote the subset {w €
A* i quw € T} of A* by ¢7'T, and let us define the equivalence relation p on Q
by p={(q1,0) € QxQ :q'T = ¢ T} We say that the automaton A is
reduced if p is the identical relation on Q, i.e., if ¢;'T = ¢;'T = ¢ = o.
Given a regular language L we call minimal automaton for L the complete,
deterministic, accessible, reduced automaton recognizing L, which is unique up

to an isomorphism (see [28, Theorem 3.3.10]), and by [28, Theorem 3.5.1] we have

Proposition 2.2 Let A be a finite alphabet and let L be a regular language on
A*. The syntactic monoid of L coincides with the transformation monoid of the

minimal automaton for L.

The automata A and A;, (a, € A) defined in the previous section are complete,
deterministic and accessible. We need to prove that they are also reduced. To see
that A is reduced it suffices to observe that 171 - T'= L, ¢5,'.; - T = 0, and that
fori € {1,...,2n} we have a; € ;' - T for j #2n+1—i and ag,y1 ;s ¢ q; ' - T,
which implies that ¢; *-T # g, - T for any states ¢, # ¢o. Similarly, the automata
L,, are reduced because 171 - T" = Ly, , gopq - T" = 0, gorin - T' = {€}, and for
i€{1,...,2n} we have (q;(azni1_i,aom41-)) - T =0 and for all j #2n+1—1
we have (g;(aj,a;))™' - T" # 0 which implies ¢;' - T" # ¢; ' - T' for any states
G 7 G-

We will now obtain the transformation monoid TM(.A) which, by the previous
proposition, is the syntactic monoid of the language L. We define the transfor-

mations in 7,

Gkt q— ;i ¢ € {@ont1-k: ©n+1}, @ik, Gnt1 — G2nt1;

2 g Q2ny1,
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for j,k € {1,...,2n} and we will prove that
TM(A) = {1, ¢, 2 : J,k € {1,...,2n}}.
By definition of TM(.A) it is clear that this monoid is generated by the set
Y =A{a,...,a00,} ={d11,-- ., Pan2n}
which is contained in M = {1, ¢, 2 : j,k € {1,...,2n}}. We have
GjkPim = O if j #2n+1—m,

because

q2n+1fk¢jk¢lm = Q2n+1¢jk¢lm = Qan+1Pim = Qan+1

and for ¢ ¢ {qan+1-k, @2n+1} We have
qPikPim = 4jPim = q-

Otherwise, if j = 2n 4+ 1 — m, we have ¢y, = 2. Since z acts as a zero in
M, it follows that M is a monoid and therefore TM(A) C M. To show that
M C TM(A) it suffices to prove the following identities

ik = Ork®jj (k#2n+1-j)
Gjont1-j = Pant1-jont1-Pik (K ¢ {j,2n+1—j})
2= Oy (k=2n+1-j).

The first identity holds because: ¢y, maps any state ¢ € {gon+1-k, 2nt1} t0 Gk
and, since k # 2n+ 1 — 7, the state g is mapped by ¢;; to g;; all the other states
are mapped by ¢, and therefore by ¢uir¢;;, to the fail state ga,41. To check the
second identity we observe that both transformations ¢; 2,+1—; and ¢op4+1—j2n+1—;
map the states ¢; and go,41 to the fail state. All the other states are mapped
by ¢jont1-; to ¢; and by ¢ant1—jont1—; tO gani1—; and, since k # j, we have
2n+1—7#2n+1—Fk and go,41—; is mapped to g; by ¢; 5. The third identity
holds because ¢, maps all states to either the fail state or to go,+1—; and so

Orre@;; maps all states to the fail state.
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We consider now the transformation monoid TM(.A;) and, defining the trans-

formations in Z¢,

ik :q = q; if ¢ & {Gons1-ks Geny1, Gni2}
Q2n+2—k> 2n+1, Q2n+2 77 G2n+1;

Nt 4 Gur2 i ¢ & {qnr1-j, @nv1: s},
Q2n+1—j, 42n+1, @2n+2 Y 42n41;

2 g Qgontr,

we will prove that

TM(Ap) = {1, ¥k, mj, 2 : j.k € {1,...,2n}}.

The transformation monoid TM(A},) is generated by Y = {p : p € A(2,$)} and,

observing the definition of y;, we have

Y= {(al’ al)’ T (a2"7 a2n)7 (Gh, $)7 <$7 a2n+17h)7 (ala a2)}
= {wlla R 71/}2n 2ns Ny T2n+1—nh, Z}

The generating set Y is contained in the set N = {1, ¢4, m;, 2 : 4,k € {1,...,2n}}
and we will now show that /N is a monoid. The product of two transformations of
the form 1) is either a transformation of this form or it is z, as is the case with
the analogous transformations ¢;; in TM(A). A product of the form v;;,m; is in N
because, if j # 2n+1—1 then v ;1 = 1 and otherwise 1,,m = z. Moreover, since
multiplying an element from N\{1} on the left by a transformation 7, we obtain
z and since z acts as a zero in N, we conclude that N is closed for multiplication
and therefore is a monoid, implying TM(A;) = (Y) C N.

In order to show that N C TM(A;,) we will prove that, for any j,k €

{1,...,2n}, we have the following identities

VYik = ki (k #2n+1-j),
Vjoni1—j =Vant1—jant1—jVik (K € {7,2n +1—j}),

z2 =Yy (k=2n+1-7j),

1 = VkjTh (k#2n+1—h).
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The first three identities are similar to those obtained for the transformations
ojr € TM(A). To prove the fourth identity we observe that the transformation
Yr; maps q to q if ¢ € {qant1-j, Gont1, Gony2} and, since k # 2n + 1 —h, q; is
mapped to the terminal state ga,, 2 by 7, and the remaining states gon11—5, ¢2n+1

and ga,42 are mapped by ¢y; (and therefore by ;1) to the fail state gopy1.

3 Green’s relations

In this section we determine the Green’s relations of the monoids TM(.A) and
TM(Aj) obtained in the previous section.

We start with the monoid M = TM(.A). In order to determine relation £ we
first show that

M(bjk = {¢j17 cee 7¢j,2n72} (]7k € {17 S ,271}) (22>

For any m = 1,...,2n we can choose some | # 2n+1—k and write ¢, = Qum®ji
and, with | = 2n+1—k we obtain z, implying {¢;1, ..., ¢jon, 2} C M¢;x. Since z
acts as zero in the monoid, we also have the other inclusion. It is clear that L; =
{1}, L. = {2} and so we have Ly, = {¢j1,...,¢j2.} for any j k € {1,...,2n}.

A similar argument shows that

GikM = { D1k, - - -, P 2} (4, k € {1,...,2n})

from which follows that R, = {1}, R. = {z} and Ry, = {d1w, ..., P2nx} and
relation R is determined as well. We have then three D-classes, Dy = {1},
Dy ={¢ji : j,k € {1,...,2n}} and D3 = {z} and the eggbox of class Ds is

{¢11} {¢21} {¢2n,1}
{¢12} {¢22} {¢2n,2}

{120} {P220} - A D200 }-
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Figure 2.3: D-classes of the monoid TM(.A,)

Observing that any permutation ¢, is idempotent for j # 2n+1—Fk and gzﬁ?k =z
otherwise, representing by 1 the trivial groups and z by 0, the eggbox of D-class
DQ is

1 1 1 0
1 1 0 1
1 0 ... 1 1
0 1 ... 1 1.

We will now consider the monoid N = TM(A},). Since multiplying an element

in N\{1} on the left by a transformations of the form 7; we obtain z it is clear
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that, as in M, we have L; = {1}, L. = {z} and Ly, = {¢j,...,¥j2.}. We
will now prove that Nn; = {n,...,n2,, 2}. We have already seen that the direct
inclusion holds and, since for any k € {1,...,2n}, we can write n, = yn; with
[ # 2n + 1 — j, the converse inclusion holds as well. So L,, = {n1,...,n2.}. For
the relation R we have R; = {1}, R. = {2z} and R,; = {7;}, and we will now
show that ©;x N = {1k, ..., Yonk, Mk, 2} for any j,k € {1,...,2n}. We have, as
in M,
Vil Ve, 2 2 g,k € {1,...,2n}} = {Yw, ..., Yonk, 2}

and a product of the form ;57 is either ny, if 7 # 2n+1—[ or z otherwise. We have
the same D-classes Dy = {1}, Dy = {9 : j,k € {1,...,2n}} and D3 = {2z} asin
M, and the class Dy = {n1,...,m2,}. The eggboxes of the D-classes of TM(.A})
are shown in Figure 2.3.

Although, the syntactic monoids for an automatic structure for the free group,
are the only syntactic monoids studied in this thesis, observing their Green’s rela-
tions, it appears to be an interesting research subject, the study of the connection
between automatic structures and their syntactic monoids in general.

Anticipating further research in this area we ask:

Question 2.3 What are the syntactic monoids of other (all) automatic struc-

tures for the free group?

Question 2.4 Investigate the syntactic monoids for the free abelian group.



Chapter 3

Generalized sequential machines

and regular languages

It is known that the fellow-traveller property, which characterizes automatic
groups, does not characterize automatic semigroups. So we have to use directly
the definition and work with regular languages instead of the Cayley graph to
prove that a semigroup is automatic. When working with semigroup construc-
tions, we usually have to construct automatic structures from known automatic
structures. For that purpose we use the concept of a generalized sequential ma-

chine.

1 Introduction
A generalized sequential machine (gsm for short) is a six-tuple
A= (QaA7B>:U“7q()7T)

where @), A and B are finite sets (called the states, the input alphabet and the
oulput alphabet respectively), p is a (partial) function from @ x A to finite subsets
of Q x B*, qo € @ is the initial state and T' C () is the set of terminal states. The

inclusion (¢’,u) € (q,a)p corresponds to the following situation: if A is in state

30
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¢ and reads input a, then it can move into state ¢’ and output w.

We can interpret A as a directed labelled graph with vertices @@, and an edge
(a,u)

q — ¢ for every pair (¢',u) € (q,a)p. For a path

. (a1,u1) (a2,u2) (an,un)
™ q 42 q3... = Gn+1

we define

O(7) = aras...a,, (1) =ujuy ... uy,.

For q,¢' € Q, u € AT and v € B* we write ¢ Mur ¢’ to mean that there exists
a path 7 from ¢ to ¢’ such that ®(7) = u and X(7) = v, and we say that (u,v) is
the label of the path. We say that a path is successful if it has the form gq Mq t
witht e T.

The gsm A induces a mapping 74 : P(AT) — P(B™) from subsets of A"

into subsets of Bt defined by
Xna={veB* : Gue X)(3teT)(p 22, 1.

It is well known that if X is regular then so is X1ny4; see [27, Theorem 11.1 and
Example 11.1]. Similarly, A induces a mapping (4 : P(ATxAT) — P(B*xB™)
defined by

Y4 ={(w,z) € Bt x BY : (3(u,v) €Y)(w € ung & z € vny)}.

2 Preserving regularity

The next theorem asserts that, under certain conditions, the mapping (4 also

preserves regularity.

Theorem 3.1 Let A= (Q, A, B, i,q0,T) be a gsm, and let ma : (A* X A*)04 —
A* x A* be the inverse of d4. Suppose that there is a constant C such that for

any two paths oy, as in A, we have

[P(ar)] = [®(az)| = [[X(an)| = [E(ea)| < C. (3.1)
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If M C (AT x AT)d4 is a regular language in A(2,$)T then N = Mm4(40p is a
reqular language in B(2,$)".

PRrOOF. To prove that NV is regular we will define a gsm B such that Mnz = N.
First we define three functions with domain B* x B* that will be used in the

definition of B:

(a ag, b b)N = ajaq ... apif k>1
1e-- , 01 ... —

€ otherwise,

bk+1...blifl >k
€ otherwise,

(ay...ag,by... b))k = (a1, by)...(as bs), s =min(k,I).

(a1...ap,b1...b0)p =

We now let B = (R, A(2,%), B(2,%),v,70,Z), where
R=QxQxWxW, W= (Uc,B") U{s},
TOZ(QO7(I07675)7 Z=TxTx {($7$>}

In order to define the transition v, we first extend the transition p to allow input

$:
(¢,a)p ifae A

(@.a)f = {(¢g,€)}if a =8$.

Now the transition v is defined by

((q,q,w,w"), (a,d"))v =

U (¢ gh, (wu,w'd)X (wu,w'n!)p), (wu, w'a)r),

(q1,u)€(g,a)in
(q1,u)€e(d 0" )i

(1,41, 9%,9), (wu,w'u)op)} for
w,w € W\{$} and
(a,a’ € Aor (a=9% and |w| > |w'u']) or (¢/ =9 and |w'| > |wul))
provided ||wu| — |[w'v/|| < C,|
(¢, ¢ w,w'), (3, a))v =
U {(¢.40.80), (w,0'u)p). (4,61, 5,8), (w, w'u)5p)} for

(q1,w)€(d"a" )
a e Aand (w=7%or |w <|wu),
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((q, ¢, w,w'), (a, $))v =
U {((q1,4,€,9), (wu,w")oB), (1,4, 9$,$), (wu,w)og)} for
(q1,u)€(g,a)p
a€ Aand (v =8§or v <|wul)
where ¢,¢' € Q.

Intuitively, the machine works the following way: when it receives a word from
M, in each transition it outputs everything possible from the corresponding word
in NV, and memorizes in its states the remaining suffix of the component which is
longer at that moment. This can be done because condition 3.1 holds.

We now prove that N C Mng. Let (v,v")dp € N. By definition of N there
is (u,u')d4 € M such that (v,v") € {(u,u)}{4. Sov € uny and v € u'ny. This

means that in A there are paths of the form

(as,w;)

-1 ——q; (i=1,...,m, a; € A, w; € BY)

(ajwi)

q;71—>qi (1.217...777/, CL;EA, UJ;GB*%

with

/ / / / / / / /
U=A1 .. Opyy V=W ... Wy, W =07 ...0,, UV =W ... W,, 4y = q0s qm:q, € 1.

Uy,

We now show that there is a successful path in B of the form

((ai’a§)9wi)
) — (

/ / / / .
(qiflv qi—15%i—1, %51 qi» ;5 i Zi) (Z = 17 s 7p)7

where p = max(m,n) and

G = Gmi1 = - = Qpy G = Qi1 = -+ = Gy,

_ _ ! . Y
U1 = - =y =0y = ... = a, =,

such that the output wy ...w, is equal to (v,v")d0p.

Let r = min(m,n). We begin in the initial state and follow a path visiting
states from the set Q@ xQ x (W\{$})x (W\{$}) while i < r. The output w; in these
transitions is the longest prefix of (z;_jw;, z/_ w})dp that belongs to (B x B)*, z;

is equal to the remaining letters in z;_jw; if |z;_jw;| > |2[_ w}| (otherwise it is €)
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and 2/ is equal to the remaining letters of z,_,w} if |2]_,w}| > |z;_1w;| (otherwise it
is €). We note that |z, |2| < C because of assumption (3.1). So after transition
i, the complete output produced is the longest prefix of (w;...w;,w] ... w})dp
that belongs to (B x B)*.

If m = n then transition r is to the terminal state (g, ¢.,$,$) and produces
output w, = (z,_1w,, z._yw.)dp, i.e., the output in this last transition is the
remainder of (v,v')dg. The machine ends in the terminal state (¢, ¢.,$,$) and
the complete output is (v,v')dp.

Let us now consider the case where n > m (the other case is similar). In
this case, transition m is similar to the previous ones and the remaining input is
($,al,.1) ... (8,ap). If |z0| > |2, w!, | then, for i > m and while |z;_1| > |2]_;w]|
(1 < m), we can continue visiting the states from the set @ x Q x (W\{$}) x
(W\{$}), the output w; in these transitions is the longest prefix of (z;_1, z,_;w})0p
that belongs to (B x B)*, z; is equal to the remaining letters in z;_; and z] = e.
We observe that in these transitions we have |z, |zl| < |z,| < C. Intuitively, in
these transitions, the memory for the left hand side encoded in the states has
more letters then those to be output on the right and so after producing the
output there will still be letters memorized for the left. If for ¢ = n we still have
|zi_1| > |2i_yw!| then last transition is to the terminal state ($,$,qmn,q¢,) and
produces output (z,-1,2,_;w!)dp being (v,v")dp the total output produced. If
we have |z;_1| < |2}_;wj| for some j, this means intuitively that the memory for
the left hand side can be now be emptied and it is safe to output $ symbols on
the left since the following inputs are of the form ($,a). So the path will now visit
states from the set {g,} x @ x {$} x {€} and each transition produces output
(€,2i_jw!)dp. Last transition is to the terminal state (¢m,q,,$,$) and the total
output produced is again (v,v’)dp.

We now show the converse inclusion Mnz C N. First we note that for a
successful path « in B, such that ®(«) € (A*x A*)d4 we have X(«a) € (B*x B*)dp.

In fact, from the definition of v, we see that a $ can only be output on one side if
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one of the two situations occurs: a $ has appeared as input on the same side and
the corresponding "memory” is empty; in the last transition. So there is no way
to output a letter after a $ on the same side, being the input from (A* x A*)d 4.
Hence, let (v,v")ép be an arbitrary element from Mmng. So there is a successful
path in B with label ((u,u)d4, (v,v")dp) with (u,u’)04 € M. We will prove that

v € uny and v' € u'ny to conclude that
(v,0")d5 € {(u,u")04}maCad8 € MTaCadp = N,
as required. Let
r_

!/
U=aq...0p,, v =adj...a,, p=max(m,n).

By definition of v a successful path in B labeled by ((u,u')da, (v,v")dp) has the

form
((aiva;)vwi) .
(qi—b qz—la Wi-1, w;‘_l) - (QZa q;>w17w£) (Z = 17 s ap>a
where qo = G, @, @, €T, i1 = ... =ap=a, 1 =... =0, =3, g = ... = qp,
¢ = ... = q,, and w; ...w, = (v,v')dp. This yields successful paths
(@i,2;) .
qi—1 — @ (Z_ 17"'7m)
g g (=1, )

in A, withv=2,...2, and v = 2] ...2/,. Sov € uny and v' € u'ny, completing

the proof of the theorem. [ |

3 Concatenation of padded languages

In this section we fix an alphabet A, consider two regular languages M, N in

(A* x A*)d, and give a sufficient conditions for the padded product of languages

M ® N = {(wiw], wowh)d : (wy,ws)d € M, (wy,wh)d € N}
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to be regular, which we will prove by using a gsm. We start by observing that
the set M ® N is not regular in general, when M, N are regular, as the following

example shows.

Example 3.2 Let A = {a,b}, M = {(a,$)" : n € N} and N = {(b,b)" : n € N}.
Then M ® N = {(a"b™,b™)6 : n,m € Ny} is not regular. To see that we can
assume that M ® N is regular, and fix K to be the number of states of an
automaton accepting M ® N. If we take a word (a,0)"(b,$)" € M © N with
n > K then, by using the Pumping Lemma, we know that there exist 7, j, k € Ny
with & > 0 and i + j + k = n such that the words (a,b)*(a, b)"(a,b)*(b,$)" also
belong to M ® N, for any | € Ny. In particular we have (a,b)!(a,b)*(b,$)" =
(k" k)5 € M © N with i+ k < n which is impossible, and therefore M ® N

is not regular.

The following theorem gives a sufficient condition for M ® N to be regular.

Theorem 3.3 Let A be an alphabet and let M, N be reqular languages on (A* x
A*)d. If there exists a constant C' such that, for any two words wy,ws € A* we
have

(w1, wp)d € M == Jun| = wsl| < C,

then the language M & N is reqular.

PrRoOOF. We assume, without loss of generality, that the languages M and N

do not contain the empty word €. Defining
Mk = {(wl,wg)é eM: ’U)ll — "UJQ’ = k},

for each k = —C,...,C, we can write M = Ukczfc M, and we observe that, each
set

My=Mn((Ax A" {(a1,9)...(a,$) 1 a1,...,ar € A})

is regular. Therefore, defining

Oy, = {(wiw}, waws)d : (wy,w2)d € My, (wi, wh)d € N}
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we can write

c
NoOM= U Oy
k=—C

and we only need to prove that, for each k = —C, ..., C, the set Oy is regular. We
have Oy = My - N and so Oy is regular, and the two cases where k is positive and
negative are similar. We will then consider only the case where k is positive and,
to prove that Oy is regular, we will define a gsm A such that (M}, - N)nyg = O.

We will define a machine such that an input of the form
(a1,01) ... (an, by)(c1,8) ... (ck, $)(dr ... dp,e1...e0)0
will determine a unique successful path and produce output
(@1...anc1...cpdy...dp,by...bper...e,)0,

where ay,...,an,b1,...,0p,c1,... ¢, d1,....dp€1,...,64 € Aand n,p, ¢ € Ny.
Intuitively, our machine will receive input (aq,b1)...(as,b,) and reproduce it
as the output, then it will receive input (c1,$)...(ck, $), produce no output
and memorize the word c;...cp encoded on its states, and finally the input
(dy...dp,e1...e,)d will produce the remaining output (¢ ...cpdy ... dp,e1...¢€,)0

with only last transition being to the unique terminal state. Formally, let
We={we A" : |w| <k}

and let
A=(Q,A2,%), A(2,8), A, q0, {x})

be a gsm where

Q= {q}UW,U W, x{l,r})U{x}
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is the set of states, y is the unique terminal state and A is a partial function from

Q x A(2,3) to finite subsets of @ x A(2,$)* defined by the following equations

(4) (g0, (a1, a2))A

(47) (g0, (a1, $)A={(a1,€)} (a1 € A),

(141) (w, (a1, 9)A={(way,€)} (a1 € A,w € Wy, |w| < k),

(iv) (bw, (a1, a2))A={(way, (b,as)), (x, (bway, az)d)}
(b,a1,a2 € A,w € Wy, |bw| = k),

(v) (bw, (a1, $))A={((waz,r), (b, %)), (x, (bway, €)d)}
(byay € A,w € Wy, [bw| = k),

(vi) (bw, (3, az))A={((w,1), (b, a2)), (x, (bw, a2)d)}
(b,as € A,w € Wy, |bw| = k),

(Uii) ((bw> T)» (ala $)))‘ = {((wala T)’ (b> $))7 (X? (bwab 6)5)}
(b,ay € A,w € Wy, [bw| = k),

(vidd) ((bw,1), (8, a2))A={((w,1), (b, a2)), (x, (bw,a2)d)}
(b,ay € A,w € Wy),

(z)  ((61),($,a2))A={((e,1), (3, a2)), (X, (8, a2))} (a2 € A),

(x) (q, (x1,22))A=10 in all other cases.

{(q0, (a1,a2))} (a1,az € A),

To prove that (Mj, - N)na C Oy let

((Il,bl) Ce (an,bn)(cl, $) c. (Ck, $)(d1 .. .dp,el c. eq)5

be an arbitrary element of Mj - N. We will first consider the case where p = g.
The input (a1, b1) ... (an,b,) will leave us on the initial state, by using equation
(i), and produces output (ay,b1)...(an,b,). Then, the input (c1,$)...(ck,$)
will take us through the states ci,cica,...,c1...cp € Wy, by using equation
(77) once and equation (7i7) k — 1 times, and produces no output. Now, the
input (dy,eq)---(dg, eq) forces us to use equation (iv) ¢ times, but only the last

transition is to state y for the path to be successful, and produces output

(c1...cpdy...dgeq...€)0
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noting the way the states in W}, are used as a queue to delay the output for the
left hand side and that last transition outputs all the remaining pairs. Hence
there is a unique successful path determined by the input and the total output
produced is

(@1 ...anC1 - cpdy...dg,by...bper...eq)0 € Oy.

We will now consider the case where p > ¢. Again, the input

(a1,b1) ... (an,by)(c1,9) ... (ck, $)

takes us to state ¢; ... ¢ and produces output (aj,b1) ... (an,b,). Then we must
use equation (iv) g times without entering state x. Now, input (d,41,9) ... (d,, $)
will force us to use equation (v) once and equation (vii) p — g — 1 times, where
again only the last transition can be to the terminal state y. The total output

produced is again
(@1 ...anC1--cpdy...dg,by...bper...eq)0 € Oy.
Finally we have the case where p < ¢. As in the previous case, the input

(a1,b1) ... (an,bp)(c1,9) ... (ck, $)

takes us to state ¢; ... ¢ and produces output (aq,b1) ... (an,b,). Then we must
use equation (iv) p times and the input ($,e,41)...($,e,) will force us to use
equation (vi) once and, if ¢ — p < k we now must use equation (viii) ¢ — p times
being last transition to y, otherwise we use (viii) k times and we enter state (e, [)
(our queue is empty), what force us to use equation (ix) ¢ — p — k times being

last transition to the terminal state y. Again the total output is
(al...ancl---ckdl...dq,bl...bnel...eq)5 € Ok
To prove the other inclusion let (wq,wy)d € Of. Then we have

W =a1...0, C1...Cdy...dp,

wgzbl...bnel...eq
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where (ay...a,¢1...¢5,01...0,)0 € My and (dy...dp,e1...e,)0 € N. Hence we

have
(al,bl) . ((ln, bn)(Cl, $) Ce (Ck, $>(d1 . dp,el . €q>(5 < Mk -N

and so (wy,we)d € (Mg - N)ny. |



Chapter 4
Rees matrix semigroups

It is well known that completely simple semigroups are Rees matrix semigroups
over groups (see [29]) and that is the origin of the Rees matrix construction.
Nevertheless, it is natural to consider Rees matrix semigroups over semigroups.
The fundamental four-spiral semigroup, is an example of a known semigroup that
is useful to define as a Rees matrix semigroup over a semigroup, as we will see.

In this chapter we start with an automatic semigroup U, and prove that a
Rees matrix semigroup S = M[U; I, J; P| over U is automatic whenever it is
finitely generated. This implies that if a semigroup is finitely generated and can
be described as a Rees matrix semigroup over an automatic semigroup then it is
automatic.

We also consider the converse problem: does the automaticity of S imply that
of U? We prove that this is the case when S is prefix-automatic or when there is
an element p in the matrix P such that pU' = U. Finally, we prove the analogous

results for Rees matrix semigroups with zero.

1 The Rees matrix construction

The Rees matrix semigroup
S =MIU;I,J;P]

41
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over the semigroup U, with P = (pj;)jesier & matrix with entries in U, is the

semigroup with the support set
I xUxJ

and multiplication defined by

(117 5177”1)(12, 8277’2) = (51, Slpr1128277’2)

where (l1, s1,71), (I2, 82,79) € I x U x J. We say that U is the base semigroup of
the Rees matrix semigroup S.
Necessary and sufficient conditions for the Rees matrix semigroup to be finitely

generated are given in [3]:

Proposition 4.1 Let S = MIU; I, J; P] be a Rees matriz semigroup over a semi-
group U. Then S is finitely generated if and only if both I and J are finite sets, U
is finitely generated and the set U\V is finite, where V is the ideal of U generated

by the entries in the matriz P.

2 Automaticity of a Rees matrix semigroup

We start this section by stating our first main result.

Theorem 4.2 Let S = MIU;I,J; P] be a Rees matriz semigroup. If U is an

automatic semigroup and if S is finitely generated then S is automatic.

Let V' be the ideal of U generated by the entries of the matrix P i.e. V =
{spjis’ : 8,8 € U'yi € I,j € J}, where U' is the monoid obtained by adding
an identity to U regardless of whether or not U already has an identity. From
Proposition 4.1 we know that S = M[U; I, J; P] is finitely generated if and only
if U is finitely generated and I, J and U\V are finite. So the previous theorem

has the following equivalent formulation:
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Theorem 4.3 Let S = M[U; 1, J; P] be a Rees matrix semigroup, where I,J
and U\V are finite sets, where V is the ideal of U generated by the entries of the

matrix P. If U is an automatic semigroup then S is automatic.

PROOF. Since U is automatic and U\V is finite, by Proposition 1.15, V' is
an automatic semigroup. Let (B, K) be an automatic structure with uniqueness
for V., where B = {by,...,b,} is a set of semigroup generators for V. Since V/
is the ideal of U generated by the entries in the matrix P we can write each
bp (h € N ={1,...,n}) as by, = sppp,r, ), where s, s, € U, p, € J, A, € 1. Let
Sy = M[UY I, J; P]. Given (I,s,7) € [ x V x J we can write

where by, by, - - . by, 1s @ word in K and so we have

h

- / / /
s = 3a1ppa1)\a1 Soq Sa2ppa2)\a2 8042 o Sahppah/\ah Sah'

Hence we can write

— / / /
(la S, T) - (l, Salppal)\al Sa1 Sazppa2)\a2 Sa2 s Sahppah)\ah Saha 7’)

<l7 8a17pa1)()\a178/a18a27pa2) e ()\ah78/ah7r>‘

We note that the elements in the above sequence are elements of S; but some
of them can be outside S. Since U'\V is finite and non empty we can write
UNV ={zy,..., 2z} with m > 1. We define the set A = C U D where
C={ai:lel,ie NyU{d;j:i,j€ N}U{e;r:j€ N,r€J},
D={fp:lel,he{l,....m},reJ}

and the homomorphism

Y AT = Sy, e = (Lsi i), dig = (N, 5555, p5),
ejr = (Nj, 855 7); fine = (L n, 1),

and we will see that A is a set of semigroup generators for S; with respect to .
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We now define the language L = L; U D where
Ly = {cioydaras - - - Aap_y0pCanr 2 bay -y, € K,h > 1 1€ 1,r € J}

and we will now show that L is a set of normal forms for S; with respect to 1
(and in particular that A generates S1). Let (I, s,r) be an arbitrary element of S;.
If (I,s,r) € I x V x J then there is a (unique) word by, ...b,, € K representing
s and therefore the word ¢jo,dayay - - - day_ 0, €ay,r € L represents (1, s, r), since we
have
(1,5,7) = (I, 801 Ppoc; Aoy Sevy SaxaPpoy Ay Sy - - - SonDpay Ny, SesT)

= (1,501, Par) (Ao Sty Sazs Pas) - - - (Aay» sﬁlh,r)

=CloyQoyas - - - Aoy 10y, Copr-
If we have (I,s,r) = (I,zp,7) € I x U'\V X J then there is a unique word in L
representing ([, s, r), which is fy,. € D.

We are now going to prove that (A, L) is an automatic structure for S;. First

we need to prove that L is a regular language. To this end let
L =L ({ci:i€ N}y-A"-{ej, 15 € N}).

Then we can write

L=(|J L*)uD

lel,red
and it is sufficient to prove that for each [ € I,7 € J the language L") is regular.
To do that we define a gsm A such that Kn4 = LU, Let

A = (Qu B7 A7 M, 4o, {£}>

with @ = N U {qo, &}, where qq is the initial state, £ is the only accept state and
i is a partial function from @ x B to finite subsets of Q x A™ defined by:

(qo, bi)u=A{(7, cis), (&, cuieir) } (1 € N),
(i’bj):u:{(j’ dij)v (g’dijejr)} (Za] € N)
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Given u = bq, ... ba, € K it is clear that the only word v in A* such that (u,v)

corresponds to the label of a successful path in A is the word

ClalquaQ .. d eahr c L(l,r).

*Qh—10

So Kna = L% and L") is a regular language.
If a word

U=by, ... by, €K

represents the element s € V' then the word
UNA = Cla,dayas - - - Qay,_yop Capr € L)

represents the element

(I,s,7) € {l} x V x {r}.

Given two different words wi,us € K, they represent two different elements
s1, 52 € V because we have assumed that (B, K) is an automatic structure with
uniqueness for V. Since the words uin4 and usn 4 in L") represent the elements
(I,s1,7) and (I, 59, 7) respectively, it follows that two different words in L&) rep-
resent two different elements in {I} x V' x {r}, and hence that two different words
in L represent two different elements in S;. Therefore L is a regular set of unique
normal forms for S;.
The language
L_={(w,w)ds :we L}

is regular, by Proposition 1.6. To conclude that (A, L) is an automatic structure
for S; (with uniqueness) it remains to show that, given a € A, the language L,

is regular. Let

ay) = (lo, S0, 70) € Sh.

Let us fix [ € I and r € J and prove that the language

LI = L, 0 (L5 x A%)64
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is regular. Let w be the only word in K that represents the element p,;,s0 € V.

We now define a gsm

C= ({QO}; A(27 $)7 A(27 $)7 P40, {qO})
where ¢ is the unique state and the transition p is defined by:

(90, (a,0))p ={(q0, (a,0))} ((a,b) € A(2,8),b ¢ {ejr:j € N,k € J}),
(90, (a, €;r))p ={(qo, (a, €jr))} (e € AU{S},j € N).
We know, from Proposition 1.9, that K is a regular language and we will now

show that
KompCadane = LI,

where 7 : (B* X B*)0p — B* x B* is the inverse of dg. For by, ...bq,,bs, ... bs,
€ K we have

(bay -+ by bs, - b3 )05 € Koy

by .. b, = b, ... by,

<= (I,bay ... ba,W,m0) = (1, bg, ...bs,,T0)

<= (I, 8015 Par ) (Ao Sty Sans Paz) - - - (Aap_15 Sty Sans Pan) Aan» Sty » T) (Lo, S0, 70)
= (1, 58,,08.)(Na1. 83,98,0 P2) - - - (Ago1s S, S8 P8.) (Asis 8, T0)

= Caydajas - - - Aoy, 0y €apr@ = €13, A3, 3, - - - A, _,8.€8r0

< (bal . bah, bﬁ1 .. -bﬁk)CAéAnC € L((ll’r).

We note that in a path in A each transition outputs a word of length 1 except
possibly the last that can output a word of length 1 or 2 and so condition (3.1)
in Theorem 3.1 holds with C' = 1. Applying Theorem 3.1 we conclude that L
is a regular language.

The language ffll’r) = Lo N({finr : h € {1,...,m}} x A*)d4 is regular because
it is finite. But then

L= vl 7).

lel,red lel,red

and so L, is regular.
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We conclude that S; is an automatic semigroup. Since S is a subsemigroup
of Sy such that S;\S is finite we can use Proposition 1.15 to conclude that S is

an automatic semigroup. |

Note that Theorem 4.3 generalizes one of the implications of the main result
of [9] where it is assumed that U is a group and also [48, Theorem 7.2], where it
is assumed that U is a monoid and that P contains the identity of U. Another

interesting application of our theorem arises when U is a simple semigroup:

Corollary 4.4 If U is an automatic simple semigroup then every Rees matrix

semigroup M|U; I, J; P] (I and J finite) is automatic. |

Example 4.5 The fundamental four spiral semigroup Sp, (see Section 8.6 in
[20]) can be represented as a 2 x 2 Rees matrix semigroup over the bicyclic

monoid B; Spy = M[B;{1,2},{1,2}; P] with

1ec
11

pP—

(see [29, Exercise 3.8.19] and [7]). Since B is simple and automatic ([11, Example
4.2]) it follows that Sp, is also automatic.

3 On the automaticity of the base semigroup

If the Rees matrix semigroup S = M(U; I, J; P] is automatic then we know, by
Proposition 4.1, that the base semigroup U must be finitely generated. It is an
open question if U is automatic in general. We prove that U is automatic if we
assume that there is an element p in the matrix such that the principal right ideal

pU?' generated by p is equal to U.

Theorem 4.6 Let S = M[U; 1, J; P| be a semigroup, and suppose that there is
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an entry p in the matriz P such that pU' = U. If S is automatic then U is

automatic.

PROOF. Let S; = M[U'; I, J; P]. Then S is a subsemigroup of S; such that S;\S
is finite. Since S is automatic, by Proposition 1.15, Sy is also automatic. Let
(A, L) be an automatic structure for S; with uniqueness, where A = {aq,...,a,}

is a generating set for S; with respect to
v AT — Sy, ap — (in, Sn,gn) (h=1,...,n).
We will now show that
B={by,....b,}U{cj;:je Jiel}
is a generating set for U' with respect to
¢: BT —>U1;bh»—>sh,cjil—>pji (h=1,....,n, g€ Jyiel);

this was shown in [3] and we include our proof for completeness. Given s € U!
we can consider any element of the form (i, s, j) € S;. Since A is a generating set

for S; we have

(1,8,7) =y Qay - - - Aoy,
= (ays Sars Jou ) (fags Sazs Jag) + -+ (ogs Sages Jou,)
= (ioqv Sa1Pjayiay Sas + + - Pjay_iay, Sakvjak)
and so we have
8 = bay Cjoin, bas be,, € BT,

fag ...Cjak_liak

Without loss of generality we can assume that p;; = p. Let
Ly =LNn{1} x U x {1}t
This language is regular because

({1} x U x {11~ ={an € Azin = 1}- A" - {an € A jp = 1}U
{ahEAZih:jhzl}.
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Let

f:AY - B ag a0, .. g, — b

, 1 Cjay iy Doz - - - Ciay,_iay, Dan-
We define K = Ly;f and prove that (B, K) is an automatic structure with
uniqueness for U! with respect to ¢. We observe that f : L;; — K is a bijection
and K is a set of unique normal forms for U'. In fact, if a word w € Ly,
represents the element (1,s,1) € {1} x U x {1} then the corresponding word w f
in K represents the element s € U,

Next we show that K is a regular language by defining a gsm A such that
Lyna =K. Let A= (Q,A, B, u,qo,{x}) with @ = {qo, x} U J, where ¢q is the

initial state, x is the only accept state and the transition p is a partial function

from @) x A to finite subsets of Q x B defined by:

(qos an)={(Jn:bn), (X, bn)} (h € {1,...,n}),
(Jy an)w=1{0n, ¢ji, bn), (X: i, )} (7 € J,h € {1,...,n}).

Given a word

U= Gay oy - - - Gy, € L3
there is a unique successful path « in A such that ®(«) = u. This path is

(aal ,bal )

o — X

for h =1 and
(aalybal) . (aa27cja1’ioz2 bag) .
qo Jon Jag — - -

(aah_lacjah_Qiah_lbah_1) . (aahvcjah_liahbah)

]Oth71 X

for h > 1, and its output is

E(Oé) = balcjaliagba2 . Cjah,liahbah = Uf € K.

We conclude that K = L1114 is regular, as claimed.
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We now start proving that K is regular for b € B . If bp = 1 then K, = K_
and it follows from the uniqueness of K that K, is regular. If by # 1 then
bp € U = pj U and we can write b = py;s for some s € Ul. Since (1,s,1)
is an element of S; there is a word w € L that represents the element (1,s,1).
We know by Proposition 1.9 that Ly is a regular language. Let us consider the
regular language H = Lz N (Ly; X L11)da and prove that Hra(4dp = K. For

Aoy Gy - - - Aoy, A3, 03, - - - g, € L1; we have

(o Qo - - - oy, QB G, - - 0p, )04 € H
= Aoy Aoy - - - O, W = Ag, AR, - - - A,
<= (1, 501, Ja1 ) (iass Sass Jas) - - - (Tay» Say, 1) (1,8, 1)
= (1,580, 08)(182, 8855 J2) - - - (i 85, 1)
— (balcjalia2ba20ja2ia3 e by 08,C15i0,08:Ciis, - - bg)op € Ky

= (A, Ay - - - Aoy, QB AB, - - - A5, )Ca0p € K.

Since in any path in A only the first transition can output a word of length 1 and
all the others output words of length 2 we can apply Theorem 3.1 with C' = 1
and conclude that K, is a regular language. So U! is an automatic semigroup

and, by Proposition 1.14, U is automatic. [ |

Note that Theorem 4.6 generalizes [48, Theorem 7.4], where it is assumed that

U is a monoid and that P has a row and a column consisting entirely of ones.

4 P-automaticity of the base semigroup

We prove in this section that if S is p-automatic then U is p-automatic. It is an
open question if the definitions of p-automatic and automatic coincide for semi-
groups as they do for groups and, more generally, for right cancellative monoids
(a monoid M is right cancellative if (Vs,t,u € M) su =tu = s =t); see [49,
Theorem 8.1].
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Theorem 4.7 Let S = M[U;1,J; P| be a Rees matriz semigroup. If S is prefiz-

automatic then U is prefix-automatic.

PROOF. By [49, Corollary 5.4] we can fix a prefix-automatic structure with
uniqueness (A, L) for S. We define A, B, ¢, L11, f, A and K as in the proof of
the previous theorem just replacing U! by U and S; by S in the definitions, and
assume that ¢ [4 is injective. We will prove that (B, K) is a prefix-automatic
structure with uniqueness for U with respect to ¢. We have proved that K is
regular, that f is a bijection and that ¢ [g is injective, without using the fact

that U! is a monoid. So we just have to prove that
Ky = {(01702)53 tv1, vy € Kjuh = 112}

is a regular language for b € B to conclude that U is automatic. We start by
writing K, as a finite union of languages which we then prove are regular. We

can write
Ky = {(wi f,waf)0p : wi,wa € Ly, (w1 )b = waf}.
Let Ay = {an, € A: j, =1}. We define
Kg = {(wlf, U)Qf)éB c Kb Twy € A+a}
for a € A;. We also define K} = K, N (B x B*)dp. It is clear that

K, =(|J KUK,
a€A;
The language K} is regular because it is finite. Let us fix an element a € Ay,

with ay) = (I,s,1), and prove that K} is a regular language. Let w be the only
word in L representing (I, sb,1). The language

L. = {(w1,w2)04 : wy € L,wy € Pref(L), wy = ws}

is regular by hypothesis and the language Lz is regular by Proposition 1.9. So
the language

D ={(w],w9)d4 : (Fw] € A*)((wj,w)ds € L7 & (w],w2)da € L)}
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is regular by Proposition 1.13, where
T:A2,9)" — A(2,9)"; (a,b) — (b, a)
is the homomorphism that swaps coordinates. The language
E = {(wja,ws)d4 : (wj,w2)ds € D}
is also regular, since we can write
B = {(wr,wn)ba : (3§ € A%)((wy,w})ds € F & (), ws)ds € D)},

where F' = {(wa,w)d4 : w € A*} is a regular language.

We now use the regular language
H=FEn (LH X L11)5A

to prove that L is regular by showing that Hma(40p = K. We note that we

can write
. — r— _
H = {(wy,ws)d4 : w1, ws € L1 & wy = wia & wjw = wsy}
and so for ag, G, - - - Gq,,0p,08, - .. ag, € L1; we have

(Ao Qo - - - oy, QB A, - .- 03, )04 € H
= o, =0 & U4 Aoy - .- Aoy, W = Qp,ag, - .. A3,
Aoy, = a & (1,801, Jor ) (Fass Sass Jaz) - - - (lay 15 Sap_1s Jan 1) (fay s Sa s 1)
= (1,580, 58:)(igs> $8s> J) - - (> 515 1)
=ay, =ak Sa1Pjay iy S0 Djayias « - . Sa,b = 61 Djs, iy SB2Pipyin, - - SBi
= ap, =0 & (A0 0ay - -0y, ) [)b = (apap, ...ag,)f

<= (A0, Ay - - - Aoy, A3, AB, - - - A5, )Ca0p € K.

So we have Hma(40p = K} and we can use Theorem 3.1 to conclude that K} is

regular. Therefore K} is regular and U is an automatic semigroup.
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To prove that U is prefix-automatic we prove that K’ 7 is a regular language.

We begin by writing it as a union of languages which we then prove are regular:
K.r=({JX@o)UYUZ
i,b,c

where

Xpe = {(wr,w2)p € KL7: (3 € {1,... ,n})(wy € Btbacy,ibc)}

Y = {(’wl,UJQ)53 S K/:T . (Hb € {bl, Ce ,bn})(wl S B+b)}

Z = {(wy,w9)dp € KL7: |wy| <5}
fori e I,b e {by,....b,},c€{cji:j€ Ji €I} Letusfixi,band cand let w
be the (unique) word in L representing (7, bc, 1). Defining

Lo = {(u1,u2)d04 : uy € Pref(L),us € L, u1W = uy}

and observing that for w; € Pref(K), wy € K with wy = ba,¢j, i, bas - - - bay,Cja, ibC

and wy = bg, ¢j, 14,05, - - - bg, we have

<:>(1a50417ja1) s (iah,7sah7jah)(i’bc7 1) = (173517jﬁ1) - (jﬁkvsﬁka 1)
w = ag, -..ag,

<~ (CLal <o Qg , A, . aﬁk)(SA c L/@ N (Pref(LH) X LH)(SA,

-----

.....

(Pref(Lq1) X L11)d4}).

The languages
(Pref(Ln) X Lll)(sA) <B+{bacjaibc} X BJF)(SB, (Pref(K) X K)5B
are regular by Proposition 1.6. The language L. is regular because we can write

L= {(u1,u2)d4 : (Fug € AY)((u1,u3)d4 € L7 & (us,u2)04 € L)}
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and use Proposition 1.9. The language

N = (LN (Pref(Lq1) X L11)da)TaCadB
is regular by Theorem 3.1 and so for a fixed o € {1,...,n} the language

{(wlC]’aibC, w2)5B : (wl,wg)(SB S N}
= {((u1f)cjuibc,us f)op : (u1,u2)da € Li N (Pref(Lq1) X L11)da}

is also regular. Hence X(;; . is regular. We note that
Y = (LL7 N (Pref(L11) X L11)04)mal4ad5

and by Theorem 3.1 it is regular. Since Z is finite it is proved that K’ is regular

and so U is prefix-automatic. |

5 Rees matrix semigroups with zero

In this section we show that the previous results are still valid if we consider
Rees matrix semigroups with zero. The Rees matrix semigroup with zero S =
MO[U; 1, .J; P] over the semigroup U, where P = (pji)jesics is a matrix with
entries in UY (U with a zero adjoined to it), is the semigroup with the support

set (I x U x J)U{0} and multiplication defined by

(l ST )(l So. T ) o (lla SlpT112827T2> if Prils 7é 07
1,°21,71 29y92,12) —
otherwise,

(ll, 81,7’1)0 == O(lg, 82,7"2) =0-0=0.

Alternatively, S can be viewed as the Rees quotient S’/M (see Appendix A),
where S" = M[U I, J; P] (a Rees matrix semigroup without zero), and M =
I x{0} x J (an ideal). With this in mind, the following result from [23] will prove

useful:
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Proposition 4.8 If S is an automatic semigroup and if I is a finite ideal of S

then S/I is automatic as well.

In general the converse does not hold; see [23]. However, in our context it

does:

Proposition 4.9 If S = M°[U; I, J; P] is automatic (resp. prefiz-automatic)
then so is T = M[U% I, J; P).

PROOF. First we note that S has an automatic (resp. prefix-automatic) structure
with uniqueness of the form (AU{t}, LU{¢}), where ¢ represents 0, and no element
of A or L represents 0. Indeed, let (B,K) be any automatic structure with
uniqueness for S, and let w be the only element of K representing 0. Define A =
{be B:b#0}and L = K\{w}. That (AU{:}, LU{:}) is an automatic structure
with uniqueness for .S follows from Propositions 1.10, 1.11 and 1.12. Moreover, if

(B, K) is a prefix-automatic structure for S, then so is (AU{¢}, LU{¢}), because
(LU{}). = (K_\{(u,v)04 € K : v € Pref(w)}) U{(s,1)},

and the set {(u,v)04 € K : v € Pref(w)} is finite.
If A={ay,...,a,}, and if a;, is mapped onto (ip, sy, jn), then obviously T is

generated by the set C' = AU {1;; :i € I,j € J} under the mapping
ap — (ihﬂshd.jh)) lij — (2707])
Let also
M:LU{Lij C’iEI,jGJ}.

Clearly, M is a set of unique normal forms for 7.

Denoting for a moment the multiplication in 7" by % we see that

(llu 817T1>(l27 S92, TQ) lf (l17 S1, Tl)(l27 827T2) 7é 07

(117817T1)*(l27527r2) = .
(I1,0,79) otherwise.
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Therefore, using the regular languages

L'=Ln{ay,€A:i,=1}A" (1),
Lln0) — {we AT : (w,1)04 € (LU{t})a, } (an € A),

we see that
Mo, = ((LUA{e}a, N (AT x AF)34) U (Upe, (L8 0 L) x {uy,})de)U
{(Lijal/ijh) T € ],] € J},
Mbij = (UleI(Ll X {Llj})éc) U {(Llr7l”ij) e [,7’ c J}

are all regular, and so (C, M) is an automatic structure for 7. Moreover, if

(AU {c}, LU{¢}) is a prefix-automatic structure for S then
M/: == ((L U {L}),: N (A+ X A+)5A) U {(L’ija Lij) 11 E ],j € J}
is also regular, so that (C, M) is a prefix-automatic structure for 7. [ |
Combining the above two propositions with Theorems 4.3, 4.6 and 4.7, we
obtain the following result:

Theorem 4.10 Let S = M°[U; I, J; P] be a Rees matriz semigroup with zero.

(i) If U is automatic and if S is finitely generated then S is automatic as well.

(i) If S is automatic and there is an entry p in the matriz P such that pU' = U

then U is automatic.

(iii) If S is prefiz-automatic then U is prefix-automatic. |

We end this chapter with the following question:

Question 4.11 Let M[U; I, J; P] be an automatic semigroup. Is the base semi-

group U necessarily automatic?

The results contained in this chapter are also contained in [15].



Chapter 5
Other semigroup constructions

We consider in this chapter further two standard semigroup constructions: the
Bruck—Reilly extensions and the wreath products. We will prove that, in some
particular situations, the automaticity of the base semigroups implies the auto-

maticity of the construction.

1 Bruck—Reilly extensions
Let T' be a monoid and 6 : T'— T" be a monoid homomorphism. The set
Ny x T x Ny
with the operation defined by
(m,t1,n)(p:ta,q) = (m —n+ &, (10°7")(820°77), ¢ — p+ k) (k = maz{n, p}),

where 6° denotes the identity map on M, is called the Bruck-Reilly extension
of T' determined by € and is denoted by BR(T,#). The semigroup BR(T},0) is
a monoid with identity (0, 17,0), denoting by 17 the identity of 7. This is a
generalization of the constructions from [5, 32, 37], also considered in [2].

We consider some particular situations where the automaticity of the monoid

T implies the automaticity of its Bruck—Reilly extensions BR(T, ).

o7
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Theorem 5.1 If T is a finite monoid, then any Bruck—Reilly extension of T s

automatic.

PROOF. Let T = {t1,...,t;} and let T = {f;,...,%;} be an alphabet in bijection
with T. We define the alphabet A = {b,c} UT and the regular language

L={c"t" :m,n>0,tcT}
on A. Defining the homomorphism
Y : AT — BR(T,0); t— (0,t,0), ¢~ (1,17,0), b (0,17,1)

it is clear that A is a generating set for BR(T, §) with respect to ¢ and, in fact,
given an element (m,t,n) € Ny x T' x Ny, the unique word in L representing it is
" b".

In order to prove that (A, L) is an automatic structure with uniqueness for
BR(T,0) we only have to prove that, for each generator a € A, the language L,

is regular. To prove that L; is regular we observe that
(c™:b")b = (m,t;,n)(0,17,1) = (m, t;,n + 1) = ;0"

and so we can write

l
Ly = J{(¢™Bb", "G )34 n,m € No}

=1

l
~Jd oy {E R} {6.D) - {85

which is a finite union of regular languages and so is regular. With respect to L.

we have

(¢™)e = (m,t,0)(1,17,0) = (m +1,t0,0) = ™10,
(Cm%bn-i-l)c = (m, t,n + 1)(1, 1T7 0) = (m’t, n) — C’mzbn (n7 m e NO’z c T)
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and so we can write

l
Lc:U{(Cmt_i, " :0)54 1 m € Ny U

i=1
l

U{(cmt_ib"“, AMtb™)0a :m,n € No}

i=1
l

— U({(c, o)} {(t,c)($,4:0)HU

Ude e {@ 5} - {.0)) - {(5.9)})

i=1
and we conclude that L. is a regular language as well.

We now fix an arbitrary # € T and prove that Lz is regular. For any words
Mt b", Pigh? € L we have

I = PTb

if and only if m = p,n = ¢, and ¢,(t0") = t5, because
"t 0"t = (m,t,n)(0,t,0) = (m, t,(t6"),n).

Since T is finite the set {¢t0™ : n € Ny} is finite as well. Taking j to be minimum
such that the set C; = {k > j : t67 = t6*"'} is non empty and k to be the

minimum element of C;, we will now show that
{t0" :n € N} = {t,10,...,107, ... "}

Given n > 7 we have n = j+ h with h > 0 and, dividing kA by k+ 1 — j, we obtain
n=j+qk+1—j)+rwithg>0and 0 <r <k+1—7j. Wenow prove, by
induction on ¢, that t@7+7+a(k+1=3) — $9i+7 for ¢ > 0. For ¢ = 0 it holds trivially

and for ¢ > 0 we have

tgI+rralktl=i) — ¢gitrthtl=gra—Dk+1=7) — (o) (¢H"+1)(t9la-Dk+1=9))

= (t07)(t67) (t9la-D*H1=0)) — ¢hi+r+(a=1)(k+1-j)
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We can then write

j—1
L= J{(c"tab", "o (t07)6")04 : m € Ny, to € T}U
n:O
Lttt e, (t6m)bm D)5, m, g € Ny, to € T
n= J

—U (¢, )} - {(Ta, ta(tO™)) : to € T} - {(b,b)}*)U

0y - (T Tl st € T} - (0.0 - (004

n=j

and since all sets in this union are regular we conclude that Ly is regular as well.

From now on we assume that 7' is an automatic monoid and we fix an auto-
matic structure (X, K) with uniqueness for 7', where X = {xy,...,2,} is a set

of semigroup generators for 7" with respect to the homomorphism
¢ Xt =T

We define the alphabet
A={bctUX (5.1)

to be a set of semigroup generators for BR(T, 6) with respect to the homomor-

phism
Y AT — BR(T,0), z; — (0,2;0,0),c— (1,17,0),b+— (0,17, 1),
and the regular language
L={cwh :weK;ijec N} (5.2)

on AT, which is a set of unique normal forms for BR(T', #), since we have (c'wb’ )i =
(1,we, j) for w € K, i,j € Ng. As usual, to simplify notation, we will avoid ex-
plicit use of the homomorphisms v and ¢, associated with the generating sets,

and it will be clear from the context whenever a word w € X is being identified
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with an element of 7', with an element of BR(T', ) or considered as a word. In
particular, for a word w € Xt we write wf instead of (w¢)f, seeing 6 also as a
homomorphism 6 : X — T, and we will often write (i,w, j) instead of (i, we, j)
for 7,5 € Ny.

For (A, L) to be an automatic structure for BR(7', #) the languages

= {(cwV,dwb™™)os : w € K;i,j € Ny},
= {(cwt’*, dwb’)ds:w € K;i,j € Ng}U
(
(

cwy, M wy)ds  wi, wy € Kii € Nojwy = w6},

{
={(cwVV, Fwab?)d 4 : (w1, w2)dx € K, 9531,7 € No} (2, € X),

must be regular. The language L is regular, since we have

Ly = {(c,;0)}" - {(w,w)ox : w e K}-{(b,)}" - {($,0)},

but there is no obvious reason why the languages L. and L, should also be
regular. We will consider particular situations where (A, L) is an automatic

structure for BR(T', 0).

Theorem 5.2 If T is an automatic monoid and 6 : T — T; t — 1r then

BR(T,0) is automatic.

PROOF. To show that the pair (A, L) defined by (5.1) and (5.2) is an automatic
structure for BR(T', 0) we just have to prove that the languages L. and L, (z, €
X) are regular. But now, denoting by wy,. the unique word in K representing 17,

we have

L.={(cwt’* cwb’)ds: w € K;i,j € No} U{(cw, ™ wy, )04 :w € K;i € No}
={(e.0} - {(w,w)dx :we K}-{(b,0)}"-{(b,$)})U
(({(c,0)} {8, 0)}) © (K x {wy,})dx),

where ® denotes the padded product of languages defined in Chapter 3, which is
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a regular language by Theorem 3.3. We have
L, ={(cwl,cwbt)ds:w e K,i € Nyg,j € N}U
{(cwy, ws)da 1 (wy,we)dx € Ky, ;1 € N}
=({(c.,0} - {(w, w)dx : we K} -{(b,0)})U
{(c. o)} - Ke,)

because, for any ciwd’ € L with j > 1, we have
(cwbx, = (i,w,7)(0,2,,0) = (i,w(z,6),5) = (i,w,j) = cwt’
and for c'w € L we have
(cw)z, = (i,w,0)(0,z,,0) = (i,wz,,0).

Therefore L,, is also a regular language and so BR(T', ) is automatic. |

Theorem 5.3 If T is an automatic monoid and 6 is the identity in T then
BR(T,0) is automatic.

PROOF. We use the generating set A defined by equation (5.1) but we now define
L = {c'Vw : w € K} observing that, since 6 is the identity, for any z, € X, we
have
z.c = (0,2,,0)(1,17,0) = (1,2,0,0) = (1,2,,0) = (1, 17,0)(0, z,,0) = cz,,
z.b=(0,2,,0)(0,17,1) = (0,z,,1) = (0, 2,.0,1) = (0, 17,1)(0, z,,0) = bx,.
The language L is regular and it is a set of unique normal forms for BR(T',9).
Also the languages
Ly, ={(cVw, vV w)ds:w € K;i,j € No}
={(c;0)}-{(b,;0)} - {(8,0)}) © {(w, w)ox : w € K},
L. ={(cVTw,dVw)ds:w e K;i,j € Ng}U
{(cw, ™ w)dy i € Ng,w € K}
{(c,0)}-{(,0)}" - {(b,9)}) © {(w,w)ox : w € K})U
{(c.0)}" {3, 0}) ©{(w,w)ix : w € K}),
W wy, W ws)da 1 (wy,we)dx € Ky}
{(c.,0)}"-{(b;)}") - Ko,

(
(
(
(

=
(
{
(
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are regular, by Theorem 3.3, and so (A, L) is an automatic structure for BR(7', 0).
|

We say that a semigroup T is of finite geometrical type (fgt) (see [49]) if for
every t; € T, there exists £ € N such that the equation

(L’tl = tQ

has at most k solutions for every ty € M.

We start by presenting some examples of fgt and non-fgt semigroups. A group
is fgt because the equations have always one solution. Free semigroups and free
commutative semigroups are fgt because the equations have at most one solution.
To see that the bicyclic monoid is fgt we will show that given an arbitrary ¢'v/ € B
the equation

Ay =
as at most i + 1 solutions for any c*b! € B. In the case where j # [ we must have
u=k,v>1and v =141 — 7 which is only possible if [ > j. Hence we have at
most one solution. In the case where 7 = [ we must have v < iand u=k+v—1,
and so we have at most 7 + 1 solutions (precisely i 4+ 1 solutions if k& > 7).

Any infinite semigroup with a zero, for example, is not fgt because the equa-
tion 0 = 0 has infinitely many solutions. In [25] the authors give an example
of a commutative semigroup that is not automatic. This semigroup is defined by

the presentation

(a,b,x,y | aax = bx,bby = ay, ab = ba, ar = za,

ay = ya,bx = xb,by = yb, vy = yx)

(for an introduction and notation about semigroup presentations see Section 3
in Chapter 8). This semigroup is not fgt because, for example, the equation
Xwzy = bry has infinitely many solutions of the form X = a?" with n odd (see
[23] and [25]). In the above examples the semigroups are not fgt because there

exists an equation with infinitely many solutions. We give a further example
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of non-fgt semigroup without such equations. The semigroup defined by the
presentation

{a,b,c | ac=c* ca=c* bc=c* cb=c?)

is not fgt, because any = € {a, b} with |x| =i — 1 is a solution of the equation
xc = ¢!, for i > 1. Different words in {a,b}" correspond to different elements in
the semigroup since no relations can be applied to them. Therefore given k € N
we can always choose ¢ € S such that the equation zc = ¢' has more than k
solutions. Since all relations have both sides with length 2 there are no equations
with infinitely many solutions.

We will need the following result:

Lemma 5.4 Let T be a fgt monoid with an automatic structure with uniqueness
(X, K). Then for every w € X+ there is a constant C' such that (wy,w2)dx € K,

implies ||wy| — Jws|| < C.

PROOF. Since the language K, is regular by Proposition 1.9, we can take C

to be the number of states of an automaton recognizing K,. Suppose we have

(w1, wy)0x € K, with |wy| — |wy]| > C. Then we have wy = wswy with |ws| =
|wy| and |wy| > C. By the Pumping Lemma we have wy = wswew; with
|lwg| > 0 and (wq,wswswr)dx € K,. But then we have wy = wswsw; and

we, wawswy; € K are different words, which contradicts the uniqueness of K.
Suppose now that |w;| — Jws| > C. Using the Pumping Lemma again we can
write w; = wswswswg with |ws| = |wsl, |ws| > 1 and we obtain infinitely many
words (wswswiws, wy)dx € K, and therefore infinitely many solutions of the

equation xw = wsy, which is not possible since T is fgt. [ |

Theorem 5.5 Let T be a fgt automatic monoid and let 0 : T — T be a monoid
homomorphism. If T0 is finite then BR(T,0) is automatic.
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ProoOF. We will prove that the pair (A, L) defined by (5.1) and (5.2) is an
automatic structure for BR(7, §). We have

L. ={(cwb ™, dwbl)ds - w € K;i,j € Ng}U
{(cwy, ¢t wg)da + wi, wy € K0 € Nojwy = w0}

and, since the language

{(cwb T, dwbl)oa :w e K;i,5 € Ng} =
{(c,0} - {(w,w)dx :we K} - {(b,0)} - {(b,9)}

is regular, we just have to prove that the language
M = {(c'wy, T wy)d s - wi, we € K € Ny wy = w0}

is also regular. For any ¢t € T0 let w; be the unique word in K representing t.
Let
N :{(wl,w2)5X Twy,we € Kywy = w19} =

U {(wl,w2)5x Wy, We € K,U)Q = w19 = t} =

U {(wy,wy)0x :wy € K;wy € (t9‘1)¢—1} —
teTo

L (@076 N EK) x {w,})éx.

teTo

We can define ¢ : X — T0; w — weh and, since T0 is finite, for any ¢t € T, we
can apply Theorem 1.7 and conclude that (t071)¢~" = t1p~1 is regular. Therefore

N is a regular language and, since we have
M ={(c'wy, ™ wy)da 1 (wy,wy)dx € N;i € No} =
{(c,0)} {5, 0)}) © N,
by Theorem 3.3, M is a regular language as well. We will now prove that the

language

Lo, = {(cwit!, cwyb? )6 : (w1, w2)0x € Ky 0534,7 € No}

r
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is regular. Since 70 is finite we can, as in the proof of Lemma 5.1, take j, k to be
minimum with 2,67 = 2,6 and j < k, and we have z,07t7Tab+1=0) — o git+r

for j <j+r <k+1and g > 0. Therefore we can write

j—1
L:(:r = U {(ciwlb", Ci’LUgbn)(SA : (wl,w2)5X € ergn;l. € No}U

n;()

U {(cPw b+ abH1=0) o bt abH1=00) 5 ) - (wy, wy)6x € Kyonii,q € Nob

=

=J ({(c.0)}" - (Kzon © {(b,0)}))U

n;o

U (.0} (Koo © {(5,0)"} - {(b, ) 177}))).

n—j

Since T" is fgt, by Lemma 5.4 there is a constant C' such that
(w1, w2)0x € Kyppn = |Jwn] — wa|| < C

for any n = 0, ..., k, and therefore we can apply Theorem 3.3 and we conclude

that L, is a regular language. |

Since automatic groups are characterized by the fellow traveller property and
Bruck—Reilly extensions of groups are somehow ”almost groups” the following is

a natural question:

Question 5.6 Is a Bruck—Reilly extension of a group automatic if and only if it

has the fellow traveller property?

2 Wreath products

We consider the automaticity of the wreath product of semigroups, Swr7T, in
the case where T is a finite semigroup. We start by giving the necessary and
sufficient conditions, obtained in [39], for the wreath product in this case to be

finitely generated. Finite generation of the wreath product is related to finite
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generation of the diagonal S-act. We use the conditions obtained for the case
where the diagonal S-act is not finitely generated to prove that, in this case, the
wreath product SwrT is automatic whenever it is finitely generated and S is an
automatic semigroup.

We start by giving the definitions we require. If S is a semigroup and X is a
set, then the set S of all mappings X — S forms a semigroup under component-
wise multiplication of mappings: for f,g € SX, fg: X — S; x — (zf)(zg);
this semigroup is called the Cartesian power of S by X. If S has a distinguished
idempotent e, then the support of f € S¥X relative to e is defined by

supp,(f) ={z € X :af # e}

The set
S = {f € S : [supp,(f)| < o0}

is a subsemigroup of S¥X; it is called the direct power of S relative to e. When
there is no danger of confusion the subscript e is usually omitted. If X is finite of
size n then S¥ and S™)e coincide, and they are isomorphic to the semigroup S
consisting of n-tuples of elements of S under the component-wise multiplication.
In this context, we write S¢ even if S has no idempotents; we can think of this
as computing supports with respect to an identity adjoined to S.

The unrestricted wreath product S WrT of two semigroups is the set ST x T

under multiplication
(f.t)(g,u) = (f ‘g, tu),
where g € ST is defined by
(x)'g = (xt)g.
Let e € S be a distinguished idempotent. The (restricted) wreath product S, wr'T
(with respect to e) is the subsemigroup of S WrT' generated by the set {(f,t) €
SWrT : |supp,(f)| < co}. Again the subscript e is often omitted.

The wreath product SwrT coincides with the unrestricted wreath product

SWrT in the case where T is finite, as observed in [50, Chapter 3].
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An action of a semigroup S on a set X is a mapping X x S — X, (z,s) — xs,
satisfying (zs1)s2 = x(s152). The set X, together with an action, is called an S-
act. It is said to be generated by a set U C X if US! = X, and finitely generated
if there exists a finite such U.

The diagonal act of a semigroup S is the set S x S with the action (s1, $2)s =
(s18,828). For example, the diagonal acts of infinite groups, free semigroups,
free commutative semigroups and completely simple semigroups are not finitely
generated. The diagonal act of the full transformation monoid Ty on positive
integers can be generated by a single element; see [6]. In [40] the authors give
an example of an infinite, finitely presented monoid with a finitely generated
diagonal act.

We will only state the conditions obtained in [39] for the case where T is finite

and S is infinite.

Proposition 5.7 Let S be an infinite semigroup and let T be a finite non-trivial
semigroup. If the diagonal S-act is finitely generated then SwrT is finitely gen-

erated if and only if the following conditions are satisfied:
(i) S*?=S and T*=T;
(i) S is finitely generated.

If the diagonal S-act is not finitely generated then SwrT is finitely generated if

and only if the following conditions are satisfied:
(i) S*?=S;
(i) S is finitely generated;
(iii) every element of T is contained in the principal right ideal gener-

ated by a right identity.

We will now consider the automaticity of the wreath product SwrT in the

case where T is finite. In the case where S is also finite, S wrT is finite as well,
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and, in particular, it is automatic. We will consider the case where S is infinite

and the diagonal S-act is not finitely generated.

Theorem 5.8 If S and T are semigroups satisfying the following conditions:
(i) T is finite;
(ii) S is automatic;
(iii) the diagonal S-act is not finitely generated;

(iv) the wreath product SwrT is finitely generated;

then SwrT is automatic.

PRrROOF. We assume that 7" is non-trivial and write T = {t1,...,t,,} with m > 1.
By using Proposition 5.7 we know that S is finitely generated and S? = S. So,
by Proposition 1.17, we conclude that the direct product S!7! is automatic. Let
(F, K) be an automatic structure for S!7 with uniqueness with ' = {f1,..., fi}.
Since S? = S, we can use Theorem 1.16, and assume that K does not have words
of length 1. Given t € T, using again Proposition 5.7, there is a right identity

e € T such that ¢t = eq for some g € T'. So we can define a generating set

Y ={er,....em} U{q1, - qm}

for T such that t; = e;q; fori = 1,...,m and ey, ..., e, represent (not necessarily

distinct) right identities in 7. We define a new alphabet A by
A={(f,e;): feFi=1,...myU{(f,q): feF,i=1,...,m}

and a language L on A by
L= J {(fa€)- (fonsr€)(fan: @) ¢ far - fan € K}
i=1,....m
We will prove that the pair (A, L) is an automatic structure for Swr7T (with
uniqueness). To see that A generates Swr7T and that L is a set of unique rep-

resentatives for SwrT we observe that, given (f,¢;) € SwrT there is only one
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word fu, ... fa, in K such that f = f,, ... fa,. So there is only one word in L
representing (f,¢;) which is

(fa17ei) cee (fan_1;€i>(fan:Qi)-

To prove that L is a regular language we now define a gsm A such that Kny = L.
Let

A = (Qv F7 A? 1y 4o, {X})

with @ = {qo,-..,qn} U {x}, where ¢y is the initial state, y is the only accept
state and g is a partial function from @ x F to finite subsets of Q x A1 defined
by:

(g0, lu={(q:; (f,e:))} (i=1,...,m),

(a, [)pn={(a, (f.e), O, (f; @)} (i =1,....m).

We will now prove that L., ) is a regular language, for (f,e,) € A. If we define
LYy = Ligen N (A" {(foa) : f € F} x AN)oa (i=1,...,m)

then we can write

and it suffices to prove that, for each ¢« € {1,...,m}, the language Lg?er) is

regular. To achieve that, we will use Theorem 3.1, and we start by showing that

LE?,er) = KgmrCada N (AT - {(f,q) - f € F}y < AV {(f,qi) : f € F})da

where w is the word in K that represents %f € SITI. Let

(fars€i) -+ (fan_rs€i)(fan @), (515 €5) - (foars€5)(fo.,45) € L.
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Then

((fars€) - (fan—1s€)(fan, @) (foi,€5) - (fo,-1:€5)(f5,045))0a € Lg})m
> far - fan Bf = fa, .- f5, & eigie, = €;q;
= for - Jan B = fo - [, & €iqi = €5q;
S for o S W =fa . Ja & ti=1
<= (for - fans S - fo)0r € Ky &i=3
= ((far,€) - (fanors €)(fans @) (fois€5) - (faoi€5)(fa.,45))0a €
KompCada N (AT -A{(foqi) - fE€F} x AT -{(f.q;) : f € F})da

We conclude, by Theorem 3.1, that LE? er) is a regular language. For a generator

(f,qr) € A will we prove that Ly g, is regular in a similar way. We can write

where

L0 = Ly N (AT {(f) s f € FY x AN)da (i=1,...,m).

Welet i € {1,...,m} arbitrary and we will prove that ng‘)qr) is a regular language.

Let j the unique element in {1,...,m} such that e;q;q, = e;g; and let w be the
word in K that represents %f € SITI. Let

(falvei) s (fan717 ei)(fan7Qi)7 (fﬁl?ek) s (fﬁsflvew(fﬁqu’ﬂ) €L
Then

(Farr€1) - (fanss€) (Fan @), (Forr€x) - (Fars ) (fa0 a))0a € LYY, |
> for - Jon B = fo - J5. & €i0igr = erqr
> (foy - fans Jor - [5.)0r € K & €4, = exqe & k= j
= ((far:€) - (fanrs€)(fans @) (for€x) - (fo,-1rex)(fp,, ar))0a €
KompCada N (AT -A{(f,q) 1 f € F} x AT -{(f,q5) : f € F})éa

We can use again Theorem 3.1 to conclude that, for each 7, the language

L),y = KampCada N (AT {(f.a:) : f € F} x AT {(f.q5) - f € F})a
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is regular. |

In the case where the semigroups S and T are monoids, necessary and sufficient
conditions for the wreath product SwrT to be finitely generated, given in [38],

are the following:

Proposition 5.9 Let S and T be monoids, and let G be the group of units of T'.
Then the wreath product SwrT is finitely generated if and only if both S and T
are finitely generated, and either S is trivial, or T = VG for some finite subset

Voof T.
By using this result, our theorem has the following consequence:

Corollary 5.10 Let S be an automatic monoid and T be a finite monoid. Then

the wreath product S wr'T is automatic.

PrROOF. We assume that S is not trivial. We can apply Proposition 5.9, with
V =T, and so SwrT is finitely generated. Moreover, the three conditions in
Proposition 5.7, for the case where the diagonal S-act is not finitely generated,
hold trivially since S and 7" are monoids. The proof of our theorem is based on

these conditions and therefore the wreath product S wrT is automatic. |

It is still an open question whether or not the wreath product S wrT is always
automatic when it is finitely generated. Of course, because of the above result, it
only remains to consider the case where the diagonal S-act is finitely generated.
In [38] and [50] we can find some examples of wreath products with finitely
generated diagonal S-act which, as the authors observe, is in some way the less
common case. Another interesting problem is that of the automaticity of the
wreath product in the case where the semigroup T is also infinite. A natural
starting point here is to use Proposition 5.9 and investigate the case where S and

T are monoids.



Chapter 6

Subsemigroups

We will consider the automaticity of subsemigroups of free semigroups and free
products of semigroups. In Section 1 we will prove that a subsemigroup of a
free semigroup is automatic (a known result) and in Section 2 we will consider
subsemigroups of free products, proving in particular that subsemigroups of free
products, with all generators having length greater than one in the free product,

are automadtic.

1 Subsemigroups of a free semigroup

The following result was proved in [11] but, since we will use the idea of that

proof in the following section, we include it here with some additional detail.

Theorem 6.1 If F is a free semigroup and S is a finitely generated subsemigroup

of F', then S is automatic.

PROOF. Since we are going to consider finitely generated subsemigroups of F'
we may assume, without loss of generality, that F'is a free semigroup on a finite
set X. We will show that S! is automatic, which is sufficient by Proposition 1.14.
Suppose that S is generated by {a, ..., a,} where each «; is an element of F. Let

m; be the length of ; when considered as a word in X+, Let A = {ay,...,a,,1}

73
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be an alphabet, and let
L= {a 1™ ap1™ ™ a, 1™ U {1},
be a regular language on A". We have a natural homomorphism
p:(AU{$H)" = X" 1,8 — € as—a; (i=1,...,n)
satisfying the property
|lwp| = |w| for any w € L\{1}.

We will prove that (A, L) is an automatic structure for S'. Let K = L\{1}, so

that
L-=L=K_U{(1,1)},

Lo, = Ko, U{(1,w)04 : w € Lywp = oy}
for each 7. The set {(1,1)} is finite and the sets {(1,w)d4 : w € Liwp = «;}
are finite as well since there are finitely many words w € L with length |a;| and
wp = «; implies |w| = |wp| = |a;|. Hence it is enough to show that K_ is regular
and that K, is regular for each i. We will define automata that recognize these

languages but before that we need to prove the following:

Claim 1 There is a finite set W C X* such that for any word

(B1)da € K-U( | Ka),

given an arbitrary integer t, the prefives G(t)p,~v(t)p of the words Bp,vp € Kp
are such that, one of them is a prefix of the other and the remainder suffix of the

longer word belongs to the finite set W. Formally,

(vt € N)(B(t)p € (v(t)p)W or y(t)p € (B(t)p)W).

PROOF. To prove this claim we define N = max{m; : i = 1,...,n} and W =
{w e X*: Jw| < N}. We note that for any w € K we have

w| = |wpl, w(t)p| < |w(t+1)pl (Vi € N).
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(S8

For (3,7)da € K—- we have Bp = vp and so |3| = |y|. We can write 3(t) =
by...by with by, ..., b € A for any t < |3| = |Gp|. We have

by definition of p and so ¢t < |(5(t))p| < t+ N. Similarly ¢ < |(y(t))p] <t + N

and we can write

1(BE)pl = [(v(@)pll < N for £ <[f]. (6.1)

For (8,7)6 € K,, we have (8p)a; = ~yp and clearly, equation (6.1) still holds
in this case. For |5] < t < |y| we have |Bp| < [(7(t))p| < |Bp| + N since
7] = [B] + [ci|. Hence, for any (8,7)d4 € K= U (U;—; ., Ka,), We have

1(B(t))p| — |(v())pl| < N for any positive integer ¢. (6.2)

For (3,7)da € K— we have Sp = 7p and so given a positive integer t, either

(v(t))p is a prefix of (G(t))p or (B(t))p is a prefix of (y(t))p. For (5,7)da € K,,
we have ((p)a; = vp and so given t either (y(t))p is a prefix of (G(t))p or (B(t))p

is a prefix of (y(¢))p or t > |3| and then

(v(£)p € (Bp)(Pref(as)) € (Bp)W = ((5(¢))p)W.

In any case, using equation (6.2), we obtain (5(t))p € (v(t)p)W or (y(t))p €
(B(t)p)W for any positive integer ¢ and the claim is proved. [ |

In what follows we fix a set W in the conditions of Claim 1. We now construct
an automaton M such that K_ C £(M) and automata M; such that K,, C
L(M;). Let
M = (Q,(AU{3}) x (AU{3}),(e,€), 1, (€, €))

where Q = (W x {e}) U ({¢} x W) and the transition p is defined by

(, ) 2, (,7) if alzp)y = Blyp) and v € W
(. 8) 2, (7,€) if alzp) = Blyp)y and € W,
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With the same notation we let:

M; = (Q, (AU{8}) x (AUA{3}), (¢,€), 1, (€, ).

To prove the inclusions above we will use the following:

Claim 2 For any u,v € (AU{$})*, with |u] = |v|, we have

(8,6 2 (e,7) = Blup)y = vp, (6.3)
(8,€) L, (v,€) = Blup) = (vp), (6.4)
(e.8) "2 (7€) = up = Blop)y, (6.5)
(e.8) U (e7) = (up)y = Blup) (6.6)

PRrOOF. We will prove this claim by induction in m = |u| = |v|. For m =1 the
implications follow from the definition of u. Suppose the claim holds for words
u,v of length m. Let u,v be words of length m + 1. Then we can write u = u'x

and v = v’y where v’ and v are words of length m and z,y € AU {$}. To prove
implication (6.3) suppose that (3, €) Mu (e,7). We have either (f3,¢€) L,
(e,m) or (B,€) M’u (n,€) for some word n. We first consider the case where

o

(B,€) Mu (€,m). In this case B(u'p)n = v'p by induction hypothesis and, since
(e,m) Mu (e,7), we have (zp)y = n(yp) by definition of x. So we have

Blup)y = B(u'p)(xp)y = B(u'p)n(yp) = (V'p)(yp) = vp.
In the case where (/3,¢) M# (n,€) we have ((u'p) = (v'p)n by induction
hypothesis and, since (7, €) M# (€,7), we have n(xp)y = yp, by definition of p.

Hence,
Blup)y = B(u'p)(zp)y = (Vp)n(zp)y = (v'p)(yp) = vp.
We conclude the proof of the claim by observing that implications (6.4), (6.5) and

(6.6) for words u, v of length m + 1 can be verified similarly, using the induction

hypothesis. |
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To prove that K_ C L(M) let (u,v)d4 be an arbitrary element of K_. We
have up = vp and so |u| = |up| = |vp| = |v|. Hence we can write u = u; ... u; and
v=0p...0p with uq, ... ug,v;...,0, € A. By Claims 1 and 2 and by definition

of u there is a path

(67 ) (u1,v1) ( /) (u2,v2)

/ (uk,vk)
€) ——u (v,7) —u (12,73) — ... ——

(s )
with v, =eand v, € Wory € Wand v =e€fori=1,..., k. We now show,
using Claim 2, that v, = 7, = €. If 74 = € then, by implications (6.3) and (6.6),
we have (up)y, = vp and so 7, = e. If 7, = € then, by implications (6.4) and
(6.5), we have up = (vp)yr and so v, = e. In any case (1, 7,) = (€, €) which
means that the path is successful and so (u,v)d4 € L(M).

We now prove that K,, C L(M;). Let (u,v)04 € K,, arbitrary with u =
Uy . U, 0 =01 ... 0 and ug, ... Uk, U, ..., U € A so that we have (up)a; = vp.

By Claims 1 and 2 and by definition of pu, there is a path

(u2,v2)

(u1,v1)

(676) o 4 (717’)4) o (’727/75)_>

(uk,vk) / (8,06+1) / (8,0r) /
w (V) =0 (V1 View) = -« =0 (9 W0)

with 7; = eand v; € W or 7; € W and ; = € for each j = 1,...,r. Using
Claim 2 we will prove that v, = € and 7. = ;. In fact, if it was . = € then
implications (6.4) and (6.5) would give up = (vp)y, what is not possible since
(up)a; = vp. So we have 7, = € and, using implications (6.3) and (6.6), we obtain
(up)7y.. = vp which implies that 7/ = a;. Hence the path is successful in M; and
so (u,v)d4 € L(M,;).

Finally, we will show that

LIM)N (K x K)a C K—, LM;)N (K x K)§;s C K_.

Let (8,7)d be an arbitrary element of L(M) N (K x K)ds. Then we have a

successful path

(e.6) P2 (e,)
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in M and, by Claim 2, we have 8p = ~vp which means that (§,v)6 € K_.
Analogously, given an arbitrary element ((3,7)0 € L(M;) N (K x K)da, there is

a successful path

(67 6) M (67 ai)

in M; and, by Claim 2, we have (8p)a; = vp which means that (3,7)d € K,,.

To conclude the proof of the theorem we observe that
K_= ﬁ(./\/l) N (K X K)5A, Kai = C(Mz) N (K X K)(SA

and so K_ and K, are regular languages. |

2 Subsemigroups of free products

If Sq,...,S5, are semigroups with presentations (A; | Ry),...,(A4, | R,) then
their free product, S = Sy *...%*.5,, is the semigroup defined by the presentation
(AyU...UA, | RiU...UR,) (for an introduction and notation about semigroup
presentations see Section 3 in Chapter 8). Any element s € S can be identified
with a sequence

S1...8m (m>1)

of elements of [ J;_, Sk such that,
$; €85, = Si+1 ¢Sk (izl,...,m—l;kzl,...,n);

such a sequence we call a reduced sequence (of elements of |J;_, Sk). Given two
elements s = s1...5,,8 = s} ...s, €5, their product ss’ is the following: if the
elements s,,, s) do not belong to a common factor Sy then the product ss’ is the
concatenation of sequences and in this case we say simply that the product ss’ is
the concatenation; otherwise we have s,,, s} € Sy for some k and the product ss’
is the reduced sequence sy ... 8, 15,55 ... 5, where s; = 5,87 in S.

Our main result is the following:
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Theorem 6.2 Let S be a free product of finitely many semigroups. Let H be a
subsemigroup of S generated by a finite set X such that no element of X belongs

to a non free factor of S. Then H is automatic.
This result has the following equivalent formulation:

Theorem 6.3 Let S be a free product of finitely many semigroups
S=51%...xS,xT1x...xT,

where Ty, ..., T,, are free semigroups on finite sets Y1,...,Y,, respectively. Let

H =<ty,...,t; > be a subsemigroup of S where
ti,...,t € S\(SlLJUSn)
Then H is an automatic semigroup.

PROOF. Let us denote T; by S,4; fore=1,...,mandlet Y =Y, U...UY,,.
Each generator t; such that ¢; ¢ T1U...UT,, can be written as a reduced sequence

of elements of | ;""" Si:

ti = Si15i2 - - - Sip(i),

with p(i) > 2. We observe that, in these sequences, we may have an element
from | J;_, Sk appearing several times, i.e., we may have s; ; = s3; with i # k or
j # 1, and to deal with that we are going to define alphabets that are essentially
in bijection with all different elements from (J;_, Sk, that either appear in these

sequences or by multiplying them. For each k € {1,...,n} we define
Ay ={"ay,..., Fa, }

to be an alphabet in bijection with the following finite subset of S:

l
Fe=|J{si; € Sk:j=1,....p(i))}) U{sip@wsj1 € Sk 14,5 € {1,...,1}},

=1
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and let fy : Ay — F} be that bijection (we assume that the alphabets are disjoint).
We observe that, although the semigroups Si,...,S, are arbitrary and may be
infinite, an arbitrary element h € H can be written as a product of the generators
t1,...,t; and the essential idea for our proof is that the only elements from [ J,_, Sk
that may appear when we write an element of H as a reduced sequence of elements
of JiE" Sk, are the elements of the finite set |J;_, Fy. Moreover, for each k, an
element from F}, can now be represented by an element of the alphabet Ay.

We now define the alphabet
A=AU...UA, UY

and the language L C A™ by

L={y1...yp:y €EAU...UA,UYTU...UY,T,
yiEAj:>yi+1¢Aj(izl,...,k—l;jzl,...,n),
yzex/;+:>yl+l¢y;+(lz]-77k:_1yj:177m)}

The bijections f; induce a homomorphism
f:AT =8

and we will now show that any element in H has a unique representative in
L. Given an element h € H it can be written as a product of the generators
t1,...,t;. Hence, when we write h as a reduced sequence of elements of U?:lm S;
h = ...u,, each element u; is either some s;; or a product sj ,x)si,1 or belongs
to a free semigroup 7;. We note that here we need the fact that no generator
may belong to a semigroup S; (j = 1,...,n), because otherwise there could be
an element u; € S;, for some j € {1,...,n}, that could only be obtained as a
product of more that two elements s;; € S;. It follows from the definition of the
alphabets Aq,..., A, and from the definition of L that there is a unique word
w € L such that wf = h.

Let 74,...,v be the unique words in L such that v, f =t;, i =1,...,1. Let

X ={x1,...,2;,1} be a new alphabet and p be the homomorphism defined by

pi(XU{SHT — A%z =751, 8 e
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f
X X)) —H
& f
V ~
(X"p)\e/

Figure 6.1: Diagram with p, f, and .

We define the partial function

A A* = LU{e};e— ¢,

w — w € L if there is w € L such that w = w in S,

which maps each word in A" to the corresponding unique ”reduced word” in L
if such word exists. The domain of this partial function is not A* because there
may for example exist a,b € Ay for some k, such that (af)(bf) ¢ Fj, and in this

case there is no word w € L such that w = ab in S. Nevertheless, since we have

XTo\{et ={var - Yo : kEN; ..., €1{1,...,1}},

the partial function A is defined on X*p, and more generally, it is easy to see

that it is also defined on
Subw((XTpU X*p)h).

We will now show that the set X+p\{e} C L C AT is in bijection with H. Given

an arbitrary h € H we have h = t,, ...t,, if and only if h = (x4, ... 24, )p, and

k
we have already seen that there is a unique word in L representing h. We can
now identify the subsemigroup H with the set X p\{e} which is a semigroup,
defining the product of two words wy,ws € X +p\{e}, representing two elements
s1,52 € H, to be the word wiw,; € X*p\{e}, which represents the element

s1So € H. This semigroup is generated by the words 71, ...,7;,. We observe that
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this product may be simply the concatenation or not, depending on the words
wy, we, but if it is not the concatenation we have |wiws| = |wywy| — 1. Figure
6.1 illustrates the use of our functions by showing a diagram with the relevant
subsets of their domains and ranges. The proof will now follow the lines of the
proof of Theorem 6.1, keeping in mind that a product of the generators vy, ...,V
is not precisely the concatenation but it is not far from it.

Let us consider the language K C X defined by

K = {wallhal\—lxm 17“(041,042)3:0[3 o 1r(at72,at71)$at 1r(at,1,at) :

t>lasef{l,... bi=1,... 1}

where
)l = ] = e
T(%j) - .
sl =2 if sl = [yl — 1.
We observe that |w| = |[wp| for any word w € K. We can easily define a finite

deterministic automaton that recognizes the language K and so K is a regular
language. We will show that (X, K') is an automatic structure for H', where
K! is the regular language K U {1} € X' and H' is the monoid obtained by
adjoining an identity 15 to H. We have

Ki = [(11 =K_U {(17 1)}7
K} =K, U{(L,w)dx : w € K,wp = v;}.

Since {(1,1)} and {(1,w)d4 : w € K,wp = ~;} are finite sets we just have to
prove that K_ and K, for each 7, are regular languages.
Denoting by ‘a, b, ... generic elements in A;, for w;, ws € A* we write w; > ws

if one of the following situations occur:

(wy € Pref(wy) & wy; € A*Y') or
(wy € Pref(wy) & wy € A*Y') or
(w; = w'a and wy = w bw') for some i or
(

w; = w 'aw’ and wy = w D) for some i.
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For wy >t wy we define

(€, w) (wy = wyw,w; € A*Y)
(w,€) (w1 = wow, wy € A*Y)
Rem(wy, wy) = o 4 ,
(‘a, Dw') (w1 =wa,ws =wbw',i € {1,...,k})
(‘aw', b) (w1 =w'aw',wy =whie{l,... k}).

Intuitively, for two words wq,ws € L we have w; <1 wy if one of the words is
almost a prefix of the other, in the sense that it may be possible to multiply the
shorter word by a word from L in order to obtain the longer word. The function
Rem (which stands for remainder) gives us the remainders of the two words: the
two suffixes not belonging to the common prefix.

The following result tells us that there is a finite set where we can store the

remainders, if we are dealing with words from our languages.

Claim 1 There is a finite set W C A* such that (wy,ws)0x € K— U (U\_, K,,)
implies that, for all t € N, we have wq(t)p > wo(t)p and Rem(wi(t)p, we(t)p) €
W x W.

ProoOF. We take
N =max{|y|:i=1,...,1}

and we will prove that the result holds with
W ={w e Suff(X+*p) : |lw| < N +1}.

Let wy,wy € K and t < |wy|, |ws|. By the definition of K, we can write ¢ <

lw;(t)p] <t+ N (j =1,2) and so we have

[[wi(t)p] = [wa(t)pl] < N.

If (wy,w9)dx € K_ then wip = wyp and therefore

w1 (t)p > wa(t)p.
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Let Rem(wy(t)p, wa(t)p) = (n1,m2) where ny, 1, € A*. Since wy, ws € K C X+ we

have wy (t)p, wa(t)p € X p and so w;(t)p, wa(t)p € X+p. Therefore, by definition

of Rem, ny,m2 € Suff(X+p). Since ||w;(t)p| — |w2(t)p|| < N, again by definition
of Rem, we have |1, |n2] < N + 1 and we conclude that (n;,72) € W x W.
Suppose now that (wy,ws)d4 € K,,. Then it is (wyp)y; = Wap and so

wi(t)p > ws(t)p

for any ¢ € N. Since we have |[wip| = |w| and |wzp| = |wy| it may be |wy| =

lwi| + || or |ws| = |wy]| + 5] — 1 according to whether wipy; = (wip)y; or

not. For ¢ < |w;| we have as above t < |w;(t)p| < t+ N (j = 1,2) and so

[|wi(t)p| — |wa(t)p|| < N. For |wq| <t < |wy| we have

[wi(t)p| = [wip] = |wil, < fws(t)p| < Jwi] + |yl < fwn] + N

and so |Jwa(t)p| — |wi(t)pl] < N. Again wy(t)p, wa(t)p € X+p, since wy,ws €
K C X, and we have Rem(w; (t)p, wa(t)p) € W x W, [ |

From now on we assume that a set W satisfying the conditions of Claim 1 is
fixed and we will use this set to construct automata that allow us to prove the
regularity of our languages. We will prove that there is an automaton M such that
K_ = LIM)N(K x K)dx and automata M, such that K, = L(M;)N(K xK)dx.
Let

M = (Q, (X U{8}) x (X U{$}),(e,€),1,T)

where Q = W x W, T ={(a,a) :a € AyU...UA, U{e}} and p is defined by

(a, 8) 22, Rem(a(zp), Blyp)) if alwp) b2 Blyp) and
Rem(a(zp), B(yp)) € W x W

for , f € W and x,y € X U{$}. Fori € {1,...,1} we define

Mi = (Qv (X U {$}) X (X U {$})7 (6’ 6)7H:Ti)
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where T; is defined as follows. If v; = Jay} for some word 7, € A" then we define
T = {(%, %ev)) « o= Jein S} U{("D, By) 1k # 5} U{(e. %)}

If v, € Y A* then we define
T = {("a, "am)} U {(e.7)}-

The following result, relates a transition in the automata with the remainders

of the pair of words involved in the transition.

Claim 2 For any wy,ws € (X U{$})", with |w,| = |wa|, we have

(w1,w2)

(o, B) ——u (01,02) = Rem(a(wip), B(wzp)) = (61,02). (6.7)

PRrOOF. We will prove this claim by induction on m = |w;| = |ws|. Form =1

the implication follows from the definition of . Suppose the claim holds for words

of length m and let wy, wy be words of length m + 1 with («, ) M)u (01,0,).

Then we can write w; = wjx and wy = why where w| and w) are words of
(w/IVwé) (m,y)

length m. We have (a, ) ——=, (m1,7m2) and (n1,12) ——, (01,6,) for some
words 71,12 € W. By the induction hypothesis and by definition of u it is

(n1,m2) = Rem(a(w)p), B(whp)) and (61,02) = Rem(ni(zp), n2(yp)). We can then

write

a(wip) =w'm,  m(rp) = w'oh,
ﬁ(wép> = w”7727 T]Q(yp) = wle%

for some words w’, w” € A*.

We will now show that

w'w'f, = w'w'o,.

The equation holds trivially for 6; = e. If w' # e the equation holds as well,

since w'6; € L. We will now consider the case where 6; # ¢ and v’ = e. If

" i

w” € A*Y U {e} then the equation clearly holds. Otherwise we have w” = w"” 'a

for some i, it must be 77 # € by the definition of Rem and, since w”n; € L, we

have either n; € Y A* or n; = % with i # j. Since 1;(zp) = 6; we have ; € Y A*
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or 0, € A;A* with i # j as well and, in either case, w”6; = w”6; yielding again

w'w'f; = w'w'f;. A similar argument shows that w”w'6y = w"w'6s.

Therefore we have

a(wip) = a(wip)(zp) = awip)(zp) =

(w'ny)(xzp) = w'm (xp) = W' = w'w'dy

and

Blwap) = B(wip)(yp) = Blwip)(yp) =
(w'n2)(yp) = w'na(yp) = w'w'dy = w'w's.

Hence Rem(a(wyp), B(wep)) = (61, 02) which concludes the proof of the claim. W

We will now use the two claims to prove that

K_ = E(M) N (K X K)(;A,
Ky = LM) N (K x K)oa (i=1,...,1),

by showing each of the four inclusions separately.

To prove that K_ C L(M) let (wy,w2)dx € K_ arbitrary. We have wip =
Wap, |wn| = |wip| = |[wap| = |we| and we can write w; = y; ...y, and wy =
21...2 with yp,.. ., Yk, 21 ..., 2 € X. Using the two claims and by definition of

i we can construct a unique path labeled by (wy,ws),

(y1,21) (y2,22) (y3,23) (Yr>2k)
(e,€) == (i, mh) =5, (Mo, mh) =y o =5 (1, 1),

with all n;,n, € W. By Claim 2 it must be (nx,n,) = Rem(wip,wyp). Since
W1p = Wap, we have (n, 1)) = (a,a) with a € A; U...U A, U{e}, which means
that (wq,w2)da € LIM).

To prove that L(M) N (K x K)dix C K_ let wy,wy be arbitrary words in K
such that (wy,wq)dx € L(M). We can write w; = y; ...y, and we = 21... 2%

where y1,...,Y4, 21, .., 2 € X. So there is a path

) (Y1 Yk,21---2k) (a,a)

(€,€



CHAPTER 6. SUBSEMIGROUPS 87

in M where k = maz{q,r}, Yypu1 = ... = Yp = 241 = ... = 2z, = $ and
a€ A U...UA,U{e}. By Claim 2 it is (a,a) = Rem(wyp, wyp) which implies
that w; = wy as elements of H and so (wy,wy)dx € K_.

To prove that K,, C L(M;) let (wy,ws)04 € K., be arbitrary. We have
sz—zpandwewritewl =YYk, W =21 ...z wWithy, oo Yk, 21,0 2
€ X. Using the previous claims and by definition of 1 we can construct a unique

path in M; labeled by (w;$" %, w,),

(y1,21) (y2,22)
(676) —L—l_)lt (771’77,1) —2—2>M (7727%) -

(Yr»>2k) ( A (8,2k41)

(8,2r)
In Ny M —u (7719+1a77§g+1) e T

w (e ml),

with all n;,7; € W. By Claim 2, (n,,7,) = Rem(wip,wzp). If 7 € Y A* then,
it can be wip € A*Y and so (n,,1.) = (¢,7) € T;, or wip = w " and then
(e, 1.) = (*a, %ary;) € T; as well. Otherwise we have 7; = Jay] and, since
m = Wyp, there are three possibilities: it may be wip = w' b and wWyp =
w'Iery! with bJa = Jc in S;, and so Rem(wip, wap) = (%, Jev]) € T;; it can also be

(
wip=w' M (k # j) and Wep = w' My, and then Rem(wp, wap) = (%, ;) € T;;
wap) =

finally it can be wip € A*Y and then Rem(wip,wsp) = (€,7;) € T;. In any case
(-, m.) = Rem(wyp, wap) € T; and so (wq, w2)dx € L(M,).

To prove that L(M;) N (K x K)ix C K,, let w;,wy € K arbitrary such
that (wy,wq)0x € L(M;). We can write wy = y; ...y, and wy = 21 ... 2, where

Y1y Ygs 21, - -, 2 € X. There is a successful path

(y1.-Yk,21.-2k)
) —— (

(€, € n,1')

in M; where k = max{q,7}, Ygr1 = ... = Yp = 2Zrp1 = ... = 2z = $ and
(n,n') € T;. By Claim 2 we have (n,n') = Rem(wip,wzp). If v; = Jay. then,
by definition of T}, we have either (n,7') = (%, %) with % = Jcin S;, or
(n,n") = (", %) with & # j, or (n,7') = (€,7). In the first case we have

w1p = w’b and Wep = wey, for some word w € A* and so we can write (wp)y; =

w b Jary] = w ey, = Wwep which means that wyx; = we in H. In the second case

we have wip = w b and Wap = w *by; for some word w € A* and so we can write
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(w1p)y; = w Mry; = Wap and again wyx; = wy in H. In the third case we have

wip € A'Y and so wap = Wipy; = (wyp)y; which implies wy = wyz; in H. If we

have «; € A*Y then, by definition of T}, it may be Rem(w1p, wzp) = (*a, *ay;) or

Rem(wyip, Wap) = (€,7;). In the first case we have wip = w*a and so wyp = way;

which implies that (wip)y; = w *ay; = w *¥ay; = Wyp and therefore wiz; = wsy in
H. In the second case we have wip € A*Y and wyp = wipy; = m which
implies again ws = wyz; in H. So in any case (wy,wy)dx € K,, and the inclusion
is proved.

To conclude the proof of the theorem we observe that, since K— = L(M) N
(K x K)os and K,, = L(M;) N (K x K)da, K_ and K,, are regular languages

and so H' is automatic which implies that H is automatic. [ |

Corollary 6.4 If S is a free product of semigroups that are either finite or free

then any finitely generated subsemigroup of S is automatic.

PROOF. Let S = Sy *...xS, «Ty*...xT,, where Sy,...,S, are finite semigroups
and T,...,T,, are free semigroups. Let H be an (infinite) subsemigroup of
S. Suppose that H is generated by A = {t1,...,;} C S and, without loss
of generality, that AN S; = {t1,..., &} (0 < k < 1) . Since the semigroup
U =<tq,...,t, > is a subsemigroup of S it is finite. Let H' be the semigroup

generated by the finite set
A ={U% U U U, UM U
We observe that
AN(SiU...US) 2A N(SU...US,), ANS =0

and H\H' = U is finite. If A’ contains elements from Sy we can remove them the
same way obtaining a semigroup H” generated by a set A” that does not contain

elements from S; U Sy and such that H\H" is finite. Repeating this process for
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every S; that contains generators we will obtain a semigroup V' generated by a
set B such that BN (S;U...US,) = 0 and H\V is finite. Since V is in the
conditions of the previous theorem it is automatic. Since H\V is finite we can

use Proposition 1.15 and conclude the H is automatic. [ |

Corollary 6.5 Any finitely generated subsemigroup of a free product of finite

semigroups 1s automatic.

PRrOOF. This is a particular case of the previous corollary, worth stating sep-

arately. |

We say that a semigroup is monogenic if it is generated by a single element

and we have the following result:

Corollary 6.6 Any finitely generated subsemigroup of a free product of mono-

genic semigroups 1S automatic.

PROOF. A monogenic semigroup is either free or finite and so we can use

Corollary 6.4. |

Defining a semigroup to be strongly automatic if all its finitely generated

subsemigroups are automatic we may ask the following question:

Question 6.7 Isthe free product of strongly automatic semigroups always strongly

automatic?

The answer to the same question for groups is "yes” because we can use the
Kurosh Subgroup Theorem: If H is a subgroup of G * G5 then H is isomorphic
to F'x Hy x Hy where F is a free group, H; is isomorphic to a subgroup of G,
and H, is isomorphic to a subgroup of GG5. For semigroups it is still an open
question. As we will see, the bicyclic monoid is strongly automatic. So we may

also consider the following question:
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Question 6.8 Does Theorem 6.2 still hold if we allow generators to belong to

factors isomorphic to the bicyclic monoid?



Chapter 7

Subsemigroups of the bicyclic

monoid B

The bicyclic monoid is one of the most fundamental semigroups. It is one of the
main ingredients in the Bruck—Reilly extensions (see [29]), and also the basis of
several generalizations; see [1, 8, 21, 26]. In [30, Sec 3.4] references are given to a
number of applications of the bicyclic monoid to topics outside semigroup theory.
The bicyclic monoid is known to have several remarkable properties, one of which
is that it is completely determined by its lattice of subsemigroups; see [45] and
[46]. Also, in [31] the authors study properties of a specific subsemigroup of B.
Slightly surprisingly, there seems to be little other work in literature regarding
the subsemigroups of B.

In this chapter we give a description of all subsemigroups of B. We show that
there are essentially five different types of subsemigroups. One of them is the
degenerate case of subsets of {c'b’ : i > 0}, and the remaining four split in two
groups of two, linked by the obvious anti-isomorphism ~ : ¢/t — ¢/b’ of B. Each
subsemigroup is characterized by a certain collection of parameters. We describe
algorithms for obtaining these parameters from the generating set.

In Section 1 we define a series of distinguished subsets of B, which are then

used as a kind of building blocks, and then we state our main theorem in Section

91
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b ..

ch’l--.

bl

sl S

Figure 7.1: The bicyclic monoid

2. Section 3 contains the auxiliary results needed to prove the main theorem.

In Sections 4 and 5 we respectively consider the two non-degenerate types of

subsemigroups. Finally, Section 6 contains the algorithms for the computation of

parameters.

1 Distinguished subsets

In this section we introduce the notation we will need. In order to define subsets

of the bicyclic monoid we find it convenient to represent B as an infinite square

grid, as shown in Figure 7.1. We start by defining the functions ®, ¥, A : B — N
by ®(c'b’) = i, U(c'H) = j and A\(¢'W) = |j — i| and by introducing some basic

subsets of B:

D ={c''":i >0} — the diagonal ,
U={ct :j>i>0}— the upper half,
R, ={c'¥ :j > p,i >0} — the right half plane (determined by p),
L,={ct :0<j<p,i>0}— the left strip (determined by p),
My ={ct :d|j—1i;i,j >0} — the \-multiples of d,

for p >0 and d > 0.

We now define the function™: B — B by ¢/

ctbi

bl = db'. Geometrically

~ is the reflection with respect to the main diagonal. So, for example, U is the

lower half. Algebraically this function is an anti-isomorphism (zy = y7), as is
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<

Figure 7.2: The upper and lower halves U, U , the triangle T3 4 and the strips
51,47 51,4

easy to check.
By using the above basic sets and functions we now define some further subsets

of B that will be used in our description. For 0 < g < p < m we define the triangle
Tq,p:meE\qm(UUD) ={c'V : q <i<j<p},
and the strips
Sq,p:RmeﬂZ;:{cibj3qSi<p7j > p},
Sy =SqpUTyp ={cV :q<i<p,j>i},
Sqpm = S¢p N B = {¢V :q<i<p,j>=m}.
Note that for ¢ = p the above sets are empty. For ¢,,m > 0 and d > 0 we define

the lines o N
ANi=R;NLiyy ={cV:j5>0},
Nma=MNNR,NMy={cV :d|j—1,7>m}
and in general for I C {0,...,m — 1},
Arma=Uic; Nina={cV i€l , d|j—i, j>m}.
Forp>0,d>0,r€[d ={0,...,d—1} and P C [d] we define the squares
S, =R,NR, = {c'bi:i,j>p}

Ypdyr = 2ip N (U Apyriua) N (U Apiriud) = {Cp+T+Udbp+T+Ud u,v > 0},
u=0

u=0

Spar = Unep Spar = {0400 - v € Pruv > 0},



CHAPTER 7. SUBSEMIGROUPS OF THE BICYCLIC MONOID B 94

012 3 45678

SO N L AW N ~O

Figure 7.3: The A-multiples of 3, M3, and the square ¥ 3 (0,1}

Some of our subsetes are illustrated in Figures 7.2 and 7.3.

Finally, for X C B, we define ¢(X) = min(®(X NU)) (if X N U # 0) and
#(X) = min(¥(X N0U)) (if XNU # §). Geometrically , o(X) is the topmost
line having an element in X above the diagonal and x(X) is the leftmost column

having an element in X below the diagonal.

2 The main theorem
We now state our main theorem, that will be proved in the following sections.

Theorem 7.1 Let S be a subsemigroup of the bicyclic monoid. Then one of the

following conditions holds:
1. The subsemigroup is a subset of the diagonal; S C D.

2. The subsemigroup is a union of a subset of a triangle, a subset of the diago-
nal above the triangle, a square below the triangle and some lines belonging
to a strip determined by the square and the triangle, or it is the reflection
of such a union with respect to the diagonal. Formally, there exist q,p € Ny
withq <p,deN, I C{q,...,p—1} withqe I, P C{0,...,d— 1} with
0P, Fp CDNL,, F CT,, such that S is of one of the following forms:

(Z) S: FDUFUA[’deUEp’(LP; or
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(ZZ) S:FDUﬁUA/[;iUEnd’p.

3. There existd € N, ) # I C Ny, Fp € DO Lyin(ry and sets S; € Nyq (1 € )
such that S is of one of the following forms:
(Z) S = FD U USZ’
iel

(i) S =Fp Ul JS:;

el

where each S; has the form
Si=F,UN;m,a
for some m; € Ny and some finite set F;, and
I=Iyu{r+ud:re RuecNyr+ud> N}

for some (possibly empty) R C {0,...,d—1}, some N € Ngy and some finite
set Iy €{0,...,N —1}.

We start by observing that if S C D then there is nothing to describe because
any idempotent ¢‘b® is an identity for the square 3; below it.

Condition 2. corresponds to subsemigroups having elements both above and
below the diagonal; we call them two-sided subsemigroups. We observe that
a subsemigroup defined by condition 2.(7) is symmetric to the corresponding
subsemigroup given by condition 2.(i) with respect to the diagonal, and so we
can use the anti-isomorphism ~ to obtain one from the other. Therefore we
only need to consider subsemigroups that fall in one of these two categories. The
description of two-sided subsemigroups is obtained in Section 4.

We call upper subsemigroups those having all elements above the diagonal and
lower subsemigroups those having all elements below the diagonal. Condition 3.
corresponds to upper and lower subsemigroups. Again conditions 3. (i) and 3. (i)
give subsemigroups symmetric with respect to the diagonal and so only one of
them will have to be considered. Upper subsemigroups are dealt with in Section

5.
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3 Auxiliary results

In this section we will prove some useful properties of the subsets defined in
Section 1. In particular, we prove that a number of the distinguished subsets are

in fact subsemigroups. We start with three basic ones.
Lemma 7.2 For any d € N the A\-multiples of d, My, is a subsemigroup.

PRrROOF. Let c'v7,c*b' € My. Then d | i —j and d | k — 1. If j > k then
cbickyt = bR otherwise c¢bickb! = ¢ITFp. In any case c¢'b/cFb € My be-

cause d | i —j+ k — L. [ |

Lemma 7.3 For any p € N the right half plane R, and the strip S;,, are sub-

SEMIGTrOUPS.

PROOF. Let z = ¥,y = V' € R, (j,1 > p). If j > k then zy ='W~ € R,
since j —k +1>1>p. If j <k then xy = ¢ 75p € R, since | > p. Therefore
R, is a subsemigroup. Let z = ¢'V,y = ot € S}, (i,k <p,j > i, 0> k). If
j >k then xy = '/ *+ ¢ Sppsince i <pand j —k+12>j >4 If j <k then
xy = IR e S since i —j+k <k <pandl>k>i—j+k. Therefore Sj,

is also a subsemigroup. |

Now we use these basic subsemigroups and the fact that the image of a sub-
semigroup under an anti-isomorphism is also a subsemigroup, to establish some

further subsemigroups:

Lemma 7.4 For any q,p,m € Ng with ¢ < p < m the following sets are sub-

SEMIGrouUps:

(1) Sqp; (i1) S(’Lp; (iii) X,
(1v) SgpUXp  (v) Sypms; (vi) S;’pUEp.
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PRroOF. To prove (i) - (v) we will just write the sets as intersections of subsemi-
groups given by the previous lemma and their images by the anti-isomorphism™.

We have

Sep =S4, NRyN Ry, S =Sy NRy ¥, =R,NR,,
Sep ULy =Ry N Ry, Sypm = Sh, N Ry N R,.

To prove that S = S5 U Y, is a subsemigroup, it is sufficient to show that, for
r=cb eS8, (¢<i<p,j>i)andy = € X, (k1 > p), we have zy,yz € S.
If j > k then 2y = ¢t/ %' € S, because i > qand j —k +1>1>p. Ifj <k
then zy = ¢ 7kl € S, because i — j +k > i > g and [ > p. Since | > p > i we
have yz = c*b!="J € 3, because k > p and | —i+j > 1 > p. [ |

The following lemma establishes some inclusions that will also be useful.

Lemma 7.5 For any p,q € Ny with ¢ < p the following inclusions hold:

(1) TopSap S Sap; (1) SepTyp € Sop
(111) Typ2, C SepUX,; (iv) X,1,, C 3,
PROOF. Let
a=cteT,(q@<i<j<p),
ﬁzckbl € S%p (q§k<pal 2p>7
v=c"’ € X, (u,v>p).
If j > k then aff = W% and, since j —k+1>1>p, af € S, Ifj<k
then o3 = ¢7**b! and, since | > p and S, is a subsemigroup, aff € Sqp. So
(i) is proved. We have Ba = cFb'="7 because i < p <1[. Since | —i+j>1>p
we have fa € S,, and so (i) is proved as well. We have ay = ¢"7)” because
J <p < wand, since v > p and 5] ,U ¥, is a subsemigroup, ay € S,, U, and
(iii) is proved. Finally, ya = c“b""/~" because i < p < v. We have ya € ¥,

because v+ j —i > v > p, and (iv) is proved as well. |

Next we prove that every square is a subsemigroup:
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Lemma 7.6 For anyp € Ng, d € N and P C{0,...,d— 1}, the square ¥, 4 p is

a subsemigroup.

PRrROOF. Let

a = CP+T1+U1dbp+T1+U1d’ ﬁ — Cp+r2+u2dbp+7"2+’uzd c Ep,d,P

where 1,79 € P; uy,v1,us,v9 € Ng. If p+ 11 +v1d > p+ r9 + uad then

aff = cPrrituidpptrit(vi—uztv2)d

Since we have p+ry +wvid > p+ 19 + usd, it follows that r; +vid —usd > 19 > 0,
which implies r; + (v — ug + v9)d > 0. So we have (v; — ug + v3)d > —r; > —d
and hence v; —ug + vy > 0. Therefore a8 € ¥, 4p. If p+ 11 +v1d < p+ 19+ usd

then
Ozﬁ — Cp+7’2+(ul—v1+u2)dbp—&-rz—i-vgd.

Analogously p+ry+usd > p+ri+vid implies uy—vi+ue > 0andsoaff € X, 4 p. B

Also, a square ’extended’ by adjoining all the A-multiples of d in a strip above

it is a subsemigroup:

Lemma 7.7 For any q,p € Ny with ¢ < p, d € N and P C {0,...,d — 1}, the
set

2p7d7p U (Md N S;’p)

18 a subsemigroup.

PROOF. Let
H=X%,4pU(MgNS,,).

We know from the previous lemma that X, 4 p is a subsemigroup. From Lemmas

7.2 and 7.4 we know that My N S  is a subsemigroup as well. Let

o +r+udyp+r+od _ _ipi+sd /
a=c v’ €Xpap, B=cD""€ MyNS,,.
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We just have to prove that a8, fa € H. Since p+r +vd > p > 1,
Olﬁ — cp+r+udbp+r+(v+s)d c Ede.

We have

BOZ — Cl bz+sdcp+r+udbp+r+vd.

We note that H C U = (X, U S; ) N My and, using the same two lemmas, U is a
subsemigroup. Therefore, if i + sd > p 4+ r + ud then Sa ¢ ¥, and, since U is a
subsemigroup,

ﬁOJES(ImeMdgH.

Ifi+sd <p+r+udand u—s <0 we have again
ba € S;’pﬂMd C H.
Finally, if ¢ + sd < p+ 17+ ud and v — s > 0 then
Bay = prrHu=s)dpprrivd o S

which concludes the proof. [ |

Another important type of subsemigroups are the lines:

Lemma 7.8 For anyp € No, d € N and I C {0,...,p— 1}, the set Aj,q is a

subsemigroup.

PROOF. Let a = ¢'btd, 3 = Jpi ™ € A; 4 (4,5 < p;i + ud, j + vd > p). Then
af = bt hecause i +ud > p > j. Since i + (u+v)d > i+ ud > p we have
af € Al,p,d‘ |

The following lemma describes the subsemigroups that are obtained ’extend-

ing’ a square by adjoining lines above it:
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Lemma 7.9 Letpe Ny, deN, 0 £1C{0,...,p—1},0# P C{0,...,d—1},
and ¢ =min(I). The set H =X, 4p U A;,4 15 a subsemigroup if and only if

I'={p+r—ud:re PueNyp+r—ud>q} CI.

ProoF. We will first assume that H is a subsemigroup and prove that I’ C I.
Let cipitdr cptr+dpptr ¢ [ where r € P and d; > 0 is a multiple of d. For any

n,m € N such that p +r + md — nd; > q we have
(Cqbq+d1)n(cp+r+dbp+r)m — cp+r+md—nd1 bp—i—r cH

and so p+r—ud € [ for any r € P and u € N such that p+r—ud > q. Therefore
I' C I. Let us assume now that I’ C I and prove that H is a subsemigroup. We

know that X, 4 p is a subsemigroup. Let

o = prriudpptrivd ¢ 3 p (r € Pyu,v € Np)

6= chth ¢ A[7p7d<l. el,d, eN,d | dl)

We have
Oéﬁ — Cp+7"+udbp+r+vd+d1 ey

p,d,P-
Ifi+dy >p+r+udthen
Ba = Fpithtlmwd ¢ Arpas

because i +dy + (v —u)d > p+r+vd > p. If i +d; < p+r+ ud then

605 — Cp+r+ud7d1 bp+r+vd.

In this case, if ud — d; > 0 then o € ¥, 4p and if ud —dy < 0 then p +r +
ud — dy > g because H C S, , U, and S, , U X, is a subsemigroup. Therefore
p+r+ud—d, €I’ C I, implying fa € Ay q. |
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4 Two-sided subsemigroups

In this section we describe subsemigroups that have elements both above and
below the diagonal. Let S be a subsemigroup of B with SNU # () and SN U # 0.
Without loss of generality we can assume that ¢ = ¢(S) < k(S) = p observing
that the other case is dual to this by using the anti-isomorphism ~.

We now state our main result of this section:

Theorem 7.10 Let S be a subsemigroup of B such that SNU # (), SN U # 0
and ¢ = (S) < k(S) = p. There exist d € N, Fp C DNL, F C T,,,
I1C{q,....,p—1}, PCH{O,...,d—1} with 0 € P such that

S — FD U F U Al,p,d U Zp,d,P-

To prove this theorem we need the following elementary result from number

theory, the proof of which we include for completeness:

Lemma 7.11 Let ay,...,ax,b1,...,b, 19 € Ny be arbitrary with a; > 0, by > 0
and let
d=ged(ay,...,agby,...,b).

Then there exist numbers oy, . ..,a , —F1,...,—0 € Ng such that:
(i) aqay + ...+ agag + Biby + ...+ Giby = d;
(il) o1, ap, =B, .., =0 > 1.
PrROOF. We start by assuming, without loss of generality, that
A1y.eny by, ... by > 0.

Since d = ged(aq, ..., ag, by, ..., b)), we can write

k l
d="Y " ajai+Y B
i=1 j=1
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for some integers ayq,...,ax, B1,..., 0. Let H be any positive integer and let
P =HEklay...agby... by, @Q=P/k, R=P/l
We can then write
k ! k !
d=) oo+ ) Bibj=) ala+P—P+) Bib
i=1 Jj=1 i=1 j=1
!

J
k l

= aiai+ Y Bib
i=1 j=1

It is clear that when H increases all numbers oy, ..., ax, —f31,..., —0; increase as

k k [
= (da;+ Q)+ ) _(Bib;— R) = (o) +Qfaj)a; + Y (B — R/b;)b;

1 i=1

well and so the result holds. [ ]

PrROOF OF THEOREM 7.10. Let Fip =SNDNL, and S" = S\Fp. We have
S'=5N(Mgn (S, ,Ux,)) where d = ged(A(S’)) and so S is a subsemigroup.
We observe that the elements ¢'b' € Fp act as identities in S’. Let v € S'NU
and y € $' N U such that ®(z) = 1(S) = ¢ and U(y) = k(S) = p. Let Y C S’ be

a finite set such that:
(i) z,y €Y;

(i) AsnS' NS, #0 = ANY #Pforie{q...,p—1} (Y contains at least

one representative for each line in the strip with elements in S’);

(iii) {(i—p) modd: A;,NY NE, #0}={(i—p) modd: A;,NnS'NE, #0}
(Y contains at least one representative for each class of lines in the square

having a representative in S’);
(iv) ged(A(Y)) =d.

Such Y can be obtained by choosing a finite set Y7 (with at most p—g+d elements)
satisfying (i) — (i77), and a finite set Y3 such that ged(A(Y3)) = ged(A(S”)), and
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)4 p+d
q e P4+ O >
p «——o —»
p+d

Figure 7.4: Moving using c?b?*? and cP+9pP
letting Y =Y, UY5. Let
YN (DUU) = {c*¥",... c"br}
where . = W, g =1y < iy < ... < iy, J1 > 1,72 > d2,..., ], > i, and let
Y NU = {ch, ... o)

where y = Mo, p=1, <l <...<lyand ky > ly,..., ks > I,.

We are going to show that
RN AN

Before proving this we will make an observation showing the importance of these
two elements. This observation is illustrated in Figure 7.4.

Let ¢'&/ be an element in M;N (S, UY,). We have c't/cPbPT = ¢ipi+4 which
means intuitively that we can move d positions to the right in the grid using the
element cPbPt4. If ¢ > p then we also have c?TbPcit/ = ¢+9¢/ which means that
we can move d positions down. If j > p+d then we have ¢t/ cPHcP = i/~ which
means that we can move left. Finally, if i > p+d then we have cPbP+icit) = =
and so we can move up.

In order to prove that c?*bP, cPbP+4 € S’ we first note that

d:ng{jl_iI;-“;jr_imkl_lly-“;ks_ls}’
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by (iv). Since i; — j; < 0 and k; — l; > 0, Lemma 7.11 can be applied and we

can write
d=ai(in —j1) + ..+ (i = Jr) + Bk — b)) + ... + Bs(ks — 1) (7.1)
with the constants
Aty Oy Py, Bs > max{iy, ... i by U )
We can now consider the product (¢*1)°1 ... (¢"b")* which is equal to
(cil bz‘1+o<1(j1—i1))(ciabi2+a2(j2—i2)) o (Cirbir“!‘ar(jr_ir)).
Since ay > max{iy,...,i.} and j; —i; > 1 we have
iy — i) >, t= 1,7

and therefore, we can compute the above product working from the left hand side

to obtain
! bi1+a1(j1 _il)+a2(j2_i2)+~~~+ar(jr_ir). (72)

We now consider the product (cF=b's)% .. (ck2p'2)P2 (ck1p1)Pt wwhich is equal to

(Cls+ﬁs(ks—ls)bls) o (Cl2+52(k'2_l2)b12)(Cll"rﬁl(kl_ll)bll).
Since 31 > max{ly,...,ls} and ky — I3 > 1 we have
L+ Bk, —1) >0, t=1,...,s
and we can compute this product from the right to obtain

B (k1—l)+B2 (ko —l2)+...+Bs (ks —ls) 1 (7.3)

Multiplying the elements (7.2) and (7.3) of S" we obtain

cipita (j1*i1)+042(j2*i2)+-..+ar(]’r*l})cl1+ﬂ1(kl*11)Jrﬁz(k2*12)+m+5s(ks*ls)bl1

— Cll+dbl1 — Cp+dbp
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since ¢ = i; < l; = p and using equation (7.1). So PT4P € S’
Since d | (j1 — 41) we can write j; — i; = td for some ¢t € N. Since p > i; we

have p + td > j; and therefore
Ci1bj1 (Cp+dbp)t — Cil—j1+}7+tdbp — PpP.
We conclude that ¢?b? € S" as well. We now take the constants

Aty Oy By Bs > max{iy, ... dn by, L)

to be such that
d= Oél(jl - Zl) + ...+ Oér(jT - ZT) + ﬂl(ll — ]{?1) + ...+ ﬂs(ls - ks) (74)

and we consider the following element of S”:

PHP i pirtar(i—i)+az(ja—iz) . tar(Gr—ir) L1401 (k1 —l)+B2(ke—l2) 4. +8s (ks —ls) pla

Since 1; = ¢ < p = [; this element can be written as

Cpbp+a1(jl*il)+a2(j2*i2)+..-+ar(jr*ir)CPJrﬁl (kl*ll)+52(k2*12)+.-.+5s(ks*ls)bp

and it is equal to c?bP*? by equation (7.4). Therefore we have cPbP+e cPHipr € S
as we wanted to show.

We are now going to prove that
S'NY,=%,a4p

where

P={(i—p) modd:L;NY N, #0}.

We will first show that ¥,,p C §'. Let Prriudpptrtvd ¢ 37 5. By definition
of Y there is ¢'t/ € Y N'Y, such that (i — p) mod d = r. Therefore, since
Y C S C M,, we have ¢ibl = cptrtwdpptriv'd - Ag we have seen we can move
from ¢/ to cPTTTUdpptTUd ysing the elements cPbPt? and PT9bP which means

that cPrrudpptr+vd helongs to S', because it can be written as a product of the
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elements cPbP, Prapr i) € S'. We will now show that S'NY, C ¥, ,p. Let
AV € S'NY,. By definition of P and by (iii) in the definition of ¥ we have
(i —p) modd=r € P. Since S’ C My we have c't/ = cPrrHudpptrivd for some
u,v > 0 and so 'V € ¥, 4 p. We conclude that S"NY, =%, 4 p.

We now prove that

SN Sq,p = Al,p,d

where

I={i:q<i<p-—1,cV €S for some j}.

In fact, from any element ¢’/ € S’ N S,, we can move left and right using the
elements cPbPT¢ and PT4bP in order to obtain the whole line A, 4. Since S’ C My

it follows that S’ N S,, = Arpq. We conclude that
S'=FUXpapUAr,4
where F' = SNT,, is a finite set, and this implies
S=FpUFUY,qpUANr,4

as required. |

5 Upper subsemigroups

In this section we consider subsemigroups whose elements are above (and on) the
diagonal. The case where all elements are below the diagonal is again obtained
by using the anti-isomorphism ~.

The following lemma shows that given a finite subset X of a strip, for each
line that intersects X, the subsemigroup generated by X contains all A-multiples

of d in that line after some column.
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Lemma 7.12 Let q,p,d € Ny with ¢ < p and d >0, and let X C S, , be a finite
set with «(X) = q and gcd(N(X)) = d. For any x € X there exists m € Ny such
that

Aw@)ma S (X).

PROOF. Let
S=(X), Y =XNU= {4 . dnpntin}
with
g=i1 <iy<...<indy,....d, €N
For each j € {1,...,n} choose a; € N such that
ij + ajdj 2 p,
d = ged(dy, ..., d,) = ged(andy, . .., andy,).

We can take aq,...,qa, to be large enough distinct primes not appearing in
the decomposition of d in prime factors. It is well known that given numbers
r1,...,Z, € N, such that ged{xy,...,z,} = d, there is a constant k such that all
multiples of d greater than k can be obtained as combinations of 1, ..., x, with

coefficients in N. Let k£ € N be such that
{td: td > k,t € N} C {vi(ardq) + ...+ Ynlandy) : 71, .., 7 € N}

Let m = p + k. We are going to prove that Agu)ma C© S for any v € X.
Let v € X, i = ®(x) € {¢,...,p— 1} and t € N with i + td > m. Then
td>m —1i=p+ k —1 > k. Therefore we can write

td = ’yl(aldl) +.o.ot ’yn(andn>
with 71,...,7 € N. If 2 = ¢ibiT% €Y then we have

Cibi+td — Ci]'bi]'-i-td — (Cijbij-‘rajdj)’Yj . H (Cilbil'i'aldl)"/l.
1<i<n

%)
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If z ¢ Y then z = ¢'b’ and so we have
Cibi-I—td — Cibi(cil bi1+a1d1 )71 o (Cinbin‘Fandn)’Yn c S,

which concludes the proof. [ |

Theorem 7.13 Let S be a subsemigroup of B such that SNU = 0 and SNU 0.
There exist d € N, I C Ny, Fp € D N Lyin(ry, and sets S; € Aj;q (i € 1) such
that

S=Fpul s
iel
where each S; has the form
Si=F, UM\, 4

for some m; € Ny and some finite set F;, and
I=1LU{r+ud:re RuecNyr+ud>N}

for some (possibly empty) R C {0,...,d — 1}, some N € Ny and some finite set
Iy C{0,...,N —1}.

PROOF. Let g = «(S), Fp = SNDNL,, S"= S\Fp, so that we have S = FpUY’,
and let d = ged(A(S”)). Since S’ C (U U D) N My, letting I = ®(S”), we have
S=rFpulJs;
iel

where S; = S'NA;;4 for i € I. For any i € I we can consider a finite set
X; € S with ¢ € ®(X;) and ged(X;) = d and conclude, by using Lemma 7.12,
that A;m,a C S for some m; € Ny. If I is finite then we can take R =0, [y = I
and N = max(]) + 1. We will now consider the case where I is infinite. Let
X = {chphtd . cirpietde} C 8" such that d = ged(M(X)), 41 > dg > ... > ip.
By Lemma 7.12, there is a constant M such that td > M implies c1b1+d ¢ 8.
Define a set R C {0,...,d —1} by

reR < {iteN:ANS #0&imodd=r}| =occ.
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Then there exists a constant K such that
Y eS &i>K = (imodd) € R.
Let N = max{i;, K} and
Iy={i:q<i<N-1,A,nS #0}.
We claim that
I=1U{r+ud:re RuecNyr+ud>N}.

The direct inclusion is obvious, as is [y C I. Now consider an arbitrary r+ud > N,

r € R. Choose an arbitrary

Cr+vdbr+vd+wd c S/

such that t = v —u > M/d. From td > M it follows that ¢*b1+ € S" and so

Api +tdcr+vdb7‘+vd+wd — cr+udb7"+vd+wd c Sl

because r+vd =r+ud+td > N +td > i1 +td. We conclude that r+ud € 1. B

Observation 7.14 In the case where I is finite (R = ()), the subsemigroup can
be written as a union of two finite sets and finitely many lines all starting from
the same column. Formally there exist ¢,p,m € Ny with ¢ < p < m, finite sets

FpCDNLy, FCS, \Sypmand aset I C{q,...,p— 1} such that

S:FDUFUALm’d.

6 Computation of parameters

In this section we will show how to compute the parameters that appear in

Theorem 7.1, given a finite generating set for the subsemigroup. We will first
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consider two-sided subsemigroups defined by condition 2.(i) in Theorem 7.1 and
then we will consider finitely generated upper subsemigroups defined by condition
3.(i), observing again that subsemigroups defined by 2.(%) and 3.(ii) can be
obtained from these two by using the anti-isomorphism ~. We observe that,

given a finite set X, we can determine which kind of subsemigroup it generates:
1) (X) C D if and only if X C D;
2) (X) is a two-sided subsemigroup if and only if X NU # () and X N U + 0;

3) (X) is an upper (respectively lower) subsemigroup if and only if X NU # ()
and X NU = 0 (respectively X NU =0 and X N U # 0).

Theorem 7.15 Let S = FpUF UA;,UX,4p be a two-sided subsemigroup of
B defined by condition 2.(1) in Theorem 7.1. Let X be a finite generating set for
S. Then we have:

(1) ¢ =uX), p=r(X), d=ged(X),
(i) Fp = XNDN L,

(iii) P={(i—p) modd:i€ Ny, ;NX N, #0};

M
() F = U(X NTyp)' N T,y where M = (p—q+1)(p — q)/2;

=1

(v) Defining
Iy =A{p+r—ud:r € P,u € No,p+r—ud > q}U{i : ;\N(FU(XNS,,)) # 0}
and the left action . : B x Ng — Ny by

iifj =k

it — jJ + k otherwise

AV k=

we have

p—q
I = UF”.IO.
n=0
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PROOF. Let ¢/ = (X)), p' = k(X), d = ged(AMX)), F, = XNDNLy and
X" = X\F},. Then we have S = F}, U (X’) and the elements of F}, act as
identities in (X'). If ¢ < p' then X' C My N (S}, , UXy) and, by Lemmas 7.2

and 7.4, this last set is a subsemigroup and so
(X') S MgN (Sy , USy),

implying ¢ = ¢, p = p/. If ¢ > p' then analogous reasoning gives (X') C
My N (S/(’l,; U X, ) from which it follows that p = ¢’ < p’ = ¢ which contradicts
our assumption on the shape of S. So we have ¢ = ¢/, p = p’ and then it

immediately follows that
Fp=F,=XNDNLy,=XNDNL,.

Finally, from S = (X) C My (since My is a subsemigroup) it follows that d = d'.
This proves (i) and (ii).
We know that P = {(i —p) mod d:i € Ny, A\;NSNE, # 0}. Let

P'={(i—p) modd:ieNy,A,NnX' NX,#0}
It is clear that P’ C P. We also have
X' C¥apU(MgnS; ) =T.

But T is a subsemigroup by Lemma 7.7, and so (X') = S\Fp C T. Therefore
SN, C TN, which is equivalent to ¥, ,p C X, 4 p and so in fact P = P/,
proving (ii).

To prove (iv) we observe that the inclusions in Lemma 7.5 imply that A;,, 4 U
Yp.a.p is an ideal of S. It then follows that the elements of /' can be obtained by
forming the appropriate products of the generators of X that belong to 717, ,. Since
T, has (p —q+1)(p — q)/2 elements the desired formula follows. In practice we
do not need to form all these products. Again using the fact that A;, U, 4 p is

an ideal we see that F' can be computed by the following simple orbit algorithm:
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Xo:=XNT,,

F =X

while not (FX,NT,, CF)do
Fi=FU(FXoNT,,)

od.

To prove (v) we will first show that I C I. Since
SN(SypUX,) =ArpaUX,ap
is a subsemigroup, it follows from Lemma 7.9 that
{p+r—ud:re PueNyp+r—ud>q} ClI.

Given ¢’y € FU(X N S,,) we can multiply this element on the right by a power
of an element of the form c?b%™% with d; > 0 (such an element must exist by
definition of ¢) in order to obtain an element in S N A; NS, ,. From this element
we can obtain the whole line A;, 4 by using the elements c?b*™¢, Pt9pP € T and
so Iy C 1.

We will now show that
T = Alo’p’d U Zp’d,P

is a right ideal (T'S C T). We know that T is a subsemigroup, by Lemma 7.9.
By the way we have defined I, we have

XnSs,,CT.

We also have

Xnx,CT

because S NY, =X, 4p =T N, It remains to show that

T(XNT,,)UFp) CT.
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Let c*b' € T, ¢'b™4 € (X NT,,)UFp. Since [ > i, we have cFblcip™Th = Pyt ¢
T. Therefore T is a right ideal. Clearly if 1o C I' C I then 7" = Ap 4 UX, 4 p is
a right ideal as well.

Finally we observe that, although multiplying two elements in F' we can obtain
an element in a line belonging to I\ 1y, we do not have to consider these products
in order to obtain I. If ¢/, c*b! € F and c'b/cfb! = ¢ =ITFb! where i —j+k € I\,
then Iy contains line k& and so line ¢ — j + k can also be obtained from F.[,. We

conclude that I can be obtained by running the orbit algorithm, starting from

Ioi

I:=1

while not (F.1 C I) do
I=1TUF.I

od.

This algorithm must stop in no more then p — ¢ iterations because it generates
a strictly ascending chain of sets contained in {q,...,p — 1} (normally far fewer

iterations are necessary), concluding the proof of (v). |

We will now consider finitely generated upper subsemigroups. Let X C UUD
be a finite set such that X NU # () and let S = (X). As already remarked after
Theorem 7.13, we are in the case where I is finite (R = )) in condition &.(7) of

Theorem 7.1, and our subsemigroup has the form
S=FpUFUAjnq.
Similarly as in the proof of Theorem 7.15 we can see that
0= (X), p=max(®(X))+1, I € {q,...,p— 1},

Fp=XNDNL, d=ged(A(X)).

We need to obtain the parameters F', I, and m from the generating set. Since

the elements in Fpp act as identities in (X'), where X' = X\ Fp, we will assume,
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without loss of generality, that Fip =) and so X = X’ C S; . We will define an
algorithm to obtain these parameters; it consists in forming a sequence of unions
of powers of the generating set, X, X U X2 X U X2 U X3,..., until we have a
subsemigroup of the form F'U Ay, 4. For that we need a sufficient condition,
that can be checked by an algorithm, for a finite subset of a strip .S , to give us

a subsemigroup of this form.

Lemma 7.16 Let Y C S)  be a finite set with ged(Y) = d and ¢ €'Y for
some dy € N. Suppose that for any i € I = ®(Y) there is m; € Ny such that

Clbmi, Czbmier’ o 7Clb2mi*2*d c Y, Czbmifd ¢ Y.

Letm = max{m; :i € I'} and F' = YN(S; \S¢pm). If FFN(S, \Sqpm) € F and
F.ICI then(Y)=FUAj;,q. Moreover m is minimum such that Ay, 4 C (Y).

PrOOF. We start by showing that FUA;,,4 C (Y) = S. For any i € I, we have
Nimpa C (D™ cpPmiimdy)
because any element in A, ,,, 4 can be written in the form
b (cym )
for some k € Ny, and u € Ny such that
i+(mi—i)=m; <u<2m;—i—d=1i+2(m; —1i)—d.

We conclude that A;,,, 4 € S for any ¢« € I and therefore F'U A, 4 € S with
m = max{m; : ¢ € I}. It is clear that Y C F U A, 4, because Y C M, and
I = ®(Y'), and so to prove the other inclusion we just have to show that FUA[ ,, 4

is a subsemigroup. We have
FFN (S;yp\Sq,pm) CF FICI
by hypothesis and, since ®(F) C I, we also have

®(FF)CFICI
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and we conclude that FIF' C F'UAj,,4. It is also clear that
Arma(Arma U F) C Apma

Finally, we have

FArma C Arma,

because F.I C I. [ ]

Clearly, it can be checked by an algorithm whether a finite set Y C .5,  sat-
isfies the conditions of Lemma 7.16; let us call such a procedure iscomplete(Y).
Also, provided that Y does satisfy these conditions, there is a straightforward
procedure parameters(Y) returning the triple (F,I,m). Given these two proce-
dures, an algorithm to compute the parameters F), I, m given any finite generating

set X is:
Y =X
while not iscomplete(Y') do
Y =YUYX
od
(F, I, m) := parameters(Y).

Note that if we are simply interested in the index set I of lines occurring in S,

we can use a much more efficient orbit algorithm:

I:=9(X)

while not X.I C I do
I:=TUX.I

od.

We conclude this chapter by presenting some examples.
Example 7.17 Let S be the subsemigroup of B generated by the set

X = {Cb, C4b7, ClOb137 C18b24, C23b17}.
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Figure 7.5: Two-sided subsemigroup generated by {cb, c*b”, c!b'3, '8, c23p17}.

Then S is clearly a two-sided subsemigroup of the form S = Fp U F U Af,4U
Y, ap. From the generating set we see that Fp = {cb}, ¢ = 4, p = 17, d =
3 and P = {0,1}. The remaining parameters have been obtained using our
implementation of the above algorithms in the system GAP (see [22]), and they
are T = {4,5,6,7,8,9,10,11,12, 14, 15} and

F = {C4b7,C4b10,C4b13,C4b16,C7b13,C7bl6,C10b13,C10b16}.

This subsemigroup is shown in Figure 7.5.

Example 7.18 Let S to be the subsemigroup of B generated by the set
X = {cb, b", 07, b0}
Then S is clearly an upper subsemigroup of the form S = Fp U F U A7, 4 and

from the generating set we see that Fp = {c¢b} and d = 2. Using again our

implementation in GAP we have obtained m = 20, I = {3,5,6,10} and

F = {03b13,c3’bl7,c3b19,c5bg,c5613,c5bl7,c5b19,c6bl6,clob16}.
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Figure 7.6: Upper subsemigroup generated by {cb, c3b'3, 5%, ¢'b'6}.
This subsemigroup is shown in Figure 7.6.

We observe that, from these two examples we can obtain other two examples
just by replacing the generating set X by X. The corresponding pictures for these
two subsemigroups are obtained reflecting the given pictures with respect to the
diagonal. The four examples together illustrate the all four non-degenerated
cases of subsemigroups of the bicyclic monoid that, as we will see in the following
chapter, are finitely generated.

The GAP program (and the session in GAP) used to obtain these examples
and several others is included in Appendix B.

We will end with an example of an upper semigroup with elements in infinitely

many lines.

Example 7.19 Let

Sl = AI,12,3 ([ = {07 17 27 37 57 67 7})
Sy = {c5F3p5H3I 14 > 1,5 > 2i}.

We will show that the set
S =5 U9,

shown in Figure 7.7, is a subsemigroup. We know that S, is a subsemigroup, by

Lemma 7.8. To show that Sy is a subsemigroup let

a = C6+3166+3J7ﬂ — 66+3kb6+31 c 52.
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Figure 7.7: An upper semigroup with elements in infinitely many lines.

If 6 4+ 3k > 6 + 35 then we have
O{ﬁ _ C6+3(k’+i—j)b6+3l c SQ

because ¢ — j < 0 which implies [ > 2k > 2(k + i — j). Otherwise we still have
Oéﬁ _ 06+3ib6+3(j+lfk) e 512

since [ — k > 0 implies j +1 — k > j > 2i. We will show that 519 C S and
S9S57 C S. Let

a=cb el (1eli+3)j>12)

B = SRS e Sy (k> 1,1 > 2k).
We will first consider the product af. If i + 35 > 6 + 3k then we have

aff = A+l ¢ g
since 1 + 37 — 3k + 3l > v+ 37 > 12. Otherwise we have

Oéﬁ _ c6-&-3(k—j) b6+3l '
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In this case there are two possibilities: if 6 4+ 3(k — j) < 9 then aff € S; because
6+ 3l > 12 and 6 + 3(k — j) is a multiply of 3; otherwise £k — j > 1 and, since
[ > 2k >2(k—j), we have aff € Ss.

Again we can apply the anti-isomorphism ™ to obtain an example of lower
semigroup with infinitely many columns and these two examples together illus-
trate, as we will see in the following chapter, the only two different kinds of
non-degenerated subsemigroups of B that are not finitely generated.

The results contained in this chapter are also contained in [14].



Chapter 8

Properties of the subsemigroups

of the bicyclic monoid

In this chapter, we use the description of the subsemigroups of the bicyclic monoid
obtained in the last chapter, and we consider the finite generation, automaticity

and finite presentability of the subsemigroups.

1 Finite generation

In this section we will establish necessary and sufficient conditions for a subsemi-

group of the bicyclic monoid to be finitely generated proving the following:

Theorem 8.1 Let S be a subsemigroup of the bicyclic monoid. Then S is finitely

generated if and only if one of the following conditions holds:
(i) S is a finite diagonal subsemigroup;
(ii) S is a two-sided subsemigroup;
(111) S is an upper subsemigroup and the set {i € Ng: A; NS # 0} is finite;

(iv) S is a lower subsemigroup and the set {i € Ny : A; NS # 0} is finite.

120
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PROOF. (i) A subsemigroup of the bicyclic monoid contained in the diagonal only
admits itself as a generating set and so it is finitely generated if and only if it is
finite.

(i1) Let +(S) = ¢ and k(S) = p and let d = ged(A(X)). We can assume
that ¢ < p, and the other case can be obtained from this by using the anti-

isomorphism . By Theorem 7.1 we have
S - FD U F U Ep,d,P U Al,p,d

where F' and Fp are finite sets and I C {q,¢+ 1,...,p — 1} for some ¢,p € Ny.
For every i € I let i + u;d = min{i + ud : ¢ + ud > p}. We will prove that the

finite set
Y = {cbtud g 1Y U {Por e P U {eP T s € PY
generates the set X, 4 p U A7 4, which is a semigroup by Lemma 7.4 since
YpapUArpa=5SN(S,,UX,).
In fact, if o™ € A7, 4 then
cipitud = cipitud(ppprdyu=
and if cprrrudpptrivd ¢ 33 b then
(prudpprivd _(phdppyu( AT e (Y

Therefore S is generated by the finite set Fp UF UY.
(111) We will prove that an upper semigroup S is finitely generated if and only
if the set
K={ieNy:L;nS #0}

is finite. We first assume that K is infinite and prove that S is not finitely
generated. Suppose that there exists a finite set X such that S = (X). Since
X CSCUUD and X is finite, this implies X C S(’)’p for some p € Ny. Hence
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S = (X) C S, because, by Lemma 7.4, S; , is a subsemigroup, and therefore

P
K C{0,...,p} is finite, which contradicts our assumption. We conclude that S
is not finitely generated.

We now assume that K is finite and prove that S is finitely generated. By

Theorem 7.1 and by Observation 7.14 we have
S == FDUFUAI,m,d

for some finite sets Fp € DN Ly, FF € S; \Sqpmand I C{q,q+1,...,p—1} with
q,p,m,d € Ng. Let X C S be a finite set such that ®(X) = I and ged(X) = d.

Using again Theorem 7.1 we have
<X >=F'UAma

where F' C S) \Sqpm and m’ € Ng. This means that the set X generates all

our complete lines from some column m’, and so we can define
F” = S m (S(/],p\SqJLm,)

in order to write
S=<FpUF'UX >

and conclude that S is finitely generated. Another way to prove this implication
is to see S as a finite union of subsemigroups of N (one in each line), which is
clearly finitely generated.

(iv) Straightforward consequence of (i) by using the anti-isomorphism ~. W

2 Automaticity

In this section we will consider automaticity of the subsemigroups of the bicyclic

monoid and our main result is the following:

Theorem 8.2 All finitely generated subsemigroups of the bicyclic monoid are

automatic.
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To prove this theorem we will use Proposition 1.15 and the following

Lemma 8.3 For any numbers p,m € Ny with p < m, d € N and sets [ C
{0,...,p—1}, P CH{0,...,d— 1} such that 0 € P, each of the following subsets

of the bicyclic monoid is automatic whenever it is a subsemigroup:

—

(1) Apma (i) Agmd;
(ZZZ) Ep’dJD U AI,p,d§ (Z’U) Zp,d,P U Af,p,d'

PROOF. We observe that although the semigroups (7i) and (iv) are obtained from
(i) and (iii) respectively by using the anti-isomorphism ~, our notion of automatic
structure involves multiplication on the right and so we cannot just apply ~ to
obtain the latter automatic structures and we need to prove each of the four cases
separately.

(1) Let i +w;d = min{i+ud : i+ud > m} for i € I. Fixing iy € I and u = w;,
we define the alphabet

A= JAG6,0), . MG u— 1))
iel

and the homomorphism
FoN = A A, ) e 070,

Defining 1
L = JAUJAG )AGo, 00" 1> 0}

i€l j=0
it is clear that L is a regular language and we will show that it is a set of unique
normal forms for S = Aj,, 4. Given s € S we can write s = cibTthd for
some ¢ € I and £ > 0. Dividing k by u we obtain £ = nu + j with n > 0 and
0 < j < wu. It is now clear that the unique word in L representing s is the word
(7, j)A(ip, 0)™. To prove that the pair (A, L) is an automatic structure for S we

only have to show that the languages

L)\(k,l) = {(UH;'UJQ)(S Wy, Wy € L,w1)\(k,7’) — w2}
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are regular for every A(k,l) € A. We can write
A(Z,j))\(Zo, O)n)\(k, l) _ Cin-(ur‘rj)d-i—nudckbk-i-(uk-‘rl)d — cibi-i-(ui-i-j-‘ruk-‘rl)d-i-nud

and dividing j+wux 41 by u we obtain j+ui+! = qu+r withg > 0and 0 <r < u

and so we have
(7, §)A(ig, 0)"A(k, 1) = cpitutmdrntaud — NG )X (44, 0)"H,

Therefore we have

Lages) = User (U2 { (i, 4) Ao, 0)™, (i, 1) A(ig, 0)"+9) :
up+j+l=qu+r0<r<umn>0}).

Each inner set in the union,
Yiwig = {(AGE 5) A0, 0)", A, 7)Aldo, 0) )6« wptj+ = qutr,0 <7 <u,n > 0}

is a regular language because the numbers ¢ and r are uniquely determined by

the fixed numbers £, 1,7 and 7, and we have in fact

Yiig = {(A(5), (0, 7))} - {(A(io, 0), Aldo, 0)17 - { (€, Alio, 0)*)3}-

Hence Ly, is a finite union of regular languages and so is regular.
(i) We define u; (i € I), ip, v and the alphabet A as in the proof of (i) but

now our homomorphism is
fiN— SN, ) s ity

and our regular language is
u—1
L= {J(UJ Ao, 0"\, ) = n > 0},
i€l j=0

where S = m It is clear that L is a set of unique normal forms for S, since

we have

Ao, 0)"A(4, j) = Ci+(“i+j)d+nudbi’
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and we will prove that the languages
Ly = {(w1,w2)0 : wy, we € Lyw ANk, 1) = ws}

are regular for every A(k,l) € A. We can write

)\(i07 0)“)\(2’j))\(k’ l) _ CH‘(U«L+j)d+n7«tdbick+(uk+l)dbk _ ck—s—(uk—i—j—}-ui—i-l)d—i-nudbk

and dividing 7 +wu; 41 by u we obtain j+u; +[ = qu+r withg > 0and 0 <r < u

and so we have
Aig, 0)" A(i, )Nk, 1) = FHlundtlatmudph — \(G0 0)a+n (K, r).

Therefore we have

Lagken) = U(U{ (A(ig, 0)" (i, 1), Ado, 0)"TIN(k, 7))d -

i€l j=0
w+j+l=qu+r0<r<umn>0})

which is a finite union of regular languages and so is regular.

(111) Let Y = AU{z,y} UL, where A={)\;:i €I} and I' = {, : v € P}, be
an alphabet and

i€l reP

aregular subset of Y. We are going to prove that (Y, L) is an automatic structure

with uniqueness) for the semigroup S =X, 4 p U A;, 4 with respect to
8 p.d, P,
fYt =8 A= b N s PP s POy s PP

where i + u;d = max{i + ud : i +ud > p} for i € I.
To show that each element in S has a unique representative in L it suffices to

observe that
Nt = bt (witw)d (1€ l;u>0),

YUyt = cPrrtvdpptriud (p e Pry v > 0).



CHAPTER 8. PROPERTIES OF THE SUBSEMIGROUPS OF B 126

Therefore we only have to show that that languages L, = {(w1,w2)d : wy,ws €
L,wyy = wy} are regular for every y € Y. We will first consider the case where
y =M\ € A. Since U((\a")f) > p >t = D(\f) and Y((y"y2")f) > p >t =
O(\¢f) we have

Ly = U{()\ix“, N6 s u > 0 U U{(y“%x“, Y )0 v > 0}

i€l reP

which is a regular language. We will now consider y = v, € I'. Since for u > 0

we have W((Nz")f), V((y"vx")f) > p+d > $(v.f) we have

Ly, = J{ ", Xia")6 - u > 0} U{(A\i, w)d : w € L, Ay = w})U

i€l
U ({(yvvrxuayvf}/rxu)d v >0,u > 0} U L(’Ytﬂ“))
rep
where
{(yufyrayu'yr)é U > 0} if r >t
L(’Yt,T‘) =

{(W "y, y"v)0 : u > 0} otherwise .

We note that, for each i € I, the set {(\;,w)d : w € L, \;7; = w}) has only one
element because L is a set of unique normal forms for S, and so the language L.,
is a finite union of regular languages and therefore it is regular. The language L,

is clearly regular since we have
L, = {(w,wx)d : w € L}.
Finally, we have

i€l

U@ ey a6 0 > 0,u > 03 U{(y" 7, 5" 190)0 1 v > 0})
reP

because, for v > 0, we have

(y“%)y _ (Cp+r+vdbp+r)(cp+dbp) — p+Ddpp yv+l’}/0-
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Again, for each ¢ € I, the set {(\;,w)d : w € L, \;y = w}) is regular because it
has only one element and so L, is a finite union of regular languages and hence
is regular. We conclude that S is automatic.
(iv) We define the alphabet Y as in the proof of (i) and our regular language
over Y is now
L = U({y”)\i cv>0})U U({y”%x“ tu,v > 0}
iel rep
We are going to prove that (Y, L) is an automatic structure (with uniqueness) for

the semigroup S = X, 4 p U /T[;l with respect to
fYt =8 N = Ty s PR s POy s (PP

again with i + u;d = max{i + ud : i + ud > p} for i € I.
It is again clear that L is a set of unique normal forms for S and we will show
that the languages L, = {(wy,w2)d : wy,wy € L, w1y = wo} are regular for every

y € Y. We start by showing that, for any \; € A, we have

Ly, = J{" N,y A)6 : v > 0}U

el
U@ e, y )8 s v > 0,u > u} U Ly,
reP
us—1
U L@ ey e N6 s 0 > 0,k = p+ 7 + (u— u,)d})
u=1
where
I {1y, y" Ao v > 0 if p+r <t 4 ud
At,r) —
o {(Wy, y? T " X\p)0 « k = p+r — wd} otherwise.
We have

YN = cituidtodpi gtudpt _ turd(otug)dpt g,

If w > u, then

yv,yrl,u )\t — Cp+r+’udbp+r+udct+utdbt _ Cp+r+'udbp+r+(u7ut)d — y'uf)/rxufut )
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For w e {1,...,uy — 1} we define k = p+r + (v — u;)d and we have

y = yv,yT$u )\t — Cp—l—r—&-vdbp—i—r—‘rudct-i—utdbt — Cp—l—r—&-vdbp-l—r—‘r(u—ut)d

— Ck+(v+ut7u)dbk _ Ck+ukd+(v+ut7u7uk)dbk.

Since S is a semigroup and k < p we have z € A/I;l and therefore, observing the
definition of wuy, it must be v+u; —u—uy > 0 and we can write z = gV U=ue )\,
We will now consider the multiplication of a word of the form y”~, by A; and so
we define

s = yv’YrAt — Cp+r+vdbp+rct+utdbt.

If p+7 < t+ud then z = crwdtvdpt — gvx, If p+ 1 > t + u,d we have
z = cptrtvdpptr—ud \We observe that u; > 0 because t < p and t + u,d > p and

therefore z € A/I;i. Hence, defining £ = p + r — u;d we can write

oy = Ck’—l—(v—i—ut)dbk _ Ck+ukd+(v+ut—uk)dbk

and, from the definition of wuy, it follows that v + u; — u;, > 0 and so we have

z = varuz*Uk)\k.
We conclude that Ly, can be defined as a finite union of regular languages and

so it is a regular language.

It is easy to see that

L’Yt :U{<yv)\i7yv+Ui7t)6 v 2 O} U L(%W)
i€l
UL e,y 3a)s : u> 0,0 > 0}

reP

where

Q) e <O ifr >
e {(y"Y, ¥’ )0 : v > 0} otherwise

and so it is a regular language. The language L, is regular because we have

L, = U{(y”)\i,y“i+”70$)5 cv >0} U U{(y”%x“, Yy, w0 > 0}

el repP
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and since
Ly = J{* X,y 50)0 1 v > 0}U
i€l
U@ ", g a6 0 > 0,u > 0y U{(y" 5,5 70)8 - v > 0})
repP

L, is a regular language as well. We conclude that (Y, L) is an automatic struc-

ture for S. [

PrROOF OF THEOREM 8.2 We know from the previous section that any
finitely generated subsemigroup is either a finite subset of the diagonal, and so it

is automatic, or it has one of the forms:

FD U FUAI,p,d U Ep’d,p, FD UFU AI,p,d U 2p7d,P>
FDUFUA[%C[, FDUFUA[,nd

where I C {q,q+1,...,p—1} for some numbers ¢, p € Ny and the sets F' and Fp
are finite. In each case we can remove the finite set FpUF' from our subsemigroup
and we still have a subsemigroup, because we are in fact intersecting it with the
set S,p U2, (or the set §q,\p U3,), which by Lemma 7.4 is itself a subsemigroup.
Hence every finitely generated subsemigroup S of B has a subsemigroup U such
that S\U is finite and that, by the previous lemma, is automatic. It follows from

Proposition 1.15 that S is automatic as well. [ |

3 Finite presentability

Let A be an alphabet and R be a relation on AT. We say that the semigroup
S is defined by the presentation (A | R) if S = AT/p where p is the smallest
congruence on A" that contains R (see Appendix A).

Given a semigroup S with a presentation (A | R) , for two words w,v € A™

we write w —* v, and we say that w = v is a consequence of R (or that the
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word w can be reduced to v by applying relations from R), to mean that either
w = v or there is a sequence a words w = wy, ws, ..., w, = v where w; = wiv;w!
with w}, w! € A* and v; in A* (i = 1,...,n) such that either (v;,v;11) € R or

(viv1,v;) € R for each i = 1,...,n — 1. We will need the following result:

Proposition 8.4 Let S be a semigroup generated by a set A andlet R C ATxAT.
Then (A | R) is a presentation for S if and only if the following conditions hold:

(i) S satisfies all the relations from R;

(ii) If u,v € A" are two words such that w = v in S, then u = v is a

consequence of R.

PROOF. See [42]. [ |
The following straightforward consequence of this proposition will be used, when-
ever we have a set of unique normal forms L C A* for the semigroup S, to prove

that a given pair (A | R) is a presentation for S.

Proposition 8.5 Let S be a semigroup generated by a set A, let R C AT x A"
and let L C AT be a set of unique normal forms for S. If the following conditions

hold then (A | R) is a presentation for S.
(i) S satisfies all the relations from R;

(il) Any word w € AT can be reduced to the corresponding unique

normal form in L by using relations from R.

For further details about semigroup presentations we refer the reader to [42].

Our main result of this section is the following:

Theorem 8.6 All finitely generated subsemigroups of the bicyclic monoid are

finitely presented.

From [43] we have the following:
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Proposition 8.7 Let S be a semigroup and T be a subsemigroup of S such that
S\T is finite. Then S is finitely presented if and only if T is finitely presented.

Our main result will be proved using this proposition and the following result:

Lemma 8.8 For any numbers p,m € Ny with p < m, d € N and sets
I1C{0,...,p—1}, PCH{0,...,d—1}

such that 0 € P, each of the following subsets of the bicyclic monoid is finitely

presented whenever it is a subsemigroup:

(Z) Al,m,d;
(ZZ) AI,m,d U Ep7d7p.

PROOF. (i) We consider the automatic structure (A, L) obtained in the proof of
Lemma 8.3 (i), which gives us a finite generating set and a set of unique normal
forms for A;,, 4. We are going to prove that < A | R > is a finite presentation
for T', defining R to be a set of equations that allow us to re-write each product
of two generators into a word in L. More precisely, R consists of the following

relations:

AT, Ak, 1) = A2, 7)A(ig,0)? where j+up+1l=qu+7r, 0<r<u
(t,kel,5,1€{0,...,u—1}).

That the relations hold follows from the definition of Ly, in the proof of
Lemma 8.3 (7). We are going to show that any word w € AT can be reduced
to a word in L by applying relations from R, using induction in the length |w|
of the word w. If |w| = 1 then w € L by definition of L. If |w| = 2 then
w = A7, j)A\(k,1) and therefore

w —" A(i,7)A(ip,0)? € L

with
Jrug+l=qu+r (0<r<u),
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which is a relation in R. Let n > 2 and suppose that any word w such that
|w| < n can be reduced to a word in L by using relations from R. Let w € AT

with |w| =n + 1. We have w = A(i1,71) - - - A(in, Jn) A(ins1, Jni1). Therefore
w —" >\(i1,j1) cee )\(in—lyjn—l))‘(inv T))\(i()v O)q

where

Jn + Uiy + I =qu+r (0 <r <w).

Letting w' = A(i1,71) - - A(in—1, jn—1)A(in, ) we have |w'| = n and, using the

induction hypothesis, we have
w' —* \(7,7)\(ig,0)™ € L
for some i € I, j €{0,...,u— 1}, m € Ny, implying
w —* (i, ) A(ig,0)" T € L.

(11) We will use the automatic structure (Y, L) obtained in the proof of Lemma
8.3 (i11) to prove that T' =X, s p U A;, 4 is finitely presented. We will show that
<Y | R > is a finite presentation for 7', defining R to be a set of relations that
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allows us to re-write words of length smaller than three into words in L:

r= Y (8.1)
Y= Y (8.2)
AN =Nz (1,5 € 1) (8.3)
zA =z (i e ) (8.4)
y\i = yai (i€ 1) (8.5)
YA =yat (re Piel) (8.6)
Y= " (8.7)
ANy= A (teluy;>1,j=p+d—u;d) (8.8)
Ny= v (elu=1) (8.9)
Ywy=y (rep) (8.10)
= x (repP) (8.11)
Nive= N (iel,rePi4+uwd>p+r) (8.12)
A= Aj (iel,rePitud<p+rj=p+r—ud) (8.13)
Y= Y (r>t) (8.14)
= w (r<t) (5.15)

To see that a relation holds we just have to prove that both sides of it corre-
spond to the same word in {c'¥ : 4,7 >0, (4,7) # (0,0)}. We will only prove that
equations (8.8), (8.9), (8.12) and (8.13) hold since for the others it is straightfor-
ward.

To prove that relations (8.8) and (8.9) hold we observe that, by definition of
u;, we have

Ay = cibituideprdpp — cptd—uidpp
If u; = 1 then \jy = ¢’b? = ~y, and relation (8.9) holds. If u; > 1 then p+d—u;d <
p and so, defining j = p + d — w;d, we have Ny = dp/T—1d ¢ A7 pa. But we
have j + (u; — 1)d = p which implies, by definition of u;, that u; — 1 = u; which
means that \;y = \; and relation (8.9) holds as well.
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To prove that relations (8.12) and (8.13) hold we start by writing
/\i’)/'r — Cibi+uid0p+rbp+T.

If i +u;d > p+r then \yy, = cibit4d = )\; and relation (8.12) holds. Otherwise
we have Ay, = Pt 4Pt € Ap g because u; > 0. Defining j = p +r — u;d we
have Ay, = ¢/t and, since j +u;d = p+r < p+d and using the definition of
u;, it must be u; = u; what implies \;7, = A; and relation (8.13) holds as well.

We are now going to prove that any word in w € Y can be reduced to a word
in L, using our relations, by induction on the length of w. If |w| = 1 then either
w € L or it can be reduced to a word in L by using one of the relations (8.1) and
(8.2). We now consider words of length 2. The word \;\; reduces to \;z* € L
using relation (8.3); \;xz € L; \;y either reduces to vy € L using relation (8.9) or
to A; € L for some j using relation (8.8); A;y, reduces to \; € L for some j using
relations (8.12) or (8.13); zx reduces to voz? € L using (8.1); xy reduces to vy € L
using relation (8.7); x; reduces to yoz'™ € L using relations (8.4) and (8.1);
x7; reduces to yox € L using relations (8.11) and (8.1); yz reduces to yyox € L
using (8.1); yy reduces to y*yy € L using (8.2); y\; reduces to yyz“ € L using
(8.5) and (8.2); yy: € L; viz € L; vy reduces to yy € L using (8.10) and (8.2);
viAe reduces to 2" € L using (8.6); finally 7,7, reduces to v; € L for some j
using (8.14) or (8.15).

In the following induction step we use that fact that if a word w belongs to
L then wx™ belongs to L as well for any n € Ny, which follows immediately from
the definition of L. Let n > 2 and suppose that all words w € YT with |w| < n
can be reduced to a word in L. Let w € Y be a word of length n + 1. Then
we have w = w;g1¢go with w; € YT and ¢1,9, € Y. We will consider all possible
pairs of generators g1, g2 € Y and prove that in every case w reduces to a word
in L using the relations.

Case 1: g192 € {\iy, \ve, Ty, e, Y4y, Ve vi b In these case we can apply one of
the relations to reduce g;gs to a generator g. We can then apply the induction

hypothesis to reduce w;g to a word in L.
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Case 2: g1g2 = gi1x. In these cases we can reduce w;g; to a word wy € L using
the induction hypothesis and so we can reduce w to wex € L.

Case 3: g192 = M. Using relation (8.3) we have w —* wy\;z* and, since
|wy ;| = n, using the induction hypothesis we have wy\; —* wy € L and therefore
w —* wex™ € L.

Case 4: ¢1go = x)\;. Using relation (8.4) we have w —* wyz'*t*. Since
lwi| < n, using the hypothesis we can write w; —* wy € L and so w —*
Wyt S gt e I

Case 5: ¢g1go = y\. Using relation (8.5) we reduce yA; to yz". We can
then apply the induction hypothesis to wyy to obtain w;y —* we € L implying
w —* wex™ € L.

Case 6: ¢g192 = yy. We start by reducing wiy to a word wy € L using the
induction hypothesis. It can be wy = \jz* or wy = yy,.2%. If wy = \; then
w —* Ny and applying relations (8.8) or (8.9) it reduces to a word in L. If
wy = A\ then w —* \xy —* Ay by applying relation (8.7). Therefore by
applying now relations (8.12) or (8.13), w reduces to word in L. If wy = A"
with w > 1 then

w—* et lay —F Nt lay = At e L
by applying relations (8.7) and (8.11). If wy = y"~, then
w—" Y’y =" y'y ="y € L,

using relations (8.10) and (8.2). If wy = y"y,.x then w —* y"y,2y and we can
apply relation (8.7) to reduce zy to 7. Then we can reduce 7,7 to v, by applying
relation (8.14) and so w —* y¥~, € L. If wy = y"vy,2* with u > 1 then

w X yv,yrxu—ll,y _F y”%xu_%% L y”%a?"_l c L

by applying relations (8.7) and (8.11).
Case 7: g192 = yv,.. We start again by reducing w,y to a word we € L. It

U

can be wy = A" or wy = y’y.x%. If wy = A; then w —* \;y and applying
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relation (8.8) or relation (8.9) we can reduce w to a generator that belongs to L.

If wy = Nz with u > 0 then we can apply relation (8.11) giving
w —" \xty =" \xt € L.

If wy = 4", then w —* y"~,; and so applying relations (8.14) or (8.15) we have
w —* y'g € L with g € {v,,v}. Finally, if wy = y"v,2"* with u > 0 then we have

w —* yv,yrxu,yt _* y”%ﬂfu cl

by applying relation (8.11).
Case 8: g192 = % \i. Applying relation (8.6) we get v\, —* ™. Since
|w1:| < n, using the hypothesis, we have w1y, —* wy € L and so w —* wyz™ €

L. |

Lemma 8.9 If S is a finitely presented subsemigroup of the bicyclic monoid
B =< b,c | bc = 1 > then the semigroup T = {c't’ : Jb' € S} is finitely

presented as well.

Proor. If < A | R > is a finite presentation for S then < A | R’ > is a fi-
nite presentation for 7" where x;...z; = y;...y; belongs to R if and only if
Ti...x1 = Yy;...y; belongs to R'. In fact, T is the opposite of S and so it is
finitely presented if and only if S is finitely presented. |

PrROOF OF THEOREM 8.6 We know from Section 1 that any finitely gener-
ated subsemigroup is either a finite subset of the diagonal, and so it is finitely

presented, or it has one of the forms:

FpUFUA,qUE,ap, FpUFU A/I,;i U Xpa,p,
FpUFUA;,q, FpUFUR; 4

where I C {q,q+ 1,...,p — 1} for some numbers ¢,p € Ny and the sets F' and

Fp are finite. The previous lemma allows us to consider only subsemigroups of
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the form
FpUFUA[,qUSpap, FpUFUA,,.

In both cases we can remove the finite set Fp U F' from our subsemigroup and
we still have a subsemigroup. Hence, in both cases, our subsemigroup S has a
subsemigroup U such that S\U is finite and that, by Lemma 8.8, is finitely pre-
sented. It follows from Proposition 8.7 that S is finitely presented as well. |

4 Residual finiteness

In this section we give necessary and sufficient conditions for a subsemigroup of
the bicyclic monoid to be residually finite.

We say that a semigroup S is residually finite if, for any two elements sq, so €
S, there is a finite semigroup F' and a homomorphism ¢ : S — F' that separates
s1 and sg (such that s1¢ # se¢). We start by showing that the bicyclic monoid
B = (b,c | be = 1) is not residually finite.

We need the following facts:

Lemma 8.10 Let C; = {x,2?%,..., 2771 1} be a cyclic group of order j, for some

J € N. Then the function ¢ : B — Cj; ¢™b" — ™" is a homomorphism.
PRrROOF. Let ¢™b", cPb? € B arbitrary. We have
(™M) p(PVY)p = 2" Mg = g TP,
If n > p then
(BB = (M PH) G = 2P = ()b
and otherwise we still have
(B H)G = (P = 21T () ( P

which concludes the proof. |
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Lemma 8.11 Let F' be a finite semigroup and let ¢ : B — F' be an onto ho-
momorphism. Then F is a cyclic group C; = {z,2*,..., 2771 1} of order j, for

some j € N, and (¢™b™)¢p = ™" for any m,n € Ny.

PROOF. Let ¢ = x and bp = y. Then F' is a monoid with identity 1¢ = (bc)p =
yxr = 1. The subsemigroup of F' generated by x is finite and so we can take
minimum 7, j with ¢ < j such that 277! = 2, and the elements z, 2%, ..., 27 are
all distinct. But 2! = /%! implies y'z’ = y'27! and so
Ij-i—l—i — Cj+1_i¢ _ (blc]+1)¢ _ yixj—O—l _ yZI'Z — (bzcz)¢ _ 1¢ -1
Supposing that ¢ > 1 we have j+1 -7 < jandsoy=j5+1—i+1<j. Hence
) = I = it — g

2

what contradicts the fact that the elements z, z2,..., 27 are all distinct. There-

fore it must be ¢ = 1 and the semigroup (z) is in fact the cyclic group, of
order j, C; = {z,2% ..., 2771 1}. Moreover, the associativity in F implies that
y = y(ra’™') = (yx)2/7! = 297! = 27! and so for any n,m € Ny we have
(™) = 2" (z~ )™ = "™, [

Theorem 8.12 The bicyclic monoid is not residually finite.

PRroOF. It follows from the previous lemmas that, for example, two different idem-
potents c"b™, c™b™ € B cannot be separated by any homomorphism ¢ : B — F
with F' being a finite semigroup. |

The following was shown in [31] and we include our proof for completeness.

Lemma 8.13 A subset of the form I, = {c't : 0 <i < j,j > p} (p € Ny) is an
ideal of U.
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PROOF. Let a = ¢/ € I, and 8 = ¥ € U. We first consider the product af.
If j > k then a8 = o € [, since j — k +1 > j > p and otherwise we have
af = IRy e I, since | > k > j > p. We now consider the product Ba. If
| > i then fa = FV~ € I, since | — i+ j > j > p, and otherwise we have
Ba = k71 € T, since j > p. [ ]

Our main result follows.

Theorem 8.14 A subsemigroup of the bicyclic monoid is residually finite if and

only if it does not contain elements both above and below the diagonal.

Proor. We first show that a two-sided semigroup is not residually finite. In fact,

a two-sided semigroup S contains a subset of the form
X = {ePTudprtvd. g v > 0},
which is a subsemigroup isomorphic to the bicyclic monoid; the function
b B — X s Prudpptod

is clearly an isomorphism. If S was residually finite then, for any two elements
x1,xy € X there would be an homomorphism ¢ : S — F, with F finite, sepa-
rating xy, x5 and so there would be an homomorphism ¢ : B — F' separating
x1p~ !yt which would imply, since 1) is a bijection, that the bicyclic monoid
is residually finite.

We will now show that a subsemigroup S contained in U (an upper semigroup
or a subset of the diagonal) is residually finite. Let a = ¢t/ and 3 = c*b be two
arbitrary elements of S. Taking p > max(j,[) the set S, = S N1, is an ideal of
S. Hence the Rees homomorphism ¢ : S — (S\S,) U {0} separates a and (3, and
S\S, U{0} is finite, since S\S, C Tp,. Analogously, any subsemigroup contained
in U is residually finite. [ |
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We have seen that the bicyclic monoid is strongly automatic (all its finitely
generated subsemigroups are automatic). Combining this chapter with Chapter

6 we have the following natural question:

Question 8.15 Let S = B *x B be the free product of two copies of the bicyclic

monoid. Is S strongly automatic?

We can consider generalizations of the bicyclic monoid, as for example in [1],

and a natural problem is the following:

Question 8.16 Consider generalizations of the bicyclic monoid that are still

strongly automatic.

In Chapter 5 we saw that Bruck—Reilly extensions of a finite monoid are

automatic. We can ask:

Question 8.17 Are the Bruck—Reilly extensions of a finite monoid strongly au-

tomatic?



Appendix A
Semigroups

For completeness and clarity we list here the basic definitions and results used in
the thesis which are not included in the introduction. This material can be found

with more detail in [29].

Basic definitions

Let S be a semigroup. An element e € S is a left identity if for all s € S we
have es = s and a right identity if for all s € S we have se = s. An identity
is an element 1 € S such that for all s € S we have 1s = s1 = s. We denote
by S! the monoid obtained from S by adjoining an identity (S' = S U {1} and
the operation is extended by sl = 1s = s,s € S, 11 = 1). An idempotent is an
element e € S such that ee = e and, finally, a zero is an element 0 € S such that
for all s € S we have s0 =0s = 0.

Given a set X, the full transformation semigroup on X is the semigroup
(7 x,0) where T x is the set of all functions from X to X and the operation o is
the composition of functions. A transformation semigroup is any subsemigroup
of (T x,0).

Let X be aset. A (binary) relation on X is a subset p of the cartesian product
X x X; we normally write 1 p x5 instead of (z1,x2) € p. Given two relations

p, T on X we can define their composition po7 by the rule that s (po7) w if there

141
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is t € X such that s p ¢t and t 7 u. An equivalence relation on X is a relation p

that is
reflezive: (Vx € X) x p x;
symmetric: (Vry,x9 € X) 11 p 19 = T3 p X1
and transitive: (Vxy, 29,03 € X) x1 p 20 & 19 p 13 = 11 p T3.

An equivalence relation p defines a partition on X and each element of the par-
tition is called an equivalence class; we denote by ap the equivalence class of the
element a € X and by X/p the set of all classes. A (partial) order on X is a

relation, normally denoted by <, that is reflexive, transitive and
antisymmetric: (V1,20 € X) 11 < 29 & 29 <11 = 77 = X9.

Finally, an operation on X is any function from X x X to X.

Ideals

Let S be a semigroup and let X be a non-empty subset of S. The set X is called
a left ideal if SX C X, a right ideal if X.S C X and a (two-sided) ideal if it is both
a left and a right ideal. Evidently every ideal (whether right, left or two-sided)
is a subsemigroup, but the converse is not true. Given a € S, the smallest left
ideal of S containing a is S'a = Sa U {a} and we call it the principal left ideal
generated by a. Analogously, the principal right ideal generated by a is aS*.

A semigroup without zero is called simple if it has no proper ideals. A semi-

group S with zero is called 0-simple if {0} and S are its only ideals and S? # {0}.

Green’s relations

The equivalence £ on S is defined by the rule that a £ b if and only if ¢ and b
generate the same principal left ideal, that is, if and only if Sta = S'b. Similarly,
we define the equivalence R by the rule that a R b if and only if aS* = bS*. The
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relation H is the intersection of £ and R. Since Lo R = R o L we define the
relation D = Lo R = R o L. Finally we define the relation J by aJb if and
only if S*aS! = S'bS!. The following notation is used for equivalence classes of
the Green’s relations: the L-class (R-class; H-class; D-class; J-class) containing
element a is denoted by L, (Ry; Ha; Da; Ju). A D-class can be represented by
a table, called an eggbor, where each row represents an R-class, each column

represents a L-class, and each cell represents an H-class.

Completely simple semigroups

There is a natural (partial) order defined on the set of the idempotents of a

semigroup S by the rule that
e< fifand only if ef = fe =e.

If S is a semigroup with zero then the zero is the unique minimum (e is minimum
if e < f for every idempotent f) idempotent. The idempotents that are minimal
(e is minimal if f < e implies f = e for every idempotent f) within the set of
non-zero idempotents are called primitive. We say that a semigroup is completely
0-simple if it is O-simple and has a primitive idempotent, and we say that a
semigroup is completely simple if it is simple and has a primitive idempotent.
Completely simple semigroups are known to be Rees matrix semigroups over
groups. Completely 0-simple semigroups are Rees matrix semigroups with zero
over groups where the matrix is regular (no row or column consists entirely of

Z€eros).

Congruences

Let S be a semigroup. A relation p on the set S is called compatible (with the

operation in S) if

(Vs, t,s',t'€S)spt& s pt' = ss' ptt.
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A compatible equivalence relation is called a congruence. Given a congruence p

on the semigroup S the set S/p is a semigroup with operation (ap)(bp) = (ab)p.

Rees quotient

Given a proper ideal I of a semigroup S the relation p; = (I x I) U 1g is a
congruence (here 1g stands for the relation {(s,s) : s € S}), called the Rees
congruence, and we can consider the semigroup S/py, called the Rees quotient.
This semigroup can be seen as the set (S\I)U{0} where the product of elements
of S\I is the same as their product in S if this lies in S and it is 0 otherwise. We

have the natural homomorphism
¢:8—S/pr; s—s(seS\I); s—0(sel),

called the Rees homomorphism.

Presentations

Let A be an alphabet. A semigroup presentation is a pair (A | R) where R is a
relation in A™. In this context, we normally write u = v instead of u R v and
we say that v = v is a (defining) relation. If A = {ay,...,a,} and R = {u; =
Vlyenoy Uy = U by, We Write (ag,...,an | U3 = v1,..., Uy = vy) for (A | R). We
say that the semigroup S is defined by the presentation (A | R) if S = A" /p
where p is the smallest congruence on A that contains R. Replacing A* by A*
in the previous definition we obtain the definition of a monoid presentation; in
this context we normally write 1 instead of € (for example, the bicyclic monoid is

defined by the monoid presentation (b, c | bc = 1)).
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GAP program

**% GAP PROGRAM *x**

## SUBSEMIGROUPS OF THE BICYCLIC MONOID

Print (" \n");
Print ("Subsemigroups of the bicyclic monoid <b,c | bc = 1>.\n");

Print ("Function \"subsembimon\" displays the subsemigroup given the\n");
Print ("generating set.\n\n");

Print("An element c”i b”j is represented by [i,j] and so\n");

Print("the generating set must be a list of pairs of numbers (>=0).\n\n");
Print ("Example:\n");

Print("x := [[1,2],[5,4]11;\n");

Print ("subsembimon(x) ;\n");

Print (" \n");

## MIDDLE SEMIGROUPS

## The sets f,x must be contained in F_{q,p}
## Returns a list with the elements in f \cup f.x
## that are on the left of column p
actright := function(f,x,p)

local k,j,r;

r := ShallowCopy(f);

for k in f do

for j in x do
if k[2] <= j[1] then
Add(r, [k[11-k[2]1+j[1], j[2] 1);

else
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if (k[2]-j[1]1+j[2] < p) then
Add(r, [k[1],k[2]-j[11+j[211);
fi;
fi;
od;
od;
return Set(r);

end;

## u is a subset of B, 1 is a list of line numbers smaller then p
## returns the list of line numbers in 1 \cup u.l
## that are smaller then p
actleft := function(u,l,p)
local r,k,j,n;
r := ShallowCopy(l);
for k in u do
for j in 1 do
if j > k[2] then
n := k[1]-k[2]+j;
if n < p then
Add(r,n);
fi;
fi;
od;
od;
return Set(r);

end;

## MAIN FUNCTION - middle semigroups
## Assumes $X \cap D_1 \neq \emptyset$,
## $X \cap D_2 \neq \emptyset$,
## $\iota(X) \le \kappa(X)$ and
## $S \cap F_{0,\iota(X)} = \emptyset$
computemid :=function(x)
local q,p,d,I10,I1,k,u,r,FO,F1,i,setP,n,x0;
## Compute d,q,p and setP
d := AbsInt(Ged(List(x, k -> k[1]1-k[2]1)));
q := Minimum(ListX(x,k -> k[1] < k[2],k -> k[1]));
p := Minimum(ListX(x,k -> k[1] > k[2], k-> k[2]));
setP := Set(ListX(x, k -> (k[1] >= p) and (k[2] >= p), k -> ((k[1]-p) mod 4)));
## Creates initial F
F1 := ListX(x, k -> k[1] >= q and k[1] < p and k[2] < p, k > k);
x0 := ShallowCopy(F1);
FO := [] ;

## Iteration to construct final F
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while (F1 <> FO) do
FO:=F1;
F1 := actright(F0,x0,p);
od;
## Construct initial I
I1 := [1;
for r in setP do
u = 1;
k := p+r-d;
while (k >= q) do
if (k < p) then
Add(I1,k);
fi;
u:=u+l;
k := ptr-ux*d;
od;
od;
for k in x do

if k[1] >= q and k[1] < p then

Add(I1,k[1]);
fi;
od;
I1 := Set(I1);
10 := [1;

## Iteration to produce final I
while (I1 <> IO) do
I0 := I1;
I1 := actleft(F1,I0,p);
od;
return [q,p,d,F1,I1,setP];

end;

## UPPER SEMIGROUPS

## returns a list of the lines that form the received set

splitinlines := function(y)
local n,i,k,1;
i = y[1I011; 1 := [1; n :=1; 1[n] :=
for k in y do
if k[1] = i then
Add(1[n],k);

else

1[n] := [1;
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Add(1[n],k);
i:=k[1];
fi;
od;
return 1;

end;

## Returns the line numbers in a list of lines
linesin := function(l)
return List(1, k -> k[1][1]);

end;

## Receives a list of lines and a list columns numbers from which
## regularity starts.
## returns the a set with the elements of S on the left of column
## max (m)
formf := function(l,m,d)
local s,setF,i,t,j,k,mmax;
s := Size(1l); setF :=[]; mmax := Maximum(m);
for i in [1..s] do
k := 1[i];
t:=k[11[1];
setF := Set(Concatenation(setF,k));
j = m[il+d;
while (j < mmax) do
Add(setF, [t,j1);
o= s
od;
od;
setF := Filtered(setF, k -> k[2] < mmax);
return Set(setF);

end;

## Checks if the subset of the line i determines a number m
## such that it generates F \cup \Lambda_{i,p,d}
linegen := function(l,d)

local h,i,j,k,s,sucesso,jmax,t;

h:=[]; s := Size(1);

for i in [1..s] do

h[i] := 1[il[2];

od;
t:=1[11[1];
i:=1;
k:=h[i];

sucesso := false;
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while i+(k-t)/d-1 <=s and not sucesso do
sucesso:=true;
j:=0;
jmax:=(k-t)/d-1;

while sucesso and j < jmax do

ji=3+1;
if h[i+j] <> k+j*d
then sucesso := false;
fi;

od;

i = i+1;

if i <=s then
k := h[i];
fi;
od;
if sucesso then
return hl[i-1];
else return -1;
fi;

end;

## Check if a set (already split in lines) generates the final
## subsemigroup. If not returns []. If it generates
## returns the vector with the columns numbers from
## where regularity starts for each line in S
linesselfgen := function(l,d)
local s,m,i,k,flag;
s := Size(1); m := []; i := 1; flag := true;
while (i <= s) and flag do
k := linegen(1[i],d);
if k <> -1 then

m[i] := k;
i =1 +1;
else

flag := false;
fi;
od;
if flag then
return m;
else
return [];
fi;

end;

## returns setl \cup setF.setl
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addlines := function(setF,setI)
local r,k,j;
r := ShallowCopy(setI);
for k in setF do
for j in setI do
if j > k[2] then
Add(r,k[11-k[2]+j);
fi;
od;
od;
return(Set(z));

end;

## Multiplies subsets of the bicyclic monoid
multiplica := function(a,b)
local c,i,j;
c :=[1;
for i in a do
for j in b do
if (i[2] >= j[1]1) then
Add(c, [i[1], i[2]-j[11+j[2]1 1);
else
Add(c, [i[1]1-i[2]1+j[1],j0211);
fi;
od;
od;
return Set(c);

end;

## Checks if the operation is already closed
test_issemigroup := function(setF,setI,m)

local mmax,flag,prod,setI2;

mmax := Maximum(m); flag:=false;
prod := multiplica(setF,setF);
prod := Filtered(prod,k -> k[2] < mmax);
prod := Set(Concatenation(setF,prod));
if setF = prod then

flag :=true;
fi;
if flag then

setI2 := addlines(setF,setl);

if setI <> setI2 then

flag := false;

fi;

fi;
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return flag;

end;

## Checks if we have all we need

issemigroup := function(y,d)
local 1,setl,setF,m,done;
done := false;

1 := splitinlines(y);

m := linesselfgen(1l,d);
if m <> [] then

setl := linesin(l);
setF := formf(1l,m,d);
done := test_issemigroup(setF,setI,m);

fi;
return done;

end;

## Returns the paremeters
semigroup := function(y,d)
local 1,setl,setF,m;

1 := splitinlines(y);

m := linesselfgen(l,d);
setl := linesin(l);
setF := formf(l,m,d);

return [d,setF,setI,m];

end;

## MAIN FUNCTION - upper semigroups

## Assumes X \cap \hat{U} = \emptyset, X \cap U \neq \emptyset,

## X \cap F_{0,\iota(X)} = \emptyset
computeabove := function(x)
local done,d,y,p,k,m;
d := AbsInt(Ged(List(x, k -> k[1]1-k[2])));
done := false; y :=ShallowCopy(x); p :=ShallowCopy(x);

done := issemigroup(y,d);

## main cycle - in iteration n, y is equal to X"1 \cup ...

## and it is checked if y gives us already the semigroup
while not done do
p := multiplica(p,x);
y := Set(Concatenation(y,p));
done := issemigroup(y,d);
od;
return semigroup(y,d);

end;

X"n
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## Find the kind of semigroup

isdiagonal := function (x)
local i,s;
s := Size(x); i := 1;

while x[i]J[1] = x[i]J[2] and i < s do
i =1 +1;

od;

if i = s and x[i][1] = x[i][2] then
return true;

else
return false;

fi;

end;

# Are all elements above (or in) the diagonal?
isabove := function (x)
local i,s;
s := Size(x); i := 1;
while x[i]J[1] <= x[i][2] and i < s do
i =1 +1;
od;
if i = s and x[i][1] <= x[i][2] then
return true;
else
return false;
fi;

end;

# Are all elements below (or in) the diagonal?
isbelow := function (x)
local i,s;
s := Size(x); i := 1;
while x[i][1] >= x[i]1[2] and i < s do
i =1 +1;
od;
if i = s and x[i][1] >= x[i]1[2] then
return true;
else
return false;
fi;

end;

# Assumes it is two-sided checks if it is two-sided upper
istwosidup := function(x)

local q,p;
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Minimum(ListX(x,k -> k[1] < k[2],k -> k[1]));
Minimum(ListX(x,k -> k[1] > k[2], k> k[2]));

if q <= p then
return true;
else
return false;
fi;

end;

## Apllies the anti-isomorphism to the generating set
invert := function(x)

local k;

return List(x, k -> [k[2],k[1]1]);

end;

## MAIN FUNCTION
## receives the generating set
## returns the subsemigroup
subsembimon := function(x)
local d,setFD,setF,setl,setP,m,1,q,p,x1;
if isdiagonal(x)
then
Print("Contained in the diagonall\n");
elif isabove(x)
then
Print (" \n");

Print ("Upper semigroup: F_D \\cup F \\cup \\Lambda_{I,m,d}\n");

Print (" \n");
q := Minimum(ListX(x, k -> k[1] < k[2],k -> k[1]));

x1 := ListX(x, k -> k[1] >= q, k->k);

1 computeabove (x1) ;

d:=1[1]; setF:=1[2]; setI:=1[3]; m:=1[4];

setFD := ListX(x, k -> k[1] < q, k => k);

Print("d=",d,"\nm=", Maximum(m),"\n");
Print ("F_D=\n",setFD,"\n");

Print ("F=\n",setF,"\n");
Print("I=\n",setI,"\n");

elif isbelow(x)

then
Print (" \n");
Print("Lower semigroup: F_D \\cup F \\cup \\wh{\\Lambda_{I,m,d}} \n");
Print (" \n");

q := Minimum(ListX(x, k -> k[1] > k[2],k -> k[2]));
x1 := ListX(x, k -> k[2] >= q, k->k);
x1

invert(x1);



APPENDIX B. GAP PROGRAM 154

end;

1 := computeabove(xl);

d:=1[1]; setF:=1[2]; setI:=1[3]; m:=1[4];
setF := invert(setF);

setFD := ListX(x, k -> k[2] < q, k => k);
Print("d=",d,"\nm=", Maximum(m),"\n");
Print ("F_D=\n",setFD,"\n");

Print ("F=\n",setF,"\n");

Print ("I=\n",setI,"\n");

elif istwosidup(x)

then

else

fi;

Print (" \n");
Print("Two sided upper semigroup:\n");

Print ("F_D \\cup F \\cup \\Lambda_{I,p,d} \\cup \\Sigma_{p,d,P} \n");
Print (" \n");

q := Minimum(ListX(x, k -> k[1] < k[2],k -> k[1]));

x1 := ListX(x, k -> k[1] >= q, k->k);

1 := computemid(x1); p := 1[2]; d := 1[3]; setF := 1[4];
setI := 1[5]; setP := 1[6];

setFD := ListX(x, k -> k[1] < q, k -> k);
Print("d=",d,"\np=",p,"\n");

Print ("F_D=\n",setFD,"\n");

Print ("F=\n",setF,"\n");

Print("I=\n",setI,"\n");

Print ("P=\n",setP,"\n");

Print (" \n");

Print("Two sided lower semigroup:\n");

Print ("F_D \\cup F \\cup \\hat{\\Lambda_{I,p,d}} \\cup \\Sigma_{p,d,P}\n");
Print (" \n");

q := Minimum(ListX(x, k -> k[1] > k[2],k -> k[2]));

x1 := ListX(x, k -> k[2] >= q, k->k);
x1
1 computemid(x1) ;

p := 1[2]; d := 1[3]; setF := 1[4]; setI := 1[5]; setP := 1[6];

invert(x1);

setFD := ListX(x, k -> k[1] < q, k -> k);
setF := invert(setF);
Print("d=",d,"\np=",p,"\n");

Print ("F_D=\n",setFD,"\n");

Print ("F=\n",setF,"\n");

Print ("I=\n",setI,"\n");

Print ("P=\n",setP,"\n");

*** GAP session **x*
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gap> Read("bimon.g");;

Subsemigroups of the bicyclic monoid <b,c | bc = 1>.
Function "subsembimon" displays the subsemigroup given the

generating set.

An element c”i b”j is represented by [i,j] and so

the generating set must be a list of pairs of numbers (>=0).

Example:
x := [[1,2],[5,41];

subsembimon (x) ;

gap> x:=[[1,2],[5,411;;

gap> subsembimon(x);;

Two sided upper semigroup:

F_D \cup F \cup \Lambda_{I,p,d} \cup \Sigma_{p,d,P}

d=1

p=4

F_D=

[ 1

F=
[Cf1,21,01,31]1
I=

[1,2,3]

P=

[o0]

gap> x:=[[1,1],[4,7]1,[10,13],[18,24],[23,17]1];;

gap> subsembimon(x);;

Two sided upper semigroup:

F_D \cup F \cup \Lambda_{I,p,d} \cup \Sigma_{p,d,P}

d=3

p=17

F_D=

[[1,11]1]

F=

[fa4, 71, 04,1201, [ 4,131, [4,161, [7,131,[7, 161,
[ 10, 131, [ 10, 161 1]

I=

[4, 5,6, 7,8,9, 10, 11, 12, 14, 15 ]

155



APPENDIX B. GAP PROGRAM 156

P=
[0, 1]
gap> x:=[[1,1]1,[7,4], [13,10], [24,18], [17,23]1;;

gap> subsembimon(x); ;

Two sided lower semigroup:

F_D \cup F \cup \hat{\Lambda_{I,p,d}} \cup \Sigma_{p,d,P}

d=3

p=17

F_D=

[[1,11]1]

F=

rtr,41, (10,41, (13,41, (16,41, [ 13,71, [16, 71,
[ 13, 101, [ 16, 101 1]

I=

[ 4, 5,6, 7,8,9, 10, 11, 12, 14, 15 ]

P=

[0, 1]

gap> x:=[[1,11,[3,13],[5,9],[10,1611;;

gap> subsembimon(x);;

Upper semigroup: F_D \cup F \cup \Lambda_{I,m,d}

d=2

m=20

F_D=

[[1,11]1]

F=

[rs,131, (38,171, (3,191, (5,91, [5,131, 5,171, [5, 191,
[6, 161, [ 10, 16 11

I=

[3,5, 6, 10]

gap> x:=[[1,1]1,[13,3]1,[9,51,[16,101];;

gap> subsembimon(x);;

Lower semigroup: F_D \cup F \cup \wh{\Lambda_{I,m,d}}

d=2

m=20

F_D=

[[1,11]1]

F=

[[13,31, (17,31, [19,31,[9,51, [13,51]1, [17, 51, [19, 5],
[16, 61, [ 16, 10 ] 1]
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I=

[3, 5,6, 101

gap> x:=[[1,11,[2,2]1,[3,3]1,[5,51,[8,811;;

gap> subsembimon(x); ;

Contained in the diagonal

gap> x:=[[9,12],[12,18],[15,24],[18,30],[21,36]];;

gap> subsembimon(x);;

Upper semigroup: F_D \cup F \cup \Lambda_{I,m,d}

da=3
m=36
F_D=
[ 1
F=

(09,127, 09,151, [9,18]1,[9,21], [09, 241,
(9,301, [9,331, [ 12,181, [ 12, 21 ], [ 12, 241,
(12,301, [ 12, 3831, [ 15, 241, [ 15, 271, [ 15, 30 1,

(18,301, [ 18, 331 ]
I=
[ 9, 12, 15, 18, 21 ]
gap> x:=[[3,6],[15,12]];;

gap> subsembimon(x); ;

Two sided upper semigroup:

F_D \cup F \cup \Lambda_{I,p,d} \cup \Sigma_{p,d,P}

d=3

p=12

F_D=

[ 1]

F=

[[3, 61, [3, 911
I=

[ 3,6, 9]

p=

[o]

gap> x:=[[3,12],[15,12]1];;

gap> subsembimon(x);;

Two sided upper semigroup:

F_D \cup F \cup \Lambda_{I,p,d} \cup \Sigma_{p,d,P}

d=3
p=12

[9, 271,
[12, 27 1],
[ 15, 331,
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[ 3,6, 9]

p=

[o]

gap> x:=[[3,211,[15,1211;;

gap> subsembimon(x);;

Two sided upper semigroup:

F_D \cup F \cup \Lambda_{I,p,d} \cup \Sigma_{p,d,P}

d=3
p=12
F_D=
[ 1

[3,6,9]1]

p=

[o]

gap> LogTo();;



Bibliography

1]

C. L. Adair, A generalization of the bicyclic semigroup, Semigroup Forum

21 (1980), 13-25.

I. M. Aratjo and N. Ruskuc, Finite presentability of Bruck-Reilly extensions
of groups, J. Algebra 242 (2001), 20-30.

H. Ayik and N. Ruskuc, Generators and relations of Rees matrixz semigroups,

Proc. Edinburgh Math. Soc. 42 (1999), 481-495.

G. Baumslag, S. M. Gersten, M. Shapiro, and H. Short, Automatic groups
and amalgams, J. Pure Appl. Algebra 76 (1991), 229-316.

R. H. Bruck, A survey of binary systems, volume 20 of Ergebnisse der Math.,
Neue Folge, Springer, Berlin, 1958.

S. Bulman-Fleming and K. McDowell, Solution: Problem ES3311, Amer.
Math. Monthly 97 (1990), 617.

K. Byleen, Regular four-spiral semigroups, idempotent-generated semigroups

and the Rees construction, Semigroup Forum 22 (1981), 97-100.

K. Byleen, J. Meakin, and F. Pastijn, The fundamental four-spiral semi-
group, J. Algebra 54 (1978), 6-26.

C. M. Campbell, E. F. Robertson, N. Ruskuc, and R. M. Thomas, Automatic

completely-simple semigroups, Acta Mathematica Hungarica, to appear.

159



BIBLIOGRAPHY 160

[10]

[11]

[12]

[13]

[17]

[18]

[20]

, Direct products of automatic semigroups, J. Austral. Math. Soc. Ser.

A 69 (2000), 19-24.

, Automatic semigroups, Theoretical Computer Science 250 (2001),
365-391.

J. W. Cannon, D. B. A. Epstein, D. F. Holt, S. V. F. Levy, M. S. Pater-
son, and W. P. Thurston, Word processing in groups, Jones and Bartlett

Publishers, 1992.

A. Cutting and A. Solomon, Remark concerning finitely generated semigroups
having reqular sets of unique normal forms, J. Austral. Math. Soc. 70 (2001),
293-309.

L. Descalco and N. Ruskuc, Subsemigroups of the bicyclic monoid, submitted.

, On automatic rees matriz semigroups, Comm. Algebra 30 (2002),

1207-1226.

A. J. Duncan, E. F. Robertson, and N. Ruskuc, Automatic monoids and
change of generators, Math. Proc. Cambridge Philos. Soc. 127 (1999), 403—
409.

S. M. Gersten and H. B. Short, Small cancellation theory and automatic
groups, Invent. Math. 102 (1990), 305-334.

, Small cancellation theory and automatic groups i, Invent. Math.

102 (1991), 641-662.

R. H. Gilman, Automatic groups and string rewriting, H. Comon and J.-
P. Jounnaud, Term Rewriting, vol. 909, Lecture Notes in Comput. Sci.,

Springer, 1995, pp. 127-134.

P. A. Grillet, Semigroups, Marcel Dekker: New York, 1995.



BIBLIOGRAPHY 161

[21]

[22]

[32]

[33]

, On the fundamental double four-spiral semigroup, Bull. Belg. Math.
Soc. Simon Stevin 3 (1996), 201-208.

The GAP Group, GAP — Groups, Algorithms, and Programming, Version
4.2, (http://www.gap-system.org), 2000.

M. Hoftmann, Automatic semigroups, Ph.D. thesis, University of Leicester,

2001.

M. Hoffmann, N. Ruskuc, and R. M. Thomas, Automatic semigroups with

subsemigroups of finite rees index, Internat. J. Algebra Comput, to appear.

M. Hoffmann and R. M. Thomas, Automaticity and commutative semigroups,

Glasgow J. Math 44 (2002), 167-176.

J. W. Hogan, The a-bicyclic semigroup as a topological semigroup, Semi-

group Forum 28 (1984), 265-271.

J. E. Hopcroft and J. D. Ullman, Introduction to automata theory, languages,

and computation, Addison-Wesley, 1979.
J. M. Howie, Automata and languages, Oxford University Press, 1991.

, Fundamentals of semigroup theory, Oxford University Press, 1995.

M. V. Lawson, Inverse semigroups, World Scientific, 1998.

S. O. Makanjuola and A. Umar, On a certain subsemigroup of the bicyclic

semigroup, Comm. Algebra 25 (1997), 509-519.

W. D. Munn, On simple inverse semigroups, Semigroup Forum 1 (1970),

63-74.

F. Otto, On s-regular prefiz-rewriting systems and automatic structures,
Computing and combinatorics (Tokyo, 1999), Lecture Notes in Comput. Sci.,
1627, Springer: Berlin, 1999, pp. 422-431.



BIBLIOGRAPHY 162

[34]

[35]

[39]

[40]

[41]

, On Dehn functions of finitely presented bi-automatic monoids, J.

Autom. Lang. Comb. 5 (2000), 405-419.

F. Otto, A. Sattler-Klein, and K. Madlener, Automatic monoids versus
monoids with finite convergent presentations, Rewriting Techniques and Ap-
plications (Tsukuba, 1998), Lecture Notes in Comput. Sci., 1379, Springer:
Berlin, 1998, pp. 32-46.

P. Papasoglu, Strongly geodesically automatic groups are hyperbolic, Invent.

Math 121 (1995), 323-334.

N. R. Reilly, Bisimple w-semigroups, Proc. Glasgow Math. Assoc. 7 (1966),
160-167.

E. F. Robertson, N. Ruskuc, and M. R. Thomson, Finite generation and

presentability of wreath products of monoids, submitted.

, On finite generation and other finiteness conditions for wreath prod-

ucts of semigroups, Comm. Algebra, to appear.

, On diagonal acts of monoids, Bull. Austral. Math. Soc. 63 (2001),
167-175.

E. F. Robertson, N. Ruskuc, and J. Wiegold, Generators and relations of
direct products of semigroups, Trans. Amer. Math. Soc. 350 (1998), 2665
2685.

N. Ruskuc, Semigroup presentations, Ph.D. thesis, University of St Andrews,
1995.

, On large subsemigroups and finiteness conditions of semigroups,

Proc. London Math. Soc. 76 (1998), 383-405.

M. Shapiro, A note on context-sensitive languages and word problems, Inter-

nat. J. Algebra Comput. 4 (1994), 493-497.



BIBLIOGRAPHY 163

[45] L. N. Shevrin, The bicyclic semigroup is determined by its subsemigroup
lattice, Simon Stevin 67 (1993), 49-53.

[46] L. N. Shevrin and A. J. Ovsyannikov, Semigroups and their subsemigroup
lattices, Kluwer Academic Publishers, 1996.

[47] H. Short, An introduction to automatic groups, J. Fountain, Semigroups, For-
mal Languages and Groups, NATO ASI Series C466, Kluwer, 1995, pp. 233—
253.

[48] P. V. Silva and B. Steinberg, Eztensions and submonoids of automatic

monoids, Theor. Comp. Science, to appear.

[49] , A geometric characterization of automatic monoids, preprint.

[50] R. Thomson, Finiteness conditions of wreath products of semigroups and
related properties of diagonal acts, Ph.D. thesis, University of St Andrews,
2001.



