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Abstract: This chapter illustrates, with a case study from the robotized as-
sembly domain, the importance of feature transformation. The specific problem
that is addressed is learning failure diagnosis models for a pick-and-place op-
eration. Several feature transformation strategies are evaluated on flat as well
as hierarchical learning problems, The SKIL learning algorithm, previously
proposed by the authors, is used in most experiments. A comparison with an
oblique tree learning algorithm is also included.

23.1 INTRODUCTION

The research described in this paper was motivated by the need to develop
execution supervision functionalities for flexible assembly systems (Camarinha-
Matos et al., 1996; Seabra Lopes and Camarinha-Matos, 1996).
Execution supervision is the activity of executing a plan while making sure
_that all its goals are achieved. Besides the lower (sub-symbolic/reactive) con-
trol levels, an architecture for intelligent supervision should possess high-level
decision-making capabilities. This includes monitoring goal achievement during
task execution, diagnosis when unforeseen situations are detected and planning
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both for nominal task execution and for failure recovery. One main problem in
developing an intelligent supervisor is the acquisition of knowledge about the
task a::nd the environment to support monitoring, diagnosis and recovery.

This i.'? especially true in the product assembly area, where task execution
must achieve complex goals (like the relationships between components in the
completed assembly) defined at a symbolic level. In order to alleviate this sort
f’f knowledge acquisition bottleneck, the use of machine learning techniques was
investigated. The general problem we have been investigating can be described
as robot learning at the task level (Seabra Lopes, 1997). An important part of
the work, concerned with the induction of structured knowledge for diagnosis
evolved in the framework of the B-LEARN II project (Kaiser et al., 1995). ’

During the research, the authors came across the problem of havir,lg to trans-
form the space of features that characterize each training example, in order to
improv'e the quality of the learned models. The applied feature tra.llsformation
stra.f.e_gl_es and the improvements they produced are deseribed in this chapter, In
the m'ltla.l sections, the programiming by demonstration framework, the applied
learning algorithm and the experimental situation will be described.

23.2 ROBOT PROGRAMMING BY DEMONSTRATION

In real execution, when the monitoring function detects a deviation in the
'behavior of the robot that may correspond to a faiture, the diagnosis function
is called to confirm and characterize the failure. Diagnosis is a decision process
that requires a sophisticated model of the task, the system and the environment,
Based on the failure description, recovery planning can be attempted. '

The problem of building such sophisticated model is not easily solved. Even
the best domain expert will have difficulty in specifying the necessary mappings
between the available sensors on one side and the monitoring conditions, failure
classifications, failure explanations and recovery strategies on the othe;. Also
a few less common errors will be forgotten. ,

The paradigm of Robot Programming by Demonstration {RPD), adopted in
the B-LEARN II project, seems indicated to overcome this type of, difficulties
According to this paradigm, complex systems are programmed by showing ex-
amples of their desired behavior. In our approach, interaction with the human
seen as a tutor is fundamental. Usually, emphasis is put on robots learning from,
their own perception of how humans perform certain tasks (Kuniyoshi et al
1994). In our approach, RPD is broader and includes any interaction with th;;
human that leads to improvement in future robot performance. An adequate
user interface facilitates transfer of the human’s knowledge to the robot and
learning capabilities enable it to generate new knowledge.

The_ human will carry out an initial training phase for the nominal plan
execution. The traces of all testable sensors will be collected in order to generate
pnfn%tive skills and the corresponding monitoring knowledge. Also in the initial
training phase, the human operator may decide to provoke typical failures and
collect sensor data about them. Failure clagsification knowledge is subsequently
generated by induction. When a new failure is detected during real execution
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of the assembly system, the human operator is called to classify and explain
that failure and to provide a recovery strategy for the situation.

The classification phase of the diagnosis task can be performed based on
knowledge generated automatically by inductive learning. A new algorithm,
SKIL, was developed to perform this task. SKIL generates hierarchies of struc-
tured concepts. As far as diagnostic knowledge is concerned, the most im-
portant evaluation criterion is accuracy. Information on hierarchical problem
decomposition, given to SKIL, leads to significant improvements in prediction
accuracy. Another way to improve accuracy, emphasized in this chapter, is
feature transformation.

The crucial step in diagnosis seems to be training the system to understand
the meaning of sensor values and learn a qualitative and hierarchical model
of the behavior of each operation. Programming such model would be nearly
impossible. Since the human defines the " words” (discrimination features, clas-
sification attributes and respective values) used in the model, the human is
capable of understanding the more or less detailed description that the model
provides for each situation. It is then easier to hand-code explanations for the
situations described in the model.

23.3 LEARNING STRUCTURED CONCEPTS

Having as motivation the automatic construction of the models required for the
assembly supervisor, the idea of generating a concept hierarchy became attrac-
tive. The problem of learning at multiple levels of abstraction has not yet been
adequately considered in the literature. In some approaches, a fixed decom-
position of concepta is used, and learning is applied at each level (Koller and
Sahami, 1997). However this is not flexible enough. Fixed decompositions have
also been used for feature values. A new algorithm, SKIL (structured knowledge
generated by inductive learning (Seabra Lopes and Camarinha-Matos, 1995)),
was developed to perform this task.

The concepts in the hierarchy learned by SKIL are characterized by a set of
symbolic classification attributes. At the lower levels of the hierarchy, concepts
are described in more detail, i.e., more attribute values are specified. Moreover,
in detailing or refining a concept, in which attributes take certain values, it may
make sense to calculate other attributes. Therefore, the user may provide a set
of attribute enabling statements of the form (4, 6:j, Ax), meaning that when
the value of A; is determined to be ai;, then attribute A; should be included
in the set of attributes to consider in the continuation of the induction process.
For example, when learning the behavior of a robotized Transfer operation, if
a collision is found, it may make sense to determine some characteristics of
the colliding object, such as its size. This could be expressed by the following
attribute enabling statement: (failure_type, collision, obj.size).

The attribute values of the concepts in the hierarchy are determined in-
ductively based on training data specified in terms of a set of diserimination
features, which can be numerical or symbalic. Each example in the training
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behavior: failure
part status: lost

Fz_115>19.7

Fz_115<19.7

Figure 23.1 Example of a node in a concept hierarchy generated by SKIL

set is composed of the concept instance, represented as a list of attribute-value
pairs, followed by a vector of feature values. '

The algorithm is a recursive procedure that takes as parameters a list of ex-
amples, & list of classification attributes, a list of attribute enabling triples and
a list of discrimination features. In each stage of the induction, the main goal
is to predict the values of as many classification attributes as possible. For each
attribute, the discrimination power of features is evaluated, using information
theoretic measures. For continuous features, segmentation of feature values is
done at each decision node, in a way that maximizes its discrimination power.
The feature that, for some attribute, gives the highest discrimination power is
selected to be test feature. Expansion stops when the values of all attributes
have been predicted or when it is not possible to extract more information from
the data.

The basic knowledge transmutation used by SKIL is, therefore, empirical
inductive generalization, only that at multiple levels of abstraction. The gen-
erated knowledge structure is a hierarchy, where nodes represent structured
concepts. A concept consists of a set of predictions. The number of predictions
defines the abstraction level (concepts with less predictions are more abstract).
The hierarchy is, simultaneously, a decision tree that can be used to recog-
nize instances of the concepts. The formation of these concepts, guided by the
attribute enabling statements, depends highly on the training data.

In Figure 23.1 an example of a node with two predictions and two child
nodes is presented. The predictions identify a failure situation and assert that

ot aniait ame e
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the handled part was lost. In order to know which of the child nodes is the
correct specialization of the displayed node, the feature Fz_115 must be tested.
As a special case, SKIL can also work as any traditional classification algo-
rithm. This happens when only one classification attribute is defined. In such
situations, SKIL performs equally well as (or even better than) some of the
most popular classification algorithms, including CART (Breiman et al., 1984),
ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993) and OC1 (Murthy et al., 1993).

23.4 CONSTRUCTIVE INDUCTION

In robotics applications, information about the status of the system must of-
ten be obtained from complex sensors that provide numerical data difficult to
analyze. From the supervision point of view, the results obtained in the initial
experiments carried out within B-LEARN II were not satisfactory, due to the
low classification accuracies on unseen examples. The most typical accuracy
results were between 50% and 70%. One obvious explanation for these poor
results was that the relevant features in each situation were not explicit in the
sensor data, and, if the relevant features were somehow implicit in the data,
the applied learning algorithms were not powerful enough to extract them.

One solution for this problem would be to use constructive induction. The
problem of constructive induction, which aims to generate hypotheses described
in terms of features that do not appear in the training data, has been raised
by several authors, starting with Michalski (Michalski, 1983). In this case,
a method should be capable of inventing new features, by applying known
functions to the initial features, and evaluating the relevance of these new
features to the learning task.

Only recently, constructive induction started to grow steadily and it is cer-
tainly a good promise for the future. It is unclear if the existing techniques are
already mature for complex real-world problems. Experience within B-LEARN
1I indicates that they are not. In the project activities, the SMART 4 system
(Botta and Giordana, 1993), was applied to problems from the assembly ap-
plication domain. SMART+ is a sophisticated learner, capable of combining
different types of inference, such as inductive, deductive and abductive infer-
ence, and able to handle numerical features and to explore background knowl-
edge. The concept description language used in SMART+ is an extended first
order Horn clause language. The predicates that make up the body of a clause
can be operational (those defined by the teacher) or non-operational (invented
by the learner). The possibility of the teacher defining operational predicates
enables the algorithm to perform a shift of bias, i.e. enables the generation of
hypotheses expressed in terms of predicates not used in the training data. The
application of these predicates to the examples in the training set establishes
new features potentially more discriminative with respect to the learning prob-
lem. With this idea in mind, SMART+ was applied to diagnostic problems
in the assembly domain. Several serious disadvantages became apparent. To
start with, the system was too complex to parameterize. Some of the learned
rules were equally complex. The system was not able to handle problems with



380 FEATURE EXTRACTION, CONSTRUCTION AND SELECTION

many features. Finally, the system took a long time, typically many hours, to
produce the rule set. ‘
In numerical feature spaces, oblique decision trees are an alternative method
of automatically deriving new features. The CART system {Breiman et al
1984) was extended in this direction. During tree growth and in each ste;
of the recursive partitioning procedure, instead of evaluating only the features
provided in the training set, linear combinations of these features are evaluated.
The linear feature combination can be regarded as a new feature and there-
fore this approach can be thought of performing constructive induction. While
tests on single features are equivalent to partitioning the input space by an axis-
parallel hyperplare, linear feature combinations define oblique hyperplanes.
The vector of coeflicients is initialized with random values and then a hill-
climbing style search procedure will determine the vector of coefficients that
maximizes class discrimination. The major drawback of this approach is the
combinatorial explosion of possibilities that it must face. For a training set
with N examples described in terms of p features, there are (V') different split-
ting regions. This means that the number of alternative hyperplanes grows
exponentially with the size of the training set. CART has the additional draw-
back that it does not necessarily find the best vector of coefficients because
the search procedure can get stuck in local maxima. The more recent OC1
algorithm (Murthy et al., 1993), that will be used for comparison later in this

chapter, uses randomization to escape local maxima. The specific strategy of
0OC1 makes it polynomial.

23.5 EXPERIMENTAL SITUATION: THE PICK AND PLACE TASK

A part pick-and-place macro-aperation has been chogen as case study. For the
experiments, three of the primitives involved in the operation were selected:

1. approach to grasp position {Approach-Grasp),
2. Transfer (of a part), and
3. approach to the final position (Approach-Ungrasp).

During the training phase, each of the selected operations was executed many
times and several external exceptions were simulated. In most cases an object
was placed, either in motion or stopped, in the robot arm motion path. A trace
of forces and torques, covering the course of events from failure detection to
stabilization of the system, was collected and a detailed failure description was
assigned to the trace by the operator.

The force/torque sensor provides the features that will enable the learner
to discriminate among alternative failure descriptions. Each time the sensor
is consulted, the values of six variables, namely the forces and torques in the
X, Y and Z directions, are obtained. This information constitutes a sensor
sample. During the training phase, when a failure is detected, sensor samples
are collected at regular time increments until the state of the system stabilizes.
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During the observation window (a time interval covering the typically encoun-
tered failures) 15 sensor samples are collected, The values of a certain sensor
variable (a force or a torque) in the successive samples in a failure trace make
up a profile of that sensor variable, which is an element of ®!®. Each failure
trace is therefore composed of three force profiles and three torque profiles,
providing a total of (3 + 3) x 15 = 90 features to the learning process.

The failure description appended by the teacher to each example is the de-
pendent variable in the learning process. When a similar failure is encountered,
the robot should consider a similar failure description for further decision-
making. However, these descriptions are not simple labels, as is customary
in most learning systems, but structured descriptions, containing considerable
detail. In the style of the previously described SKIL algorithm, each failure
description consists of a set of attribute-value pairs. These attributes corre-
spond to the classification attributes of SKIL and should not be confused with
diserimination features.

In this way, 88 examples were collected for the Approach-Grasp operation,
47 examples for the Transfer operation and 117 examples for the Approach-
Ungrasp operation. Baged on these examples, it is possible to formulate a
variety of learning problems.

23.6 FEATURE TRANSFORMATION STRATEGIES

The alternative followed in the experiments described in this chapter is to apply,
in a pre-processing phase, a set of pre-defined feature transformation strategies.
This is a highly domain-dependent approach, that remains an art and has not
received enough attention from the machine learning researchers, traditionally
more concerned with feature selection only. These strategies involve applying
complex functions, including the discrete Fourier transform, to the raw features
in order to obtain new features, hopefully more discriminative with respect to
the learning problems. Most of these complex functions would hardly ever be
discovered by existing constructive induction algorithms. The basic elements
manipulated by feature construction functions are the profiles of the sensor
variables, i.e. elements § = {p1,...,p15) € R'*. Each feature transformation
strategy receives the profiles of forces and torques and produces a feature vector,
which results of joining together (or appending) the feature vectors returned
by the applied feature construction functions.

In what follows, appending two feature vectors, f € ®™, and g € R, denoted
by (7,7), is an element € R™™ such that h; = f; for i = 1,...,m and
hi=gmlori=m-+1,..,m+n.

In general, in a numerical domain, a feature transformation strategy is a
function f : ®¢ — R* which transforms d-dimensional feature vectors into

k-dimensional feature vectors.
It is desirable that the execution supervisor ressons about the evolution

of force and torque values, not in terms of the individual numerical values,
but in terms of its overall characteristics, in short, as humans do. A human,
making a qualitative description of such behavior, would probably divide it
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into intervals, and would mention roughly how long these intervals were, which
were the average values in each interval, as well as the average derivatives.
Dealing with time intervals is not an easy task, mainly when the goal is to
apply feature-based learning algorithms to generate new knowledge. In the field
of qualitative physics, the representations for numbers, frequently proposed
include signs, inequalities and orders of magnitude. Qualitative formalisms to1
describe changes in a system have also been proposed. Nevertheless, the feature
transformation strategies that will be used do not produce qualitative features,
The constructed features are all numeric, but they were designed to summarize
potentially important aspects of the physical phenomenon under consideration.
The numerical to symbolic conversion is a job for the learning algorithm itself.

One of the feature construction functions calculates the average of a certain
sensor variable between two instants, mandn (1< m <n < 15), in its profile:

ZP.‘
A(ﬁ,m,n) = ;’% (231)

Another function calculates the average derivative or rate of change between
two instants in a given profile;

Pn—Pm
pr— (23.2)
.Another function tries to assess the degree of monotonicity of a profile. In
this case, the gf::nera.l trend of the profile must be identified. The function
trend(p) determines if the general trend displayed by the profile is ascending
(1) or descending (-1):
_ 1 if A(p,1,5) < A(p, 11,15)
trend(p) = ' T RS
) { -1 otherwise. (23.3)
- The monotonicity of a profile B is then defined as the number of increases
in consecutive instants of the profile, if the general trend is ascending, or the
number qf _decreases in consecutive instants, if the general trend is descending.
Monotonicity of § is computed by the following function:

14
M{p) =7 mon(p,i) (23.4)

fr=]

where the function mon(p, 1) , that checks if the general trend of P is followed
between instants ¢ and i + 1, is given by

mon(p, i) = { 1 if p; - trend(P) < pit1 - trend(p),

0  otherwise. (23.5)

These.: three measures are summary measures. They are an approximation
to the kind of features humans would extract from the profiles.
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The measurable sensor variables are axis-parallel forces and torques. How-
ever, the resulting forces in the orthogonal planes and in 3D space might em-
phasize some important aspects of the physical process. For instance, the am-
plitude of the resulting torque in the XY plane might be more relevant to
learning about vertical arm motion than the individual torques in the X and
Y directions. In some of the feature transformation strategies that were ex-
perimented, two profile combination functions were applied. In both cases, the
result is a profile of amplitudes of the resulting forces or torques.

The first of these functions, Ryp, takes as inputs two profiles, @,b € R
and returns the amplitude profile 7 € R15;

F=Rap(@,0) & ri=yal +b, fori=1,.,15 (23.6)

The other function, R3p, computes a similar profile in 3D. It takes three
profiles @,b,& € R!® as input and returns the amplitude profile ¥ € R!5:

F=Ryp(@,b,8) &ri=1/a?+b2+c?, fori=1,.,15 (23.7)

In the selected case-study, most of the failure situations to be learned are
related to different types of collisions of the robot arm with its environment.
When a collision occurs, the arm enters a state of abnormal vibration that
virtually disappears after a short time interval. In addition to the study in the
time domain, it might be interesting to study the force and torque profiles in
the frequency domain. A function of time for which an analytical expression
is known can be transposed to the frequency domain by applying the Fourier
transform. Waveforms are mathematical entities that describe important real-
world phenomena (in optics, electricity, acoustics, etc.) as functions of time. In
the meantime, spectra, that are the Fourier transformations of waveforms, also
find physical correspondence. In several branches of science, it often happens
that analysis of a given phenomenon is much simpler in the frequency domain.

There are several mathematical conditions that a function must meet in
order for the Fourier transform to be applicable, but physical possibility is a
valid sufficient condition for the existence of a transform.

In this case-study, the analytical expressions of the time functions repre-
sented by the profiles are not known. However, the measurements in each
profile have been obtained at regular time intervals which enables the appli-
cation of the discrete Fourier transform. For a given profile, what is obtained
is a certain number of points of the Fourier transform of the underlying time
function,

Let’s consider the general case of a profile of a time function with an even
number N of measurements taken at regular time intervals (7 € ®V). By
definition, the discrete Fourier transform of B is (Bracewell, 1986):

N
dft(p,v) = % SN p, (23.8)

r=1



384 FEATURE EXTRACTION, CONSTRUCTION AND SELECTION

In this expression, /N is an analog of frequency. The function dft(p,v) is a
periodic function of v with period N. Furthermore, half of the produced vahies
are complex conjugates of the other half. This means that, for a profile with
N values, the discrete Fourier transform produces V. /2 different amplitudes.

The feature transformation strategies, that have been used in the experi-
ments described below, make use of the function F(7), which returns the vec-
tor of amplitudes produced by the discrete Fourier transform for the profile
P € R'®. Since the length of the measured profiles is 15, the period of the
transform will be N=16 and the last value of the measured profile is repeated
in position 16. F(B) therefore returns an element 7 & R®:

F(p) =3 & s, = ldft((B,ps), v, forv=1,.,8 (23.9)

A computer implementation of the fast Fourier transform (FFT), a method
of calculating the discrete Fourier transform, has been used to obtain the am-
plitudes.

It is now possible to describe rigorously the feature transformation strategies
that were applied. The starting point for feature transformation are the mea-
sured profiles, namely the force profiles 7, f, and F, and the torque profiles
t., &, and ¥,. The applied feature transformation strategies are the following
(for simplicity, each strategy is identified by a code}:

Strategy S1: Raw Features. The measured force and torque values con-
stitute the features in this strategy. No feature transformation is performed.

S1=(f, fy [0 T ) (23.10)
In total, 6*15=90 features are considered.
Strategy 52: Resulting Forces and Torques. In this case, the profiles of

the amplitudes of forces and torques in the orthogonal planes and in 3D space
are considered:

za:y = RzD(zz!zy) E::;p,p = R2D(Emfy)

facz =R2D(f;,;,fz) Ezz =R2D(Ezyiz)

zyz = R?D(?_ﬂ»?ﬁ) - Eyz = R2D(§g;zz) _ (2311)
fzyz = R3D(fzs fya.fz) tzyz =R3D(tm;fy:tz)

These profiles together with the measured profiles define this strategy:

52 E (?z! ?y’ Tz‘l 733(! T;zz’ Tyz! ?zyz’ EE? Iy-; Ez, txyaiwzyzyx, Ezyz) (23.12)

The number of features is in this case 14 x 15 = 210,

Strategy S3: Summary Features. This strategy consists of extracting the

summary features of each profile. First of all, a long list of averages will be
caleulated for each profile 3 by

FEATURE TRANSFORMATION IN ROBOT LEARNING 385

averages(p) = (A(B,1,3), A5, 4,6), A, 7,9), A(p, 10, 12), A(F, 13,15),
A(5,1,5), A(B, 6, 10), A(B, 11,15), A(5, 1,15)) (23.13)

where A(D, m,n) was defined in Equation 23.1. Th_ese sets of averages covers
the profile 7 at different granularities (3 instants, 5 instants and 15 uifmta;}ts){i
The goal is to capture global aspects of the profile as well as more oczlz ize
incidents. The summary features that will be extracted from each profile are
given by the following function:

5(p) = (averages(p), D(p,1,8), D(p,8,15), M (D)) (23.14)

where D(p,m,n) and M(p) are the derivative and monotonicity functions
defined in Equations 23.2 and 23.4. Finally, the summary features extracted
from each example are:

83=(5(F.),5(F,), 5(f.), S(), 8(t,), 5(22)) (23.15)
The number of features is in this case 6 x 12 =72,

Strategy S4: Fourier Features. Extract the amplitudes of the harmonics
generated by the fast Fourier transform for each profile:

84 = (F(F.), F(f, ). F(7.), F(E:), F (&) F (%)) (23.16)

where the function F(p) was defined in Equation 23.9. This strategy pro-
duces 6*8==48 features.

Strategy S5: All Features. Finally, all features used in the previous strate-
gies are joined together, producing a large feature vector. The features ex-
tracted from each profile include all measurements in that profile as well as
summary features and Fourier features.
The function
B(p) = (7,3(p). F(9)) (23.17)

returns such features for a profile p € R'5 (functi(?ns S(p) and F(p) were
defined in Equations 23.14 and 23.9). Strategy S5 is given by

§5 = (3(72),B(Ty),B(Tz),B(Tz,,),B(?u),B(Tw)_,B(?zyz),
B(t.), B(ly), B(t.), B(tay), B(faz), B(fy:), B(tayz))  (23.18)

This strategy produces 14 x (15+12+8) = 490 features. tl‘he goalb{?f ptr.opos;
ing and evaluating this strategy, defined simply as the reunion/com 1r;la ion oe
the previous strategies, is to confirm (or not) t.t‘le general rule that the mor
features are provided to the learner the better will be the result.
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23.7 EXPERIMENTAL RESULTS

The experimental results that will now be presented illustrate the importance
of feature transformation in improving the quality of the learned concept hier-
archies. The first results were obtained on five classification problems that were
designed, based on the training data collected in the experimental setup and
previously described. In each of them, the goal is to learn to recognize some rel-
evant aspect of an execution failure, maximizing accuracy and compactness of
the learned knowledge. That relevant aspect that is to be learned in each case
can be captured by a single classification attribute. These learning problems
could, therefore, be addressed by classical concept learning algorithms, such as
ID3 or CART. The presented results were obtained with SKIL and OC1. For
simplicity of presentation, the learning problems are identified by a code:

® LP-1: failures in approach-grasp, Four clagses of system behavior,
that will be learned, are considered: normal, collision, front collision and
obstruction; 88 training examples are available,

® LP-2: failures in tranafer of a part. Five classes of system behavior
are considered: normal, front collision, back collision, collision to the right
and collision to the left; 47 examples are available.

|

LP-3: failures in transfer of a part. Four situations of the handled

part are considered: ok, slightly moved, moved and lost; the same 47 cases
were used.

LP-4: failures in approach-ungrasp. The classes of failures to be
learned are: normal, collision and obstruction; 117 examples are available.

LP-5: failures in motion with part. Five classes of system behavior
are considered: normal, bottom collision, bottom obstruction, collision in
part and collision in tool; 164 examples are available.

The results, in terms of classification accuracy {measured experimentally
following a leave-one-out scheme) and size of the learned classification trees,
are presented in Tables 23.1 and 23.2. In general, the more discriminative
the available features are, the more accurate and compact will be the learned
hypothesis. As expected, the results obtained with strategy S1, in which the
sensor measurements (raw features) are directly used, are clearly the worst
results. It is also clear that problems LP-2 and LP-5 are very difficult, even
after feature transformation.

In terms of accuracy, strategy S3 (summary features) delivered the best re-
sults in problems LP-1, LP-3 and LP-4. In all the three cases, the improvements
were substantial. In LP-1, summary features enabled an accuracy of 96%, which
is 18% above the accuracy obtained with the raw féatures. In problem LP-4,
the summary features produced an accuracy of 95%, representing an improve-
ment of 30%. A major improvement (38%) was enabled by surhmary features
in problem LP-3. In this case, the accuracy raised from the 49% obtained with

i
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Table 23.1 Classification accuracy for different feature transformation strategies

S5

Learning problem 51 52 53 S4 -
78 80 96 85

II:E’-; 45 57 51 g?, gg
LP-3 49 75 87 3 3
LP-4 65 60 95 " i
LP-5 69 63 gg o "
Average 61 67

the first strategy to 87% obtained with summ?;y fe-a.tu;esi.: The)a b;estt;s:u:;;:
- tained with strategy 5S4 (Fourler jeatures). se,
O e e o i 68% with the Fourier
i th the raw features to 687
accuracy was improved from 45% wi . ith the Fourier
i -5, which turned out to be the least s
features. Finally, problem LP-5, w _ A
i t result with strategy S5 (all features).
feature transformation, got the bes ! b foatured)
ideri the learning problems, strategy
In average terms, considering all :
alsonthe moit successful, leading to an average a.ccuracyllmprovemerit ;)ff 12&,
immediately followed by strategy §5 with an average mp;(;\:;r?;r; rovemem;
i e accl
§4 was not so successful, producing an averag| .
i?ﬁeggé Strategy S2 {measured forces and torques plus t.he resn{:lt];xérgltfo;;::la;
orques | d the smallest average improv ,
and torques in 2D and 3D) produce  the e ey
ludes all features used m g
. The fact that strategy S5, which inc :
g??nd m(;.ny more {490 features in total), has performed a llrtle lwcur;,;e1 1;1;2,;1
strategy S3 can only be a contingency. It is not t}}e general ni e. e, thé
our experience shows that the more features are provided to the algori
greater is the probability of obtaining a good result.

Table 23.2 Tree size for different feature transformation strategies

35
Learning problem S1 s2 58 54 8
LP-1 9 9 6 ;)1 o
LP-2 18 12 12 0 .
LP-3 14 10 6 . ;
LP-4 il 10 9 A 4
LP-5 28 26 14 2 .
Average 16 13 9

As far as the compactness of the learned tree is concerned gTal.}alle :r?ni)
strategy S5 was, actually, the most successful on the average O a VZ mentg
problems, immediately followed by strategy S3. The two zpa_]og :mi)ro Tments
in compactness were precisely obtained with these strategies. Strategy
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abled the generation of a tree with 6 nodes for problem LP-3, less than half
the size of the tree obtained with the raw features. Strategy S5 enabled the
generation of a tree with 11 nodes for problem LP-5, much smaller than the 28
nodes tree obtained with the raw features.

In Table 23.3, a comparison with OC1 (Murthy et al., 1993) is presented.
This algorithm can be used to generate oblique trees, whose tests are based
on linear combinations of features, as well as classical axis-parallel trees. The
linear feature combinations can be seen as automatically learned features. It
is, therefore, interesting to compare this automated approach to the approach
followed in this chapter, based on pre-defined feature transformation strategies.
From the results obtained, we see that the performances of OC1 (axis-parallel
and oblique} and SKIL on the five learning problems previously presented are
equivalent: the average accuracy is of 61% in the three cages. Therefore, the
constructive nature of OC1-oblique didn’t bring the expected improvements.
This is even more disappointing considering the long running time required
by OCL. In fact, to generate oblique trees and perform the leave-one-out test
for the five learning problems, OC1 took more than 30 hours. To generate its
hierarchies, SKII. needed around one hour only. In contrast with the lack of
success of oblique trees, the feature transformation strategies that were applied
enabled significant improvements in accuracy. As can be seen from Table 23.3
it was not difficult to get improvements of 20% or more.

Table 23.3 Comparison of various approaches

Approach LP-1  LP-2 LP-$ LP-{ LP-5 Average
OCI (axis-parallet) 65 43 70 70 58 61
OC1 {oblique) 65 49 a7 80 33 61
SKIL (no feature transf.) 78 45 49 65 69 61
SKIL (2nd best results) 89 64 85 83 72 79
SKIL (best results) 96 68 87 95 77 85

Another experiment was conducted, in this case with a structured concept
learning problem. This is the kind of problem that classical concept learning
algorithms cannot handle. The training data used in this experiment consists
of 88 examples of failures in the approach_grasp operation.

Ten classification attributes were considered:

& behavior: generic information about the operation behavior; it can be
normal or failure; in the second case, the attributes failure type, affected
body, object size, object hardness and object weight become enabled,

®  phase: phase of the failed operation; it can be initial, middle or terminal,

®  failure type: a classification or identification of the failure, for instance
collision, front collision or obstruction.
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w  affected body: what was involved in or more affected by the failure: i’; can
be the tool, the tool tubes or the fingers; if it is tool then t'he attribute
tool region becomes enabled and if it is fingers then the attribute fingers
region becomes enabled.

m  tool region: region of the tool that was affected: it can be front, left, n'ght
and back sides, and bottom; in the last case the attribute bottom subregion
becomes enabled.

m  botiom subregion: if the failure affected the bottom part of the tocl, where
exactly was it; it may be front, middle or back.

®  fingers region: region of the fingers that was affected, including left finger,
right finger and both fingers.

»  object size: size of object causing failure: small, large.
m  object hardness: can be soft or hard.
m  object weight: can be low or high.

Since not all attributes are enabled at the same timel, t}}e maximum size
of a concept is of 8 predictions. The average concept size 1n the lea'f nor}iﬁs
of a fully grown hierarchy is of 4.7 prediction.s (the .method of calculsl;.tmg 1; 1sf
figure is omitted here). The goal of this experiment 1s to evaluate the impac of
feature transformation, not only in terms of the accuracy and compactness o
the learned hierarchy, but also in terms of its coverage of the con-cept.;ua.l spz;,c:i
Coverage is defined as the ratio between the average conc.ept.' size in at;e ;
nodes of the generated hierarchy and the average concept size in the ieaf nodes
of a fully grown tree. For instance, if the average cqncept size in the le nlol ss
of the hierarchy generated for the problem above is 2.35, its coverage will be
2‘3‘C5){)i;a.ge521§y be much less than unity whe.:n the training se_t does not ccl;n}:fa,m
enough information. In that case, expansion of the tree is §tqpped efore
predictions have been determined for all attributes. The pa.rtmula.r s_t.c?ppmg
criterion that was used is to discard every prediction for ‘whmh the antlclpa!;e
accuracy is not above 70%. The results obtained for this structured learning
problem are shown in Table 23.4. This time, strategy S5 (all features) was
consistently the most successful, followed by strategies 53 (summary fez;t:;ur‘es)
and $4 (Fourier features). Since the minimum allowed accuracy for a pre ct;lorz
is of 70%, the average accuracy is high, even in the case of si‘:rateg;y 51. Wha
varies more clearly is coverage of the conceptual space. While using only g;e
raw features the coverage is only 46%, using thgﬁl;‘ouner features {strategy 54)

5) raises coverage to ©- _

. ?‘;;?::ﬁ;?stlgitriggiyct?or{s added in thi lower leve'ls of a co'nce;?t hlerarCh)-f
have lower accuracy. This means that, if the stopping criterion 18 v}?ry pec;
missive, the hierarchy will be large but not very accuratg. On the other en é
if the stopping criterion is very severe, the hierarchy will be more compac
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and accurate, but less informative (less predictions, smaller coverage). In the
meantime, if the number and the discrimination power of the features used in
describing the examples increase, it will be possible to accept more predictions
and create more nodes. But, simultaneously, it will be possible to optimize
the size of the hierarchy. For this reason, there is no clear rule to explain the
impact of features in the size of the hierarchy. Accuracy increases (between 3%
and 10% in Table 23.4) when better features are provided. This is the obvious
effect of providing more information for learning while keeping the threshold for
prediction acceptance. In structured problems, coverage is the measure with
the more direct dependence on the quality of discrimination features.

Table 23.4  Impact of feature transformation on a structured problem

51 52 53 54 S5
Experimental accuracy (%) 82 85 90 87 92
Coverage (%) 46 59 52 66 66
Size {nodes) 18 25 21 19 22

23.8 CONCLUSIONS

This chapter described the application of feature transformation to the prob-
lem of learning diagnosis knowledge about execution failures in robotics. The
original features are time dependent and the transformation strategies take
that into account.

Some experiments with constructive induction algorithms were performed
(and only partially described above). Since no good results were obtained, we
tried the alternative approach of using pre-programmed feature transformation
strategies. These strategies were developed specifically for our application.
The size of the feature vectors after feature transformation varies between 48
and 490 features. Summary features, like averages and slopes, extracted from
sensor traces, were quite successful in improving the accuracy and compactness
of the learned hierarchies. Frequencies, extracted by the fast Fourier transform,
did also contribute to improve accuracy, although to a lesser extent. In some
learning problems, feature transformation led to accuracy improvements of 30%
or more and to reductions in tree size to half the size of the trees generated
with raw features only.

It must be noted that feature transformation is a highly domain-dependent
topic. The transformation strategies that we developed for force-based diagno-
sis in assembly can give inspiration to develop methods for other domains, but
probably won't give the best results if directly applied. What was described
is no more than a case study. We believe that future developments in feature
transformation should be concerned in identifying major classes of objects and
major feature transformation strategies for those objects. One example of such
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objects in our particular case study are the force/torqu_e proﬁles._ Profiles ap-
pear in many domains and, independently of the particular variables whz;e
evolution they describe, there are a certain number of features that may make
gense to extract. It seems, therefore, that a good methodology for feature'trans}
formation should look at examples not as feature vectors but as collectu;ms of
standard objects. Precisely, in our case study an example was a collection o

six profiles.
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