A Machine Learning Approach to
Error Detection and Recovery in Assembly

L. Seabra Lopes and L.M. Camarinha-Matos

Departamento de Engenharia Electrotécnica, Universidade Nova de Lisboa
Quinta da Torre, P-2825 Monte da Caparica, Portugal

Abstract.

Research results concerning error detection and recovery
in robotized assembly systems, key components of flexible
manufacturing systems, are presented. A planning strategy
and domain knowledge for nominal plan execution and for
error recovery is described. A supervision architecture
provides, at different levels of abstraction, functions for
dispatching actions, monitoring their execution, and
diagnosing and recovering from failures. Through the use of
machine learning techniques, the supervision architecture
will be given capabilities for improving its performance
over time. Particular attention is given to the inductive
generation of structured classification knowledge for
diagnosis.

1 Introduction

The increasing globalization of the economy and the
emergence of economic blocks is imposing tough
challenges to manufacturing companies. The ability to
produce highly customized products, in order to satisfy
market niches, requires the introduction of new features in
automation systems — flexibility, adaptability, versatility
— relaxing cell structuration constraints and leading to the
concept of Flexible Manufacturing Systems. The efficiency
and economical success of such systems depend, however,
on the capacity to handle unforeseen events, which occur in
a greater number, due to the reduction in structuration
constraints. The complexity of flexible manufacturing
processes makes the supervision and maintenance tasks
difficult to perform by humans. Therefore, in
manufacturing systems, flexibility and autonomy are
tightly related concepts. On-line decision making
capabilities have to be included in supervision systems.

Research results concerning execution supervision in
flexible assembly systems (major components of today's
manufacturing systems) are presented bellow. An
architecture is proposed that considers, at different levels of
abstraction, functions for dispatching actions, monitoring
their execution, and diagnosing and recovering from
failures. One main problem is the acquisition of knowledge
about the task and the environment to support monitoring,
diagnosis and recovery. For this purpose, the use of
machine learning techniques is being investigated, in the
context of the ESPRIT project B-LEARN I1.

0-8186-7108-4/95 $4.00 © 1995 IEEE

197

2 Planning, Supervision and Learning

In the lower levels of the hierarchy of enterprise
activities, several relevant planning procedures are executed,
namely product and process oriented planning, scheduling at
the shop floor and detailed execution planning.

Product oriented planning, based on the product model
(bill of materials, geometric model, etc.), determines a
feasible assembly precedence graph. Process oriented
planning, taking into account feasibility conditions from
the technologic point of view, generates additional
constraints, more concerned with the equipment that must
be used. The two phases of product oriented planning and
process oriented planning can more easily be performed in
interaction with the humans. The process plan typically
includes information on abstract operations to be performed
and respective precedences, goal positions, mating
referentials, approaching directions, possible part grasping
zones, part stable poses, types of resources that can be used
in each operation, etc.

When a specific cell is selected to perform an assembly
task, the high-level specification contained in the process
plan is finally instantiated. It is then the moment to plan
the execution, i.e. to determine all needed actions, their
characteristics and parameters and their optimal sequence.
For nominal planning, and also for failure recovery, a
planner, in the Al sense of the term, was developed [10]. In
this section, the planning strategy, the representation
issues, the domain knowledge and the supervision functions
are presented.

2.1 Planning Strategy

The planner, implemented in Prolog, uses a domain
independent planning strategy, but takes into account
domain knowledge provided in a pre-defined format. The
planning strategy is, basically, a depth-first forward search
procedure. From the initial state of the world, new states
are generated, by applying operators of the considered
domain, until the goal state is reached. In each step, a set of
legal operator instantiations is determined, and evaluated
according to domain dependent heuristics. The operator with
highest score is selected for continuing the search. The way
the planner uses the provided domain knowledge to select

operators makes it a non-linear planner, since it can handle
interaction between goals.

The domain specification includes: definition of
operators; typical precedences between facts in the goal
state; and measures of contribution of facts asserted in a
given phase to goal facts. An operator is defined as a
Prolog clause whose head is:

operator (Op, Info, Keep, Del, Add)

The first argument, Op, is the template of the operator,
specifying name and parameters. The second is static
information about the domain. The arguments Keep and
Del are lists of conditions that must be true before
starting execution of the operator (pre-conditions). The
conditions in Keep are preserved by the operator while
those in Del are removed. Finally, the argument Add is a
list of conditions that become true as consequence of the
execution of the operator.

One of the ways to handle non-linear planning problems
is to incorporate in the planning process knowledge about
goal interaction. In many domains it is quite simple to
provide or determine precedence relations between facts in
the goal state. The planning system, being described, can
take into account such precedence relations. The goals not
preceded by any other goals in the goal state are selected to
be solved first (therefore, an instance of the least-
commitment strategy [11] is used). When each of them is
solved, some new goals will be considered by the planner,
and so on. In the blocks world, the following precedence
rule would be enough:

typical_precedence(on(B,C),on(A,B)).

In each phase of the planning process, the pre-
conditions of all operators will be matched to the current
world state. The result is a set of legal operator
instantiations whose usefulness, concerning the solution
of the goals currently being considered, is evaluated. This
evaluation is made taking into account the contributions
of each of the added facts to each of the goals currently
being considered. This evaluation is, again, domain
dependent, and is made based on Prolog rules of the
following form:

contrib to_goal(CS,F,G, Score) : -

Basically, the rule says that in a given state CS, an
operation that asserts the fact F will contribute to goal G in
a way measured by the returned Score.

2.2 The Assembly Domain Knowledge

In assembly, domain knowledge is much more complex
than in the blocks world. At the center of the problem are
the graphs of precedences for assembly and for disassembly
and the graph of connections between components. The
planning strategy, just described, is used to determine
sequences of actions, at a sufficiently high level of
abstraction. Still, the planner must take into account the
positions of parts in feeders and pallets, the mating
positions, the mating precedences, the tools for grasping
and mating, the needed elementary skills, etc. Examples of
an operator, a precedence rule and a contribution rule are

198

operator (
assemble component
(R, T, Obj, Comp, Part, Prod, Fix, Cp, Geom) ,
[% Info:
object_type (Obj, Part),
part_tool (Part,T),
component_contacts (Comp, LComp) ,
mate (Prod, Comp, Part, Geom, Prec, Succ)],
[% Keep-PC:

current_tool (R,T),

not {assembled (Comp, Prod, Fix)),

fixture with_product (Fix, Prod),

not (robot_arm breakdown (R)),

not (tool_breakdown (T)),

not (defective (0Obj)),

all (C,Prec,assembled(C,Prod, Fix)),

all(C,LComp,

[assembled(C, Prod,Fix)),
represented_by (C,X)]
-> [not(defective(X))1)

Del~PC:

current_arm position(R,Cp),

object_in_robot (Cbj,R) 1,

[$ Add-C:
assembled (Conp, Prod, Fix) ,
represented_by (Comp, Obj),
robot_free(R),
current_arm position(R,Dp)]

1,
[%

).

typical_precedence (
assembled(Cl,P,F),
assembled (C2,P,F))
:- clause(mate(P,C2,_,_,Prec,_), true),
member (Cl, Prec) .

contrib_to_goal (CS,

pallet available(Pal,_),

assembled (C,Pd,_),

3) - member(part_in pallet(Ob,Pal),Cs),
member (object_type (Cb, Part),CS),
member (mate(Pd,C, Part, _,LP,_),CS),
check_prec(Cs,C,pd,LP) .

Fig. 1 — Assembly Planning Knowledge

presented in Fig. 1. Besides the shown assemble
operator, the planner can make use of a disassemble
operator, especially useful in correcting assembly errors,
and various operators for picking and placing parts in/from
fixtures, feeders or the free workspace, for fetching and
storing tools, for feeding parts and pallets, for locating
objects, etc.

It is not possible to completely describe here a realistic
planning example. Just for illustration, we mention an
experiment with the Cranfield Benchmark, a well known
laboratory product used for testing in the assembly domain.
It is a pendulum composed of seventeen parts: two side
plates, four spacer pegs, a shaft, a lever, a cross bar and
eight locking pins. Except for the locking pins, all the
other needed mate operations are stack operations, the most
common in industrial practice. All mate operations require

some degree of compliance. Compliance, however is not
handled at the level of action sequence planning. In our
experimental setup we have special purpose feeders for side
plates and cross bars. The locking pins and the spacer pegs
are fed to the system in a pallet and the lever and the shaft
in another pallet. Three different tools must be used.
Running the planner with the incorporated domain
knowledge on this problem produces an optirnal plan with
53 operations without any backtracking, which may be
considered a good result.

Each of the operations in the generated plan must be
expanded, in a more or less deterministic way, into a
sequence of resource-level operators, like move,
approach, transfer,peg_in_hole orgrasp.
This involves lower levels of planning, more concerned, for
instance, with trajectories or compliance. A skill
acquisition approach to compliance, using learning
techniques, seems promising [4]. However, as we are more
concerned with execution supervision, we prefer to simplify
the planning functionalities of the lower levels in order to
be able to realize a working prototype.

2.3 Supervision Functions

Two plan levels were already mentioned. A hierarchical
specification of the mate precedence graph or the learning of
macro-operations may originate additional plan levels. A
hierarchical plan is an advantage for supervision, since it
provides different contexts for error detection and recovery.
At the lower levels, error recovery will tend to consist of
simple reflexive actions. At the upper levels recovery will
require more extensive diagnosis and planning. The
architecture of an Intelligent Execution Supervisor should
reflect the hierarchical structure of the plans. At each plan
level, the main functions are [1]:

Dispatching and Global Coordination — The global
coordination activities performed by a high level controller
include dispatching actions to the executing agents, driven
by the scheduled task plan, synchronization of the agents
activities and with external events, and information sharing.

Monitoring of Assembly Plans — The monitoring
function is used to detect off-nominal feedback in the
system during plan execution (i.e. deviations from normal
behavior).

Failure Diagnosis — When the monitoring function
detects a deviation the diagnosis function is called. In
general, diagnosis consists of four steps: failure
confirmation, failure classification, failure explanation and
status identification. At each execution level, different
degrees of explanation for a failure may be generated,
depending on the information available.

Failure Recovery — At each supervision level, the
recovery function is called when the diagnosis function
confirmed a failure and found an explanation. The goal is
to determine a recovery strategy to bring the execution to a
nominal state.

199

2.4 Training and Learning

In real execution, a feature extraction function is
permanently acquiring monitoring features from the raw
sensor data. The monitoring function compares these
features with the nominal action behavior model. For
example, let's consider that, during the execution of a
Transfer operation, in which the robot carries a part to
be assembled, an object, unexpectedly originating in the
environment, collides with the gripper. The first diagram,
included in Fig. 2, shows the perceived sensor data during
failure occurrence. The second diagram shows a qualitative
model of the operation. The third diagram shows a
qualitative interpretation of the raw sensor data in terms of
the features used in the operation model. Since a deviation
is detected, the diagnosis function is called to verify if an
execution failure occurred and, that being the case,
determine a failure classification and explanation. For this
function, additional features must be extracted. Diagnosis is
a decision procedure that requires a sophisticated model of
the task, the system and the environment. The final step,
based on the failure characterization, is recovery planning.

The problem of building the knowledge base, and in
particular the models that the monitoring, diagnosis and
recovery functions need, is not easily solved. Even the best
domain expert will have difficulty in specifying the
necessary mappings between the available sensors on one
side and the monitoring conditions, failure classifications,
failure explanations and recovery strategies on the other.
Also, a few less common errors will be forgotten. Known
prototype systems show limited domain knowledge, as they
are intended mainly for exemplification and not to be used
as robust solutions in the real world. Thus, we include in
the execution supervisor two other functions: training and
learning (Fig. 3). The training module coordinates the
interaction with the human operator in order to acquire new
information about nominal execution of the assembly plans
as well as descriptions of new error situations. The learning
module compiles raw data generating classification
knowledge, generalizes instances of target concepts, etc., in
order to build the needed models.

According to the paradigm of Programming by Human
Demonstration (in this case, robot programming by
demonstration [4,11]), complex systems are programmed
by showing particular examples of their desired behavior
and giving explanations for particular failure situations. In
our current approach, the interaction between the execution
supervisor and the human operator is fundamental. The
human will carry out an initial training phase for the
nominal plan execution. The traces of all testable sensors
will be collected during training in order to generate the

Normal
F [] Nearly Normal ~ F'
42 .D Abnormal J]
e % % E

-2

w2
1 4 T
Perceived Sensor Data Nominal Behavior Model Actual Behavior Description

Fig. 2 — Qualitative Features for Monitoring

ACTION & SENSING SERVICES

Fig. 3 — An Architecture for Autonomous Supervision

corresponding monitoring knowledge.

In the existing implementation, for each action and each
continuous feature, its typical behavior during the
execution of the action is calculated as being the region
between the average minus standard deviation behavior and
the average plus standard deviation behavior (Fig. 2). The
trace of discrete features is also recorded. Also in the initial
training phase, the human operator may decide to provoke
typical errors, in order to collect raw data in error
situations. Error classification knowledge is subsequently
generated by induction. When a new failure is detected
during real execution of the assembly system, the human
operator is called to classify and explain that failure and to
provide a recovery strategy for the situation. This is
considered also as a training action, since the system
history and the model of errors will be expanded and new
knowledge will eventually be generated by incremental
induction, therefore improving future system performance.

2.5 Experimental Setup

The setup being used in our experiments is a robotic
assembly cell, composed of an industrial SCARA robot,
three robot grippers, magazine and corresponding tool
exchange mechanism, two special purpose feeders and one
fixture. As feedback information sources, several discrete
information sensors were integrated into the cell. Since, the
most frequent execution failures are expected to be those in
which the robot arm is involved, including collisions,
obstructions and handling failures, a force and torque sensor
was also included.

3 Failure Diagnosis

A qualitative approach to modeling errors was followed
in our work. Depending on the available sensor
information, a more or less detailed classification and
explanation for the detected execution failure may be
obtained. Therefore, the model of errors should be
hierarchical or taxonomic. At each level of the taxonomy,
cause-effect relations between different types of errors
should be added. Typically, execution failures are caused by

200

system faults, external exceptions or other past execution
failures, although, in general, errors of the three kinds may
cause each other [1]. Determining explanations for detected
execution failures can become very complex when etrors
propagate. Modeling errors in terms of taxonomic and
causal links aims at handling this complexity [1,6].

3.1

As emphasized above, the difficulty in hand-coding the
models that the supervision functions need, raises the
question of how to build such models automatically. The
classification phase of the diagnosis task can be performed
based on knowledge generated by induction.

In a previous phase of this research, several inductive
learning algorithms and systems were applied to the
assembly domain [1,9]. These techniques are only able to
learn uni-dimensional concept descriptions: the resulting
knowledge is only able to assign classes to objects from a
given domain. In the assembly domain, for example, these
algorithms and systems cannot handle the problem of
discriminating collisions from obstructions and normal
situations, handling simultaneously the problem of
discriminating between different types of collisions.

Having as motivation the automatic construction of the
models required for the assembly supervisor, the idea of
generating a concept hierarchy became attractive. The
problem of learning at multiple levels of abstraction has
not yet been adequately considered in the literature. In some
approaches, a fixed decomposition of concepts is used, and
learning is applied at each level [6]. However this is not
flexible enough. Fixed decompositions have also been used
for feature values [6,8]. A new algorithm, SKIL (structured
knowledge generated by inductive learning), was developed
to perform this task [9]. The concepts in the hierarchy
learned by SKIL are characterized by a set of symbolic
classification attributes.

At the lower levels of the hierarchy, concepts are
described in more detail, i.e., more attribute values are
specified. Moreover, in detailing or refining a concept, in
which attributes take certain values, it may make sense to
calculate other attributes. Therefore, the user should provide
a set of attribute enabling statements of the form (Aj, Ajj,
EAij), meaning that when the value of Aj is determined to
be Ajj, then attributes in EAjj should be included in the set
of attributes to consider in the continuation of the induction
process. For example, when learning the behavior of a
Transfer operation, if a collision is found, it may make
sense to determine some characteristics of the colliding
object, like size, hardness and weight. This could be
expressed by the following attribute enabling triple:

(failure_type, collision, {obj_size,
obj_hardness, obj_weight})

The attribute values of the concepts in the hierarchy are
determined inductively based on training data specified in
terms of a set of discrimination attributes or features, which
can be numerical or symbolic. Each example in the training

Learning of Conceptual Hierarchies

algorithm SKIL({LEx,LAt,LAET,LFt) {
// LEx, LAt, LFt are lists of examples,
/) attributes and features. LAET is the
// list of attribute enabling triples.
declare Node;
NewLAt = OpenAttributes(LEx,LAt,LAET);
Node.closed ats =
ClosedAttributes (LEx, LAt, LAET) ;
if TestStop (NewLAt,LFt)
Node.type = (NewLAt==LAtC?LEAF:H_LEAF);
// B_LEAF, a concept hierarchy leaf.
// LEAF, a tree leaf.
return Node;

TransformFeatures (LEx, NewLAt,LFt);

(At,TF) = SelectFeature(LEx,NewLAt, LFt);

if (FtIrrelevance (LEx,At,TF)>MAX_IRL) {
// MAX_IRL — Max. feature irrelevance.
Node.type = (NewLAt==LAt?LEAF:H_LEAF);
return Node;

}
NewLFt = LFt - TF;
for each TFy in (TF.transformed values)
do {
NewLExX = PartitionExamples(LEX,TF,TFy);
Node.sub_treel[k] =
SKIL (NewLEx, NewLAt, LAET, NewLFt) ;
}
Node.type = (NewLAt ==LAt?TEST:H_NODE);
// H_NODE, a concept hierarchy node.
// TEST, a decision.
return Node;

Fig. 4 — The SKIL Algorithm.

set is composed of a list of attribute-value pairs followed
by a vector of feature values.

The algorithm (see Fig. 4) is a recursive procedure that
takes as parameters a list of examples, a list of
classification attributes, a list of attribute enabling triples
and a list of features. In each stage of the induction, the
main goal is to determine the values of as many
classification attributes as possible. For each attribute, the
discrimination power of features is evaluated, in terms of an
entropy measure [7]. The feature that, for some attribute,
gives the lowest entropy is selected to be test feature.
Expansion stops when the values of all attributes have been
determined or when it is not possible to extract more
information from the data.

The basic knowledge transmutation used by SKIL is,
therefore, empirical inductive generalization (see the
Inferential Theory of Learning [5]), only that at multiple
levels of abstraction. The generated knowledge structure is a
hierarchy of anonymous concepts, each of them defined by
the combination of several attribute-value pairs. The
number of specified attributes and values defines the
abstraction level. The formation of these concepts, guided
by the attribute enabling triples, depends highly on the
training data. The hierarchy is, simultaneously, a decision
tree that can be used to recognize instances of the
concepts.

3.2 Generating Behavior Taxonomies

Several experiments with SKIL were performed in the
assembly domain [1,9]. A short summary is given here.
Consider the macro-operation «Pick and Place» of a part
and three of the basic primitives involved: a) approach to

Attribute Attribute Values

behavior { normal, failure }

part_status { ok, moved, lost }

failure_type { collision, obstruction }

collision_type { part, tool, front }

a) Attributes

Attribute Attribute Value| Enabled Attributes
behavior failure { failure_type }
failure_type collision { collision_type }

b) Enabling triples
Fig. 5 — Approach-Ungrasp problem specification

grasp position (Approach-Grasp); b) Transfer (of part);

and c) approach to final position (Approach-Ungrasp). In

the training phase, each of the selected operations was

executed many times and several external exceptions were

simulated. The trace of forces and torques in an interval

surrounding each learning event was collected together with

a description of the system behavior in terms of attributes

as:

behavior — generic information about the operation behavior;
can be normal, collision, front collision or obstruction;
what will be learned is, in fact, a model of the behavior
(either normal or abnormal) of the system when
performing these operations.

body — what was involved in the failure, e.g., the part , the
tool , the fingers (left , right or both fingers).

region — region of body that was affected, e.g., front , left ,
right or back side , bottom , ...

object size — size of object causing failure: small , large.

object hardness — can be soft or hard .

object weight — can be low or high .

In this case, the goal of applying SKIL is to learn
concept hierarchies characterizing the behavior of the
system during execution of the selected operations under
different external conditions.

For the operation Approach-Ungrasp, 117 classified
examples were collected. The considered classification
attributes and attribute enabling triples are presented in
Fig. 5. The top-level (start) attributes are behavior and
part_status. The discrimination features were extracted from
raw force and torque data. After running SKIL on this
domain specification and training data, a decision tree was
obtained having 71 nodes. The concept hierarchy contained

100 4=
80 ¢
60 ¢ '

404 '

20 ¢ -

i
1

40 60 80

°oT

Fig. 6 — Error rates per atiribute value versus the
number of examples (Approach-Grasp).

G0 Fx3 2
/N Dég'! / N\ ! {/E}
DTaxnnomy Node y
QO Decision Tree Node @

<: (Fr(x; { 9957{) &Dz2(X; [-542 =510 &
BX3(x, - 464, 1301

e

. (bebavior(x5 fau!ure) & part_; status(X, moved),
“cfailuge type(x, obstruction)

Fig. 7 — A fragment of the Taxonomy generated
by SKIL for the Approach-Ungrasp primitive, and
examples of the corresponding rules.

in the tree has 59 nodes, being 10 of them internal nodes
and 49 terminal nodes (Fig. 7).

Performing the leave-one-out test with the same data and
algorithm, the resulting average error rate is 15%.
Experiments with traditional inductive learning algorithms,
using the same training data and an equivalent set of classes
(i.e., "flat" concepts corresponding to the combinations of
the values of the classification attributes given to SKIL)
produced error rates over 40%. Therefore, another advantage
of SKIL seems to be to generate knowledge with a higher
degree of accuracy.

When the user wants to get more and more information
about a failure situation, the number of classification
attributes and their values increases. If these attribute values
are to be combined to produce "flat" classifications or
labels, the number of labels increases exponentially, and
the problem becomes intractable. This is the case of the
information collected during execution of Approach-
Grasp: 10 classification attributes, 28 attribute values and
8 enabling triples. Applying SKIL to this data (88
examples) produced a decision tree and concept hierarchy
with 93 nodes. The resulting error rate (30%) is much
higher than in the previous problem. This is understandable
since the problem is much more complex and a smaller
training set was provided. An equally complex specification
was used in the Trans fexr problem, for which only 47
examples were collected. In this case the taxonomy
generated by SKIL has an error rate of 34%. As could be
expected from an inductive algorithm, when the number of
occurrences of each attribute value in the training set
increases, the corresponding error rate decreases (Fig. 6).

3.3 Failure Explanation

Training the system to understand the meaning of sensor
values and learning a qualitative and hierarchical model of

202

the behavior of each operation is a crucial step in diagnosis.
Programming such model would be nearly impossible.

Since the human defines the "words"” (attribute names and
values) used in the model, the human is capable of
understanding the more or less detailed description that the
model provides for each situation. It is then easier to hand-
code explanations for the situations described in the model.
The explanation that must be obtained for the given
execution failure includes, not only the ultimate cause (an
external exception or system fault), but also the
determination of the new state of the system. The failure
explanation rules that we are using have the following
format:

explanation(Op,FD,C,Del,Add) :~ ...

The first argument, Op, is the elementary operation
during which the failure occurred or, in general, the
execution context. The second argument, FD, is a
description of the execution failure, obtained from the
sensor data using the taxonomic model. Then, C is the
ultimate cause of the failure. Knowing the exact cause can
be irrelevant. What is important is to identify the state of
the system after the failure. The arguments Del and Add
specify the facts to be deleted from the state description and
the facts to be added. For example:

explanation(

get_tool (R, T1,TP1),

[[failure_type,wrong_tool],
[current_tool,T2] 1,

unknown,

[current tool(R,T1),
tool_in_magazine (T2,TP2)],

[current_tool (R,T2),Fact]

) := { toolplace(TPx),

Fact = tool_in magazine(T1,TPX) ;
Fact = tool_lost(T1l)).

Diagnostic reasoning and causality have been studied for
some time, and tested frequently in domains like electronic
circuits, but there is no unified theory for these matters.
Moreover, approaches like the one presented in (2] structure
the problem considering that the main goal is to determine
the faulty components in a system. However, in the
assembly domain, not only system faults, but also external
exceptions can be causes of off-nominal feedback. The
described representation, that we are using, seems to
provide useful results, although additional evaluation and
refinement are needed.

4 Failure Recovery

Finally, when an explanation for an error is obtained,
recovery planning is attempted. However, the most
common case, probably, is that, not only one, but several
possible explanations are found. The available sensor
information is not enough to assert, with significant
certainty, which is the state of the system. For instance, in
the "wrong tool" example, presented above, the explanation
rule provides several explanations, namely that the needed
tool is in some other toolplace, TPx (and this is already
several possibilities), or lost. In this case, the recovery

planner has to assume one of the explanations, generate a
recovery plan and use it. If some problem arises, probably
the assumption was not correct and some other explanation
must be considered.

Note that the initial plan is generated for the nominal
conditions. The representation of operators contains several
assumptions. For instance, not (defective (0bj)) is one
of the pre-conditions of the assemble operator. Imagine
that, in executing the assembly plan of the Cranfield
Benchmark, mating one of the spacer pegs with the side
plate fails. Various explanations are possible: the spacer
peg might be defective, the side plate might be defective,
some unexpected object originating in the environment
might be obstructing the mate operation, etc. Unless some
sophisticated sensorial feedback is available, the robot will
have to recover based on assumptions or beliefs. The
recovery actions will be, simultaneaously, verification
actions.

One aspect that will be addressed in the near future is the
application of learning techniques in error recovery. Some
carly planners (e.g. HACKER [13]) already included case-
based reasoning features. These basic ideas have to be
developed in order to take into account the complexity of
real world problems. A learning feedback loop will have to
be implemented [3]. In a first step, when an error, for
which no recovery strategy is known, is detected, recovery
planning is attempted. If recovery planning fails to generate
a plan, eventually the human operator will provide one. In
a second step, if the obtained recovery strategy is
successful, it will be generalized and archived for future use.
This will be attempted in the next phase of our work.

5 Conclusions

On-line decision making capabilities must be included in
manufacturing systems in order to comply with the new
requirements of flexibility and autonomy. Research results
concerning error detection and recovery in flexible assembly
systems were presented. The proposed supervision
architecture includes functions for dispatching of actions,
execution monitoring and failure diagnosis and recovery.
The research effort is directed towards something that really
works. In exploring the scientific areas that may contribute
to the development of the execution supervisor, we keep
that goal in mind.

Developments in planning for nominal execution and for
error recovery were presented. The used planning strategy is
domain independent, non-linear, forward chaining,
depth/best-first. The representation of the assembly domain
knowledge was presented. Future research in this topic
includes the learning aspects in recovery planning.

The lack of comprehensive monitoring and diagnosis
knowledge in the assembly domain points out to the use of
machine learning techniques, leading to an evolutive
architecture. The general approach is to collect examples of
normal and abnormal behavior of each operation or
operation-type/operator and generate a behavior model that
the diagnosis function will use to verify the existence of
failures, to classify and explain them and to update the

203

world model. Concerning the failure identification-
classification problem, the application of the algorithm
SKIL, that generates concept hierarchies with a higher
degree of accuracy, provided interesting results. Further
research will focus on efficient ways of generating
examples, on feature construction and selection and on
long-term learning.

Acknowledgements

This work has been funded in part by the European
Community (Esprit project B-Learn and FlexSys) and
JNICT (a Ph.D. scholarship and project CIM-CASE).

References

[1] Camarinha-Matos, L.M., L. Seabra Lopes, J. Barata
(1994) Execution Monitoring in Assembly with
Learning Capabilities, Proc. of IEEE Int'l Conf. on
Robotics and Automation, San Diego.

de Kleer, J.,, A. K. Mackworth, R. Reiter (1990)
Characterizing Diagnoses, The Eighth National
Conference on Artificial Intelligence (AAAI-90),
Boston, p. 324-330.

Evans, Ethan Z.; Lee, C. S. G. (1994) Automatic
Generation of Error Recovery Knowledge Through
Learned Reactivity, Proc. of the 1994 IEEE Int'l Conf. on
Robotics and Automation, San Diego.

Kaiser, M; Giordana, A.; Nuttin, M (1994) Integrated
Acquisition, execution, evaluation and Tunning of
Elementary Operations for Intelligent Robots, Proc. of
the IFAC Symp. on Artificial Intelligence in Real-Time
Control, Valencia, Spain.

Michalsky, R.S. (1994) Inferential Theory of Learning:
Developing Foundations for Multistrate-gy Learning,
Machine Learning. A Multistrategy Approach, vol. IV,
Michalsky, R.S.; Tecuci, G (eds.), Morgan Kaufmann
Pub., San Mateo, CA.

Mozetic, 1. (1991) Hierarchical Model-based Diagnosis,
Int. J. of Man-Machine Studies, 35, pp. 329-362.
Quinlan, J. R. (1986) Induction of Decision Trees,
Machine Learning , 1, pp. 81-106.

Reich, Y. (1994) Macro and Micro Perspectives of
Multistrategy Learning, Machine Learning. A
Multistrategy Approach, vol. IV, Michalsky, R.S.;
Tecuci, G (eds.), Morgan Kaufmann Pub., pp. 379-401.
Seabra Lopes, L.; Camarinha-Matos, L.M (1995)
Inductive Generation of Diagnostic Knowledge for
Autonomous Assembly, Proc. 1EEE Int'l Conf on
Robotics and Automation (to appear), Nagoya, JP.
Seabra Lopes, L. Camarinha-Matos, L.M. (1995)
Planning and Supervision in Assembly Systems: a
Machine Learning Approach, Proc. 3rd European
Workshop on Learning Robots, MLnet Familiarization
Workshop Series, Heraklion, Crete, Greece.

Seabra Lopes, L.; Camarinha-Matos, L.M (1995)
Planning, Training and Learning in Supervision of
Flexible Assembly Systems, Balanced Automation
Systems: Proceedings of BASYS'9S5 (to appear), Vitoria,
Brazil.

Sacerdoti, E. (1977) A Structure for Plans and Behavior,
Elsevier-North Holland.

Sussman, G. (1975) A Computer Model of Skill
Acquisition, Elsevier, New York.

(2]

[31

t4]

[5]

(61

(71

[8)

(91

(10]

{11]

[12]
[13]

